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We develop a model for markets for catastrophic risk. The model explains why insurance
providers may choose not to offer insurance for catastrophic risks and not to participate
in reinsurance markets, even though there is a large enough market capacity to reach full
risk sharing through diversification in a reinsurance market. This is a “nondiversification
trap.” We show that nondiversification traps may arise when risk distributions have heavy
left tails and insurance providers have limited liability. When they are present, there may
be a coordination role for a centralized agency to ensure that risk sharing takes place.

1. Introduction

Catastrophe insurance provides compensation for losses created by such natu-
ral risks as earthquakes, floods, and wind damage, as well as man-created risks
including terrorism. Over the past fifteen years, most private-market property
and casualty (P&C) insurance firms stopped offering coverage against catas-
trophe risks, usually in the wake of a major event. Key private market failures
include Florida hurricane insurance after Hurricane Andrew in 1992, California
earthquake insurance after the Northridge quake of 1994, and, most recently,
US terrorism insurance after the 9/11 attack. Catastrophe insurance markets
have also failed worldwide in most developed countries. In response, state and
federal governments have been forced to try to replace or to revive the pri-
vate markets, the most recent example being the US Terrorism Risk Insurance
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Act of 2002 (TRIA) and its 2005 extension. Unfortunately, the government
interventions are generally considered to be quite inefficient.1

Understanding the source of the private market failures is essential if more
effective remedies are to be found. A fundamental question is why catas-
trophe risks are “uninsurable” for the private insurance firms. Asymmetric
information—adverse selection and/or moral hazard—is the common textbook
explanation for insurance market failures, but there seems to be little role for
asymmetric information with respect to natural disasters or terrorism attacks.2

Imprecision in estimating the underlying stochastic process is also sometimes
suggested as a basis for “uninsurability,” but even if parameter imprecision
raises the cost of insurance, perhaps due to ambiguity aversion, it is unclear
why it would cause the market to fail; see Froot (2001).

A third basis for “uninsurability” is that the possible losses may exceed the
capital resources of the P&C insurance industry; see Cummins, Doherty, and
Lo (2002). For example, the losses created by war or by terrorist use of weapons
of mass destruction (WMD) could readily exceed the capital resources of all
P&C firms. The deadweight costs of bankruptcy, including a loss in the value of
the managers’ human capital, could then motivate the unwillingness of firms to
participate in the catastrophe insurance markets. War and WMD risks, however,
have long been excluded from most insurance contracts, without jeopardizing
the availability of coverage for standard risks.

War and WMD risks aside, size alone does not appear to explain the recent
failure of so many different catastrophe insurance markets. Table 1 shows the
10 most costly insurance losses since 1970 as compiled by SwissRe (2006).
The losses created by the Katrina hurricane of 2005 were USD 45 billion,
followed by the Florida Hurricane Andrew of 1992 (USD 22 billion), and the
9/11 terrorist attack (USD 21 billion). In comparison, the capital resources of
the P&C insurance industry at year-end 2005 totaled approximately USD 446
billion, and in each year since 2001, the P&C industry has increased its capital
resources (net of losses) by at least USD 29 billion.3

Although P&C industry resources can cover most catastrophic risks, cover-
age is provided at the level of individual firms, not the industry. Furthermore,
insurers tend to specialize in geographic regions and particular lines of cover-
age, putting individual firms at potentially high risk to a specific catastrophic
event. Regulation is a major cause of the geographic and insurance line spe-
cialization, since US insurance firms must be chartered separately in each state

1 See Cummins (2006); Jaffee (2006); and Jaffee and Russell (2006) for recent discussions and references to the
literature. OECD (2005, August) and OECD (2005, July) discuss government interventions around the world
to reactivate terrorism insurance. Kunreuther and Michel-Kerjan (2006) discuss the specific issue of terrorism
insurance in the United States.

2 There is generally open access to scientific forecasts of natural disasters, much of it provided by governments.
Terrorists may be more strategic in their choice of targets, but this does not create a moral hazard on the part of
those purchasing terrorism insurance (unless the terrorists particularly target insured properties).

3 These data are from the Insurance Information Institute; see http://iii.org/media/industry/.
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Table 1
The world’s 10 costliest insurance events

Date Event Insured losses1

(USD Billion)

August 24, 2005 Hurricane Katrina 45
September 23, 1992 Hurricane Andrew 22
September 11, 2001 World Trade Center 21
January 17, 2004 Northridge Earthquake 18
September 2, 2004 Hurricane Ivan 12
September 20, 2005 Hurricane Rita 10
October 16, 2005 Hurricane Wilma 10
August 11, 2004 Hurricane Charley 8
September 27, 1991 Typhoon Mireille (Japan) 8
January 25, 1990 Storm Daria (Europe) 7

Source: SwissRe (2006).
1Property and Business interruption; excludes liability and life insurance.

in which they operate and they face substantial fixed costs for marketing and
for developing actuarial expertise for each line and for each state.4 The result
is that relatively few catastrophe insurance firms operate in each state and for
each catastrophe line. Risk-averse executives with ties to their own firm may
wish to avoid such an undiversified position.

Reinsurance firms exist, of course, precisely to redistribute risks, allowing
individual insurers to match their retained risks with their capital resources.
Thus, if reinsurance markets function efficiently, then capital adequacy at the
industry level is in fact the relevant measure. Unfortunately, the proximate
cause of the observed failures of the primary catastrophe insurance markets has
been precisely the failure of the associated reinsurance markets. For this reason,
the fundamental question is why the reinsurance markets for catastrophe risks
have largely failed.

In this paper, we argue that the observed dynamic pattern of widely vary-
ing supply conditions for catastrophe insurance and reinsurance could reflect
a multiple equilibrium system, with the market sometimes reaching a coor-
dinated reinsurance/diversification equilibrium, but at other times falling into
what we call a nondiversification trap. The term is related to poverty traps and
development traps in economic growth theory (Barro and Sala-i-Martin, 2004;
Azariadis and Stachurski, 2006). It denotes a situation where there are two
possible equilibria: a diversification equilibrium in which insurance is offered
and there is full risk sharing through the reinsurance market, and a nondiver-
sification equilibrium, in which the reinsurance market is not used, and no
insurance is offered at all. A move from the nondiversification equilibrium
to the diversification equilibrium has to be coordinated by a large number of

4 Insurance is unique among US financial services in that it is regulated in the United States only at the state level.
The structure of a catastrophe insurance market is well illustrated by California’s earthquake risk market. As of
2005, 70% of the coverage was provided by the California Earthquake Authority, an entity created by the State of
California following the 1994 Northridge quake. With no major quakes since then, private insurers have slowly
reentered the market, now representing about 30% of the market. However, still only 35 private insurance groups
are offering California earthquake coverage (based on annual written premiums of USD 1 million or more).
Furthermore, the top 5, 10, and 20 firms represent 46%, 66%, and 89% of the total private market, respectively.
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insurers and reinsurers, which may be difficult to achieve through a market
mechanism. Therefore, there may be a role for a centralized agency to ensure
that the diversification equilibrium is reached, for example, by mandating that
insurance must be offered (as in the case of the US Terrorist Risk Insurance
Act of 2002 and in the corresponding government plans in most European
countries).

Consequently, our discussion and model focus on reinsurance as the mech-
anism that could be used to coordinate the diversification equilibrium. A func-
tioning reinsurance industry, however, requires that the primary insurers be
willing to write policies in anticipation that other insurers will do the same
and that the reinsurers will pool all the risks, to reach the global diversifica-
tion outcome. Our model will determine the conditions under which such an
equilibrium can and cannot occur.

The existence of nondiversification traps depends crucially on there being
conditions under which diversification becomes suboptimal for the individual
insurers. This is contrary to the traditional framework in which diversification is
always preferred (see, e.g., Samuelson 1967, for equity investments and Froot
and Posner, 2002, for insurance). The traditional framework uses concave
optimization (e.g., via expected utility), with thin-tailed risks (e.g. normal
distributions), and without distortions (unlimited liability, no frictions and no
fixed costs). If any of these assumptions fails, diversification may not always be
preferred.5 Our discussion focuses, in particular, on the impact of heavy left-
tailed distributions (implying a non-negligible probability for large negative
outcomes) as the defining property of catastrophic risks.

Figure 1, from Ibragimov and Walden (2007), provides an intuition for
how nondiversification traps can arise for insurance. Consider a situation in
which there is a maximum number of distinct risks that an individual insurance
provider can take on, e.g., N = 10. The constraint of the maximum num-
ber of risks that an individual firm can accept is in line with our regulatory
discussion earlier and can also be motivated by capacity constraints, capital
requirements, and segmented markets. The three lines A, B, and C in the fig-
ure describe the value (e.g., measured as a certainty equivalent) of holding
a diversified portfolio of n risks as a function of n. In this paper, we study
a model in which the value is a U-shaped function of the number of risks,
corresponding to line B (also studied in a different context in Ibragimov and

5 Beginning with Mandelbrot (1963) and Fama (1965), numerous papers have studied the presence of heavy-
tailedness in economics, finance, and insurance. We mention a sample: heavy-tailedness of return distributions
in stock markets has been documented by Jansen and de Vries (1991); Loretan and Phillips (1994); McCulloch
(1996, 1997); Rachev and Mittnik (2000); and Gabaix, Gopikrishnan, Plerou, and Stanley (2003). Moreover,
Scherer, Harhoff, and Kukies (2000) and Silverberg and Verspagen (2004) report that distributions of financial
returns from technological innovations are extremely heavy-tailed and do not have finite means. Nešlehova,
Embrechts, and Chavez-Demoulin (2006) discuss empirical results that indicate similar extreme thick-tailedness
with infinite first moments for the loss distributions of a number of operational risks. Finally, as was shown in
Ibragimov (2004, 2005) in a general context, with heavy-tailed risks diversification may be inferior, regardless
of the number of risks available. In Ibragimov and Walden (2007) it was further demonstrated that with heavy
tails and limited liability, diversification may be suboptimal up to a certain number of risks, and then become
optimal.
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Figure 1
Value of diversification
A: Traditional situation. The value increases monotonically and it is always preferable to add another risk to the
portfolio. B: Situation in Ibragimov and Walden (2007). Up to a certain number of assets, value decreases with
diversification. C: Situation in Ibragimov (2004, 2005). Value always decreases with diversification.

Walden, 2007). In this case, for any individual insurance provider, diversifica-
tion will clearly be suboptimal as the value decreases in n for n ≤ N = 10.
However, if there are M insurance providers in the market, they could poten-
tially meet in a reinsurance market, pool the risks, and reach full diversifi-
cation with N M risks. For this to be preferred to nondiversification, at least
M = 7 insurance providers must pool the risks. This is a very different situa-
tion compared to the traditional situation in line A, in which each individual
insurance provider will choose maximal diversification into N risks, and in
which two insurance providers can always improve their situation by pooling
their risks in a reinsurance market. For line B, there may be a coordination
problem.

The objective of this paper is to show how heavy-tailed distributions can
lead to nondiversification traps, to provide an understanding of the results and,
finally, to interpret markets for catastrophe insurance in light of the results.
The paper is organized as follows. In Section 2, we show how traps can arise.
Sections 2.1 and 2.2 provide intuition for the results. Sections 2.3 and 2.4
provide a formal game-theoretic setup for a simple reinsurance market, in which
nondiversification traps can be analyzed. Moreover, the concept of genuine
nondiversification traps is introduced. These traps are severe in that they will
not disappear, regardless of the capacity of the insurance market. They may,
therefore, explain the nonexistence of insurance in markets in which there is a
large capacity for risk sharing, but no insurance is offered. In Section 3, we show
the existence of nondiversification traps and characterize the conditions under
which they can arise. In Section 4, we discuss the implications of our theory
for real markets for catastrophe insurance. Finally, we make some concluding
remarks in Section 5. All technical details are presented in the Appendix.
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2. Nondiversification Traps

2.1 Diversification of heavy-tailed risks
When distributions have heavy tails, diversification may increase risk. This is
of course contrary to the traditional case; for example, represented by normal
distributions X ∼ Normal (µ, σ2).6 We show how, using the Lévy distribution
concentrated on the left semi-axis. This is mainly for simplicity: the Lévy distri-
bution is one of the few stable distributions for which closed-form expressions
exist.7 The class of stable distributions is a subclass of the class of distributions
whose left tails satisfy a Pareto law, i.e., exhibit power-law decay:

F(−x) ∼ x−α, x > 0, α > 0,

where F is a cumulative distribution function (c.d.f.).8

The p.d.f. of the Lévy distribution with location parameter µ and spread
parameter σ is

φ(x) =
⎧⎨
⎩

√
σ

2π
e−σ/2(µ−x)(µ − x)−3/2, x < µ,

0, x ≥ µ,

and the c.d.f. is

F(x) =
⎧⎨
⎩Erf

(
σ√

2(µ − x)

)
, x < µ

1, x ≥ µ

. (1)

Here, Erf(y) = 2√
π

∫ y
0 e−t2

dt is the error function; see Abramowitz and Stegun
(1970). We denote by Lµ,σ the class of random variables (r.v.’s) with the above
Lévy distributions.

Similar to normal distributions, a higher value of the spread parameter σ for
a Lévy distribution implies higher riskiness (for a fixed µ). In fact, increasing
σ for Lévy risks leads to first-order stochastically dominated risk, as seen from
Equation (1).

Contrary to normal distributions, diversification of Lévy risks increases σ.
For example, if X1 and X2 are i.i.d., Lévy risks, both with spread parameters
σ, then a portfolio of half of each risk, (X1 + X2)/2, has a spread parameter of
2σ. This follows from the following general diversification rule for portfolios

6 It is also true for general distributions with finite second moments, E(X2) < ∞. This condition is assumed in
Samuelson (1967).

7 Stable distributions are those closed under portfolio formation; see, e.g., the reviews in Ibragimov (2004, 2005).
Besides Lévy distributions, closed-form expressions for stable densities are available only in the case of normal
and Cauchy distributions.

8 Here and throughout the paper, F(x) ∼ G(x) denotes that there are constants, c and C , such that 0 < c ≤
F(x)/G(x) ≤ C < ∞ for large x > 0.
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of K independent Lévy distributed risks, with nonnegative portfolio weights,
ci ∈ R+:

Xi ∈ Lµi ,σi , i = 1, . . . , K =⇒
K∑

i=1

ci Xi ∈ Lµ,σ,

µ =
K∑

i=1

ciµi , σ =
(

K∑
i=1

(ciσi )
1/2

)2

.

A special case is uniform diversification,

Xi ∈ Lµ,σ, i = 1, . . . , K =⇒
∑K

i=1 Xi

K
∈ Lµ,Kσ,

so uniform diversification of K i.i.d. risks increases the spread parameter from
σ to Kσ in line with the example above.

Another case is the Cauchy distribution with location parameter µ and scale
parameter σ, X ∈ Sµ,σ, whose p.d.f. is given by

φ(x) = 1

πσ

1

1 + ( x−µ

σ

)2 ,

and whose c.d.f. has the form

F(x) = 1

2
+ 1

π
arctan

(
x − µ

σ

)
.

For independent Cauchy distributions, the portfolio diversification rule is

Xi ∈ Sµi ,σi , i = 1, . . . , K =⇒
K∑

i=1

ci Xi ∈ Sµ,σ,

where µ =
K∑

i=1

ciµi , σ =
K∑

i=1

ciσi .

Uniform diversification of Cauchy distributed risks therefore has no effect on
total risk, i.e.,

Xi ∈ Sµ,σ, i = 1, . . . , K =⇒
∑K

i=1 Xi

K
∈ Sµ,σ.

The Cauchy case is thus intermediate between the Lévy case and the case with
normal distributions.

2.2 Risk pooling
We begin by studying the potential value of risk sharing among multiple risk-
takers. We first develop the intuition and then, in the following sections, prove
the results rigorously for a model of a reinsurance market.
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We study the behavior of risk-takers. Because we focus on the context of
risk-taking insurance companies, we will refer to these risk-takers as insurers.
We assume that the number of insurers is bounded by M and that all insurers are
expected utility optimizers with identical strictly concave utility functions u.

We assume that there is limited liability. Clearly, real-world insurance firms
have limited liability and may default in some states of the world. This case
is increasingly studied in the insurance literature; see Cummins, Doherty, and
Lo (2002); Cummins and Mahul (2003); and Mahul and Wright (2004). For
catastrophe insurance, with heavy-tailed distributions, there is an effectively
nonzero (although small) probability that such a catastrophic event will create
default. Technically, limited liability is needed in the model, because with
heavy-tailed distributions, the expected payoffs and values are not otherwise
defined. We shall, however, see that the probability for default is small in
equilibrium. Moreover, we will show that our results are not driven by the
convexity of payoffs introduced by limited liability: For markets with large
aggregate risk-bearing capacity, our results will apply only if distributions are
heavy-tailed. The assumption of limited liability is modeled by insurers being
liable to cover losses only up to a certain amount k. If losses exceed k, an
insurer pays k, but defaults on any additional loss.9 Thus, if an insurer takes on
a random risk of X , the effective outcome for the insurer once X is realized is

V (X ) =
{

X, if X ≥ −k
−k, if X < −k

. (2)

In the special case when there is no limited liability, i.e., when k = ∞, we have
V (X ) = X for all X . If k < ∞, u needs only to be defined on [−k,∞) and we
can, without loss of generality, assume that u(−k) = 0.

Assuming i.i.d. risks X1, X2, . . . , we wish to study the expected utility of
s agents, who share j risks equally. We therefore define the random variable
z j,s = (

∑ j
i=1 Xi )/s, with c.d.f. Fj,s . The expected utility of such risk sharing

is

Uj,s
def= Eu(V (z j,s)) =

∫ ∞

−k
u(x)d Fj,s(x). (3)

Firms are usually considered to be risk neutral. However, an expected utility
setup with concave utility can effectively arise if there are financial imper-
fections as, for example, assumed in Froot, Scharsfstein, and Stein (1993). If
such financial imperfections are present, the value of the firm will be given by
a concave transformation of the payoffs, which is effectively identical to our
expected utility setup. Another motivation for risk-averse firm behavior is that
executives with major financial and human capital investments in their own
firm wish to avoid risky positions.

9 We assume that a third party, perhaps the government, covers the excess losses to policyholders. This avoids the
complications of any impact on policyholder demand.
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Insurers face two constraints—one that limits the aggregate amount of their
risks, and the other that limits the size of individual risks. The aggregate
limitation is driven, for example, by capital requirements. This aggregate limit
is imposed by assuming that each insurer can bring at most N risks “to the
table.” Thus, we have 1 ≤ s ≤ M , 1 ≤ j ≤ Ns. The second constraint is that
each risk Xi is indivisible, so it cannot be split between insurers in a primary
insurance market. As discussed in the Introduction, real-world catastrophe
insurance markets are segmented in this way because relatively few insurers
operate in each state and in each line.

When returns are independently normally distributed, it is well known that
one can always add an asset to a portfolio and strictly increase the agent’s utility
via the appropriate selection of weights. In this case, Uj,s is strictly increasing in
s for each j (an immediate consequence of Samuelson, 1967). In this situation,
we can expect a reinsurance market to work well and insurance to be offered
for a maximal number of risks, N M . The argument is based on the fact that
each insurer will choose to diversify fully, regardless of what the other M − 1
insurers do. We call this the traditional situation.

The situation is very different when we have limited liability and heavy-
tailed distributions. We consider i.i.d. Bernoulli-Cauchy distributed risks X̃i ,
i.e.,

X̃i =
{
µ, with probability 1 − q
Xi , Xi ∈ Sν,σ, with probability q

,

where Xi ∈ Sν,σ are i.i.d. Cauchy r.v.’s with location parameter ν and scale
parameter σ. In other words, the r.v.’s Xi are “mixtures” of degenerate and
Cauchy r.v.’s. Clearly, the risks X̃i can be written as

X̃i = µ(1 − εi ) + Xiεi = µ + (ν − µ)εi + σYiεi , (4)

where εi are i.i.d. nonnegative Bernoulli r.v.’s with P(εi = 0) = 1 − q, P(εi =
1) = q and Yi ∈ S0,1 are i.i.d. symmetric Cauchy r.v.’s with scale parameter
σ = 1 that are independent of ε′

i s.
For the above distributions, we say that X̃i ∈ S̃q

µ,ν,σ. Here, µ can be thought
of as the premium an insurance provider collects to insure against events that
occur with probability q. For q 
 1, this distribution is qualitatively similar to
distributions for catastrophic risks: There is a small probability for a catastrophe
to occur. However, if it does occur, the loss may be very large due to the heavy
left tail of the Cauchy distribution. We use the Cauchy distribution for its
analytical tractability (even though it—similar to the normal distribution, used,
e.g., in Cummins (2006)—has a nonzero right tail, which does not have a
meaningful interpretation for catastrophic events). We assume limited liability
(k < ∞) and the power utility function u(x) = (x + k)α, α ∈ (0, 1). Clearly,
under the above assumptions, the expected utility for Bernoulli-Cauchy risks
always exists.
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Figure 2
Expected utility for insurers under different risk-sharing alternatives
s denotes the number of insurers sharing risks. j denotes the total number of risks. U (z j,s ) denotes the expected
utility of an insurer as a function of j and s. Parameters: Liability k = 100, total number of insurers M = 5,
maximum number of risks per insurer N = 20, risk parameters: σ = 1, ν = −9, µ = 1, α = 0.0315, and q = 5%
[see Equation (4)]. See Appendix for Section 2.2 for closed-form solution.

In Figure 2, we show expected utility for different total numbers of projects,
j , and numbers of agents involved in risk sharing, s, with parameters k = 100,
σ = 1, µ = 1, ν = −9, N = 20, M = 5, α = 0.0315, and q = 0.05. There is a
crucial difference compared to the traditional situation. For a moderate number
of risks, there is no way to increase expected utility compared to staying away
from risks altogether. An insurer has the option of not entering the market and
must therefore earn a utility premium to be willing to take on risks (i.e., to offer
insurance). No insurer will therefore choose to invest in risks that cannot be
pooled. Moreover, if an insurer believes that no other insurer will pool risks, he
will not take on risks, whether he can pool them or not. Thus, even though the
situation with full diversification and risk sharing (UN M,M ) is preferred over
the no-risk situation (U0,1), at least four insurers must agree to pool risk for
risk sharing to be worthwhile.

In this situation, there may be a coordination problem: Even though all
agents would like to reach UN M,M , they may be stuck in U0,1. Clearly, the
limited liability assumption is important: If liability were unlimited, no agent
would ever take on risks. The situation would be as in Ibragimov (2004, 2005),
where diversification is always inferior. However, we note that the probability
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for default in the situation with full pooling and diversification is small: it is
approximately 0.3%.

The expected utility assumption is not crucial. Similar results would arise in
a value-at-risk (VaR) framework; for example, with agents who trade off VaR
versus expected returns for some risk level α. The crucial property of the Uj,s

curves is that they are “U-shaped” in s. In Ibragimov and Walden (2007), it
is shown that similar U-shaped curves occur as a function of diversification
when the VaR measure is used. The specification in a VaR framework would
be Uj,s = F(µ, W ), µ = E(V (z j,s)), W = V a Rα(V (z j,s)), with ∂ F/∂µ > 0,
and ∂ F/∂W < 0, and the analysis would be similar to the analysis we carry
out in this paper.

Our argument so far has been informal. We next make these diversifica-
tion results rigorous by introducing a model of a reinsurance market, where
coordination plays a role—the diversification game. We will show that in the
traditional situation, the only equilibrium is a diversification equilibrium, where
N M risks are insured, whereas in the situation with heavy tails there is both
a diversification equilibrium and a nondiversification equilibrium in which no
insurance is offered.

2.3 A reinsurance market
We analyze a market in which insurance providers sell insurance against risks.
For simplicity, we model the market in a symmetric setting: participants in
reinsurance markets share risks equally. The setup is a two-stage game that
captures the intuitive idea that insurance has to be offered before reinsurance
can be pooled. The decision whether to offer primary insurance will be based
on beliefs about how well-functioning (the future) reinsurance markets will
be. If a critical number of participants is needed for reinsurance markets to
take off, then nondiversification traps can occur. As we have already discussed
the intuition behind nondiversification traps, Sections 2.3, 2.4, and 3 focus
on providing the theoretical foundation for the existence of nondiversification
traps.

The two-stage diversification game describes the market. In the first stage,
agents (insurance providers) simultaneously choose whether to offer insurance
against a set of i.i.d. risks. In the second stage, the reinsurance market is formed
and each agent chooses whether to participate or not. Agents who choose not
to offer primary insurance are allowed to participate in the reinsurance market.
Finally, all risks of agents participating in the reinsurance market are pooled
and outcomes are realized and shared equally among participating agents.

2.3.1 Insurance market There are M ≥ 2 agents (also referred to as insur-
ance providers, insurance companies, or insurers). We use m, 1 ≤ m ≤ M to in-
dex these agents. There is a set of i.i.d. risks, X , where each risk has c.d.f. F(x).
Each agent chooses to take on a specific number of risks, nm ∈ {0, 1, 2, . . . , N },
where N denotes the maximum insurance capacity, forming a portfolio of risks
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pm ∈ Pm , where pm = ∑nm
i=1 Xi and Xi ∈ X . This is the first stage of the mar-

ket. The risks are atomic (indivisible) and each risk can be chosen by at most
one agent. We assume that there are enough risks available to exhaust capacity,
i.e., |X | = N M . Here, |X | denotes the cardinality of X . As risks are i.i.d., only
the distributional assumptions of the risks matter and we will not care about
which insurance provider chooses which risk. The portfolio pm is therefore
completely characterized by the number of risks, nm . The total number of risks
insured is N = ∑

m nm .
Agents have liability to cover losses up to k, where k ∈ (0,∞]. If losses

exceed k for an agent, he defaults and pays k, and a third party, possibly
the government, steps in and covers excess losses. The effective outcome
under limited liability for agent m, taking on risk zm , is therefore V (zm),
where V is defined in (2). All agents have identical expected utility over
risks, Um(zm) = Eu(V (zm)), where u is defined and continuous on [−k,∞),
is strictly concave, is twice continuously differentiable on (−k,∞) and, if
k < ∞, satisfies u(−k) = 0. The outcome of the first stage is summarized by

p = (p1, . . . , pM ) ∈ P def= ∏M
m=1 Pm .

2.3.2 Reinsurance market. In the second stage of the game, named the
participation subgame, the reinsurance market is formed. In this stage, agents
have perfect knowledge about p. Each agent, 1 ≤ m ≤ M , sequentially decides
whether to participate in the market or not, as follows: First, agent 1 decides
whether to participate. This is represented by the binary variable q1 ∈ {0, 1},
where q1 = 1 denotes that agent 1 participates in the reinsurance market and
q1 = 0 otherwise. Then, agent 2 decides whether to participate, observing agent
1’s decision, etc. This is repeated until all M agents have decided. Previous
agents’ decisions are observable. If an agent is indifferent between participating
and not participating, he will not participate. Agents who offer insurance, and
participate, pool all their insurance in the reinsurance market, i.e., qm pm is
supplied to the reinsurance market by agent m. The total pooled risk is therefore
P = ∑

m qm pm and the number of risks is R = ∑
m qmnm ∈ {0, . . . , N M}.

As noted, the two stages separate the choice of offering insurance from the
creation of a reinsurance market, which can occur only when the risks are
already insured. The total number of participating agents in the reinsurance
market is t = ∑

m qm . Finally, the pooled risks are split equally among agents
participating in the reinsurance market, i.e., each participating agent receives a
fraction 1/t of the pooled portfolio, P , with R risks.

The outcome of the participation subgame is summarized by q =
(q1, q2, . . . , qM ) ∈ {0, 1}M and the outcome of the total diversification game
is thus completely characterized by (p, q). Moreover, the quintuple G =
(u, F, k, N , M) completely characterizes the diversification game.

We study equilibrium outcomes (p, q) of a diversification game G. As
the second stage of the market is an M-step sequential game with perfect
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Figure 3
Sequence of events
1. Agents simultaneously choose risk portfolio, pm . 2. Reinsurance pool P = ∑

m qm pm is formed. Agents
sequentially choose whether to participate, knowing outcome of step 1 and decision of previous agents. 3.
Pooled risk is split between s participating agents, each taking on risk P/t . Agents who do not participate in the
reinsurance market take on risk (1 − qm )pm .

information, it is straightforward to calculate the unique subgame perfect equi-
librium by backward induction (existence and uniqueness being guaranteed
by Zermelo’s theorem and by imposing the assumption that indifferent agents
do not participate). A detailed setup for the participation subgame is given
in the Appendix. The equilibrium mapping of the participation game, for a
specific first-stage realization p, is a vector q = E(p) ∈ {0, 1}M . We use this
mapping to simplify the analysis of the first stage of the diversification game.
Specifically, in the first stage, all agents agree on q = E(p) as the outcome of
the participation subgame, and therefore use it directly in their value function.
This reduces the size of the strategy space considerably, while not having any
effect on the (subgame perfect) equilibrium outcome. The sequence of events
is shown in Figure 3.

2.3.3 Strategies. For elements p ∈ P , we define the first-stage actions of all
agents except agent m:

p−m = (p1, . . . , pm−1, pm+1, . . . , pM ) ∈
∏

m ′ �=m

Pm ′
def= P−m .

A strategy for agent m consists of a pair: A = (pm,ηm) ∈ Pm × {0, 1}P−m ,
where pm is the chosen portfolio of insurance, and ηm : P−m → {0, 1} is the
participation choice, depending on the realization in the first stage.10

10 Here, in line with the previous discussion on reduced strategy space, q̃m does not need to be conditioned
on the participation choices qm′ of agents m ′ = 1, . . . , m − 1. This is the case as the equilibrium mapping
q = E(p) ∈ {0, 1}M is known, so qm′ is uniquely implied by p in equilibrium.
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2.3.4 Belief sets. Agent m has a belief set about the other agents’ first-stage
actions, Bm = p−m ∈ P−m . Agent m’s strategy, Am = (pm, qm), conditioned
on belief set Bm = p−m , is said to be consistent, if ηm(p−m) = (E( p̃))m , where

p̃ = ((p−m)1, . . . , (p−m)m−1, pm, (p−m)m+1, . . . , (p−m)M ), (5)

and we use the notation (x)i for the i th element of the ordered set x .
Rational agents will consider only consistent strategies, as inconsistent strate-

gies are suboptimal in the participation phase of the diversification game. The
inferred outcome of a consistent strategy, Am = (pm,ηm), conditioned on a
belief set Bm is

zm(pm |Bm) =
{

pm, if ηm(p−m) = 0
P/t, if ηm(p−m) = 1

,

where

q̃ = E( p̃), t =
∑
m ′

(q̃)m ′ , P =
∑
m ′

( p̃)m ′(q̃)m ′ ,

and p̃ is defined as in (5).

2.3.5 Equilibrium. An M-tuple of strategies, (A1, . . . , AM ), and belief sets
(B1, . . . , BM ), where Am = (pm,ηm) and Bm = p−m , defines an equilibrium
of the diversification game G, if

1. Consistent strategies: For each agent m, Am is consistent, conditioned on
belief set Bm .

2. Maximized strategies: For each agent m, pm ∈ arg maxp′∈P
Um(zm(p′|Bm)).

3. Consistent beliefs: For each agent m, for all m ′ �= m: (p−m)m ′ = pm ′ .

The equilibrium outcome is summarized by p = (p1, p2, . . . , pM ) and q =
(η1(p−1),η2(p−2), . . . ,ηM (p−M )). This concludes the definition of the diver-
sification game.

The diversification game, of course, presents a highly stylized view of how
primary markets and reinsurance markets for catastrophic risks work. A nat-
ural extension would be to allow the insurance premium (µ) to be defined
endogenously by demand and supply. This extension turns out to complicate
the analysis severely, so we have avoided it for analytical tractability. However,
the nondiversification traps we derive occur for ranges of (fixed) µ’s, so an
interpretation of our result is that there may be no insurance premium µ for
which there is both demand from potential insurance buyers and supply from
single insurance providers.11

11 For example, in our calibration to earthquake insurance, in Section 4, we arrive at a nondiversification trap
arising for annual insurance premiums, µ, between USD 1840 and USD 2300 per household. Below USD 1840,
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Another potential extension of the model would be to allow insurance
providers to be able to take on fractions of risks, x ∈ X , and not just 0 or
1. This type of extension would not qualitatively change our results, except for
making the model less tractable.

2.4 Classification of equilibria
We are interested in diversification and nondiversification equilibria to a diver-
sification game G = (u, F, k, N , M). These formalize the situations that were
intuitively described in Section 2.2. We define

Definition 1. A diversification equilibrium of a diversification game G is an
equilibrium in which insurance against all risks in X is offered, i.e., N = N M .

Definition 2. A diversification equilibrium of a diversification game G is risk
sharing if all risk insured is pooled in the reinsurance market, i.e., R = N M .

Definition 3. A nondiversification equilibrium of a diversification game G is
an equilibrium, in which no insurance against risk is offered, i.e., N = 0.

Definition 4. A nondiversification trap exists in a diversification game G, if
there is both a nondiversification equilibrium and a risk-sharing diversification
equilibrium.

We are especially concerned about cases in which nondiversification traps
may arise, even though there is a large risk-bearing capacity of the market
as a whole. This might arise if the market is fragmented so that coordination
problems may be present, i.e., if M is large. We therefore define

Definition 5. A genuine nondiversification trap to the quadruple (u, F, k, N )
exists if there exists an M0, such that for all M ≥ M0, the diversification game
G = (u, F, k, N , M) has a nondiversification trap.

In the next section, we analyze when traps can occur in the diversification
game. It turns out that we can rigorously classify the conditions under which
traps may occur.

3. Existence of Traps

We relate the equilibrium concepts described in Section 2.4 to conditions for
the Uj,s as defined in Equation (3).

the only equilibrium is the nondiversification equilibrium, and above USD 2300, the only equilibrium is the
full-diversification equilibrium. The range of µ for which a nondiversification trap arises is thus about 20% of
the premium, i.e., (2300 − 1840)/2340. With other parameter values, we have derived ranges from a few percent
up to an order of magnitude.
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Condition 1. U j,1 < U0,1 for all j ∈ {1, . . . , N }.

Clearly, under Condition 1, an agent would never offer insurance if the
reinsurance market were not available:

Condition 2. Uj,s < U0,1 for all j ∈ {1, . . . , N } and all s ∈ {1, . . . , M}.

Condition 2 is the stronger requirement that even if there is a reinsurance
market, there is no way to increase expected utility by risk sharing if only one
agent contributes risk to the reinsurance market. We shall see that a sufficient
condition for there to be an equilibrium in which full diversification and risk
sharing is achieved is

Condition 3.

� UN M,M > U j,1 for all j ∈ {0, . . . , N } and
� UN M,M > U j,M for all j ∈ {N (M − 1), . . . , N M − 1}.

Our first set of results relates the existence of nondiversification traps to the
expected utilities {Uj,s}0≤ j≤N M,1≤s≤M , defined in (3). The results are fully in
line with the arguments in Section 2.2. We have:

Proposition 1. If Condition 2 is satisfied, then there is a nondiversification
equilibrium.

The implication can be almost reversed, as shown in

Proposition 2. If Condition 2 fails strictly, i.e., if Uj,s > U0,1 for some j ∈
{1, . . . , N } and s ∈ {1, . . . , M}, then there is no nondiversification equilibrium.

Proposition 3. If Condition 3 is satisfied, then there is a risk-sharing diver-
sification equilibrium.

Clearly, if U0,1 > Uj,s for all ( j, s) such that j ∈ {1, . . . , Ns} and s ∈
{1, . . . , M}, then the nondiversification equilibrium is unique. Under these
conditions, the risks are by all means uninsurable, which may correspond to
the “globally uninsurable” risks mentioned in Cummins (2006). Under such
conditions, we can have no hopes for an insurance market to work: The risks
are simply too large. Our analysis applies to situations for which risks may be
“globally insurable,” in that Condition 3 is satisfied but—in the terminology of
Cummins (2006)—may be “locally uninsurable.” In our model, local uninsur-
ability is similar to Condition 1 being satisfied. For heavy-tailed distributions,
Condition 2, which is stronger than Condition 1, may also be satisfied, which
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makes the “local uninsurability” especially cumbersome, and which may lead
to coordination problems and nondiversification traps.

We are now in a position to classify the situations when nondiversification
traps can arise. We have

Proposition 4. In the model in Section 2.2, with Bernoulli-Cauchy distri-
butions with parameters N = 20, M = 5, X̃ ∈ S̃q

µ,ν,σ, with µ = 1, ν = −9,
σ = 1, and q = 0.05, k = 100, u(x) = (x + k)α, with α = 0.0315, there is a
nondiversification trap. Moreover, the nondiversification trap is genuine.

As we shall see, the crucial point here is that the trap is genuine. We next
move on to classifying general distributional properties of the primitive risks
that permit traps. It turns out that traps will arise only under quite specific
conditions: First, nondiversification traps will not arise in a mean-variance
framework with unlimited liability. Thus, in the traditional situation, we will
never see nondiversification traps. Second, genuine nondiversification traps
can arise only with distributions that have heavy tails (i.e., infinite second
moments).

Proposition 5. If utility is of the form Eu(X ) = E(X ) − γV ar (X ), and
k = ∞, then a nondiversification trap cannot occur. Moreover, depending on
parameter values, only two situations can arise: Either there is a unique non-
diversification equilibrium (N = 0, j = 0, t = 0) or there is a unique diversi-
fication equilibrium with full risk sharing (N = N M, R = N M, t = M).

Nongenuine nondiversification traps can arise under standard conditions, i.e.,
distributions do not need to be heavy-tailed for nondiversification traps to be
possible. For example, the diversification game G = (u, F, k, N , M), with

u(x) = x I (x ≤ 0) + log(1 + x)I (x > 0),
F(x) = I (x ≥ −50)/2 + I (x ≥ 70)/2,

k = ∞,

N = 20,

M = 5,

where I (·) denotes the indicator function, and F(x) thus is the c.d.f. of a discrete
r.v. X , with P(X = −50) = P(X = 70) = 1/2 having a nondiversification trap.
However, genuine nondiversification traps arise only if distributions have heavy
tails, as shown by the following proposition:

Proposition 6. (i) If k = ∞ and the risks X ∈ X have finite second moments,
i.e., E(X2) < ∞, then a genuine nondiversification trap cannot occur.

(ii) If k < ∞, the risks X ∈ X have E(X ) �= 0, and E(X2) < ∞, then a
genuine nondiversification trap cannot occur.
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(iii) If k < ∞, the risks X ∈ X have E(X ) = 0, and E(X2+ε) < ∞, for some
arbitrary small ε > 0, then a genuine nondiversification trap cannot occur.

Proposition 6 can also be viewed from an approximation perspective. If M is
large, but finite, then nondiversification traps can arise only with distributions
that have left tails that are “approximately” heavy, i.e., decay slowly until a
certain point (even though their real support may be bounded). For details on
this type of argument, see Ibragimov and Walden (2007).

4. Traps in Markets for Catastrophic Insurance

In this section, we apply our results to real markets for catastrophic insurance.
Obviously, risks vary across product lines and geography, and a full inves-
tigation is outside the scope of this paper. Instead, we focus on one type of
risk—earthquake insurance in California. Applying the principles of seismol-
ogy, we show that the distribution of loss sizes indeed follows a Pareto law
and that an exponent of unity (the Cauchy case) is by no means unreasonable.
Moreover, with a simple calibration, we estimate the value of being able to
avoid a trap in residential earthquake insurance in California to be up to USD
3.0 billion per year. This is the direct value effect of a trap. The estimate does not
include indirect effects, as, e.g., analyzed in Hubbard, Deal, and Hess (2005).
We also discuss how this type of analysis is valid for other types of natural
disasters. Finally, we relate our results to several recent events in markets for
catastrophic insurance.

4.1 Loss distribution of earthquakes in California
The fact that earthquakes are referred to as catastrophes is suggestive that they
have heavy-tailed distributions. In this section, we show more precisely that
standard seismic theory leads to loss distributions that follow Pareto laws,

hL (l) ∼ l−α.

Here, hL (l) = P(L > l) is the probability that the economic loss L is larger
than l, conditioned on an earthquake occurring. More generally, for an r.v. X ,
let hX (x) denote the probability that X exceeds x , conditioned on an earthquake
occurring, P(X ≥ x).

Pareto laws arise for the distributions of energy release from earthquakes (see,
e.g., Sornette, Knopoff, Kagan, and Vanneste, 1996). We show that economic
loss also satisfies a Pareto law. For economic loss estimates, it is more natural
to work with the Modified Mercalli Intensity (MMI) scale. Let M denote the
moment magnitude Hanks and Kanamori (1979) of an earthquake.12 A standard

12 The moment magnitude is almost the same as the Richter magnitude, MR, for M ≤ 6.5, but provides a more
accurate measure for earthquakes of larger magnitudes.
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model for the distribution of moment magnitudes of earthquakes is

hM (m) = C1e−βm, (6)

where β = 1.84 is often used (see McGuire, 2004, pp. 34–40).13 The expo-
nential distribution is adequate for M ≤ 7, but for higher M , it underestimates
the probabilities (McGuire, 2004, pp. 53–54; and Schwartz and Coppersmith,
1984), so the distribution for high levels may in fact have heavier tails than
assumed in (6).14

An empirical relationship between the MMI and the expected magnitude is
given by

M = 1.3 + 0.6Ie ⇒ Ie = M

0.6
− 1.3

0.6
, (7)

where Ie is the epicentral intensity, i.e., the MMI at the center of the earthquake
(McGuire, 2004, p. 44). For simplicity, we assume that this is a deterministic
relationship. The MMI at a specific point is directly related to the damage and
losses at that point. For example, for an MMI of VIII, the estimates of losses
for wooden structures is 5–10% of total value (McGuire, 2004, p. 19).15 For Ie,
we immediately get

hIe (i) = C1 e−β(1.3+0.6i) = C2 e−1.10i .16

We relate the area A covered by an earthquake to Ie through the attenuation
function. We use the estimate

Id = Ie + 2.87 + 0.00052D − 1.25 log10(D + 10)

≥ Ie + 2.87 − 1.25 log10(D + 10),

where Id is the MMI at a point of distance D away from the epicenter; see
Ho, Sussman, and Veneziano (2001).17 Let Ad (Ie, Id ) denote the area that
experiences an MMI ≥ Id for an earthquake with epicentral intensity Ie. We

13 This is the moment magnitude version of the celebrated Gutenberg-Richter exponential law for the Richter
magnitude.

14 Although for very high levels, physical arguments imply that there has to be an upper bound on the energy
released; see Knopoff and Kagan (1977), and Kagan and Knopoff (1984). However, even if there is an upper
bound, say at M = 10 − 11, this still leads to an approximate Pareto law for over 15 magnitudes of energy
release. The upper bound is well beyond the limited liability threshold of most insurance markets and is therefore
not crucial for our trap argument.

15 This estimate may be somewhat outdated, as building structures nowadays may be stronger. However, this does
not change our general conclusions, only the constants in the formulae (personal communication with William
L. Ellsworth, Chief Scientist, Western Region Earthquake Hazards Team, United States Geological Survey).

16 1.10 ≈ 1.84 × 0.6.

17 Other estimates for the relation are available, e.g., in Bakun, Johnston, and Hopper (2003). However, as with the
strength of building structures, they are qualitatively similar and will not change our main conclusions (personal
communication with William L. Ellsworth, Chief Scientist, Western Region Earthquake Hazards Team, United
States Geological Survey).
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also write A(Ie) when Id is fixed and known. Then, as A ∼ D2, it is easy to see
that

A(Ie, Id ) ≥ C3 × 101.6(Ie−Id ) = C3 × e1.6 ln(10)(Ie−Id ) = C4 × e3.7Ie ,

for fixed Id . Another estimate is obtained by using the results in Hanks and
Johnston (1992), for Id = VI. Their formula is

M = 2.38 + 0.96 log10(A(Ie(M), VI)),

which by Equation (7) leads to

A(Ie, VI) = C5 × e0.6×ln(10)Ie/0.96 = C5 e1.44Ie .

Under the assumption of uniform geographical population density, it is nat-
ural to assume that the economic loss L from an earthquake is at least propor-
tional to A(Ie), as this estimate only takes into account area covered, but does
not take into account that the higher the Ie, the more the damages close to the
epicentrum. This leads to the loss distribution

hL (l) ∼ l−α, where α ∈ [0.3, 0.76].18

The other extreme assumption is that of one-dimensional population density,
i.e., that people only live along a one-dimensional coastline. In this case, it is
natural to assume that the economic loss L is at least proportional to

√
A(Ie).

This leads to the loss distribution

hL (l) ∼ l−α, where α ∈ [0.6, 1.5].19

Thus, overall, the economic loss distribution follows a Pareto law that decays
slower than α = 1.5, and it may be as slow as α = 0.3. An α equal to unity
corresponds to the Cauchy case.

Clearly, these calculations are rough. However, the key point is that under
standard assumptions, for many orders of magnitude, the distribution of eco-
nomic loss from earthquakes follows an approximate Pareto law, with a very
heavy tail, and that the tail exponent α = 1 by no means is unreasonable.

4.2 Value of avoiding a trap
We present an analysis of the value of avoiding a nondiversification trap for
California earthquake insurance. Under the assumptions, the value (measured
as a certainty equivalent) of being able to avoid a nondiversification trap for resi-
dential real-estate earthquake insurance in California may be up to USD 3.0 bil-
lion per year. This measures only the direct effect. In addition, the failure of
a private insurance market for earthquake risk in California imposes indirect

18 0.3 ≈ 1.10/3.7, 0.76 ≈ 1.10/1.44.

19 0.6 ≈ 1.10/(3.7/2), 1.5 ≈ 1.10/(1.44/2).
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costs on important parts of the state’s economy, including new construction,
home sales, and the mortgage market. Thus, following the Northridge earth-
quake of 1994, the state felt it important to create the California Earthquake
Authority to augment the private market; see Jaffee and Russell (2003).

We assume that the capital of a (large) representative insurance company is
USD 10 billion, i.e., that the individual insurance company, not taking rein-
surance into account, can cover claims up to USD 10 billion. The total market
capacity is USD 400 billion. This is the potential liability available, if the mar-
ket chooses to provide full liability exposure.20 It corresponds to 40 companies
of equal size. We also assume that the government steps in to cover any addi-
tional losses of an earthquake of magnitude above M = 8.3, because the losses
created by an event of that size or larger would bankrupt the industry.

The convex capital cost for insurance companies is calibrated to fit the
assumption that insurance companies will charge a premium of USD 50 million
to take on a Bernoulli-type risk that with 50% chance pays +USD 1 billion and
with 50% chance costs USD 1 billion (i.e., pays −USD 1 billion). Equivalently,
the company would charge a premium of USD 1.05 billion to insure a 50% risk
of a catastrophe that, if it occurs, leads to claims of USD 2 billion.21

According to US census data, there are 11.5 million households in Cali-
fornia, of which 57% are homeowners.22 For these households, we assume a
reconstruction cost of USD 150,000, that the total wealth of a representative
homeowner household is USD 200,000 (i.e., USD 50,000 in addition to the
value of the house), and that households have CRRA utility with risk-aversion
parameter γ = 3.

We focus on large earthquakes, with M ≥ 6.7. In line with our analysis in the
previous section, we assume that the distribution of earthquakes with M ≥ 6.7
is Bernoulli-Cauchy distributed. The annual probability for an earthquake in
California of magnitude M ≥ 6.7 is assumed to be 6.3%.23 The total damage
caused by such an event is assumed to be USD 25 billion, of which 50%
(USD 12.5 billion) falls upon residential homeowners.24 In our simplified

20 Cummins, Doherty, and Lo (2002) assess the market capacity to be USD 350 billion. As noted earlier, the actual
capital of the US property and casualty industry at year-end 2005 is estimated to be USD 446 billion.

21 Another calibration is for a 1% risk of a USD 1 billion event. The premium to insure such a risk under our
assumptions would be about USD 11 million, i.e., an additional USD 1 million above the risk-neutral premium.
Studies of risk premiums for catastrophe bonds estimate the premium charged by the market to be USD 3 million
for such risks (Froot, 2001). Under our assumptions, one-third of this premium would stem from convex capital
costs and the other two thirds from other factors, e.g., transaction costs, asymmetric information, and parameter
uncertainty.

22 US Census Bureau, Census 2000. In addition to the 6.5 million owner-occupied housing units, there are 5 million
renter-occupied units, and 700,000 vacant units. Our analysis does not cover insurance demand for these units
and may thereby underestimate the total value.

23 According to USGS report 03-0214, “Earthquake probabilities in the San Francisco Bay region: 2002–2031,”
there is 62% risk for an earthquake with M ≥ 6.7 in the Bay Area between 2002 and 2031. This corresponds to
an average annual probability of 3.2%. Assuming an independent similar total risk in urban areas of the rest of
California, including Los Angeles, leads to the total annual probability of 6.3%.

24 The documented direct losses of the 1994 Northridge earthquake of magnitude M = 6.7 were USD 24 billion
(Eguchi et al., 1998).
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analysis, if an earthquake occurs, a house either suffers no damage, or collapses
and realizes a full loss of USD 150,000.25 The number of houses damaged by
an M = 6.7 earthquake is therefore 83,000 (USD 12.5 billion/USD 150,000).
The maximum residential damage in the model is for an M = 8.3 event, under
which the total damage is USD 500 billion. In the model, such an event occurs
on average once in 630 years.

Under these assumptions, there is an unconditional risk of 0.2% per house-
hold per year that the household will have an insured loss. The households’
CRRA risk attitudes imply that each household is willing to pay an annual
insurance premium of up to USD 2300 to insure this risk. The total willingness
to pay is thus about USD 15 billion per year. However, no single insurance
company is willing to offer insurance at this premium. This is the nondiver-
sification equilibrium. On the contrary, in a full risk-sharing diversification
equilibrium, insurance companies would be willing to offer insurance for an
annual premium as low as USD 1840 per year. This gap of USD 460 per year
(2300 − 1840) represents the highest amount a household would be willing
to pay to avoid the trap. The total gap size is therefore USD 3.0 billion per
year (460 × 57% × 11.5 million). This is the potential annual value of avoid-
ing a trap for homeowner residential earthuake insurance in California. If a
risk-sharing full diversification equilibrium occurs, the market provides full
insurance against a California earthquake of magnitude M = 8.3. However,
a single insurance company will be able to fully cover an event only up to a
magnitude of M = 7.0.

We have assumed Cauchy distributed tails (α = 1). As mentioned earlier,
closed-form solutions are not available for α �= 1. However, it is possible to
estimate numerically the conditions under which nondiversification traps arise
for other values of α. In the example just discussed, the nondiversification trap
arises for 0.76 ≤ α ≤ 1.46. If α > 1.46, an individual company is willing to
offer insurance at a price households are willing to accept. If α < 0.76, no
diversification equilibrium exists. The latter case corresponds to a globally
uninsurable risk.

4.3 Other natural disasters
We have focused on one specific type of catastrophe—earthquakes. A full cali-
bration to each type of catastrophe is outside the scope of this paper. However,
the crucial property for our theory is the heavy-tailed distributions, especially
Pareto laws. These are generic for natural disasters. As discussed in Woo
(1999), heavy-tailedness is intimately connected with the self-similarity of the
physical processes underlying natural disasters. For example, the energy distri-
bution released in earthquakes satisfies a Pareto law with an exponent between
α ∈ (0.8, 1.2) (Sornette, Knopoff, Kagan, and Vanneste, 1996). Similarly, the

25 We have also done calculations where partial damage can occur, with qualitatively similar results to the ones
presented here.
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energy distribution of extraterrestrial impacts (meteorites and asteroids) satis-
fies a Pareto law with exponent α ≈ 0.86, the size distribution of landslides has
been estimated to have an exponent of α ∈ (1.2, 1.4), whereas the area covered
by river floods scales with the exponent α ≈ 0.43 (Woo, 1999). For hurricanes
in Florida, estimates of the tail of the loss distribution of α ≈ 1.56 (Hsieh,
1999) and α ≈ 2.49 (Hogg and Klugman, 1983) have been made.

In each of these cases, a relationship between the heavy-tailed variable X and
economic loss L needs to be established, just like when going from moment
magnitude to economic loss for earthquakes in Section 4.1. However, as long
as this relationship is of power-type L(X ) ∼ Xβ, the loss distribution will also
satisfy a Pareto law, with exponent α̂ = α/β, so our theory can be applied.

4.4 The role of a central agency
As the private catastrophe insurance markets for earthquakes, wind damage,
floods, and terrorism have failed, one after the other over the past 15 years, in
both the United States and Europe, governments have been forced to intervene.
The plans were often created under time pressure and they differ substantially in
their details; see OECD (2005, August) and OECD (2005, July) for descriptions
of both the European and US plans. So it is intriguing to find that they actually
share a fundamental design feature, namely, that each government plan has,
in effect, created a mechanism through which a coordinated diversification
equilibrium is established.

For example, in the United States following the terrorist attack of September
11, 2001, the US Congress passed the Terrorism Risk Insurance Act (TRIA),
which requires all US insurance firms to offer terrorism coverage as a rider
to their standard coverage for commercial buildings. The quid pro quo is that
the government provides reinsurance for the highest layer of risk, although,
as shown in Carroll, LaTourrette, Chow, Jones, and Martin (2005), the actual
subsidy is very small. Thus, the primary force of TRIA is that it requires a
coordinated equilibrium in which all insurers must offer terrorism coverage.
The federal government also directly provides most US flood insurance, which,
of course, automatically diversifies the risk across all US taxpayers. At the state
level, Florida and California have required private firms to continue to cover
hurricane and earthquake risks, respectively, while the states support some of the
reinsurance. Finally, most European countries have created national catastrophe
programs, covering both natural disasters and terrorism, that generally require
that catastrophe coverage be offered to all customers, while the government
provides a reinsurance facility; see OECD (2005, August) and OECD (2005,
July).

Thus, quite systematically, government interventions to support catastrophe
insurance markets in both the United States and Europe have, in effect, created
coordinated diversification equilibria. This supports a basic conclusion of our
paper, that government support to help reach a coordinated diversification
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equilibrium may play an important role in maintaining functioning markets for
catastrophe insurance.

5. Concluding Remarks

Catastrophic risks seem ideal for insurance markets with large aggregate ca-
pacity: They are basically independent over types and geography, and there
are few, if any, informational asymmetries to hinder well-functioning markets
for pooled risks. The limited existence of markets for catastrophe insurance is
therefore quite puzzling.

We offer an explanation to this puzzle based on one unique property of catas-
trophic risks: the non-negligible probability for extremely negative outcomes,
i.e., the heavy left tails. The value of diversification decreases drastically when
distributions are heavy-tailed. In some cases, it vanishes completely or can even
be negative. The heavier the tails, the less we can, therefore, rely on standard
mean-variance analysis or normal distributions in our analysis.

In a model of a reinsurance market, we have shown that if insured risks
have heavy left tails, there can be nondiversification traps. Nondiversification
traps occur when the value of diversification is U-shaped in the number of
risks—starting out negative, but eventually becoming positive. In such situa-
tions, the value of diversification may be negative on the scale of the individual
insurance company, but positive on a market scale.

The welfare loss of a diversification trap may be high. For example, we
estimate the direct welfare loss of a trap in California residential earthquake
insurance to be up to USD 3.0 billion per year. The effect may be especially
severe in fragmented markets with large aggregate risk-bearing capacity. In such
markets, diversification must be coordinated by a large number of insurance
providers. This could motivate a role for a central agency in coordinating
and ensuring that diversification is reached. We make several observations
supporting the conclusion that governments are already taking such actions.

Appendix

Results in Section 2.2
With limited liability (k < ∞) and the power utility function u(x) = (x + k)α, α ∈ (0, 1), the
expected utility will be

Uj,s = E

(∑ j
i=1 X̃i

s
+ k

)α

+

= E

(
µj + (ν − µ)

∑ j
i=1 εi + σ

∑ j
i=1 εi Yi

M
+ k

)α

+

=
j∑

n=1

(
j

n

)
qn(1 − q) j−n W j,n,s +

(
jµ

s
+ k

)α

, (8)
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where

W j,n,s = 1

π

∫ ∞

−r/b

(bx + r )α

1 + x2
dx, b = nσ

s
, r = k + ( j − n)µ + nν

s
.

The closed-form solution for the integral is

W j,n,s = bα(1 + r/b)α/2

sin(πα)
× sin

(πα

2
+ α arctan(br )

)
.

Figure 2 has been plotted using Equation (8).

Results in Section 2.3
The M-person participation subgame. M ≥ 1 agents decide sequentially whether to participate
or not. Previous decisions are observable. The outcome is represented by q = (q1, . . . , qM ) ∈
{0, 1}M , where qm = 1 indicates participation. The payoff to not participating (i.e., choosing
qm = 0) is Unm ,1. The payoff to participating is UR,t , where t denotes the number of participating
agents, t = ∑

m qm , and R = ∑
m qmnm . Here nm is the number of risks chosen by agent m in the

first stage of the diversification game. To ensure uniqueness, we assume that if agents are indifferent
between participating and not participating (Unm ,1 = UR,t ), then they do not participate. We call
this the “laziness” assumptions. The game is shown in Figure 4 for an example with three agents
(M = 3).

Zermelo’s theorem immediately implies that for each realization of the first stage of the diver-
sification game, p = (p1, . . . , pm ), there is a unique subgame perfect equilibrium satisfying the
laziness assumption, to the participation game, q ∈ {0, 1}M . We can therefore define the equilib-
rium mapping E : PM → {0, 1}M , with q = E(p). Without loss of generality, we can assume that in
the first stage of the diversification game, agents base their strategies on this equilibrium mapping.
This reduces the strategy space significantly.

Results in Section 3
Proof of Proposition 1. As Condition 2 implies Condition 1, it is clearly not optimal for any agent
who does not participate in the reinsurance market to offer insurance. Moreover, if agent m believes
that no other agent will offer nontrivial risks into the pooled market, Condition 2 implies that it is
optimal for agent m to not offer nontrivial risk, as any risk sharing with up to N risks is inferior to
not taking on risk. Thus, it is an equilibrium for no one to offer insurance. �
Proof of Proposition 2. If Un,s > U0,1 for n ≥ 1 and s = 1, then clearly any agent will strictly
improve by taking on n risks. For Un,s > U0,1 for some s > 1, the proof is a direct consequence
of the equilibrium structure of the participation game. For example, agent 1 strictly improves by
pooling n risks into the reinsurance market, as agent 2, . . . , s∗ will then choose to participate in
the participation game for some s∗ = arg maxt {t : Un,t > U0,1}, whereas agents s∗ + 1, . . . , M
will choose not to participate. This leads to a strict improvement for all agents 1, . . . , s∗. Thus,
agent 1 will deviate from the assumed nondiversification strategy, so nondiversification cannot be
an equilibrium. �
Proof of Proposition 3. Under Condition 3, if agent m believes that all other agents will participate
in the reinsurance market, by choosing N risks and participating, UN M,M can be achieved. This
clearly dominates any alternative strategy of not participating in the market, which will lead to
Un,1 for 1 ≤ n ≤ M , or of participating and offering fewer risks, which will lead to Un,M , for
N (M − 1) ≤ n ≤ N M − 1. All alternative strategies are thus strictly dominated by the strategy
leading to UN M,M .
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Figure 4
Example of participation subgame with M = 3 agents
In the first stage, agents 1, 2, and 3 have chosen to insure n1 = 5, n2 = 0, and n3 = 2 risks, respectively.

�
Proof of Proposition 4.

(i) Existence of nondiversification trap: Follows by checking that the example with parameters
N = 20, M = 5, X̃ ∈ S̃q

µ,ν,σ, with µ = 1, ν = −9, σ = 1 and q = 0.05, k = 100, u(x) = (x + k)α,
with α = 0.0315, satisfies Conditions 2 and 3 simultaneously.

(ii) The trap is genuine:
(ii) (a) We first show that Uj,s < U0,1 for all j ∈ {1, . . . , N } and all s ∈ {1, 2, . . .}. This is

sufficient for the nondiversification part of the equilibrium to be satisfied. We do this by studying

F( j, y)
def=

j∑
n=1

(
j

n

)
qn(1 − q) j−n W j,n,1/y + ( jµy + k)α ,

for the parameter values q = 0.05, µ = 1, ν = −9, α = 0.0315, σ = 1, k = 100. By verifying that
F( j, y) < 0 for y ∈ (0, 1], for j = 1, 2, . . . , 20, this implies that Uj,s < U0,1 for all s ∈ {1, 2, . . .}
and each feasible j . In Figure 5, F( j, y) as a function of y is shown for j = 1, 2, 5, 10, 20.
The lowest curve is for j = 1, and the highest for j = 20. We have also verified the condition
for all other feasible j (not shown in the figure). In fact, F is an increasing function of j for
fixed y, so F(20, y) (the highest curve) being strictly negative for y ∈ (0, 1] is sufficient for the
nondiversification part of the equilibrium to be satisfied.
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Figure 5
F( j, y) < 0 for all 0 < y ≤ 1 and for all j ∈ 1, 2, . . . , 20.

(b) For the risk-sharing diversification part, we need to show that for some M0, for all M ≥
M0: UN M,M > U0,1 and UN (M−1),M < UN (M−1)+1,M < · · · < UN M−1,M . As U0,1 > U j,1 for j =
1, . . . , 20 (see Figure 2). This is sufficient for the risk-sharing diversification part to hold.

Let us consider the asymptotics of Ut M,M , where t is a fixed natural number, as M → ∞. In
what follows, →P denotes convergence in probability and →d denotes convergence in distribution.
According to (8), we have

Ut M,M = E

(∑t M
j=1 X̃ j

M
+ k

)α

+

= E

(
µt + (ν − µ)

∑t M
j=1 ε j

M
+ σ

∑t M
j=1 ε j Y j

M
+ K

)α

+
,

where ε j are i.i.d. nonnegative Bernoulli r.v.’s with P(ε j = 0) = 1 − q, P(ε j = 1) = q, and Y j ∈
S0,1 are i.i.d. symmetric Cauchy r.v.’s with scale parameter σ = 1 that are independent of ε′

j s. By
the law of large numbers,

∑t M
j=1 ε j

M
→P t Eε1 = tq (9)

as M → ∞.

Because the characteristic function of a symmetric Cauchy r.v. X ∈ S0,σ is given by

E exp(iy X ) = exp(−σ|y|), (10)

we obtain that the characteristic function f (y) = E exp(iyWM ) of WM =
∑t M

j=1 ε j Y j

M satisfies

f (y) =
[

E exp

(
iyε1Y1

M

)]t M

=
[

(1 − q) + q E exp

(
iy X1

M

)]t M

=
[

1 + q

(
exp

(
−|y|

M

)
− 1

)]t M

→ exp(−qt |y|) ∀y ∈ R (11)

as M → ∞. Because, according to Equation (10), exp(−tq|y|) is the characteristic function of the
r.v. tqY1, we conclude from Equation (11) that

WM →d tqY1 (12)
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as M → ∞. Relations (9) and (12) imply that, as M → ∞,

VM =
(

µt + (ν − µ)

∑t M
j=1 ε j

M
+ σ

∑t M
j=1 ε j Y j

M
+ K

)α

+
→d (µt + (ν − µ)tq + σtqY1 + K )α+. (13)

Because, as is not difficult to see, the sequence of r.v.’s VM is uniformly integrable, from
Equation (13) we get that (see, e.g., Ash, 2000, p. 336)

Ut M,M = E

(
µt + (ν − µ)

∑t M
j=1 ε j

M
+ σ

∑t M
j=1 ε j Y j

M
+ k

)α

+

converges to

G(t)
def= E(µt + (ν − µ)tq + σtqY1 + K )α+

=
(

t2q2σ2 + (k + t(µ − qµ + qν))2
)α/2

× csc(πα) sin

(
1

2
α

(
π + 2 arctan

(
k + t(µ − qµ + qν)

qtσ

)))

as M → ∞. In particular,

lim
M→∞

UnM,M = G(n), n = 1, . . . , N .

It is straightforward to check that G(N ) > U0,1.
Let us now show that UN (M−1),M < UN (M−1)+1,M < · · · < UN M−1,M . Let 0 ≤ m ≤ M − 2.

Note that, for Y ∈ S0,σ and α ∈ (0, 1), z ∈ R, the expectation E(Y + z)α−1
+ is finite and well

defined because the integral
∫ ∞
−z

dx
πσ(x+z)1−α(1+x2)

converges. This, by induction and conditioning

arguments, implies that the expectation E

( ∑N (M−1)+m
j=1 Xj

M + k

)α−1

+
is finite and positive:

0 < E

(∑N (M−1)+m
j=1 Xj

M
+ k

)α−1

+
< ∞. (14)

Using a Taylor expansion, it is not difficult to check that the following inequality holds for all
x, z ∈ R and all α ∈ (0, 1):

(x + z)α+ ≥ zα
+ + αxzα−1

+ , (15)

with strict inequality for x, z > 0. Let X ′
1 = µ + (ν − µ)ε′

1 + σε′
1Y ′

1 denote an r.v. with Bernoulli-
Cauchy distribution (4), where ε′

1 is a nonnegative Bernoulli r.v. with P(εi = 0) = 1 − q, P(εi =
1) = q and Y ′

1 ∈ S0,1 is a symmetric Cauchy r.v. with scale parameter σ = 1 independent of ε′
1.

Suppose further that ε′
1 and Y ′

1 are independent of the r.v.’s Xj , j = 1, · · · , N (M − 1) + 1. Using
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Equations (14) and (15) we get that, for all s > 0,

E

(∑N (M−1)+m
j=1 Xj + X ′

1

M
+ k

)α

+
I (|Y ′

1| < sM)

> E

(∑N (M−1)+m
j=1 Xj

M
+ k

)α

+
P(|Y ′

1| < sM)

+ (α/M)E[X ′
1 I (|Y ′

1| < sM)]E

(∑N (M−1)+m
j=1 Xj

M
+ k

)α−1

+
, (16)

where I (·) is the indicator function.
We further have, by the definition of X ′

1, ε′
1, and Y ′

1 and using the symmetry of the distribution
of Y ′

1,

E[X ′
1 I (|Y ′

1| < sM)] = (µ + (ν − µ)q)P(|Y ′
1| < sM)

+ σq E[Y ′
1 I (|Y ′

1| < sM)]

= (µ + (ν − µ)q)P(|Y ′
1| < sM) ∀s > 0. (17)

The inequalities (16) and (17) imply that, for all s > 0,

E

(∑N (M−1)+m
j=1 Xj + X ′

1

M
+ k

)α

+
I (|Y ′

1| < sM)

> E

(∑N (M−1)+m
j=1 Xj

M
+ k

)α

+
P(|Y ′

1| < sM)

+ α(µ + (ν − µ)q)

M
P(|Y ′

1| < sM). (18)

Letting s → ∞, we obtain

UN (M−1)+m+1 = E

(∑N (M−1)+m
j=1 Xj + X ′

1

M
+ k

)α

+

≥ E

(∑N (M−1)+m
j=1 Xj

M
+ k

)α

+
+ α(µ + (ν − µ)q)

M
. (19)

It is easy to check that, for the values of the parameters chosen in the proposition, µ + (ν − µ)q =
0.5 > 0. From (19) we thus conclude that

UN (M−1)+m+1 > E

(∑N (M−1)+m
j=1 Xj

M
+ k

)α

+
= UN (M−1)+m

for all 0 ≤ m ≤ M − 2.
Thus, the conditions for a risk-sharing diversification equilibrium are satisfied for all M ≥ M0.

Together, (i) and (ii) therefore imply that the nondiversification trap is genuine. �
Proof of Proposition 5.

We first prove the special case, with normal distributions (Xi ∼ Normal(µ, σ2)) and CARA
utility (u(x) = − exp(−θx)), which is well known to lead to mean-variance optimizing agent
behavior.
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(i) No nondiversification trap: Clearly, for there to be a risk-sharing diversification equilibrium,
we must have UN M,M > U0,1. However, the strict monotonicity of U j,M in j then implies that
U1,M > U0,M = U0,1. By Proposition 2, this contradicts there being a nondiversification equilib-
rium, which would require that U1,M ≤ U0,1. Thus, a nondiversification trap cannot arise.

(ii) Type of equilibria: The properties and uniqueness of equilibrium depend on λm
def= 2µ −

θσ2/m. Clearly, λm is strictly increasing in m. If λM < 0, then Uj,s < U0,1 for all j > 0, for all 1 ≤
s ≤ M . Therefore, nondiversification (N = 0) is the unique equilibrium. If λM = 0, then a similar
argument, together with the laziness assumption, ensures that there is a unique nondiversification
equilibrium.

If λM > 0, the conditions of Assumption 3 are satisfied, so there is a risk-sharing diversification
equilibrium. Clearly, there cannot be a nondiversification equilibrium in this case, as U1,M > U0,1,
so Condition 2 fails strictly. We study other candidates for equilibria. Let s∗ = arg minm{m : λm >

0}:
(i) Equilibria with no pooling: If s∗ > 1, there can clearly be no equilibrium without pooling, as

Un,1 < U0,1 for 1 ≤ n ≤ N in this case, so this would have to be the nondiversification equilibrium,
which is not an equilibrium according to the previous argument. Moreover, if s∗ = 1, then Un,1 is
strictly increasing in n, so the only potential equilibrium without pooling is the one in which all
agents choose nm = N , qm = 0. However, as λm is strictly increasing in m, UN M,M > Uj,s for all
other feasible Uj,s , so this is dominating for all agents and it must be that q = 1M = E(p). This
is a pooling equilibrium, which contradicts the assumption of no pooling. Thus, there can be no
equilibrium without pooling of risk.

(ii) Equilibria with pooling: Assume that there is an additional equilibrium, with j risks pooled
between s agents. For this to be the case, it must be that s ≥ s∗.

(a) s∗ > 1. Clearly, agents who do not participate (i.e., have qm = 0) will not take on own risk, so
their expected utility of not participating is U0,1. However, if Uj,s > U0,1, then, as λs+1 > λs > 0,
we have U j,s+1 > U0,1, so any nonparticipating agent is better off by participating in the reinsurance
market. Thus, any equilibrium will have s = M . Now, assume that j < N M : A similar argument
shows that any agent choosing nm < N would have increased expected utility by choosing nm = N .
Thus, the only equilibrium is the risk-sharing diversification equilibrium.

(iii) (b) s∗ = 1. In this case, agents who do not participate (i.e., have qm = 0) will take on
full risk, i.e., their expected utility will be UN ,1. A similar argument implies that any agent who
participates will choose nm = N . Thus, participating agents will have expected utility UNs,s .
However, as λs+1 > λ1, nonparticipating agents will increase their expected utility by deviating
and reaching UN (s+1),s+1 instead of UN ,1. Thus, it must be that all agents participate, and once
again the only equilibrium can be j = N M , s = M .

The general case is identical to the proof in case of CARA investors with normal utility. As

Uj,s = j/s(µ − γ/sσ2), which is monotone in j for each s, and λs
def= µ − γσ2/s is monotonously

increasing in s, so all the steps of the proof go through. �
Proof of Proposition 6. (i) Assume that there exists a nondiversification trap to the game
(u, F, ∞, N , M) for arbitrarily large M , for a strictly concave, twice-continuously differentiable
utility function u and distribution F , satisfying

∫ ∞

−∞
x2d F = C < ∞. (20)

For notational convenience, we assume that F is differentiable, so that the p.d.f. φ = d F/dx is
well defined. However, the whole proof goes through step by step without this restriction. Without
loss of generality, we can assume u(0) = 0, u′(0) = 1. For a genuine nondiversification trap to
exist, it must be the case that for arbitrarily large M ,

UN M,M > 0, (21)
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and

U1,M < 0. (22)

However, a necessary condition for (22) to hold for arbitrarily large M is that E X ≤ 0, as seen by
the following argument: Assume that µ = E X > 0. We define

U (ε)
def=

∫ ∞

−∞
u(εx)φ(x)dx .

We decompose

u(x)
def= x − t(x)

def= x − x2z(x),

where t(0) = t ′(0) = 0, t ′′ > 0, t(x) < x , z(x) is continuous, and both t and z are nonnegative. We
then have

U (ε) = εµ −
(∫ −1/ε

−∞
t(εx)φ(x)dx +

∫ 1/ε

−1/ε

(εx)2z(εx)φ(x)dx

+
∫ ∞

1/ε

t(εx)φ(x)dx

)
. (23)

The
∫ ∞

1/ε
-term is clearly of o(ε),26 as

∫ ∞

1/ε

t(εx)φ(x)dx ≤
∫ ∞

1/ε

εxφ(x)dx ≤ ε

∫ ∞

1/ε

xφ(x)dx ≤ C2ε
2.

Furthermore, as z(x) is continuous, it is bounded on [−1, 1], so Hölder’s inequality can be used to
bound the

∫ 1/ε

−1/ε
term by

∫ 1/ε

−1/ε

(εx)2z(εx)φ(x)dx ≤ ε2 max
−1≤y≤1

|z(x)| × C = C3ε
2,

so the second term is also of o(ε). Finally, the
∫ −1/ε

−∞ -term is also o(ε), as

∫ −1/ε

−∞
t(εx)φ(x)dx =

∫ −1/ε

−∞
t(εx)

t(x)
t(x)φ(x)dx ≤ εt ′(−1)

×
∫ −1/ε

−∞
t(x)φ(x)dx = o(ε),

where we use Hölder’s inequality to move the t(εx)/t(x) outside of the integral, and the inequality

t(εx)

t(x)
≤ εt ′(−1),

which must hold for x ≥ 1/ε, as t is convex. Finally,

∫ −1/ε

−∞
t(x)φ(x)dx = o(1),

26 The term f (ε) = o(ε), denoting that limε↘0 f (ε)/ε = 0.
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as the integral Eu(X ) could otherwise not exist. This altogether implies that U (ε) = εµ − o(ε),
which is strictly positive for small enough ε. Therefore, if E X > 0, then U1,M will be strictly
positive for large enough M , and no genuine nondiversification trap can therefore exist.

However, if E X ≤ 0, then a nondiversification trap cannot exist, as Jensen’s inequality implies
that UN M,M is strictly negative for arbitrary M > 0 and N > 0 and thus UN M,M < U0,1. �

(ii) Assume that there exists a nondiversification trap to the game (u,φ, k, N , M) for arbitrarily
large M , for a strictly concave, twice-continuously differentiable utility function u and distribution
φ, satisfying

∫ ∞

−∞
x2φ(x)dx = C < ∞. (24)

Without loss of generality, we can assume u(0) = 0, u′(0) = 1.
If E X > 0, then the same argument as in the proof of Proposition 6 rules out a genuine

nondiversification trap, as the limited liability increases U1,M compared to the unlimited liability
case. Thus, for M large enough, U1,M must be strictly positive and a genuine nondiversification
trap cannot exist.

If E X = µ < 0, then we use the law of large numbers to show that as M becomes large,
X N M = (N M)−1 ∑N M

i=1 Xi converges in distribution to µ. Thus, limM→∞ E((X N M + k N M)+ −
k N M) = µ, so for some large enough M0, E((X N M + k N M)+ − k N M) < 0 for all M ≥ M0.
Jensen’s inequality therefore again implies that UN M,M is strictly negative for M ≥ M0 and thus
that UN M,M < U0,1, so there can be no genuine nondiversification trap. �

(iii) Without loss of generality, we can assume u(0) = 0, u′(0) = 1.
We prove that UN M,M < U0,1 = 0 for large M . We define

γ = min
x∈[−k/2,k/2]

u′′(x).

As u is strictly concave and twice continuously differentiable, γ > 0. We define

ũ(x) = x − γ

2
x2 I[−k/2,k/2],

where IA is the indicator function on the set A, implying that u(x) ≤ ũ(x) for all x ∈ [−k,∞).
Similar to Uj,s , we define Ũ j,s , the “utility” of sharing j risks equally among s agents, for agents
with “utility” functions ũ. Clearly, Uj,s ≤ Ũ j,s , so if ŨN M,M < 0 for large M , then Uj,s < 0 for
large M and there cannot be a genuine nondiversification trap.

We next define Y1 = ∑N
i=1 Xi and study uniform portfolios of i.i.d. risks Y1, . . . , YM by defining

Y M
def= (

∑M
m=1 Ym )/M . As E(Y M ) = 0, the condition ŨN M,M < 0 for large M can be written as

ŨN M,M = E(Y M I[−k,∞)) − γ

2
E

(
Y

2
M I[−k/2,k/2]

)
< 0. (25)

We begin by bounding E(Y
2
M I[−k/2,k/2]) from below. From the central limit theorem, we know that

Z M
def= √

M Y M converges in distribution to Z ∼ Normal(0, σ2), so E(Z2
M I[−k/2,k/2]) → C > 0,

as M grows. As ME(Y
2
M I[−k/2,k/2]) ≥ M E(Y

2
M I[−k/2

√
M,k/2

√
M]) = E(Z2

M I[−k/2,k/2]), we can
therefore conclude that for large M ,

γ

2
E

(
Y

2
M I[−k/2,k/2]

) ≥ C ′

M
, C ′ > 0. (26)
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We next bound E(Y M I[−k,∞)) from above. As E(Y M ) = 0, we have E(Y M I[−k,∞)) =
−E(Y M I(−∞,−k)). From the Cauchy-Schwarz inequality, we know that

−E
(
Y M I(−∞,−k)

) ≤ E
(

Y
2
M

)1/2
E

(
I(−∞,−k)

)1/2
,

(as I 2
(−∞,−k) = I(−∞,−k)). Of course, E(Y

2
M ) = σ2/M . Moreover, Rosenthal’s inequality (see

Rosenthal, 1970; Ibragimov and Sharakhmetov, 1997; de la Peña, Ibragimov, and Sharakhmetov,

2003) implies that E
(

Y
2+ε

M

)
≤ C ′′/M1+ε/2, and by Markov’s inequality, we therefore know that

E(I(−∞,−k)) = P(x < −k) ≤ E
(
Y

2+ε

M

)
k2+ε

≤ C ′′k−(2+ε)

M1+ε/2
.

Overall, this implies that

E
(
Y M I(−k,∞)

) ≤
√

σ2

M

√
C ′′k−2+ε

M1+ε/2
= C ′′′

M1+ε/4
.

The bounds in Equation (25) are therefore

ŨN M,M ≤ C ′′′

M1+ε/4
− C ′

M
, C ′ > 0,

which is strictly negative for large M . Thus, as UN M,M ≤ ŨN M,M , we know that UN M,M ≤ U0,1 =
0 for large M . Therefore, there can be no genuine nondiversification trap in this case either. �
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