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a b s t r a c t

The recent financial crisis has revealed significant externalities and systemic risks that

arise from the interconnectedness of financial intermediaries’ risk portfolios. We

develop a model in which the negative externality arises because intermediaries’

actions to diversify that are optimal for individual intermediaries may prove to be

suboptimal for society. We show that the externality depends critically on the

distributional properties of the risks. The optimal social outcome involves less risk-

sharing, but also a lower probability for massive collapses of intermediaries. We derive

the exact conditions under which risk-sharing restrictions create a socially preferable

outcome. Our analysis has implications for regulation of financial institutions and risk

management.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

It is a common view that the interdependence of
financial institutions, generated by new derivative pro-
ducts, had a large role in the recent financial meltdown. A
primary mechanism is that by entering into sophisticated
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derivative contracts, e.g., credit default swaps (CDS) and
collateralized debt obligations (CDO), financial institu-
tions became so heavily exposed to each others’ risks that
when a shock eventually hit, it immediately spread
through the whole system, bringing down critical parts
of the financial sector. Since it created this systemic
failure, the interdependence was extremely costly from a
social standpoint.1

There is an opposite viewpoint, however, namely that
such interdependence plays a much more functional
role—that of diversification. To motivate this in a simple
way, start with a case in which each financial firm holds a
particular risk class with its unique idiosyncratic risk.
Now allow the firms to form a joint mutual market
portfolio, with each firm contributing its risky portfolio to
1 This view is, e.g., expressed in Warren Buffet’s 2009 letter to the

shareholders of Berkshire Hathaway in which Mr. Buffet argues that the

result is that ‘‘a frightening web of mutual dependence develops among

huge financial institutions.’’ A similar view is expressed in the academic

literature in Jaffee (2009).
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4 See Mandelbrot (1997), Fama (1965), Ross (1976), Ibragimov and

Walden (2007), Ibragimov (2009b), the review in Ibragimov (2009a), and

references therein.
5 As discussed in, e.g., Lux (1998), Guillaume, Dacorogna, Davé,
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the total and receiving back its proportional share of the
total. Given a sufficient variety and number of risk classes,
the firms may succeed in eliminating the idiosyncratic
risks embedded in their individual portfolios. This is in
line with the classical view in finance, that risk-
sharing—i.e., diversification—is always valuable (see,
e.g., Samuelson, 1967). Therefore, interdependence is
valuable and, indeed, what we should expect. In practice,
we may expect both effects to be present, i.e., by sharing
risks, intermediaries decrease the risk of individual fail-
ure, but increase the risk of massive, systemic failure.2

Which factors determine the risks of systemic failures
of financial institutions and the benefits of diversification?
When do the risks outweigh the benefits? What are the
policy implications of such a trade-off? In this paper, we
analyze these questions by introducing a parsimonious
model that combines the two aspects of diversification in
an integrated analysis. Along the lines of the previous
viewpoints, while individual institutions may have an
incentive to diversify their risks, diversification creates a
negative externality in the form of systemic risk. If all
intermediaries are essentially holding the same diversi-
fied portfolio, a shock may disrupt all the institutions
simultaneously, which is costly to society, since it may
take time for the financial system, and thereby the
economy, to recover. Specifically, the slow recovery time
creates a significant and continuing social cost because
the unique market-making and information analysis
provided by banks and other intermediaries3 is lost until
they recover; see Bernanke (1983). Indeed, Bernanke’s
concern with the social cost created by bank failures
appears to have motivated many of the government bank
bailouts.

We show that the costs and benefits of risk-sharing are
functions of five properties of the economy. First, the
number of asset classes is crucial: The fewer the number
of distinct asset classes that are present, the weaker the
case for risk-sharing. Second and third, the correlation
between risks within an asset class, and the heavy-
tailedness of the risks are important. The higher the
correlation and the heavier the tails of the risk distribu-
tion, the less beneficial risk-sharing is. Fourth, the longer
it takes for the economy to recover after a systemic
failure, the more costly risk-sharing is and, fifth, lower
discount rates also work against risk-sharing. We define
the diversification threshold to be the threshold at which
the cost to society of systemic failure begins to exceed the
private benefits of diversification, and we derive a formula
for the threshold as a function of these five properties.

The distributions of the risks that intermediaries take
on are key to our results. When these risks are thin-tailed,
risk-sharing is always optimal for both individual inter-
mediaries and society. But, with moderately heavy-tailed
risks, risk-sharing may be suboptimal for society,
although individual intermediaries still benefit from it.
2 That the risk of massive failure increases when risks are shared

was noted within a finance context by Shaffer (1994).
3 Our analysis applies to banks, but more broadly to general

financial intermediaries, like pension funds, insurance companies, and

hedge funds.
In this case, the interests of society and intermediaries are
unaligned. For extremely heavy-tailed risks, intermedi-
aries and society once again agree, this time that risk-
sharing is suboptimal.

One can argue that the focus of our study, moderately
heavy-tailed distributions, is the empirically interesting
case to study. It is well-known that diversification may be
suboptimal in the extremely heavy-tailed case,4 and some
risks may indeed have extremely heavy tails (e.g.,
catastrophic losses, in which case individual insurers
may withdraw from the market precisely because the
benefits of diversification are unavailable; see Ibragimov,
Jaffee, and Walden, 2009). However, arguably most
financial risks are moderately heavy-tailed, as shown by
several empirical studies in recent years. Specifically, the
rate at which a distribution decreases for large values, the
so-called tail exponent, a (which we rigorously define in
the paper), provides a useful classification of heavy-
tailedness. Risks with ao1 are extremely heavy-tailed,
whereas risks with 1oao1 are moderately heavy-
tailed, and when a¼1, they are thin-tailed. Many recent
studies argue that the tail exponents in heavy-tailed
models typically lie in the interval 2oao5 for financial
returns on various stocks and stock indices (see, among
others, Jansen and de Vries, 1991; Loretan and Phillips,
1994; Gabaix, Gopikrishnan, Plerou, and Stanley, 2006;
Gabaix, 2009). Among other results, Gabaix, Gopikrishnan,
Plerou, and Stanley (2006) and Gabaix (2009) provide
theoretical results and empirical estimates that support
heavy-tailed distributions with tail exponents a� 3 for
financial returns on many stocks and stock indices in
different markets.5

Our analysis has implications for risk management and
policies to mitigate systemic externalities. We show that
value at risk (VaR) considerations lead individual inter-
mediaries to diversify, as per incentives similar to those in
the Basel bank capital requirements. Within our frame-
work, however, the diversification actions may lead to
suboptimal behavior from a societal viewpoint. It then
becomes natural to look for devices that would allow
individual firms to obtain the benefits of diversification,
but without creating a systemic risk that could topple the
entire financial system. In Section 4, we provide a
framework to develop such solutions and provide specific
proposals.

Our paper is related to the recent, rapidly expanding
literature on systemic risk and market crashes. The closest
paper is Acharya (2009). Our definition of systemic risk is
similar to Acharya’s, as are the negative externalities of
joint failures of intermediaries. The first and foremost
Müuller, Olsen, and Pictet (1997), and Gabaix, Gopikrishnan, Plerou, and

Stanley (2006), tail exponents are similar for financial and economic

time series in different countries. For a general discussion of heavy-

tailedness in financial time series, see the discussion in Loretan and

Phillips (1994), Rachev, Menn, and Fabozzi (2005), Embrechts, Klüuppel-

berg, and Mikosch (1997), Gabaix, Gopikrishnan, Plerou, and Stanley

(2006), Ibragimov (2009a), and references therein.
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difference between the two papers is our focus on the
distributional properties of risks and the number of risk
classes in the economy, which is not part of the analysis in
Acharya (2009). Moreover, the mechanisms that generate
the systemic risks are different in the two papers.
Whereas the systemic risk in Acharya (2009) arises when
individual intermediaries choose correlated real invest-
ments, in our model the systemic risk is introduced when
intermediaries with limited liability become interdepen-
dent when they hedge their idiosyncratic risks by taking
positions in what is in effect each others’ risk portfolios.
Such interdependence may have been especially impor-
tant for systemic risk in the recent financial crisis. This
leads to a distinctive set of policy implications, as we
develop in Section 4.

Wagner (2010) independently develops a model of
financial institutions in which there are negative extern-
alities of systemic failures, and diversification therefore
may be suboptimal from society’s perspective. Wagner’s
analysis, however, focuses on the effects of conglomerate
institutions created through mergers and acquisitions and
the effects of contagion. Furthermore, the intermediary
size and investment decisions are exogenously given in
Wagner’s study, and only a uniform distribution of asset
returns is considered. Our model, in contrast, emphasizes
the importance of alternative risk distributions and the
number of risks in determining the possibly negative
externality of diversification. The two studies therefore
complement each other.

A related literature models market crashes based on
contagion between individual institutions or markets.
A concise survey is available in Brunnermeier (2009).
Various mechanisms to propagate the contagion have
been used. Typically it propagates through an externality,
in which the failure of some institutions triggers the
failure of others. Rochet and Tirole (1996) model an
interbank lending market, which intrinsically propagates
a shock in one bank across the banking system. Allen and
Gale (2000) extend the Diamond and Dybvig (1983) bank
run liquidity risk model, such that geographic or industry
connections between individual banks, together with
incomplete markets, allows for shocks to some banks to
generate industry-wide collapse. Kyle and Xiong (2001)
focus on cumulative price declines that are propagated by
wealth effects from losses on trader portfolios. Kodes and
Pritsker (2002) use informational shocks to trigger a
sequence of synchronized portfolio rebalancing actions,
which can depress market prices in a cumulative fashion.
Caballero and Krishnamurthy (2008) focus on Knightian
uncertainty and ambiguity aversion as the common factor
that triggers a flight to safety and a market crash. Most
recently, Brunnermeier and Pedersen (2009) model a
cumulative collapse created by margin requirements and
a string of margin calls.

The key commonalities between our paper and this
literature is the possibility of an outcome that allows a
systemic market crash, with many firms failing at the
same time. Moreover, as in many other papers, in our
model there is an externality of the default of an
intermediary—in our case, the extra time it takes to
recover when many defaults occur at the same time. The
key distinction between our paper and this literature is,
again, our focus on the importance of risk distributions
and number of asset classes in an economy. Thus, a
unique feature of our model is that the divergence
between private and social welfare arises from the
statistical features of the loss distributions for the under-
lying loans alone. This leads to strong, testable implica-
tions and to distinctive policy implications. In our model,
these effects arise even without additional assumptions
about agency problems (e.g., asymmetric information) or
third-party subsidies (e.g., government bailouts). No
doubt, such frictions and distortions would make the
incentives of intermediaries and society even less aligned.

The paper is organized as follows. In the next section
we introduce some notation. In Section 3, we introduce
the model, and in Section 4 we discuss its potential
implications for risk management and policy making.
Finally, some concluding remarks are made in Section 5.
Proofs are left to a separate appendix. To simplify the
reading, we provide a list of commonly used variables at
the end of the paper.
2. Notation

We use the following conventions: lower case thin
letters represent scalars, upper case thin letters represent
sets and functions, lower case bold letters represent
vectors, and upper case bold letters represent matrices.
The ith element of the vector v is denoted (v)i, or vi if this

does not lead to confusion, and the n scalars vi,i¼ 1, . . . ,n
form the vector [vi]i. We use T to denote the transpose of
vectors and matrices. One specific vector is

1n ¼ ð1,1, . . . ,1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

Þ
T , (or just 1 when n is obvious). Similarly,

we define 0n ¼ ð0,0, . . . ,0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

Þ
T .

The expectation and variance of a random variable, x,
are denoted by E½x� (or simply Ex) and varðxÞ (or s2ðxÞ),
respectively, provided they are finite. The correlation and
covariance between two random variables x1 and x2 with
Ex2

1o1, Ex2
2o1, are denoted by covðx1,x2Þ and

corrðx1,x2Þ, respectively. We will make significant use, in
particular, of the Pareto distribution. A random variable, x
with cumulative distribution function (c.d.f.) F(x) is said to
be of Pareto-type (in the left tail), if

Fð�xÞ ¼
cþoð1Þ

xa
‘ðxÞ, x-þ1, ð1Þ

where c,a are some positive constants and ‘ðxÞ is a slowly
varying function at infinity:

‘ðlxÞ

‘ðxÞ
-1

as x-þ1 for all l40. Here, f ðxÞ ¼ oð1Þ as x-þ1 means
that limx-þ1f ðxÞ ¼ 0. The parameter a in (1) is referred to
as the tail index or tail exponent of the c.d.f. F (or the
random variable x). It characterizes the heaviness (the
rate of decay) of the tail of F. We define a distribution to
be heavy-tailed (in the loss domain) if it satisfies (1) with
ar1. It is moderately heavy-tailed if 1oao1, and it is



7 For review and discussion of models with common shocks and

modeling approaches for spatially dependent economic and financial

data, see, among others, Conley (1999), Andrews (2005), Ibragimov and

Walden (2007), and Ibragimov (2009b).
8 A Toeplitz matrix A¼ ToeplitzN ½a�Nþ1 ,a�Nþ2 , . . . ,a�1 ,a0 ,a1 , . . . ,

aN�2 ,aN�1�, is an N � N matrix with the elements given by ðAÞij ¼ ai�j ,

1r irN, 1r jrN. A Toeplitz matrix is banded if ðAÞij ¼ 0 for large ji�jj,

corresponding to ai ¼ 0 for indices i that are large by absolute value.
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thin-tailed if a¼1, i.e., if the distribution decreases faster
than any algebraic power.

3. Model

Consider an infinite horizon economy, t 2 f0,1,2, . . .g, in
which there are M different risk classes. Time value of
money is represented by a discount factor do1 so that
the present value of one dollar at t¼ 1 is d. There is a bond
market in perfectly elastic supply, so that at t, a risk-free
bond that pays off one dollar at t+1 costs d.

There are M risk-neutral trading units, each trading in
a separate risk class. We may think of unit m as a
representative trading unit for risk class m. Henceforth,
we shall call these trading units intermediaries, capturing a
large number of financial institutions, like banks, pension
funds, insurance companies, and hedge funds. We thus
assume that each trading unit, or intermediary, specia-
lizes in one risk class. Of course, in reality, intermediaries
hold a variety, perhaps a wide variety of risks. The key
point here is that the intermediaries are not initially
holding the market portfolio of risks, so that they may
have an incentive to share risks with each other.

We think of the M risk classes as different risk lines or
‘‘industries,’’ e.g., representing real estate, publicly traded
stocks, private equity, etc. Within each risk class, in each
time period t, there is a large number, N, of individual
multivariate normally distributed risks, xt,m

n , 1rnrN. We
will subsequently let N tend to infinity, whereas M will be
a small constant, typically less than 50, as is typical in
financial and insurance applications (the results in the
paper also hold in the case when the number of risks, N, in
the mth class depends on m, as long as we let the number
of risks in each risk class tend to infinity). For simplicity,
we assume that risks belonging to different risk classes
are independent, across time t, and risk class, n i.e., xt,m

n is
independent of xt0 ,m0

n0 if mamu or tuat. This is not a crucial
assumption; similar results would arise with correlated
risk classes.

For the time being, we focus on the first risk class, in
time period zero. We therefore drop the m and t super-
scripts. Per assumption, the individual risks have multi-
variate normal distributions, related by

xiþ1 ¼ rxiþwiþ1, i¼ 1, . . . ,N�1, ð2Þ

for some r 2 ½0,1Þ.6

Here, wi are independent and identically distributed
(i.i.d.) normally distributed random variables with zero
mean and variance s2ðwiÞ ¼ 1�r2. Each xi represents
cross-sectional risk, with local dependence in the sense
that covðxi,xjÞ quickly approaches zero when ji�jj grows,
i.e., the decay is exponential. The risks could, for example,
represent individual mortgages and the total risk class
would then represent all the mortgages in the economy.
For low r, the risks of these mortgages are effectively
6 We focus on multivariate normal risks, for tractability. Similar

results arise with other, thin-tailed, individual risks, e.g., Bernoulli

distributions, although the analysis becomes more complex, because

other distribution classes are not closed under portfolio formation so the

central limit theorem needs to be incorporated into the analysis.
uncorrelated, except for risks that are very close. ‘‘Close’’
here could, for example, represent mortgages on houses in
the same geographical area. If r is close to one, shocks are
correlated across large distances, e.g., representing coun-
try-wide shocks to real estate prices. This structure thus
allows for both ‘‘local’’ and ‘‘global’’ risk dependencies in a
simple setting.7

For simplicity, we introduce symmetry in the risk
structure by requiring that

x1 ¼ rxNþw1, ð3Þ

i.e., the relationship between x1 and xN is the same as that
between xiþ1 and xi, i¼ 1, . . . ,N�1. We can rewrite the
risk structure in matrix notation, by defining x¼ ½xi�i,
w¼ ½wi�i. The relationship (2), (3) then becomes

Ax¼w:

Here, A is an invertible so-called circulant Toeplitz
matrix,8 given by

A¼ ToeplitzN½�r,1,0T
N�2,�r�:

Thus, given the vector with independent noise terms, w,
the risk structure, x, is defined by

x¼
def

A�1w:

The symmetry is merely for tractability and we would
expect to get similar results without it (although at the
expense of higher model complexity). In fact, for large N,
the covariance structure in our model is very similar to
that of a standard AR(1) process, defined by

x̂0 ¼ ŵ0,

x̂i ¼ rx̂iþŵiþ1, i¼ 2, . . . ,N,

where the ŵi’s are independent, s2ðŵ1Þ ¼ 1, s2ðŵiÞ ¼

1�r2, i41 (although, of course, i does not denote a time
subscript in our model, as it does in a standard AR(1)
process). In this case, the matrix notation becomes
Âx̂ ¼ ŵ, where Â ¼ ToeplitzN½�r,1�. The only difference
between A and Â is that A1N ¼ 1, whereas Â1N ¼ 0. The
covariance matrix Ŝ ¼ ½covðx̂i,x̂jÞ�ij has elements

Ŝ ij ¼ rji�jj:

Thus, in the AR(1) setting, the covariance between risks
decreases geometrically with the distance ji�jj. As we
shall see in Theorem 1, this property carries over to the
covariances in our symmetric structure when the number
of risks within an asset class, N, is large.
When ai ¼ 0 if io�k or i4m, for koN�1, moN�1, we use the notation

a�k ,a�kþ1 , . . . ,a0 , . . . ,am�1 ,am to represent the whole sequence generat-

ing the Toeplitz matrix. For example, the notation A¼ ToeplitzN ½a�1 ,a0 �

then means that Aii ¼ a0, Ai,i�1 ¼ a�1, and that all other elements of A are

zero. For an N � N Toeplitz matrix, if aN�j ¼ a�j , then the matrix is, in

addition, circulant. See Horn and Johnson (1990) for more on the

definition and properties of Toeplitz and circulant matrices.
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Fig. 1. Cumulative distribution function for correlation: PðrryÞ ¼

1�ðð1�yÞ=ð1þyÞÞg , with tail indices, g¼ 1,2,4.

11 In Ibragimov, Jaffee, and Walden (2008), equilibrium premiums

are derived in a model with multiple risk factors and risk-averse agents.

The general model, however, is quite intractable, and the simplifying

assumptions in this paper allow us to carry through a more complete
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We assume that the correlations between individual
risks (2) are uncertain. Specifically,

PðrryÞ ¼ 1�
1�y

1þy

� �g
, y 2 ½0,1Þ, g40, ð4Þ

i.e., the probability that the correlation is close to one
satisfies a power-type law with the tail index g, where
a low g indicates that there is a substantial chance
that correlations are high, whereas a high g indicates that
correlations are very likely low. The uncertainty of
correlations will lead to heavier-tailed distributions for
portfolios of risks, just as uncertain variances may cause
the distribution of an individual risk to have a heavy tail.9

Relation (4) is equivalent to the condition that the ratio
ð1þrÞ=ð1�rÞ follows the Pareto distribution with the tail
index g similar to (1):

P
1þr
1�r

Zv

� �
¼ v�g, vZ1: ð5Þ

In Fig. 1, we show the c.d.f. of r for some values of g.
We first consider the case in which intermediaries do

not trade risks with each other. At t=0, an intermediary
invests in a portfolio of xi unit risks, with the total
portfolio size determined by the vector c 2 RN . The total
portfolio is then cTx.10 Here, ci represents the number of
units of xi risk that the intermediary invests in. The total
dollar outcome of the investment in risk i, after the risks
are realized, is cixi and the total dollar value of the whole
portfolio, after realization, is cTx. Since the elements of x
can take on negative values, it is natural to think of cTx as
containing both long and short positions. The short
positions may be in risk-free capital (i.e., leverage through
debt), but also in risky assets. At t=0, the intermediary
also reserves capital, so that krK is available at t=1,
where K represents the maximum capital (in dollar terms)
available for the intermediary to reserve and is exogen-
9 As we shall see, our approach leads to very tractable formulas. An

alternative approach for introducing more complex correlation struc-

tures than the standard multivariate normal one is to use copulas, which

may also lead to heavy-tailed portfolio distributions.
10 We allow for short-selling. In the proof, we show that the optimal

portfolio does not involve short-selling, so we could equivalently have

permitted only nonnegative portfolios, c 2 RN
þ .
ously given. For simplicity, we assume that the capital is
invested in risk-free cash. We could allow the capital to be
invested in the risky portfolio, but this would further
complicate the formulas without any new insights. The
intermediary has limited liability, so its losses are
bounded by k. If the intermediary defaults, the additional
losses are borne by the counter-party. The shortfall that
may be imposed on the counter-party is taken into
account in the asset pricing.

At t=1, the values of the t=0 risks are realized. Because
of limited liability, the value of the portfolio (in dollars) is
then

maxðkþcT x,0Þ ¼
def

cT xþkþQ , ð6Þ

where Q ¼maxðkþcT x,0Þ�cT x�k is the realized value of
the option to default (see Ibragimov, Jaffee, and Walden,
2010). Since the intermediary reserved capital, so that
k be available at t¼ 1, the value of the portfolio of
investments above the capital reserved at t¼ 1 is cTx + Q.

The price the intermediary pays at t¼ 0 for this
portfolio of investments is its discounted expected value,
dE½cT xþQ �, less a premium, d, per unit risk. This premium
represents the part of the surplus generated by the
transaction that is captured by the intermediary. A similar
feature is used in the work of Froot, Scharfstein, and Stein
(1993) and Froot and Stein (1998). In a full equilibrium
model, d would be endogenously derived, but for tract-
ability we assume that it is exogenously given and that it
is constant.11

If the intermediary defaults, it is out of business from
there on, generating zero cash flows in all future time
periods.12 The sequence of events and the total cash flows
at times zero and one are shown in Fig. 2. Later, we will
introduce the possibility for the intermediaries to trade
with each other, after t=0 (when they take on the risk),
but before t=1 (when the value of the risk is realized), but
for the time being, we ignore this possibility.

The ex ante value of the total cash flows to the owners
of the intermediary between t=0 and 1 is then

d ðcT 1Þ�dk�dE½cT xþQ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
t ¼ 0

þdE½ðkþcT xþQ Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
t ¼ 1

¼ dðcT 1Þ: ð7Þ

This is thus the net present value of operating the
intermediary between t=0 and 1.
study of the role of risk distributions.
12 It may be optimal, if possible, for the owners of the intermediary

to infuse more capital even if losses exceed k, to keep the option of

generating future profits alive. Equivalently, they may be able to borrow

against future profits. Taking such possibilities into account would

increase the point of default to a value higher than k, but would

qualitatively not change the results, since there would always be some

realized loss level beyond which the intermediary would be shut down

even with such possibilities.



t=1: - Risks, x, realized
- Dividend, D=k+cTx+Q, paid
- If D=0, bank defaults 
- If D>0, game repeated

t=0: - Reserve capital, δk
- Trade in portfolio, c
- Total investment: -δE[k+cTx+Q]+dcT1

t=2,3,...

Fig. 2. Intermediary’s cash flows in model. At t=0, the intermediary

reserves capital k and trades in a risk portfolio c. At t ¼ 1 risks are

realized. If the intermediary defaults, it is out of business, otherwise, the

game is repeated, i.e., at t=1, the intermediary reserves capital and

trades in risk, at t=2 risks are realized, etc.
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Now, if the intermediary survives, which it does with
probability

q¼
def

Pð�cT xrkÞ,

the situation is repeated, i.e., at t=1 the intermediary
takes on new risk, reserves capital, and then at t=2 risks
are realized, etc. If the intermediary defaults at any point
in time, it goes out of business and its cash flows are zero
from there on. In the infinite horizon case, the value of the
intermediary in recursive form is therefore

VB ¼ dðcT 1ÞþdqVB,

implying that

VB ¼
dðcT 1Þ

1�dq
: ð8Þ

We note that the counter-party of the x risk transaction
understands that the intermediary may default, and takes
this into account when the price for the risk is agreed
upon. Therefore, since the price of the contract takes into
account the risk level of the intermediary, the counter-
party does not need to impose additional covenants.

Eq. (8) describes the trade-off the individual inter-
mediary makes when choosing its portfolio. On the one
hand, a larger portfolio increases the cash flows per unit
time—increasing the numerator—but on the other
hand, it also increases the risk of default—increasing
the denominator. It is straightforward to show that if the
intermediary could, it would take on an infinitely large
portfolio. This is shown as a part of the proof of Theorem 1
in Appendix A. In terms of Eq. (8), the numerator effect
dominates the denominator effect.

A regulator, representing society, therefore imposes
restrictions on the probability for default, to counter-
weight the risk-shifting motive. Specifically, the inter-
mediary’s one-period probability of default is not allowed
to exceed b at any point in time. In other words,
the intermediary faces the constraint that the value
at risk at the 1�b confidence level can be at most k,
VaR1�bðc

T xÞrk. Therefore, since the realized dollar losses
are cTx and the capital reserved is k, the value at risk
constraint says that the probability is at most b that the
realized losses exceed the capital. In our notation, this is
the same as to say that qZ1�b.

The VaR constraint is imposed in the model to reflect
the existing management and regulatory standards
through which most financial intermediaries currently
operate. Most major financial intermediaries apply VaR as
a management tool and regularly report their VaR values.
The Basel II bank capital requirements are based on VaR.
European securities firms face the same Basel II VaR
requirements, while the major U.S. securities firms have
become bank holding companies and thus also face these
requirements. European insurance firms are being rere-
gulated under ‘‘Solvency II,’’ which is VaR-based, in
parallel to Basel II. U.S. insurers are regulated by
individual states with capital requirements that vary
by state and insurance line; these are generally consistent
with a VaR interpretation.

To be clear, VaR is not necessarily the optimal risk
measure when financial intermediary behavior may
create systemic externalities. Indeed, in this section we
show that VaR requirements can lead to diversification
decisions by individual intermediaries that are inconsis-
tent with maximizing the societal welfare. In Section 4,
we consider alternative proposals for intermediary reg-
ulation when systemic externalities are important.

It is natural to think of cT 1=k as a measure of the
leverage of the firm, since cT1 represents the total liability
exposure and k represents the capital that can be used to
cover losses.

The assumption that there is an upper bound, K, that
the intermediary faces on how much capital can be
reserved is reduced form. In a full equilibrium model
without frictions, the investment level would be chosen
such that the marginal benefit and cost of an extra dollar
of investment would be equal, and K would then be
endogenously derived. In our reduced-form model, where
the benefits d are constant, we assume that the marginal
cost of raising capital beyond K is very high, so that K

provides an effective hard constraint on the capital raising
abilities of the intermediary. We note that the bound may
be strictly lower than the friction-free outcome, because
of other frictions on capital availability in imperfect
financial markets (see, e.g., Froot, Scharfstein, and Stein,
1993 for a discussion of such frictions). Given a choice of
capital, krK , the VaR constraint imposed by the regulator
then imposes a bound on how aggressively the inter-
mediary can invest, i.e., on the intermediary’s size.
The VaR constraint therefore also automatically imposes
a capital requirement restriction on the intermediary.
We next study the intermediary’s behavior in this
environment.

3.1. Optimal behavior of intermediary

In line with the previous arguments, the program for
the intermediary is

maxc,k
dðcT 1Þ

1�dPð�cT xrkÞ
s:t:, ð9Þ

k 2 ½0,K�, ð10Þ

c 2 Rn, ð11Þ

kZVaR1�bðc
T xÞ: ð12Þ
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The following theorem characterizes the intermediary’s
behavior:

Theorem 1. Given a VaR constrained intermediary solving

(9)–(12), where the risks are on the form (2,3), b is close to

zero, and the distribution of correlations is of the form (4).
Then, for large N:
0.15
(a)
 For a given r, the covariance covðxi,xjÞ converges to rji�jj

for any i, j.

0.1
(b)
-4 -2 2 4
y

0.05

Fig. 3. Probability distribution function, f, of intermediary’s chosen

portfolio of risk, for g¼ 1, corresponding to a heavy-tailed distribution

with infinite variance, and for g¼ 2:5, corresponding to a moderately

heavy-tailed distribution with finite variance.
The payoff of the intermediary’s chosen risk portfolio,
cTx, is of Pareto-type with the tail index 2g, and with the

probability distribution function (p.d.f.) f(y), where

f ðyÞ ¼
g2gb�gffiffiffiffi

p
p �

G gþ1

2
,
by2

2

 !

jyj1þ2g , ð13Þ

for some constant, b40, for all y 2 R\f0g. Here, G is the

lower incomplete Gamma function, Gða,xÞ ¼
def R x

0 ta�1e�t

dt, a40. Also, f ð0Þ ¼ 2g=ðb
ffiffiffiffiffiffi
2p
p
ð2gþ1ÞÞ.
(c)
 Maximal capital is reserved, k¼ K , i.e., (10) is binding.

(d)
 Maximal value at risk is chosen, i.e., (12) is binding.

(e)
 If g41, then the variance of the portfolio is

s2 ¼ b2 g
g�1

, ð14Þ

else it is infinite.
We note that, since Gða,xÞ ¼GðaÞþoð1Þ, as x-þ1,
(where GðaÞ is the Gamma function, GðaÞ ¼

R1
0 ta�1e�t dt,

a40), we obtain that cT x has a Pareto-type distribution in
accordance with (1):

Pð�cT x4yÞ ¼
2gb�gG gþ1

2

� �
þoð1Þ

g
ffiffiffiffi
p
p
jyj2g

, y-1:

Thus, the portfolio chosen by the intermediary when
solving (9)–(12) is moderately heavy-tailed, or even
heavy-tailed when go 1

2, although the individual risks
are thin-tailed. We define the random variable x¼ cT x and
the constant c¼ cT 1, and show the p.d.f. of x for the two
cases g¼ 1 (heavy-tailed distribution with infinite var-
iance) and g¼ 2:5 (moderately heavy-tailed distribution
with finite variance) in Fig. 3.

We also note that the total portfolio risk changes with
the number of investments, N, in a very different way than
what is implied by standard diversification results, for
which the size of the investment is taken for given. If
portfolio size were given, then the portfolio risk would
vanish as N grew. However, taking into account that the
intermediary can change its total exposure with the
number of risks, in our framework, the risk does not
mitigate, but instead converges to a portfolio risk that is
much more heavy-tailed than the individual risks.

Our approach of letting the number of risks within an
asset class grow has some similarities with the idea of an
asymptotically fine-grained portfolio, (see Gordy, 2000,
2003), used for a theoretical motivation of the capital
rules laid out in Basel II. Gordy shows that under the
assumptions of one systematic risk factor and infinitely
many small idiosyncratic risks, the portfolio invariant VaR
rules of Basel II can be motivated. Similar to Gordy’s
setting, in our model each risk is a small part of the total
asset class risk when N is large. However, in our setting all
risk is not diversified away when the number of risks
increases, as shown in Theorem 1. In fact, the risk that is
not diversified away adds up to systematic risk in our
model (which turns into systemic risk if it brings down
the whole system), and since the number of risk classes,
M41, there will be multiple risk factors. This is contrary
to the analysis in Gordy (2000), where, after diversifica-
tion, all institutions hold the same one-factor risk. There-
fore, the capital rules in Basel II would not be motivated in
our model.
3.1.1. The value to society

We next turn to the value to society of the markets for
the M separate risk classes. For the individual intermedi-
ary, the game ends if it defaults. From society’s perspec-
tive, however, we would expect other players to step in
and take over the business if an intermediary defaults,
although it may take time to set up the business, develop
client relationships, etc. Therefore, the cost to society of
an intermediary’s default may not be as serious as the
value lost by the specific intermediary. The argument is
that since there is a well-functioning market, it is quite
easy to set up a copy of the intermediary that defaulted.
We assume that an outside provider of capital steps in and
sets up an intermediary identical to the one that
defaulted. The argument per assumption, however, only
works if there is a well-functioning market. In the unlikely
event in which all intermediaries default, the market is
not well-functioning and it may take a much longer time
to set up the individual copy. Thus, individual intermedi-
ary default is less serious from society’s perspective, but
massive intermediary default (for simplicity, the case
when all M intermediaries default at the same time) is
much more serious. A similar argument is made in
Acharya (2009).



13 This is not a critical assumption. Alternatively, we could have

assumed that the regulator anticipates whether the individual inter-

mediaries will trade risks, and adjusts the VaR requirements accordingly.
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To incorporate this reasoning into a tractable model,
we use a special numerical mechanism. When only one
individual intermediary fails (or a few intermediaries), the
market continues to operate reasonably well. In such
cases, the replacement of a failed intermediary occurs
immediately if an intermediary defaults in an even period
ðt¼ 0,2,4, . . .Þ, and takes just one period if it defaults in an
odd period ðt¼ 1,3,5, . . .Þ. We note that in this favorable
case without massive default, it takes, on average, half a
period to rebuild after an intermediary’s default (zero
periods or one period with 50% chance each). On the other
hand, when all intermediaries fail—a massive de-
fault—we assume there is a 50% chance that it will take
another 2T periods (2T +1�1) to return to normal
operations. Therefore, the expected extra time to recover
after a massive default is ð50%Þ � ð2TÞþð50%Þ � ð0Þ ¼ T .
Henceforth, we call T the recovery time after massive

default.
Our distinction between defaults in odd and even time

periods significantly simplifies the analysis by ensuring
that in even periods there are either 0 or M intermediaries
in the market. Without the assumption, we would need to
introduce a state variable describing how many inter-
mediaries are alive at each point in time, which would
increase the complexity of the analysis. Qualitatively
similar results arise when relaxing the assumption, i.e.,
when instead assuming that it always takes one period
to replace up to M�1 defaulting intermediaries and
T periods if all M intermediaries default at the same time.

The assumption of longer recovery times after massive
intermediary defaults can be viewed as a reduced-form
description of the externalities imposed on society by
intermediary defaults. The simplicity of the assumption
allows us to carry out a rigorous analysis of the role of risk
distributions, which is the focus of this paper. Micro-
foundations for such externalities have been suggested
elsewhere in the literature, e.g., liquidity risk as in Allen
and Gale (2000). In Allen and Gale (2000), the externality
occurs when failure of intermediaries triggers failure of
other intermediaries.

Society’s and individual intermediaries’ objectives may
be unaligned. From our previous discussion, it follows that
the value to society of all intermediaries at t=0 is, in
recursive form:

VS ¼MdcþdqMdcþd2
ð1�ð1�qÞMÞVSþd2Tþ2

ð1�qÞMVS,

ð15Þ

implying that

VS ¼
Mdcð1þdqÞ

1�d2
þd2
ð1�d2T

Þð1�qÞM
: ð16Þ

The first term on the right-hand side of (15) is the value
generated between t=0 and 1, and the second term is the
expected value between t=1 and 2. The third term is the
discounted contribution to the value from t=2 and
forward if all M intermediaries do not default (which
occurs with probability (1�(1�q)M)), and the fourth term
is the contribution to the value if all M intermediaries
default (which occurs with probability (1�q)M). We shall
see that this externality of massive intermediary default
in the form of longer recovery time significantly
decreases—or even reverses—the value of diversification
from society’s perspective and that the situations in which
diversification is optimal versus suboptimal are easily
characterized.
3.2. Risk-sharing

We next analyze what happens when the M different
intermediaries, with identically distributed risk portfolios,
x1, . . . ,xM , get the opportunity to share risks. We recall
that the risk portfolios in the different risk classes are
independently distributed. Therefore, as long as the
intermediaries do not trade, a shock to one intermediary
will not spread to others. If the intermediaries trade,
however, systemic risk may arise when their portfolios
become more similar because of trades. In what follows,
we explore this idea in detail.

We assume that the intermediaries may trade risks at
t¼ 1

2 , 3
2 , 5

2 , . . ., after they have formed their portfolio, but
before the risks are realized. We assume that the VaR
requirement must hold at all times. For example, even if
the intermediaries trade with each other at t¼ 1

2, the VaR
requirement needs to be satisfied between t¼ 0 and 1

2.13

Also, the counter-party of the risk trade correctly
anticipates whether trades between intermediaries will
take place at t¼ 1

2, taking the impact of such a trade on the
default option, Q, into account when the price is decided.

We focus on symmetric equilibria, in which all inter-
mediaries choose to share risks fully. We define

qM ¼P
�
PM

m ¼ 1 xm

M
rK

 !
,

so qM is the probability that total losses in the market are
lower than total capital. Thus, 1�qM, is the probability for
massive intermediary default if intermediaries fully share
risks. We note, in passing, that systemic risk is generated
through a different mechanism in our model than in
Acharya (2009). In Acharya (2009), systemic risk arises
when intermediaries take on correlated real investments,
and intermediaries do not trade risks. In our model, the
risk portfolios of different intermediaries are independent,
and systemic risk arises when intermediaries become
interdependent through trades. The latter type of sys-
temic risk may have been especially important in the
financial crisis.

All intermediaries hold portfolios of the same risk
features, albeit in different risk classes, so when they
share risks, the net ‘‘price’’ they pay at t¼ 1

2 is zero.
However, the states of the world in which default occurs
are different when the intermediaries share risks. In fact,
defaults will be perfectly correlated in the full risk-sharing
situation: With probability 1�qM a massive intermediary
default occurs and with probability qM no intermediary
defaults. Risk-sharing could, of course, be achieved not
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Fig. 4. Cost to society for diversified and separated cases, when there are

two intermediaries. In the diversified case, massive default occurs if

�x1�x2 Z2K. In the separated case, massive default occurs if �x1 ZK

and �x2 ZK , whereas single default occurs if �x1 ZK and �x2 oK , or if

�x2 ZK and �x1 oK. Thus, massive default is rarer in the separated case

than in the diversified case, but it is more common that at least one

intermediary defaults in the separated case.
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only by cross-ownership, but also by trading in deriva-
tives contracts (credit default swaps, corporate debt, etc.).

For individual intermediaries, the value when sharing
risks (using the same arguments as when deriving (8))
is then

VB
M ¼

dc

1�dqM
, ð17Þ

which should be compared with the value of not sharing,
(8). Therefore, as long as

qM 4q, ð18Þ

the intermediaries prefer to trade risks, since it leads to a
higher probability of survival, and thereby a higher value.

We note that there may be additional reasons for
intermediaries to prefer risk-sharing. For example, if
intermediaries anticipate that they will be bailed out in
case of massive defaults, if managers are less punished if
an intermediary performs poorly when all other inter-
mediaries perform poorly too, or if the VaR restrictions are
relaxed, this provides additional incentives for risk-
sharing, which would amplify our main result.

3.2.1. The value to society

From society’s perspective, a similar argument as when
deriving Eqs. (15) and (16) shows that

VS
M ¼MdcþdqMMdcþd2qMVS

Mþd
2Tþ2
ð1�qMÞV

S
M , ð19Þ

so the total value of risk-sharing between inter-
mediaries is

VS
M ¼

Mdcð1þdqMÞ

1�d2
þd2
ð1�d2T

Þð1�qMÞ
: ð20Þ

Therefore, via (16), it follows that society prefers risk-
sharing when

1þdqM

1þlð1�qMÞ
4

1þdq

1þlð1�qÞM
, ð21Þ

where

l¼
d2
ð1�d2T

Þ

1�d2
: ð22Þ

The value of l determines the relative trade-off society
makes between the costs in foregone investment oppor-
tunities of individual and massive intermediary default.14

If T ¼ 0, there is no extra delay when massive default
occurs. In this case, l¼ 0, and society’s trade-off (21) is
the same as individual intermediaries’ (18). If, on the
other hand, T is large and d is close to one, representing a
situation in which it takes a long while to set up a market
after massive default and the discount rate is low,
l is large, and the trade-off between (1�qM) and
(1�q)M in (21) becomes very important. In this case,
society will mainly be interested in minimizing the risk
of massive default and this risk is minimized when
intermediaries do not share risk, since 1�qM Zð1�qÞM .15
14 It is easy to show that l 2 ½0,T�, and that l is increasing in d and T.
15 This follows trivially, since 1�qM ¼Pð

P
i�xi 4MKÞZ

Pð\if�xi 4KgÞ ¼ ð1�qÞM .
It is clear that society and individual intermediaries
may disagree about whether it is optimal to diversify.
Specifically, this occurs when (18) holds, but (21) fails.
The opposite, that (18) fails but (21) holds, can never
occur.16 To understand the situation conceptually, we
study the special case when there are two risk classes,
M=2. In Fig. 4, we show the different outcomes depending
on the realizations of losses in the diversified and
separated cases. When both �x14K and �x24K , it does
not matter whether the intermediaries diversify or not,
since there will be massive intermediary default either
way. Similarly, if �x1rK and �x2rK , neither inter-
mediary defaults, regardless of whether they diversify or
not. However, in the case when �x14K and �x2rK , the
outcome is different, depending on the diversification
strategy the intermediaries have chosen. In this case, if
�x1�x242K , then a massive default occurs if the
intermediaries are diversified, but only a single default if
they are not. If �x1�x2r2K , on the other hand, no default
occurs if the intermediaries are diversified, but a single
default occurs if they are not. Exactly the same argument
applies in the case when �x1rK and �x24K. Therefore,
the optimal outcome depends on the trade-off between
avoiding single defaults in some states of the world but
introducing massive defaults in others, when diversifying.
The point that risk-sharing increases the risk for joint
failure is, of course, not new—it was made as early as in
Shaffer (1994). Our analyses of the trade-off between
diversification benefits and costs of massive failures, the
importance of distributional properties, correlation un-
certainty, and number of asset classes, as well as the
implications for financial institutions, however, are to the
best of our knowledge novel.
16 This also follows trivially, since 1�qM Zð1�qÞM and therefore, if

qZqM , then ð1þdqÞ=ð1þlð1�qÞMÞZð1þdqÞ=ð1þlð1�qMÞÞZ ð1þdqMÞ=

ð1þlð1�qÞMÞ.
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It is clear that the objectives of the intermediaries and
society will depend on the distributions of the x�risks and
it may not be surprising that standard results from the
theory of diversification apply to the individual inter-
mediaries’ problem. Society’s objective function is more
complex, however, since it trades off the costs of massive
and individual intermediary defaults. It comes as a
pleasant surprise that for low default risks (i.e., for a b
close to zero in the VaR1�b constraint) given the distribu-
tion of the x�risk, we can completely characterize when
the objectives of intermediaries and society are different.

Theorem 2. Given i.i.d. asset class risks, x1, . . . ,xM , of

Pareto-type (1) with the tail index aa1, and d, d, and T as

previously defined. Then, for low b,

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

δ
(a)
Fig. 5. The coefficient, Z¼ ð1�d2Tþ1
Þ=ð1�dÞ, as a function of the discount

factor, d, for different recovery times after massive default, T=1,10,20,30.
From an intermediary’s perspective, risk-sharing is

optimal if and only if a41, regardless of the number

of risk classes, M.

All else equal, a higher Z leads to a higher diversification threshold, M� .
(b)
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From society’s perspective, risk-sharing is optimal if and

only if a41 and M4M�, where M� is the diversification

threshold

M� ¼
1�d2Tþ1

1�d

 !1=ða�1Þ

: ð23Þ
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Fig. 6. Diversification threshold, M*, for Pareto-type risk distributions

with tail indices a¼ 2,2:5,3,4, as a function of the coefficient

Z¼ ð1�d2Tþ1
Þ=ð1�dÞ, where d is the per period discount factor and T is

the recovery time after massive default. The diversification threshold is

the break-even number of risk classes needed for diversification to be

optimal for society. Results are asymptotically valid for VaR confidence

levels close to 100%, i.e., for b close to zero in (12).
Thus, the break-even for individual intermediaries,
from (18), is a Pareto distribution with the tail index of
one, e.g., a Cauchy distribution. If the distribution is
heavier, then (18) fails, and intermediaries and society
therefore agree that there should be no risk-sharing. For
thinner tails, intermediaries prefer risk-sharing. On the
contrary, for society, what is optimal depends on M. It is
easy to show that M� 2 ½1,ð2Tþ1Þ1=ða�1Þ

Þ, and that Mn is
increasing in d and T. We note that for the limit case when
d-0, a-1, or T=0, i.e., when M�-1, then society and
intermediaries always agree.

It is useful to define

Z¼ 1�d2Tþ1

1�d
, ð24Þ

so that M� ¼ Z1=ða�1Þ. This separates the impact on Mn of
the tail behavior of the risk distributions from the other
factors (d and T). It follows immediately that
Z 2 ½1,2Tþ1Þ. In Fig. 5, we show Z as a function of d for
T ¼ 1, 10, 20, 30.

From Theorem 2, it follows that if there is a large
number of risk classes, M, society agrees with the
individual intermediaries:

Corollary 1. Given i.i.d. Pareto-type risk classes with the tail

index a, if there is a large enough number of risk classes

available, intermediaries and society agree on whether risk-

sharing is optimal.

In Fig. 6, we show the break-even number of risk
classes, Mn, for Pareto-type risks with the tail indices
a¼ 2,2:5,3,4. With no externality of massive default
(Z¼ 1), society prefers diversification when a41, just
like individual intermediaries. However, when Z41,
diversification is suboptimal up until Mn. For example,
for a¼ 2, and Z¼ 10, at least 10 risk-classes are needed for
diversification to be optimal for society.

Theorem 2 provides a complete characterization of the
objectives of intermediaries and firms for VaR close to the
100% confidence level, by relating the number of risk
classes, M, the discount rate, d, the tail distribution of the
risks, a, and the recovery time after massive default, T. It
also relates to the uncertainty of correlations, g, through
the relation a¼ 2g. Theorem 2 is therefore the funda-
mental result of this paper. The theorem has several
immediate empirical implications, since when (23) fails,
we would expect there to exist financial regulations
against risk-sharing across risk classes:
Implication 1. Economies with heavier-tailed risk distribu-

tions should have stricter regulations for risk-sharing

between risk classes.
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Fig. 7. Diversification threshold, M� , i.e., sufficient condition for number

of risk classes, M4M� , to be large enough to guarantee that society

prefers diversification, for Pareto-type risk distributions with tail indices

a¼ 3,4,5, as a function of Z. Here, Z¼ ð1�d2Tþ1
Þ=ð1�dÞ, d is the per

period discount factor and T is the recovery time after massive default.

Results are valid for VaRs above the 99% confidence level.
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Equivalently, using the relationship between uncertainty
of correlation structure and tail distributions,

Implication 2. Economies with more uncertain correlation

between risk classes should have stricter regulations for

risk-sharing.

We also have

Implication 3. Economies with lower interest rates should

have stricter regulations for risk-sharing.

Implication 4. Economies with fewer risk classes should

have stricter regulations for risk-sharing.

Implication 5. Economies with risk classes for which it

takes longer to recover after a massive default should have

stricter regulations for risk-sharing.

Implication 4 may be related to the size of the
economy, in that larger economies may have more risk
classes and therefore, society may be more tolerant to
risk-sharing across these classes. Moreover, Implication 5
may be related to the degree to which an economy is open
to foreign investments in that economies that are open
may be faster in recovering after a massive default, and
thereby allow more risk-sharing between risk classes. In
Section 4, we apply these implications to derive policy
solutions for controlling the social costs created when
actions by intermediaries to diversify create investments
in highly correlated market portfolios.

Theorem 2 provides an asymptotic result and there-
fore, does not enlighten us about what the break-even
number of risk classes is when the default risks, b, is
significantly different from zero. For b significantly
different from zero, the analysis is less tractable. Because
of the noncoherency of the value at risk measure, we
suspect that diversification may be less valuable for
society in such cases. Indeed, we have the following
sufficient condition for diversification to be optimal from
society’s perspective, which holds for all b below some
threshold.

Theorem 3. Consider i.i.d. asset class risks, x1, . . . ,xM , of

Pareto-type with the tail index a42, and Z as defined in

(24). Define the tail probability FðxÞ ¼
def

Pð�x14xÞ. Assume

that the variance of x1 is s2, that FðK0Þ ¼ b0, and that for

K4K0,

c1

Ka rFðKÞr
c2

Ka , ð25Þ

for constants 0oc1rc2. Then, for all brb0, risk-sharing is

optimal from society’s perspective, if the number of asset

classes, M, satisfies

c12aMa�CZMa=2�Mc2ZaaZ0, ð26Þ

where C ¼ ð2eas2Þ
a=2, and e is the constant e¼ 2:71828 . . ..

In Fig. 7 we show the break-even number of risks for
the Pareto-distributed risks of Section 3.1, for which
a¼ 2g. The bound is chosen so that the results are valid
for all value at risk at confidence levels above 99%, i.e.,
for br1%. We see that, compared with Fig. 6, M needs to
be significantly higher to ensure that society prefers
diversification. The bound gets even worse if the VaR is at
a lower confidence level, e.g., at the 95% level.

As an example, assume that the average time it takes
to replace a defaulted intermediary is six months if the
default is individual (i.e., that one-period is six months),
that the one period discount factor is d¼ 0:99 (so that the
one-year discount rate is approximately 2%), and that if
there is massive intermediary default, it takes five years to
restore the whole market. In this case, Z¼ ð1�0:9910

Þ=

ð1�0:99Þ � 9:6. From Fig. 7, if the risk has a tail exponent
of a¼ 4, there needs to be about M¼ 30 risk classes to
guarantee that it is optimal to diversify at a VaR at the 99%
confidence level in this case. Thus, diversification may be
suboptimal from society’s perspective even with moder-
ately heavy-tailed risks, as long as the number of risk
classes is not large.
3.3. Extensions to general distributions

We have analyzed the simplest possible framework,
with specific independent identically distributed risk
classes. Here, we sketch how our results can be general-
ized to more general distributions.

Similar to the proof of Theorem 3, one can obtain its
extension to the case of the distribution of K such that, for
K4K0, c1=KarFðKÞrc2=Kz for constants 0oc1rc2 and
aZz41. For such distributions, the risk-sharing outcome
is optimal from society’s perspective, if the number of
asset classes, M is sufficiently large compared to K so that
it satisfies 2zc1MzKz�MZc2azKa�CZMz�a=2Kz

Z0, where
C ¼ 2z�a=2

ðezs2Þ
a=2.

Using conditioning arguments, it is straightforward to
show that the results in this paper continue to hold for
(possibly dependent) scale mixtures of normals, with
wi ¼ ViZi, where Zi are i.i.d. normally distributed zero-
mean random variables and Vi are (possibly dependent)
random variables independent of Zi. This is a rather large
class of distributions: it includes, for instance, the
Student’s t-distributions with arbitrary degrees of free-
dom (including the Cauchy distribution), the double
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exponential distribution, the logistic distribution, and all
symmetric stable distributions.

The bounds on the number of risk classes M provided
by Theorem 3 can be sharpened using extensions and
refinements of probability inequality (36) provided by
Lemma 1 used in the proof of the theorem. In particular,
one can use probability inequalities in terms of higher
moments of the independent random variables x (see, for
instance, Theorem 1.3 and Corollaries 1.7 and 1.8 in
Nagaev, 1979).
4. Potential implications for risk management and for
policy makers

Capital requirements provide the most common
mechanism used to control the risk of bank failure. Set
at a high enough level, a simple capital-to-asset require-
ment can achieve any desired level of safety for an
individual bank. Such capital requirements, however,
impose significant costs on banks by limiting their use
of debt tax shields, expanding the problem of debt
overhang, and creating agency problems for the share-
holders.17 These costs have a negative impact on the
overall economy because they reduce the efficiency of
financial intermediation.18 In our model, it is clear that
increasing capital requirements is an imperfect tool for
the regulator, since it cannot be used to specifically target
negative externalities of systemic risk. In fact, there is a
one-to-one relationship between VaR and capital require-
ments in our model—increasing the capital requirement
is equivalent to decreasing the VaR.

For this reason, new proposals to control systemic risk
in the banking sector recommend focused capital require-
ments based on each bank’s specific contribution to the
aggregate systemic risk. Acharya (2009), for example,
advocates higher capital requirements for banks holding
asset portfolios that are highly correlated with the
portfolios of other banks. This follows from his model in
which banks create systemic risk by choosing correlated
portfolios. In a similar spirit, Adrian and Brunnermeier
(2009) advocate a ‘‘CoVaR’’ method in which banks face
17 The debt overhang problem arises in recapitalizing a bank

because the existing shareholder ownership is diluted while some of

the cash inflow benefit accrues as a credit upgrade for the existing

bondholders and other bank creditors. The agency problems arise

because larger capital ratios provide management greater incentive to

carry out risky investments that raise the expected value of compensa-

tion but may reduce expected equity returns; for further discussion, see

Kashyap, Rajan, and Stein (2008). While the tax shield benefit of debt is

valuable for the banking industry, it is not necessarily welfare-enhancing

for society.
18 The efficiency costs of capital requirements can be mitigated by

setting the requirements in terms of contingent capital in lieu of balance

sheet capital. One mechanism is based on bonds that convert to capital if

bankruptcy is threatened (Flannery, 2005), but that instrument is not

particularly directed to systemic risk. Kashyap, Rajan, and Stein (2008)

take the contingent capital idea a step further by requiring banks to

purchase ‘‘capital insurance’’ that provides cash to the bank if industry

losses, or some comparable aggregate trigger, hits a specified threshold.

This mechanism may reduce or eliminate the costs that are otherwise

created by bankruptcy, but it does not eliminate the negative externality

that creates the systemic risk.
higher capital requirements based on their measured
contribution to the aggregate systemic risk.

Focused capital requirements will be efficient in
controlling systemic risk, however, only if the source of
the systemic risk is properly identified. In particular, the
model in this paper creates a symmetric equilibrium in
which each of the M banks is responsible for precisely 1/M
of the systemic risk. Furthermore, systemic risk in our
model arises only as a byproduct—a true negative
externality—of each bank’s attempt to eliminate its own
idiosyncratic risk. The risks that they take on are
independent, but the diversification changes the states
of the world in which massive default occurs. For this
reason, neither VaR constraints, nor the capital require-
ment plans advocated by Acharya (2009) will be effective
in controlling the type of systemic risk that arises in our
model. The CoVaR measure in Adrian and Brunnermeier
(2009) may also be imperfect, since it does not take tail-
distributions into account. Of course, systemic risk in the
banking industry may reflect a variety of generating
mechanisms, so we are not claiming anything like a
monopoly on the proper regulatory response. But it is the
case that even focused capital requirements will not be
effective if the systemic risk arises because banks hedge
their idiosyncratic risk by swapping into a ‘‘market’’
portfolio that is then held in common by all banks.

For the case developed in our model, where all banks
wish to adopt the same diversified market portfolio, direct
prohibitions against specific banking activities or invest-
ments in specific asset classes will be more effective than
capital requirements as a mechanism to control systemic
risk. For example, Volcker (2010) has recently proposed to
restrict commercial banking organizations from certain
proprietary and more speculative activities. While such
prohibitions may seem draconian, they would apply only
to activities or asset classes in which moderately heavy
tails create a discrepancy between the private and public
benefits of diversification. No regulatory action would be
needed for asset classes with thin-tailed risks, where the
banks and society both benefit from diversification, and
for severely heavy-tailed risks, where the banks and
society agree that diversification is not beneficial.

It is also useful to note that direct prohibitions have
long existed in U.S. banking regulation. For one thing, U.S.
commercial banks have long been prohibited from
investing in equity shares. Even more relevant, the 1933
Glass Steagall Act forced U.S. commercial banks to divest
their investment banking divisions. Subsequent legisla-
tion—specifically the 1956 Bank Holding Company Act
and the Gramm-Leach-Bliley Act of 1999—provided more
flexibility, by expanding the range of allowed activities for
a bank holding company, although commercial banks are
themselves still restricted to a ‘‘banking business.’’ Glass-
Steagall thus provides a precedent for direct prohibitions
on bank activities as well as an indication that the
prohibitions can be changed over time as conditions
warrant.

Experience with regulating catastrophe insurance
counter-party risk suggests another practical and specific
regulatory approach, namely ‘‘monoline’’ requirements.
Monoline requirements have long been successfully
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imposed on insurance firms that provide coverage against
default by mortgage and municipal bond borrowers; see
Jaffee (2006, 2009). The monoline requirements prohibit
these insurers from operating as multiline insurers that
offer coverage on multiple insurance lines. The monoline
restriction eliminates the possibility that large losses on
the catastrophe line would bankrupt a multiline insurer,
thus creating a cascade of losses for policyholders across
its other insurance lines. Such monoline restrictions do
create a cost in the form of the lost benefits of
diversification, because a monoline insurer is unable to
deploy its capital to pay claims against a portfolio of
insurance risks. Nevertheless, Ibragimov, Jaffee, and
Walden (2008) show that when the benefits of diversifi-
cation are muted by heavy tails or other distributional
features, the social benefits of controlling the systemic
risk dominate the lost benefits of diversification.

As a specific example, we reference the use of credit
default swaps (CDS) purchased by banks and other
investors to provide protection against default on the
subprime mortgage securities they held in their portfolios.
The systemic problem was that the CDS protection was
provided by other banks and financial service firms acting
as banks, i.e., American International Group, Inc. (AIG),
with the effect that a set of large banks ended up holding a
very similar, albeit diversified, portfolio of subprime
mortgage risks.19 When the risks on the individual
underlying mortgages proved to be highly correlated, this
portfolio suffered enormous losses, creating the systemic
crisis. Capital requirements actually provided the invest-
ing banks with incentive to purchase the CDS protection,
so that higher capital requirements, per se, do not solve
the systemic problem. Instead, there must be regulatory
recognition that moderately heavy-tailed risk distribu-
tions create situations in which the social costs may
exceed the private benefits of diversification.

5. Concluding remarks

The subprime financial crisis has revealed highly
significant externalities through which the actions of
individual intermediaries may create enormous systemic
risks. The model in this paper highlights the differences
between risks evaluated by individual intermediaries
versus society. We develop a model in which the negative
externality arises because actions to diversify that are
optimal for individual intermediaries may prove to be
suboptimal for society.

We show that the distributional properties of the risks
are crucial: most importantly, with moderately heavy-
tailed risks, the diversification actions of individual
intermediaries may be suboptimal for society. We also
show that when there is uncertainty about correlations
between a large number of thin-tailed risks and inter-
mediaries face value at risk constraints, this is exactly the
19 It is important to note that AIG wrote its CDS contracts from its

Financial Products subsidiary, which was chartered as a savings and loan

association and not as an insurance firm. Indeed, AIG also owns a

monoline mortgage insurer, United Guaranty, but this subsidiary was

not the source of the losses that forced the government bailout.
type of risk portfolios they will choose. Also, the number
of distinct asset classes in the economy, the discount rate,
and the time to recover after a massive intermediary
default influence the value to society of diversification.
The optimal outcome from society’s perspective involves
less risk-sharing, but also creates a lower probability for
massive intermediary collapses.

The policy implications of our model are very direct:
banking regulation should be expanded in order to restrict
the ability of banks to swap their loan portfolios contain-
ing idiosyncratic risk for market portfolios of loan risk.
Such direct restrictions appear preferable to VaR con-
straints, higher capital requirements, and to CoVaR
measures when the goal is to deter the massive bank
defaults that may arise when banks diversify in this
manner. Monoline requirements, which are already
applied to insurance firms that offer insurance coverage
against default on mortgages and municipal bonds,
provide an example of how such direct restrictions can
be implemented.

Appendix A. Proofs
Proof of Theorem 1. We first study the problem, given
a fixed N and show that there exists a solution to
Eqs. (9)–(12). We replace the maximum by the supremum
and show that the problem has a finite solution. Of course,
c¼ 0, k¼ 0, is a feasible choice that satisfies Eqs.
(10)–(12), immediately,immediately leading to a lower
bound of 0 for the function under the maximum sign in (9).

Now, if there is a finite upper bound on (9), then the

supremum problem has a finite solution. Given the

definition of S, it is clear that the variance of cTx is

increasing in r, and since, given r, the distribution of the

portfolio is normal, the value at risk, VaR1�bðc
T xÞ, for a

given c is also increasing in r. Therefore, the value at risk

of cTx is greater than the value at risk for cTy, where y is a

vector of i.i.d. normally distributed random variables with

mean 0 and variance s2.

Define the sets Cy ¼ fc 2 R
N
þ : VaR1�bðc

T yÞrKg, and

Cx ¼ fc 2 R
N
þ : VaR1�bðc

T xÞrKg. From the previous argu-

ment, it follows that Cx � Cy . Now, Cy is defined by the

elements c that satisfy
P

iðciÞ
2rr, for some 0oro1, and

since this is a compact set, and the objective function is

continuous, the supremum of the relaxed problem

(over Cy) is bounded above, which obviously then is also

true for the intermediary’s problem. Moreover, it is clear

that Cx is a closed set, and (since Cx � Cy), thereby

compact. By continuity, it follows that the supremum to

the intermediary’s problem is achieved.

We will show that the p.d.f. of a uniform portfolio,

c¼ ð1=NÞ1, takes the form (30). Therefore, given that

K40, it is always possible to choose k=K, find a strictly

positive e, and choose a uniform portfolio c¼ ðe=NÞ1, such

that the constraint (12) is satisfied. Clearly, for such a

portfolio, (9) is strictly positive, so c¼ 0 is not a solution

to the optimization problem.
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Given that there is a strictly positive solution to

Eqs. (9)–(12), we now analyze its properties. It is easy to

see that (10) must be binding with k¼ K , since the

program is homogeneous of degree one in k, i.e., assuming

that koK , c is a solution with r¼ dcT 1=ð1�dPð�cT x4kÞÞ

40, then choosing capital K, and portfolio c2 ¼ ðK=kÞc

will give ru¼ dcT
21=ð1�dPð�cT

2x4KÞÞ ¼ ðK=kÞdcT 1=ð1�dP
ð�cT x4kÞÞ ¼ ðK=kÞr4r, yielding a contradiction. Thus,

property (c) is proved.

We next show that it is always optimal for the

intermediary to choose a uniform portfolio, c¼ c1 for

some c40. Given a normally distributed risk, y�Nð0,s2Þ

and a value at risk requirement of K0 at the 1�b
confidence level, it immediately follows that the max-

imum size of investment in this risk, c, and thereby the

maximum premium collected (that does not break the

VaR requirement) is

c¼
K0

F�1
ð1�bÞ

�
1

s
, ð27Þ

where F is the standard normal c.d.f.: FðxÞ ¼R x
�1

e�t2=2=
ffiffiffiffiffiffi
2p
p

dt. From (27) it follows that any

VaR-constrained portfolio manager, whose compensation

is monotonically increasing in scale, cT1—e.g., linear as

assumed—who chooses among portfolios of multivariate

normally distributed risks, will choose the portfolio with

the lowest variance, s.

Given r, standard matrix algebra yields that

S¼ covðA�1x,A�1xÞ ¼ ð1�r2ÞA�1A�T . Also, for large N,

standard theory of Toeplitz matrices (see, e.g., Gray,

2006) implies that Sij-Ŝ ij ¼ rji�jj. Therefore, property

(a) holds.

Conditional on r, to choose the portfolio with the

lowest variance, the manager solves minq2Sn qTSq, where

S depends on r. We have S�1
¼ ð1=ð1�r2ÞÞAT A. The

solution to the portfolio problem is

q¼
S�11

1TS�11
¼

AT A1

1T AT A1
¼

s

sN
1¼

1

N
1:

Here, the result follows, since 1 is an eigenvector to ATA

with nonzero eigenvalue, s, since A is invertible. The

manager thus invests uniformly, which is not surprising

since the risks are symmetric. This is the optimal strategy

regardless of the correlation, r, so even with uncertain

correlations, it is always optimal to choose the uniform

portfolio.

We next study the distribution of the uniform portfolio.

We define xN ¼ ð1=
ffiffiffiffi
N
p
Þ1T

NxN , where xN on the right-hand

side contains N elements. The c.d.f. of xN is

FNðyÞ ¼PðxN ryÞ. From the previous argument, it is clear

that the agent’s program with N risks simplifies to

maxcN

dcN

1�dFN
K

cN

� � s:t:, ð28Þ
FN
K

cN

� �
Z1�b: ð29Þ

Conditional on r, xN is normally distributed with

variance s2
NðrÞ ¼ ðð1�r2Þ=NÞ1T A�1A�T 1. However, since

ATA is a symmetric positive definite matrix and 1 is an

eigenvector with corresponding eigenvalue ð1�rÞ2, it

follows that 1 is an eigenvector to A�1A�T with

eigenvalue 1=ð1�rÞ2. Therefore, s2
NðrÞ ¼ ðð1�r2Þ=NÞ1T

A�1A�T 1¼ ðð1�r2Þ=NÞ1T
ð1=ð1�rÞ2Þ1¼ ð1þrÞ=ð1�rÞ.

Using (5), we immediately obtain that the p.d.f. of xN is

f0ðyÞ ¼

Z 1
1

1ffiffiffiffiffiffiffiffiffi
2pv
p e�y2=2v g

vgþ1
dv

¼
g2gffiffiffiffi
p
p �

G gþ1

2
,
y2

2

� �
jyj1þ2g : ð30Þ

It is easy to show that f0(y) is decreasing in y 2 ð0,1Þ, that

is, f0(y) is unimodal and symmetric (about 0): this

conclusion may be obtained directly or by noting that

f0(y) is a scale mixture of normal distributions and

conditioning arguments (see, for instance, the proof of

Theorems 5.1 and 5.2 in Ibragimov, 2009b).

We study the optimization problem (28) and (29), and

rewrite it as

maxz
Kd

z

1

1�dFðzÞ
s:t:, ð31Þ

FðzÞZ1�b, ð32Þ

where FðyÞ ¼
R y
�1

f0ðzÞdz. The constraint that b is close to

zero now implies that the minimal feasible z, such that

(12) is satisfied, is large.

Clearly, ðKd=zÞð1=ð1�dFðzÞÞÞ is positive for all z. We note

that ðKd=zÞð1=ð1�dFðzÞÞÞ becomes arbitrarily large as z-0,

so if there was no VaR constraint, it would be optimal to

take on an arbitrarily large amount of risk.

The derivative with respect to z is

d
Kd

z

1

1�dFðzÞ

� 	
dz

¼
Kd

z2ð1�dFðzÞÞ2
ðdFðzÞ�1þzdf0ðzÞÞ:

Now, since FðzÞr1, do1 and zf 0ðzÞ-0 for large z,

dFðzÞ�1þzdf0ðzÞrd�1þzf 0ðzÞo0 for large z. Therefore,

d½ðKd=zÞð1=ð1�dFðzÞÞÞ�=dzo0 for large z. The feasible set

for z is ½z,1Þ, for some z40, and the VaR constraint is

binding if z¼ z is chosen. When b is close to zero, z is large

and therefore d½ðKd=zÞð1=ð1�dFðzÞÞÞ�=dzo0 for all feasible

z. Therefore, the optimum is reached at z and the VaR

constraint, (32), is indeed binding. We note that this

argument does not depend on the distribution, so the VaR

constraint will also be binding when we study the

diversified case. We have shown property (d).

This binding VaR constraint corresponds to c¼

K=F�1ð1�bÞ. Since there is a unique optimum, the same

cN 	 c in (28) will be chosen regardless of N, which via

(30) immediately implies property (b) (with b¼ 1=cÞ.
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Finally, it is easy to check that for g41,

VarðxNÞ ¼
R1
�1

y2f0ðyÞ dy¼ g=ðg�1Þ, which immediately

leads to property (e). We are done. &

Proof of Theorem 2. Define the tail probabilities
FðxÞ ¼Pð�x14xÞ and FMðKÞ ¼Pð�

PM
m ¼ 1 xm=M4KÞ.

From Feller (1970, pp. 275–279), it follows that since x1

is of Pareto-type with F1ðKÞ ¼ ðð1þoð1ÞÞ=KaÞ‘ðKÞ, as
K-þ1, for some slowly varying function, ‘ðKÞ,

FMðKÞ ¼M
1þoð1Þ

MK

� �a
‘ðMKÞ, ð33Þ

as K-þ1. For risk-sharing to be optimal from an
intermediary’s perspective, (18) is therefore equivalent to

M
1þoð1Þ

MK

� �a
‘ðMKÞo

1þoð1Þ

Ka ‘ðKÞ,

which implies

M1�ao1þoð1Þ,

as K-þ1, which, for large K, holds if and only if ao1.
We have proved the first part of the theorem.

For the second part, since q¼ 1�FðKÞ and qM ¼ 1�FMðKÞ,

(21) and (33) together imply that risk-sharing from

society’s perspective is optimal if and only if

ð1þd�dFMðKÞÞð1þlFðKÞMÞ4 ð1þd�dFðKÞÞð1þlFMðKÞÞ,

as K-þ1, which is satisfied if and only if

dFðKÞ4dFMðKÞþlð1þdÞFMðKÞ ¼ dZFMðKÞ:

This is equivalent to

1þoð1Þ

Ka ‘ðKÞ4ZM
1þoð1Þ

MK

� �a
‘ðMKÞ,

as K-þ1, which, in turn, is satisfied if and only if, for

large K,

Ma�14Z: ð34Þ

Since ZZ1, (34) is never satisfied for M41 and ao1, so

risk-sharing is never optimal from society’s perspective

when ao1. For a41, on the other hand, (34) is satisfied if

and only if

M4Z1=ða�1Þ: ð35Þ

We have proved the second part of the theorem. &

Proof of Theorem 3. Define FMðKÞ ¼Pðð�
PM

m ¼ 1 xm=

MÞ4KÞ. We first show that ZFMðKÞoFðKÞ is a sufficient
condition for (21). We have

ZFM oF3dFMþð1þdÞlFM odF

) 1þd�dFþð1þdÞlFM�dFlFM o1þd�dFM

3ð1þd�dFÞð1þlFMÞo1þd�dFM

31þd�dFo
1þd�dFM

1þlFM

31þdqo
1þdqM

1þlð1�qMÞ

)
1þdq

1þlð1�qÞM
o

1þdqM

1þlð1�qMÞ
:

To show that ZFMðKÞoFðKÞ, we use the following lemma.

Lemma 1 (Nagaev, 1979, Corollary 1.11). For independent
random variables Xi, with E½Xi� ¼ 0 and
PM

i ¼ 1 E½X2
i � ¼ BM , it

is the case that

P
XM
i ¼ 1

Xi4x

 !
r
XM
i ¼ 1

PðXi4yÞþex=y BM

xy

� �x=y

, x,y40:

ð36Þ

Using (36) for the x�risks, for which BM ¼Ms2, by

choosing x=MK and y¼ 2MK=a, we get

FMðKÞrMF
2MK

a

� �
þea=2sa 2M

a

� ��a=2

K�a:

From (25), it then follows that, for K4K0,

FMðKÞrMc2aað2MKÞ�aþea=2sa 2M

a

� ��a=2

K�a,

and since FðKÞZc1K�a, it follows that the condition

Z Mc2aað2MKÞ�aþea=2sa 2M

a

� ��a=2

K�a

 !
rc1K�a ð37Þ

implies ZFMðKÞoFðKÞ. Now, by multiplying (37) by

ð2MKÞa, we get

Mc2ZaaþZea=2sað2MaÞa=2rc12aMa,

i.e.,

c12aMa�CZMa=2�MZc2aaZ0:

We are done. &

List of variables

M number of risk classes
N number of risks within each risk class
xt,m

n individual risk n, within risk class m at time t

r correlation between risks within risk class
(for large N)

x vector of individual risks in first risk class
c vector of investments of intermediary (in first

risk class)
c total size of risk investment, c¼ cT 1
x,xi risk portfolio invested in by intermediary

(in risk class i), x¼ cT x
d one period discount factor
K capital reserved by intermediary
b value at risk at 1�b confidence level may not be

higher that K, VaR1�bðxÞrK

Q outcome of intermediary’s option to default
Mn diversification threshold, above which society

prefers risk-sharing
T recovery time after massive default
d premium intermediary collects per unit risk of

investment
g parameter governing uncertainty of correlations

between risks in same risk class
a tail distribution of risk class (x). a¼ 2g
f probability distribution function of portfolio

risk, x
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F cumulative loss distribution of portfolio risk,
FðxÞ ¼Pð�x4xÞ

q chance for individual intermediary of not de-
faulting when risks are separated q¼ 1�FðKÞ

FM cumulative loss distribution of fully diversified
portfolio FMðxÞ ¼Pð�

P
ixi=M4xÞ

qM chance for intermediaries of not defaulting when
risks are shared qM ¼ 1�FMðKÞ

l society’s trade off between risk-sharing and
separated outcomes (Eq. (22))

Z Z¼Ma�1
� , a41

VB value of one intermediary if separated
VS value of one intermediary if risk-sharing
VB

M value to society if separated
VS

M value to society if risk-sharing
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