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Abstract

We develop a model for markets for catastrophic risk. The model explains why

insurance providers may choose not to offer insurance for catastrophic risks and not to

participate in reinsurance markets, even though there is a large enough market capacity

to reach full risk sharing through diversification in a reinsurance market. This is a

“nondiversification trap.” We show that nondiversification traps may arise when risk

distributions have heavy left tails and insurance providers have limited liability. When

they are present, there may be a coordination role for a centralized agency to ensure

that risk sharing takes place. In a calibration we estimate the value of avoiding a trap

in residential California earthquake insurance to be up to USD 3.0 Billion per year.
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1 Introduction

Catastrophe insurance provides compensation for losses created by such natural risks as

earthquakes, floods, and wind damage, as well as man-created risks including terrorism.

Over the last 15 years, most private-market property and casualty (P&C) insurance firms

stopped offering coverage against catastrophe risks, usually in the wake of a major event. Key

private market failures include Florida hurricane insurance after Hurricane Andrew in 1992,

California earthquake insurance after the Northridge quake of 1994, and, most recently, US

terrorism insurance after the 9/11 attack. Catastrophe insurance markets have also failed

worldwide in most developed countries. In response, state and federal governments have

been forced to try to replace or to revive the private markets, the most recent example being

the US Terrorism Risk Insurance Act of 2002 (TRIA) and its 2005 extension. Unfortunately,

the government interventions are generally considered to be quite inefficient.1

Understanding the source of the private market failures is essential if more effective

remedies are to be found. A fundamental question is why catastrophe risks are “uninsurable”

for the private insurance firms. Asymmetric information — adverse selection and/or moral

hazard – is the common textbook explanation for insurance market failures, but there seems

little role for asymmetric information with respect to natural disasters or terrorism attacks.2

Imprecision in estimating the underlying stochastic process is also sometimes suggested as

a basis for “uninsurability,” but even if parameter imprecision raises the cost of insurance,

perhaps due to ambiguity aversion, it is unclear why it would cause the market to fail; see

1See Cummins (2006), Jaffee (2006), and Jaffee and Russell (2006) for recent discussions and references
to the literature. OECD (2004) discuss government interventions around the world to reactivate terrorism
insurance. Kunreuther (2006) discusses the specific issue of terrorism insurance in the US.

2There is generally open access to scientific forecasts of natural disasters, much of it provided by govern-
ments. Terrorists may be more strategic in their choice of targets, but this does not create a moral hazard on
the part of those purchasing terrorism insurance (unless the terrorists particularly target insured properties).
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Froot (2001).

A third basis for “uninsurability” is that the possible losses may exceed the capital re-

sources of the P&C insurance industry; see Cummins, Doherty, and Lo (2002). For example,

the losses created by war or by terrorist use of weapons of mass destruction (WMD) could

readily exceed the capital resources of all P&C firms. The deadweight costs of bankruptcy,

including a loss in the value of the managers human capital, could then motivate the unwill-

ingness of firms to participate in the catastrophe insurance markets. War and WMD risks,

however, have long been excluded from most insurance contracts, without jeopardizing the

availability of coverage for standard risks.

War and WMD risks aside, size alone does not appear to explain the recent failure of so

many different catastrophe insurance markets. Table 1 shows the 10 most costly insurance

losses since 1970 as compiled by SwissRe (2006). The losses created by the Katrina hurricane

of 2005 were USD 45 billion, followed by the Florida Hurricane Andrew of 1992 (USD 22

billion), and the 9/11 terrorist attack (USD 21 billion). In comparison, the capital resources

of the P&C insurance industry at year-end 2005 totaled approximately USD 446 billion, and

in each year since 2001, the P&C industry has increased its capital resources (net of losses)

by at least USD 29 billion.3

While P&C industry resources can cover most catastrophic risks, coverage is provided

at the level of individual firms, not the industry. Furthermore, insurers tend to specialize in

geographic regions and particular lines of coverage, putting individual firms at potentially

high risk to a specific catastrophic event. Regulation is a major cause of the geographic

and insurance line specialization, since US insurance firms must be chartered separately

in each state in which they operate and they face substantial fixed costs for marketing

3These data are from the Insurance Information Institute; see http://iii.org/media/industry/
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and for developing actuarial expertise for each line and for each state.4 The result is that

relatively few catastrophe insurance firms operate in each state and for each catastrophe line.

Risk averse executives with ties to their own firm may wish to avoid such an undiversified

position, even though the firm’s shareholders may be diversified, and therefore care less

about diversification at the firm level.

Reinsurance firms exist, of course, precisely to redistribute risks, allowing individual in-

surers to match their retained risks with their capital resources. Thus, if reinsurance markets

function efficiently, then capital adequacy at the industry level is in fact the relevant mea-

sure. Unfortunately, the proximate cause of the observed failures of the primary catastrophe

insurance markets has been precisely the failure of the associated reinsurance markets. For

this reason, the fundamental question is why the reinsurance markets for catastrophe risks

have largely failed.

In this paper, we suggest that the observed dynamic pattern of widely varying supply

conditions for catastrophe insurance and reinsurance could reflect a multiple equilibrium

system, with the market sometimes reaching a coordinated reinsurance/diversification equi-

librium, but at other times falling into what we call a nondiversification trap. The term

is related to poverty traps and development traps in economic growth theory (Barro and

Sala-i-Martin, 2004; Azariadis and Stachurski, 2006). It denotes a situation where there are

two possible equilibria: a diversification equilibrium in which insurance is offered and there

is full risk sharing through the reinsurance market, and a nondiversification equilibrium, in

4Insurance is unique among US financial services in that it is regulated in the US only at the state level.
The structure of a catastrophe insurance market is well illustrated by California’s earthquake risk market. As
of 2005, 70 percent of the coverage was provided by the California Earthquake Authority, an entity created
by the state of California following the 1994 Northridge quake. With no major quakes since then, private
insurers have slowly re-entered the market, now representing about 30 percent of the market. However,
still only 35 private insurance groups are offering California earthquake coverage (based on annual written
premiums of USD 1 million or more). Furthermore, the top 5, 10, and 20 firms represent 46%, 66%, and
89% of the total private market respectively.
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which the reinsurance market is not used, and no insurance is offered at all. A move from the

nondiversification equilibrium to the diversification equilibrium has to be coordinated by a

large number of insurers and reinsurers, which may be difficult to achieve through a market

mechanism. Therefore, there may be a role for a centralized agency to ensure that the diver-

sification equilibrium is reached, for example by mandating that insurance must be offered

(as in the case of the US Terrorist Risk Insurance Act of 2002 and in the corresponding

government plans in most European countries).

Consequently, our discussion and model focus on reinsurance as the mechanism that could

be used to coordinate the diversification equilibrium. A functioning reinsurance industry,

however, requires that the primary insurers be willing to write policies in anticipation that

other insurers will do the same and that the reinsurers will pool all the risks, to reach the

global diversification outcome. Our model will determine the conditions under which such

an equilibrium can and cannot occur.

The existence of nondiversification traps depends crucially on there being conditions un-

der which diversification becomes suboptimal for the individual insurers. This is contrary to

the traditional framework in which diversification is always preferred (see, e.g., Samuelson

1967 for equity investments and Froot and Posner 2002 for insurance).5 The traditional

framework uses concave optimization (e.g. via expected utility), with thin-tailed risks (e.g.

5Beginning with Mandelbrot (1963) and Fama (1965), numerous papers have studied the presence of
heavy-tailedness in economics, finance and insurance. We mention a sample: heavy-tailedness of return
distributions in stock markets has been documented by Jansen and de Vries (1991), Loretan and Phillips
(1994), McCulloch (1996), McCulloch (1997), Rachev and Mittnik (2000) and Gabaix, Gopikrishnan, Plerou,
and Stanley (2003). Moreover, Scherer, Harhoff, and Kukies (2000) and Silverberg and Verspagen (2004)
report that distributions of financial returns from technological innovations are extreme heavy-tailed and do
not have finite means. Nešlehova, Embrechts, and Chavez-Demoulin (2006) discuss empirical results that
indicate similar extreme thick-tailedness with infinite first moments for the loss distributions of a number of
operational risks. Finally, as was shown in Ibragimov (2004) and Ibragimov (2005) in a general context, with
heavy-tailed risks diversification may be inferior, regardless of the number of risks available. In Ibragimov
and Walden (2007) it was further shown that with heavy tails and limited liability, diversification may be
suboptimal up to a certain number of risks, and then become optimal.
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normal distributions), and without distortions (unlimited liability, no frictions and no fixed

costs). If any of these assumptions fails, diversification may not always be preferred. Our

discussion focuses, in particular, on the impact of heavy left-tailed distributions (implying

a non-negligible probability for large negative outcomes) as the defining property of catas-

trophic risks.

Figure 1, from Ibragimov and Walden (2007), provides an intuition for how nondiver-

sification traps can arise for insurance. Consider a situation in which there is a maximum

number of risks that an individual insurance provider can take on, e.g. N = 10. The con-

straint of the maximum number of risks that an individual firm can accept is in line with

our regulatory discussion earlier and can also be motivated by capacity constraints, capital

requirements and segmented markets. The three lines, A–C, in the figure describe the value

(e.g. measured as a certainty equivalent) of holding a diversified portfolio of n risks as a

function of n. In this paper we will study a model in which the value is a U-shaped function

of the number of risks, corresponding to line B (also studied in Ibragimov and Walden 2007).

In this case, for any individual insurance provider, diversification will clearly be suboptimal

as the value decreases in n for n ≤ N . However, if there are M insurance providers in the

market, they could potentially meet in a reinsurance market, pool the risks and reach full

diversification with NM risks. For this to be preferred to nondiversification, at least M ∼ 7

insurance providers must pool the risks. This is a very different situation compared with the

traditional situation in line A, in which each individual insurance provider will choose max-

imal diversification into N risks, and in which two insurance providers can always improve

their situation by pooling their risks in a reinsurance market. For line B, there may be a

coordination problem.
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Number of risks in
portfolio, n

"Value" of portfolio 
A. Traditional situation 

1 10 100

B. Situation in this paper & in
Ibragimov & Walden (2007)

C. Situation in Ibragimov (2004) 

70

Figure 1: Value of diversification. A: Traditional situation. The value increases monotonically

and it is always preferable to add another risk to portfolio. B: Situation in Ibragimov and Walden

(2007). Up to a certain number of assets, value decreases with diversification. C: Situation in

Ibragimov (2004, 2005). Value always decreases with diversification.

The objective of this paper is to show how heavy-tailed distributions can lead to non-

diversification traps, to provide an understanding of the results and, finally, to interpret

markets for catastrophe insurance in light of the results. The paper is organized as follows.

In Section 2, we show how traps can arise. Sections 2.1-2.2 provide intuition for the results.

Sections 2.3-2.4 provide a formal game-theoretic set-up for a simple reinsurance market, in

which nondiversification traps can be analyzed. Moreover, the concept of genuine nondi-

versification traps is introduced. These traps are severe in that they will not disappear,

regardless of the capacity of the insurance market. They may therefore explain the nonexis-

tence of insurance in markets where there is large capacity for risk sharing, but no insurance

is offered. In Section 3, we show the existence of nondiversification traps and characterize

under which conditions they can arise. In Section 4, we discuss the implications of our theory

for real markets for catastrophe insurance. Finally, we make some concluding remarks in

Section 5. All technical details are left to the appendix.
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2 Nondiversification traps

2.1 Diversification of heavy-tailed risks

When distributions have heavy tails, diversification may increase risk. This is of course

contrary to the traditional case, for example represented by normal distributions X ∼

Normal(μ, σ2).6 We show how, using the Lévy distribution concentrated on the left semi-

axis. This is mainly for simplicity: the Lévy distribution is one of the few stable distributions

for which closed form expressions exist.7 The class of stable distributions is a subclass of the

class of distributions whose left tails satisfy a Pareto law, i.e., exhibit power-law decay:

F (−x) ∼ x−α, x > 0, α > 0,

where F is a cumulative distribution function (c.d.f.).8

The p.d.f. of the Lévy distribution with location parameter μ and spread parameter σ is

φ(x) =

⎧⎪⎨
⎪⎩

√
σ
2π

e−σ/2(μ−x)(μ − x)−3/2, x < μ,

0, x ≥ μ,

and the c.d.f. is

F (x) =

⎧⎪⎪⎨
⎪⎪⎩

Erf

(
σ√

2(μ−x)

)
, x < μ,

1, x ≥ μ.

(1)

6This is also true for general distributions with finite second moments, E(X2) < ∞. This condition is
assumed in Samuelson (1967).

7Stable distributions are those closed under portfolio formation, see, e.g., the reviews in Ibragimov (2004)
and Ibragimov (2005). Besides Lévy distributions, closed-form expressions for stable densities are available
only in the case of normal and Cauchy distributions.

8Here and throughout the paper, F (x) ∼ G(x) denotes that there are constants, c and C such that
0 < c ≤ F (x)/G(x) ≤ C < ∞ for large x > 0.
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Here, Erf(y) = 2√
π

∫ y

0
e−t2dt is the error function, see Abramowitz and Stegun (1970). We

denote by Lμ,σ the class of random variables (r.v.’s) with the above Lévy distributions.

Similar to normal distributions, a higher value of the spread parameter, σ, for a Lévy

distribution implies higher riskiness (for a fixed μ). In fact, increasing σ for Lévy risks leads

to first order stochastically dominated risk, as seen from equation (1).

Contrary to normal distributions, diversification of Lévy risks increases σ. For example,

if X1 and X2 are i.i.d., Lévy risks, both with spread parameters σ, then a portfolio of half of

each risk, (X1+X2)/2, has a spread parameter of 2σ. This follows from the following general

diversification rule for portfolios of K independent Lévy distributed risks, with nonnegative

portfolio weights, ci ∈ R+:

Xi ∈ Lμi,σi
, i = 1, . . . , K =⇒

K∑
i=1

ciXi ∈ Lμ,σ, μ =

K∑
i=1

ciμi, σ =
( K∑

i=1

(ciσi)
1/2

)2

.

A special case is uniform diversification,

Xi ∈ Lμ,σ, i = 1, . . . , K =⇒
∑K

i=1 Xi

K
∈ Lμ,Kσ,

so uniform diversification of K i.i.d risks increases the spread parameter from σ to Kσ in

line with the example above.

Another case is the Cauchy distribution with location parameter μ and scale parameter

σ, X ∈ Sμ,σ, whose p.d.f. is given by

φ(x) =
1

πσ

1

1 +
(

x−μ
σ

)2 ,
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and whose c.d.f. has the form

F (x) =
1

2
+

1

π
arctan

(
x − μ

σ

)
.

For independent Cauchy distributions, the portfolio diversification rule is:

Xi ∈ Sμi,σi
, i = 1, . . . , K =⇒

K∑
i=1

ciXi ∈ Sμ,σ, where μ =
K∑

i=1

ciμi, σ =
K∑

i=1

ciσi.

Uniform diversification of Cauchy distributed risks therefore has no effect on total risk, i.e.,

Xi ∈ Sμ,σ, i = 1, . . . , K =⇒
∑K

i=1 Xi

K
∈ Sμ,σ.

The Cauchy case is thus intermediate between the Lévy case and the case with normal

distributions.

2.2 Risk pooling

We begin by studying the potential value of risk sharing between multiple risk-takers. We

first develop the intuition and then, in the following sections, prove the results rigorously for

a model of a reinsurance market.

We study the behavior of risk-takers. These risk-takers may be thought of as insurance

companies. We assume that the number of risk-takers is bounded by M and that all risk-

takers are expected utility optimizers with identical strictly concave utility functions, u.

We assume that there is limited liability. Clearly, real-world insurance firms have limited

liability and may default in some states of the world. This case is increasingly studied in the
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insurance literature; see Cummins, Doherty, and Lo (2002), Cummins and Mahul (2003),

and Mahul and Wright (2004). For catastrophe insurance, with heavy-tailed distributions,

there is an effectively nonzero (although small) probability that such a catastrophic event

will create default. Technically, limited liability is needed in the model, as expected payoffs

and values are not defined otherwise. We shall however see that the probability for default

is small in equilibrium. Moreover, we will show that our results are not driven by the

convexity of payoffs introduced by limited liability: For markets with large aggregate risk

bearing capacity, our results will only apply if distributions are heavy-tailed. The assumption

of limited liability is modeled by risk-takers only being liable to cover losses up to a certain

amount, k. If losses exceed k, a risk-taker pays k, but defaults on any additional loss.9 Thus,

if a risk-taker takes on a random risk of X, the effective outcome for the risk-taker once X

is realized is

V (X) =

⎧⎪⎨
⎪⎩

X, if X ≥ −k,

−k, if X < −k.

(2)

In the special case when there is no limited liability, i.e., when k = ∞, we have V (X) = X

for all X. If k < ∞, u needs only to be defined on [−k,∞) and we can without loss of

generality assume that u(−k) = 0.

Assuming i.i.d. risks X1, X2, . . ., we wish to study the expected utility of s agents, who

share j risks equally. We therefore define the random variable zj,s = (
∑j

i=1 Xi)/s, with c.d.f.

Fj,s. The expected utility of such risk sharing is:

Uj,s
def
= Eu(V (zj,s)) =

∫ ∞

−k

u(x)dFj,s(x). (3)

9We assume that a third party, perhaps the government, covers the excess losses to policy holders. This
avoids the complications of any impact on policyholder demand.
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Firms are usually considered to be risk neutral, but an expected utility set-up with concave

utility can be motivated by agency problems, where the manager of the firm is risk averse.

Moreover, even without agency problems, and with risk-neutral owners, the value function

may be a concave transformation of the payoff function. Financial imperfections, as assumed

in Froot, Scharsfstein, and Stein (1993) may for example lead to effectively concave value

functions, with identical results to our expected utility set-up. We assume that each risk-

taker can maximally bring N risks “to the table.” Thus, we have 1 ≤ s ≤ M , 1 ≤ j ≤ Ns.

This constraint could for example be driven by capital requirements. A risk-taker in the

model can not alone reach full diversification by taking on smaller fractions of a larger

number of risks. As discussed in the introduction, we believe that this is an adequate

description of segmented real world catastrophe insurance markets.

The result is that relatively few catastrophe insurance firms operate in each state and for

each catastrophe line. Risk averse executives with ties to their own firm may wish to avoid

such an undiversified position, even though the firm’s shareholders may be diversified, and

therefore care less about diversification at the firm level.

When returns are independently normally distributed, it is well known that one can

always add an asset to a portfolio and strictly increase the agent’s utility via the appropriate

selection of weights. The implication for us is that Uj,s is strictly increasing in s for each j (an

immediate consequence of Samuelson, 1967). In this situation we can expect a reinsurance

market to work well and insurance to be offered for a maximal number of risks, NM . The

argument is based on the fact that each risk-taker will choose to diversify fully, regardless of

what the other M − 1 risk-takers do. We denote this the traditional situation.

The situation is very different when we have limited liability and heavy-tailed distribu-
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tions. We consider i.i.d. Bernoulli-Cauchy distributed risks, X̃i, i.e.,

X̃i =

⎧⎪⎨
⎪⎩

μ, with probability 1 − q,

Xi, Xi ∈ Sν,σ, with probability q,

where Xi ∈ Sν,σ are i.i.d. Cauchy r.v.’s with location parameter ν and scale parameter σ.

In other words, the r.v.’s Xi are “mixtures” of degenerate and Cauchy r.v.’s. Clearly, the

risks X̃i can be written as

X̃i = μ(1 − εi) + Xiεi = μ + (ν − μ)εi + σYiεi, (4)

where εi are i.i.d. nonnegative Bernoulli r.v.’s with P (εi = 0) = 1 − q, P (εi = 1) = q and

Yi ∈ S0,1 are i.i.d. symmetric Cauchy r.v.’s with scale parameter σ = 1 that are independent

of ε′is.

For the above distributions, we say that X̃i ∈ S̃q
μ,ν,σ. Here, μ can be thought of as the

premium an insurance provider collects to insure against events that occur with probability

q. For q << 1, this distribution is qualitatively similar to distributions for catastrophic risks:

There is a small probability for a catastrophe to occur. However, if it does occur, the loss

may be very large due to the heavy left tail of the Cauchy distribution. We use the Cauchy

distribution for its analytical tractability (even though it, similar to the normal distribution

— used e.g., in Cummins, 2006 — has a nonzero right tail, which does not have a meaningful

interpretation for catastrophic events). We assume limited liability (k < ∞) and the power

utility function u(x) = (x + k)α, α ∈ (0, 1). Clearly, under the above assumptions, the

expected utility for Bernoulli-Cauchy risks always exists.

In Figure 2, we show expected utility for different total numbers of projects, j, and
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numbers of agents involved in risk sharing, s, with parameters k = 100, σ = 1, μ = 1,

ν = −9, N = 20, M = 5, α = 0.0315 and q = 0.05. There is a crucial difference compared

with the traditional situation. For a moderate number of risks, there is no way to increase

expected utility compared with staying away from risks altogether. A risk-taker has the

option of not entering the market and must therefore earn a utility premium to be willing to

take on risk (i.e., to offer insurance). No risk-taker will therefore choose to invest in risks that

can not be pooled. Moreover, if a risk-taker believes that no other risk-taker will pool risks,

he will not take on risks, whether he can pool it or not. Thus, even though the situation with

full diversification and risk sharing (UNM,M) is preferred over the no risk situation (U0,1), at

least four risk-takers must agree to pool risk for risk sharing to be worthwhile.

In this situation, there may be a coordination problem: Even though all agents would

like to reach UNM,M , they may be stuck in U0,1. Clearly, the limited liability assumption is

important: If liability were unlimited, no agent would take on risk. The situation would be as

in Ibragimov (2004) and Ibragimov (2005), where diversification is always inferior. However,

we note that the probability for default in the situation with full pooling and diversification

is small: It is approximately 0.3%.

The expected utility assumption is not crucial. Similar results would arise in a value-at-

risk (VaR) framework, for example with agents who trade off VaR versus expected returns

for some risk level, α. The crucial property of the Uj,s curves are that they are “U-shaped”

in s. In Ibragimov and Walden (2007), it is shown that similar U-shaped curve occur as

a function of diversification when the VaR measure is used. The specification in a VaR

framework would be Uj,s = F (μ, W ), μ = E(V (zj,s)), W = V aRα(V (zj,s)), with ∂F/∂μ > 0,

and ∂F/∂W < 0, and the analysis would be similar to the analysis we carry out in this

paper.
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Figure 2: Expected utility for risk-takers under different risk sharing alternatives. s denotes the

number of risk-takers sharing risks. j denotes the total number of risks. U(zj,s) denotes the

expected utility of a risk-taker as a function of j and s. Parameters: Liability k = 100, total

number of risk-takers M = 5, maximum number of risks per risk-taker N = 20, risk parameters:

σ = 1, ν = −9, μ = 1, α = 0.0315 and q = 5% (see equation 4). See Appendix for Section 2.2 for

closed form solution.

Our argument so far has been informal. We next make these diversification results

rigorous by introducing a model of a reinsurance market where coordination plays a role —

the diversification game. We will show that in the traditional situation, the only equilibrium

is a diversification equilibrium, where NM risks are insured, whereas in the situation with

heavy tails there is both a diversification equilibrium, and a nondiversification equilibrium

in which no insurance is offered.

2.3 A reinsurance market

We analyze a market in which insurance providers sell insurance against risks. For simplicity,

we model the market in a symmetric setting: participants in reinsurance markets share risks

equally. The set-up is a two-stage game that captures the intuitive idea that insurance has
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to be offered before reinsurance can be pooled. The decision whether to offer primary insur-

ance will be based on beliefs about how well-functioning (the future) reinsurance markets

will be. If a critical number of participants is needed for reinsurance markets to take off,

then nondiversification traps can occur. As we have already discussed the intuition behind

nondiversification traps, Sections 2.3, 2.4 and 3 focus on providing the theoretical foundation

for the existence of nondiversification traps.

The two-stage diversification game describes the market. In the first stage, agents (insur-

ance providers) simultaneously choose whether to offer insurance against a set of i.i.d. risks.

In the second stage, the reinsurance market is formed and each agent chooses whether to

participate or not. Agents who choose not to offer primary insurance are allowed to partic-

ipate in the reinsurance market. Finally, all risks of agents participating in the reinsurance

market are pooled, outcomes are realized and shared equally among participating agents.

Insurance market: There are M ≥ 2 agents (also referred to as insurance providers,

insurance companies or risk-takers). We use, m, 1 ≤ m ≤ M to index these agents. There

is a set of i.i.d. risks, X , where each risk has c.d.f. F (x). Each agent chooses to take on

a specific number of risks, nm ∈ {0, 1, 2, . . . , N}, where N denotes the maximum insurance

capacity, forming a portfolio of risks pm ∈ Pm, where pm =
∑nm

i=1 Xi and Xi ∈ X . This is the

first stage of the market. The risks are atomic (indivisible) and each risk can be chosen by

at most one agent. We assume that there are enough risks available to exhaust capacity, i.e.,

|X | = NM . Here, |X | denotes the cardinality of X . As risks are i.i.d., only the distributional

assumptions of the risks matter and we will not care about which insurance provider chooses

which risk. The portfolio pm is therefore completely characterized by the number of risks,

nm. The total number of risks insured is N =
∑

m nm.

Agents have liability to cover losses up to k, where k ∈ (0,∞]. If losses exceed k for an
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agent, he defaults, pays k and a third party, possibly the government, steps in and covers

excess losses. The effective outcome under limited liability for agent m, taking on risk zm,

is therefore V (zm), where V is defined in (2). All agents have identical expected utility

over risks, Um(zm) = Eu(V (zm)), where u is defined and continuous on [−k,∞), is strictly

concave, twice continuously differentiable on (−k,∞) and, if k < ∞, satisfies u(−k) = 0.

The outcome of the first stage is summarized by p = (p1, . . . , pM) ∈ P def
=

∏M
m=1 Pm.

Reinsurance market: In the second stage of the game, named the participation subgame

the reinsurance market is formed. In this stage, agents have perfect knowledge about p.

Each agent, 1 ≤ m ≤ M , sequentially decides whether to participate in the market or not,

as follows: First, agent 1 decides whether to participate. This is represented by the binary

variable q1 ∈ {0, 1}, where q1 = 1 denotes that agent 1 participates in the reinsurance

market and q1 = 0 otherwise. Then, agent 2 decides whether to participate, observing agent

1’s decision, etc. This is repeated until all M agents have decided. Previous agents’ decisions

are observable. If an agent is indifferent between participating and not participating, he will

not participate. Agents who offer insurance, and participate, pool all their insurance in

the reinsurance market, i.e., qmpm is supplied to the reinsurance market by agent m. The

total pooled risk is therefore P =
∑

m qmpm and the number of risks is R =
∑

m qmnm ∈

{0, . . . , NM}.

As noted, the two stages separate the choice of offering insurance from the creation

of a reinsurance market, which can only occur when the risks are already insured. The

total number of participating agents in the reinsurance market is t =
∑

m qm. Finally, the

pooled risks are split equally among agents participating in the reinsurance market, i.e., each

participating agent receives a fraction 1/t of the pooled portfolio, P , with R risks.

The outcome of the participation subgame is summarized by q = (q1, q2, . . . , qM) ∈
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{0, 1}M and the outcome of the total diversification game is thus completely characterized

by (p, q). Moreover, the quintuple G = (u, F, k, N, M) completely characterizes the diversi-

fication game.

We study equilibrium outcomes (p, q) of a diversification game G. As the second stage

of the market is an M-step sequential game with perfect information, it is straightforward

to calculate the unique subgame perfect equilibrium by backward induction (existence and

uniqueness being guaranteed by Zermelo’s theorem and by imposing the assumption that

indifferent agents do not participate). A detailed set-up for the participation subgame is

given in the appendix. The equilibrium mapping of the participation game, for a specific

first-stage realization, p, is a vector q = E(p) ∈ {0, 1}M . We use this mapping to simplify

the analysis of the first stage of the diversification game. Specifically, in the first stage, all

agents agree on q = E(p) as the outcome of the participation subgame, and therefore use

it directly in their value function. This reduces the size of the strategy space considerably,

while not having any effect on the (subgame perfect) equilibrium outcome. The sequence of

events is shown in Figure 3.

Strategies: For elements p ∈ P, we define the first-stage actions of all agents except

agent m:

p−m = (p1, . . . , pm−1, pm+1, . . . , pM) ∈
∏

m′ �=m

Pm′
def
= P−m.

A strategy for agent m consists of a pair: A = (pm, ηm) ∈ Pm × {0, 1}P−m, where pm is the

chosen portfolio of insurance, and ηm : P−m → {0, 1} is the participation choice, depending

on the realization in the first stage.10

10Here, in line with the previous discussion on reduced strategy space, q̃m does not need to be conditioned
on the participation choices qm′ of agents m′ = 1, . . . , m − 1. This is the case as the equilibrium mapping

17



1. First stage of diversification
game: Each agent, m,
chooses portfolio pm. 

t

3.Risks from participating
agents are pooled to
portfolio, P, containing R
risks. Risks are split equally
between t participating
agents.

2. Participation subgame:
Reinsurance market is
formed.  Agents choose
whether to participate.
Agent m submits risks
qmpm, where qm =1 if
agent m participates and
qm =0 otherwise.  

Figure 3: Sequence of events: 1. Agents simultaneously choose risk portfolio, pm. 2. Reinsurance

pool P =
∑

m qmpm is formed. Agents sequentially choose whether to participate, knowing outcome

of step 1 and decision of previous agents. 3. Pooled risk is split between s participating agents,

each taking on risk P/t. Agents who do not participate in the reinsurance market take on risk

(1 − qm)pm.

Belief sets: Agent m has a belief set about the other agents’ first stage actions, Bm =

p−m ∈ P−m. Agent m’s strategy, Am = (pm, qm), conditioned on belief set Bm = p−m is said

to be consistent, if ηm(p−m) = (E(p̃))m, where

p̃ = ((p−m)1, . . . , (p−m)m−1, pm, (p−m)m+1, . . . , (p−m)M), (5)

and we use the notation (x)i for the ith element of the ordered set x.

Rational agents will only consider consistent strategies, as inconsistent strategies are

suboptimal in the participation phase of the diversification game. The inferred outcome of

q = E(p) ∈ {0, 1}M is known, so qm′ is uniquely implied by p in equilibrium.
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a consistent strategy, Am = (pm, ηm), conditioned on a belief set, Bm, is

zm(pm|Bm) =

⎧⎪⎨
⎪⎩

pm, if ηm(p−m) = 0,

P/t, if ηm(p−m) = 1.

where

q̃ = E(p̃), t =
∑
m′

(q̃)m′ , P =
∑
m′

(p̃)m′(q̃)m′ ,

and p̃ is defined as in (5).

Equilibrium: An M-tuple of strategies, (A1, . . . , AM) and belief sets (B1, . . . , BM),

where Am = (pm, ηm) and Bm = p−m, defines an equilibrium of the diversification game G, if

1. Consistent strategies: For each agent, m, Am is consistent, conditioned on belief set

Bm.

2. Maximized strategies: For each agent, m, pm ∈ arg maxp′∈P Um(zm(p′|Bm)).

3. Consistent beliefs: For each agent, m, for all m′ �= m : (p−m)m′ = pm′ .

The equilibrium outcome is summarized by p = (p1, p2, . . . , pM) and q = (η1(p−1), η2(p−2), . . . , ηM(p−M)).

This concludes the definition of the diversification game.

The diversification game, of course, presents a highly stylized view of how primary mar-

kets and reinsurance markets for catastrophic risks work. A natural extension would be to

allow the insurance premium (μ) to be defined endogenously by demand and supply. This

extension turns out to complicate the analysis severely, so we have avoided it for analytical

tractability. However, the nondiversification traps we derive occur for ranges of (fixed) μ’s,

so an interpretation of our result is that there may be no insurance premium, μ, for which
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there is both demand from potential insurance buyers and supply from single insurance

providers.11

Another potential extension of the model would be to allow insurance providers to be

able to take on fractions of risks, x ∈ X and not just 0 or 1. This type of extension would

not qualitatively change our results, except for making the model less tractable.

2.4 Classification of equilibria

We are interested in diversification and nondiversification equilibria to a diversification game

G = (u, F, k, N, M). These formalize the situations that were intuitively described in Sec-

tion 2.2. We define

Definition 1 A diversification equilibrium of a diversification game G, is an equilibrium in

which insurance against all risks in X is offered, i.e., N = NM .

Definition 2 A diversification equilibrium of a diversification game G, is risk sharing if all

risk insured is pooled in the reinsurance market, i.e., R = NM .

Definition 3 A nondiversification equilibrium of a diversification game G is an equilibrium,

in which no insurance against risk is offered, i.e., N = 0.

Definition 4 A nondiversification trap exists in a diversification game G, if there is both a

nondiversification equilibrium and a risk sharing diversification equilibrium.

11For example, in our calibration to earthquake insurance, in Section 4, we arrive at nondiversification trap
arising for annual insurance premiums, μ, between USD 1,840 and USD 2,300 per household. Below USD
1,840, the only equilibrium is the nondiversification equilibrium, and above USD 2,300, the only equilibrium
is the full-diversification equilibrium. The range of μ for which a nondiversification trap arises is thus about
20% of the premium, i.e., (2,300-1,840)/2,340. With other parameter values, we have derived ranges from a
few percent up to an order of magnitude.
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We are especially concerned about cases when nondiversification traps may arise, even

though there is a large risk bearing capacity of the market as a whole. This might arise if

the market is fragmented so coordination problems may be present, i.e., if M is large. We

therefore define

Definition 5 A genuine nondiversification trap to the quadruple (u, F, k, N) exists if there

exists an M0, such that for all M ≥ M0, the diversification game G = (u, F, k, N, M) has a

nondiversification trap.

In the next section, we analyze when traps can occur in the diversification game. It turns

out that we can rigorously classify the conditions under which traps may occur.

3 Existence of traps

We relate the equilibrium concepts described in Section 2.4 to conditions for the Uj,s as

defined in equation (3).

Condition 1 Uj,1 < U0,1 for all j ∈ {1, . . . , N}.

Clearly, under Condition 1, an agent would never offer insurance if the reinsurance market

were not available:

Condition 2 Uj,s < U0,1 for all j ∈ {1, . . . , N} and all s ∈ {1, . . . , M}.

Condition 2 is the stronger requirement that even if there is a reinsurance market, there

is no way to increase expected utility by risk sharing if only one agent contributes risk to the

reinsurance market. We shall see that a sufficient condition for there to be an equilibrium

in which full diversification and risk sharing is achieved is
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Condition 3

• UNM,M > Uj,1 for all j ∈ {0, . . . , N} and

• UNM,M > Uj,M for all j ∈ {N(M − 1), . . . , NM − 1}.

Our first set of results relate the existence of nondiversification traps to the expected

utilities {Uj,s}0≤j≤NM,1≤s≤M , defined in (3). The results are fully in line with the arguments

in Section 2.2. We have:

Proposition 1 If Condition 2 is satisfied, then there is a nondiversification equilibrium.

The implication can be almost reversed, as shown in

Proposition 2 If Condition 2 fails strictly, i.e., if Uj,s > U0,1 for some j ∈ {1, . . . , N} and

s ∈ {1, . . . , M}, then there is no nondiversification equilibrium.

Proposition 3 If Condition 3 is satisfied, then there is a risk sharing diversification equi-

librium.

Clearly, if U0,1 > Uj,s for all (j, s) such that j ∈ {1, . . . , Ns} and s ∈ {1, . . . , M}, then

the nondiversification equilibrium is unique. Under these conditions, the risks are by all

means uninsurable, which may correspond to the “globally uninsurable” risks mentioned in

Cummins (2006). Under such conditions, we can have no hopes for an insurance market

to work: The risks are simply too large. Our analysis applies to situations for which risks

may be “globally insurable,” in that Condition 3 is satisfied but — in the terminology
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of Cummins (2006) — may be “locally uninsurable.” In our model, local uninsurability is

similar to Condition 1 being satisfied. For heavy-tailed distributions, Condition 2, which

is stronger than Condition 1 may also be satisfied, which makes the “local uninsurability”

especially cumbersome, and which may lead to coordination problems and nondiversification

traps.

We are now in a position to classify the situations when nondiversification traps can arise.

We have

Proposition 4 In the model in Section 2.2, with Bernoulli-Cauchy distributions with pa-

rameters N = 20, M = 5, X̃ ∈ S̃q
μ,ν,σ, with μ = 1, ν = −9, σ = 1 and q = 0.05, k = 100,

u(x) = (x + k)α, with α = 0.0315, there is a nondiversification trap. Moreover, the nondi-

versification trap is genuine.

As we shall see, the crucial point here is that the trap is genuine. We next move on to

classifying general distributional properties of the primitive risks that permit traps. It turns

out that traps will only arise under quite specific conditions: First, nondiversification traps

will not arise in a mean-variance framework with unlimited liability. Thus, in the traditional

situation we will never see nondiversification traps. Second, genuine nondiversification traps

can only arise with distributions that have heavy tails (i.e., infinite second moments).

Proposition 5 If utility is of the form Eu(X) = E(X) − γV ar(X), and k = ∞, then a

nondiversification trap can not occur. Moreover, depending on parameter values, only two

situations can arise: Either there is a unique nondiversification equilibrium (N = 0, j = 0,

t = 0) or there is a unique diversification equilibrium with full risk sharing (N = NM ,
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R = NM , t = M).

Non-genuine nondiversification traps can arise under standard conditions, i.e., distributions

do not need to be heavy-tailed for nondiversification traps to be possible. For example, the

diversification game G = (u, F, k, N, M), with

u(x) = xI(x ≤ 0) + log(1 + x)I(x > 0),

F (x) = I(x ≥ −50)/2 + I(x ≥ 70)/2,

k = ∞,

N = 20,

M = 5,

(where I(·) denotes the indicator function, and F (x) thus is the c.d.f. of a discrete r.v. X,

with P(X = −50) = P(X = 70) = 1/2) has a nondiversification trap. However, genuine

nondiversification traps only arise if distributions have heavy tails, as shown by the following

proposition:

Proposition 6

i) If k = ∞ and the risks X ∈ X have finite second moments, i.e., E(X2) < ∞, then a

genuine nondiversification trap can not occur.

ii) If k < ∞, the risks X ∈ X have E(X) �= 0 and E(X2) < ∞ then a genuine

nondiversification trap can not occur.

iii) If k < ∞, the risks X ∈ X have E(X) = 0 and E(X2+ε) < ∞, for some arbitrary

small ε > 0, then a genuine nondiversification trap can not occur.
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Proposition 6 can also be viewed from an approximation perspective. If M is large, but

finite, then nondiversification traps can only arise with distributions that have left tails that

are “approximately” heavy, i.e., decay slowly up until a certain point (even though their real

support may be bounded). For details on this type of argument, see Ibragimov and Walden

(2007).

4 Traps in markets for catastrophic insurance

In this section we apply our results to real markets for catastrophic insurance. Obviously,

risks vary across product lines and geography, and a full investigation is outside the scope

of this paper. Instead we focus on one type of risk — earthquake insurance in California.

Applying the principles of seismology, we show that the distribution of loss sizes indeed

follows a Pareto law and that an exponent of unity (the Cauchy case) is by no means

unreasonable. Moreover, with a simple calibration, we estimate the value of being able to

avoid a trap in residential earthquake insurance in California to be up to USD 3.0 Billion

per year. This is the direct value effect of a trap. The estimate does not include indirect

effects, as e.g. analyzed in Hubbard, Deal, and Hess (2005). We also discuss how this type of

analysis is valid for other types of natural disasters. Finally, we relate our results to several

recent events in markets for catastrophic insurance.

4.1 Loss distribution of earthquakes in California

The fact that earthquakes are referred to as catastrophes are suggestive that they have

heavy-tailed distributions. In this section, we show more precisely that standard seismic
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theory leads to loss distributions that follow Pareto laws

hL(l) ∼ l−α.

Here, hL(l) = P(L > l) is the probability that the economic loss, L, is larger than l,

conditioned on an earthquake occurring. More generally, for a r.v. X, let hX(x) denote the

probability that X exceeds x, conditioned on an earthquake occurring, P(X ≥ x).

Pareto laws arise for the distributions of energy release from earthquakes (see, e.g., Sor-

nette, Knopoff, Kagan, and Vanneste, 1996). We show that economic loss also satisfies a

Pareto law. For economic loss estimates, it is more natural to work with the Modified Mer-

calli Intensity (MMI) scale. Let M denote the moment magnitude (Hanks and Kanamori,

1979) of an earthquake.12 A standard model for the distribution of moment magnitudes of

earthquakes is

hM(m) = C1e
−βm, (6)

where β = 1.84 is often used (see McGuire, 2004, pp 34-40).13 The exponential distribution

is adequate for M ≤ 7, but for higher M , it underestimates the probabilities (McGuire, 2004,

pp 53-54, and Schwartz and Coppersmith, 1984), so the distribution for high levels may in

fact have heavier tails than assumed in (6).14

12The moment magnitude is almost the same as the Richter magnitude, MR, for M ≤ 6.5, but provides
a more accurate measure for earthquakes of larger magnitudes.

13This is the moment magnitude version of the celebrated Gutenberg-Richter exponential law for the
Richter magnitude.

14Although for very high levels, physical arguments imply that there has to be an upper bound on the
energy released, see Knopoff and Kagan (1977), and Kagan and Knopoff (1984). However, even if there is
an upper bound, say at M = 10 − 11, this still leads to an approximate Pareto law for over 15 magnitudes
of energy release. The upper bound is well beyond the limited liability threshold of most insurance markets
and is therefore not crucial for our trap argument.
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An empirical relationship between the MMI and the expected magnitude is given by

M = 1.3 + 0.6Ie ⇒ Ie =
M

0.6
− 1.3

0.6
, (7)

where Ie is the epicentral intensity, i.e., the MMI at the center of the earthquake (McGuire,

2004, p. 44). For simplicity, we assume that this is a deterministic relationship. The MMI

at a specific point is directly related to the damage and losses at that point. For example,

for an MMI of VIII, the estimates of losses for wooden structures is 5-10% of total value (see

McGuire 2004, page 19).15 For Ie, we immediately get

hIe(i) = C1e
−β(1.3+0.6i) = C2e

−1.10i.16

We relate the area, A, covered by an earthquake to Ie through the attenuation function.

We use the estimate

Id = Ie + 2.87 + 0.00052D − 1.25 log10(D + 10) ≥ Ie + 2.87 − 1.25 log10(D + 10),

where Id is the MMI at a point of distance D away from the epicenter, see Ho, Sussman,

and Veneziano (2001).17 Let Ad(Ie, Id) denote the area that experiences an MMI≥ Id for an

earthquake with epicentral intensity Ie. We also write A(Ie) when Id is fixed and known.

15This estimate may be somewhat outdated, as building structures nowadays may be stronger. However,
this does not change our general conclusions, only the constants in the formulae (Personal communica-
tion with William L. Ellsworth, Chief Scientist, Western Region Earthquake Hazards Team, United State
Geological Survey).

161.10 ≈ 1.84 × 0.6.
17Other estimates for the relation are available, e.g., in Bakun, Johnston, and Hopper (2003). However,

as with the strength of building structures, they are qualitatively similar and will not change our main
conclusions (Personal communication with William L. Ellsworth, Chief Scientist, Western Region Earthquake
Hazards Team, United State Geological Survey).
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Then, as A ∼ D2, it is easy to see that

A(Ie, Id) ≥ C3 × 101.6(Ie−Id) = C3 × e1.6 ln(10)(Ie−Id) = C4 × e3.7Ie ,

for fixed Id. Another estimate is obtained by using the results in Hanks and Johnston (1992),

for Id =VI. Their formula is

M = 2.38 + 0.96 log10(A(Ie(M), VI))

which by (7) leads to

A(Ie, VI) = C5 × e0.6×ln(10)Ie/0.96 = C5e
1.44Ie.

Under the assumption of uniform geographical population density, it is natural to assume

that the economic loss, L, from an earthquake is at least proportional to A(Ie), as this

estimate only takes into account area covered, but does not take into account that the

higher Ie, the more damages close to the epicentrum. This leads to the loss distribution:

hL(l) ∼ l−α, where α ∈ [0.3, 0.76].18

The other extreme assumption is that of one-dimensional population density, i.e., that

people only live along a one-dimensional coast line. In this case it is natural to assume that

180.3 ≈ 1.10/3.7, 0.76 ≈ 1.10/1.44.
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the economic loss, L, is at least proportional to
√

A(Ie). This leads to the loss distribution:

hL(l) ∼ l−α, where α ∈ [0.6, 1.5].19

Thus, altogether the economic loss distribution follows a Pareto law that decays slower

than α = 1.5, and it may be as slow as α = 0.3. An α equal to unity corresponds to the

Cauchy case.

Clearly, these calculations are rough. However, the key point is that under standard as-

sumptions, for many orders of magnitude, the distribution of economic loss from earthquakes

follows an approximate Pareto law, with a very heavy tail and that the tail exponent α = 1

by no means is unreasonable.

4.2 Value of avoiding a trap

We present an analysis of the value of avoiding a nondiversification trap for California earth-

quake insurance. Under the assumptions, the value (measured as a certainty equivalent) of

being able to avoid a nondiversification trap for residential real-estate earthquake insurance

in California may be up to USD 3.0 Billion per year. This only measures the direct effect. In

addition, the failure of a private insurance market for earthquake risk in California imposes

indirect costs on important parts of the state’s economy, including new construction, home

sales, and the mortgage market. Thus, following the Northridge earthquake of 1994, the

state felt it important to create the California Earthquake Authority to augment the private

market; see Jaffee and Russell (2003).

We assume that the liability of a (large) representative insurance company is USD 10 Bil-

190.6 ≈ 1.10/(3.7/2), 1.5 ≈ 1.10/(1.44/2).
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lion, i.e., that the individual insurance company, not taking reinsurance into account, can

cover claims up to USD 10 Billion. The total market capacity is USD 400 Billion. This is

the potential liability available, if the market chooses to provide full liability exposure.20 It

corresponds to 40 companies of equal size. We also assume that the government steps in to

cover any additional losses of an earthquake of magnitude above M = 8.3.

The convex capital costs for insurance companies is calibrated to fit the assumption that

insurance companies will charge a premium of USD 50 Million to take on a Bernoulli-type risk

that with 50% chance pays +USD 1 Billion and with 50% chance costs USD 1 Billion (i.e.,

pays -USD 1 Billion). Equivalently, the company would charge a premium of USD 1.05 Billion

to insure a 50% risk of a catastrophe that, if it occurs, leads to claims of USD 2 Billion.21

According to U.S. census data there are 11.5 Million households in California, of which

57% are homeowners.22 For these households, we assume a reconstruction cost of USD 150,000,

that the total wealth of a representative home-owner household is USD 200,000 (i.e., USD 50,000

in addition to the value of the house) and that households have CRRA utility with risk aver-

sion parameter γ = 3.

We focus on large earthquakes, with M ≥ 6.7. In line with our analysis in the previous

section, we assume that the distribution of earthquakes with M ≥ 6.7 is Bernoulli-Cauchy

distributed. The annual probability for an earthquake in California of magnitude M ≥ 6.7 is

20Cummins, Doherty, and Lo (2002) assess the market capacity to be USD 350 Billion.
21Another calibration is for a 1% risk of a USD 1 Billion event. The premium to insure such a risk under

our assumptions would be about USD 11 Million, i.e., an additional USD 1 Million above the risk-neutral
premium. Studies of risk premia for catastrophe bonds estimate the premium charged by the market to be
USD 3 Million for such risks (Froot, 2001). Under our assumptions, one third of this premium would stem
from convex capital costs and the other two thirds from other factors, e.g., transaction costs, asymmetric
information and parameter uncertainty.

22U.S. census bureau, Census 2000. In addition to the 6.5 million owner-occupied housing units, there are
5 million renter-occupied units, and 700,000 vacant units. Our analysis does not cover insurance demand for
these units and may thereby underestimate the total value.
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assumed to be 6.3%.23 The total damage of such an event is assumed to be USD 25 Billion,

of which 50% (USD 12.5 Billion) falls upon residential home owners.24 In our simplified

analysis, if an earthquake occurs, a house either suffers no damage, or collapses and realizes

a full loss of USD 150,000.25 The number of damaged houses for an M = 6.7 earthquake is

therefore 83,000 (USD 12.5 Billion/USD 150,000). The maximum residential damage in the

model is for an M = 8.3 event, under which the total damage is USD 500 Billion. In the

model, such an event occurs on average once in 630 years.

Under these assumptions, there is an unconditional risk of 0.2% per household per year

that the insurance will fall out. The households’ CRRA risk attitudes imply that each

household is willing to pay an annual insurance premium of up to USD 2,300 to insure this

risk. The total willingness to pay is thus about USD 15 Billion per year. However, no single

insurance company is willing to offer insurance at this premium. This is the nondiversification

equilibrium. On the contrary, in a full risk-sharing diversification equilibrium, insurance

companies would be willing to offer insurance for an annual premium as low as USD 1,840

per year. This gap of USD 460 per year (2,300-1,840) represents the highest amount a

household would be willing to pay to avoid the trap. The total gap size is therefore USD 3.0

Billion per year (460 × 57% × 11.5 Million). This is the potential annual value of avoiding

a trap for home-owner residential earthuake insurance in California. If a risk-sharing full

diversification equilibrium occurs, the market provides full insurance against a California

earthquake of magnitude M = 8.3. However, a single insurance company will only be able

23According to USGS report 03-0214, “Earthquake probabilities in the San Francisco Bay region: 2002-
2031” there is 62% risk for an earthquake with M ≥ 6.7 in the Bay area between 2002-2031. This corresponds
to an average annual probability of 3.2%. Assuming an independent similar total risk in urban areas of the
rest of California, including Los Angeles, leads to the total annual probability of 6.3%.

24The documented direct losses of the 1994 Northridge earthquake of magnitude M = 6.7 were USD 24
Billion (Eguchi, Goltz, Tayloe, Chang, Flores, Johnson, Seligson, and Blais, 1998).

25We have also done calculations where partial damage can occur, with qualitatively similar results to the
ones presented here.
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to fully cover an event up to a magnitude of M = 7.0.

We have assumed Cauchy distributed tails (α = 1). As mentioned earlier, closed form

solutions are not available for α �= 1. However, it is possible to numerically estimate under

which conditions nondiversification traps arise for other values of α. In the example just

discussed, the nondiversification trap arises for 0.76 ≤ α ≤ 1.46. If α > 1.46, an individual

company is willing to offer insurance at a price households are willing to accept. If α < 0.76,

no diversification equilibrium exists. The latter case corresponds to a globally uninsurable

risk.

4.3 Other natural disasters

We have focused on one specific type of catastrophe — earthquakes. A full calibration to

each type of catastrophe is outside the scope of this paper. However, the crucial property

for our theory is the heavy-tailed distributions, especially Pareto laws. These are generic for

natural disasters. As discussed in Woo (1999), heavy-tailedness is intimately connected to

the self-similarity of the physical processes underlying natural disasters. For example, the

energy distribution released in earthquakes satisfies a Pareto law with exponent between α ∈

(0.8, 1.2) (Sornette, Knopoff, Kagan, and Vanneste, 1996). Similarly, the energy distribution

of extra-terrestrial impacts (meteorites and asteroids) satisfies a Pareto law with exponent

α ≈ 0.86, the size distribution of landslides has been estimated to have an exponent of

α ∈ (1.2, 1.4), whereas the area covered by river floods scales with the exponent α ≈ 0.43

(Woo, 1999). For hurricanes in Florida, estimates of the tail of the loss distribution of

α ≈ 1.56 (Hsieh, 1999) and α ≈ 2.49 (Hogg and Klugman, 1983) have been made.

In each of these cases, a relationship between the heavy-tailed variable, X, and economic
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loss, L, needs to be established, just like when going from moment magnitude to economic

loss for earthquakes in Section 4.1. However, as long as this relationship is of power-type,

L(X) ∼ Xβ, the loss distribution will also satisfy a Pareto law, with exponent α̂ = α/β, so

our theory can be applied.

4.4 The role of a central agency

As the private catastrophe insurance markets for earthquakes, wind damage, floods and

terrorism have failed, one after the other over the last 15 years, in both the U.S. and Europe,

governments have been forced to intervene. The plans were often created under time pressure

and they differ substantially in their details; see OECD (2005a) and OECD (2005b) for

descriptions of both the European and U.S. plans. So it is intriguing to find that they

actually share a fundamental design feature, namely that each government plan has, in effect,

created a mechanism through which a coordinated diversification equilibrium is established.

For example, in the U.S. following the terrorism attack of September 11, 2001, the U.S.

Congress passed the Terrorism Risk Insurance Act (TRIA), which requires all U.S. insur-

ance firms to offer terrorism coverage as a rider to their standard coverage for commercial

buildings. The quid pro quo is that the government provides reinsurance for the highest

layer of risk, although, as shown in Carroll, LaTourrette, Chow, Jones, and Martin (2005),

the actual subsidy is very small. Thus, the primary force of TRIA is that it requires a

coordinated equilibrium in which all insurers must offer terrorism coverage. The federal

government also directly provides most U.S. flood insurance, which, of course, automatically

diversifies the risk across all U.S. taxpayers. At the state level, Florida and California have

required private firms to continue to cover hurricane and earthquake risks respectively, while
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the states support some of the reinsurance. Finally, most European countries have created

national catastrophe programs covering both natural disasters and terrorism which generally

require that catastrophe coverage be offered to all customers, while the government provide

a reinsurance facility; see OECD (2005a) and OECD (2005b).

Thus, quite systematically, government interventions to support catastrophe insurance

markets in both the U.S. and Europe have, in effect, created coordinated diversification

equilibria. This supports a basic conclusion of our paper, that government support to help

reach a coordinated diversification equilibrium may play an important role in maintaining

functioning markets for catastrophe insurance.

5 Concluding remarks

Catastrophic risks seem ideal for insurance markets with large aggregate capacity: They

are basically independent over types and geography, and there are few, if any, informational

asymmetries to hinder well-functioning markets for pooled risks. The limited existence of

markets for catastrophe insurance is therefore quite puzzling.

We offer an explanation to this puzzle based on one unique property of catastrophic risks:

the nonnegligible probability for extremely negative outcomes, i.e., the heavy left tails. The

value of diversification decreases drastically when distributions are heavy-tailed. In some

cases, it vanishes completely or can even be negative. The heavier the tails, the less we can

therefore rely on standard mean-variance analysis or normal distributions in our analysis.

In a model of a reinsurance market, we have shown that if insured risks have heavy left

tails, there can be nondiversification traps. Nondiversification traps occur when the value

of diversification is U-shaped in the number of risks — starting out negative, but eventually
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becoming positive. In such situations, the value of diversification may be negative on the

scale of the individual insurance company, but positive on a market scale.

The welfare loss of a diversification trap may be high. For example, we estimate the

direct welfare loss of a trap in California residential earthquake insurance to be up to USD

3.0 billion per year. The effect may be especially severe in fragmented markets with large

aggregate risk bearing capacity. In such markets, diversification must be coordinated by

a large number of insurance providers. This could motivate a role for a central agency in

coordinating and ensuring that diversification is reached. We make several observations

supporting the conclusion that governments are already taking such actions.
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Appendix

Results in Section 2.2

With limited liability (k < ∞) and the power utility function u(x) = (x + k)α, α ∈ (0, 1),

the expected utility will be:

Uj,s = E
(∑j

i=1 X̃i

s
+ k

)α

+
= E

(μj + (ν − μ)
∑j

i=1 εi + σ
∑j

i=1 εiYi

M
+ k

)α

+
=

j∑
n=1

(
j

n

)
qn(1 − q)j−nWj,n,s +

(
jμ

s
+ k

)α

, (8)

where

Wj,n,s =
1

π

∫ ∞

−r/b

(bx + r)α

1 + x2
dx, b =

nσ

s
, r = k +

(j − n)μ + nν

s
.

The closed form solution for the integral is

Wj,n,s =
bα(1 + r/b)α/2

sin(πα)
× sin

(πα

2
+ α arctan(br)

)
.

Figure 2 is plotted using equation (8).

Results in Section 2.3

The M-person participation subgame: M ≥ 1 agents decide sequentially whether to

participate or not. Previous decisions are observable. The outcome is represented by q =

(q1, . . . , qM) ∈ {0, 1}M , where qm = 1 indicates participation. The payoff to not participating,

(i.e. choosing qm = 0) is Unm,1. The payoff to participating is UR,t, where t denotes the

number of participating agents, t =
∑

m qm, and R =
∑

m qmnm. Here nm is the number of

risks chosen by agent m in the first-stage of the diversification game. To ensure uniqueness,

we assume that if agents are indifferent between participating and not participating (Unm,1 =

UR,t) then they do not participate. We call this the “laziness” assumptions. The game is

shown in Figure 4 for an example with three agents (M = 3). Zermelo’s theorem immediately
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q1=1

q1=0

q2=1

q2=0

q2=1

q2=0

q3=1

q3=0

q3=1

q3=0

q3=1

q3=0

q3=1

q3=0

s j             E(u) - agent (1, 2, 3)

3          7              (U7,3 , U7,3,  U7,3)

2          5              (U5,2 , U5,2,  U0,1)

2          7              (U7,2 , U0,1,  U7,2)

1          5              (U5,1 , U0,1,  U0,1)

2          2              (U0,1 , U2,2,  U2,2)

1          0              (U0,1 , U0,1,  U0,1)

1          2              (U0,1 , U0,1,  U2,1)

0          0              (U0,1 , U0,1,  U0,1)

n1=5 n2=0 n3=2

Figure 4: Example of participation subgame with M = 3 agents. In first stage, agent 1,2 and 3

have chosen to insure n1 = 5, n2 = 0, and n3 = 2 risks respectively.

implies that for each realization of the first stage of the diversification game, p = (p1, . . . , pm),

there is a unique subgame perfect equilibrium satisfying the laziness assumption, to the

participation game, q ∈ {0, 1}M . We can therefore define the equilibrium mapping E :

PM → {0, 1}M , with q = E(p). Without loss of generality, we can assume that in the first

stage of the diversification game, agents base their strategies on this equilibrium mapping.

This reduces the strategy space significantly.

Results in Section 3

Proof of Proposition 1: As Condition 2 implies Condition 1, it is clearly not optimal for

any agent who does not participate in the reinsurance market to offer insurance. Moreover,

if agent m believes that no other agent will offer nontrivial risks into the pooled market,

Condition 2 implies that it is optimal for agent m to not offer nontrivial risk, as any risk

sharing with up to N risks is inferior to not taking on risk. Thus, it is an equilibrium for no

one to offer insurance. �

Proof of Proposition 2: If Un,s > U0,1 for n ≥ 1 and s = 1, then clearly any agent will

strictly improve by taking on n risks. For Un,s > U0,1 for some s > 1, the proof is a direct
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consequence of the equilibrium structure of the participation game. For example, agent

1 strictly improves by pooling n risks into the reinsurance market, as agent 2, . . . , s∗ will

then choose to participate in the participation game for some s∗ = arg maxt{t : Un,t > U0,1},
whereas agents s∗+1, . . . , M will choose not to participate. This leads to a strict improvement

for all agents 1, . . . , s∗. Thus, agent 1 will deviate from the assumed nondiversification

strategy, so nondiversification can not be an equilibrium. �

Proof of Proposition 3: Under Condition 3, if agent m believes that all other agents

will participate in the reinsurance market, by choosing N risks and participating, UNM,M

can be achieved. This clearly dominates any alternative strategy of not participating in the

market, which will lead to Un,1 for 1 ≤ n ≤ M , or of participating and offering fewer risks,

which will lead to Un,M , for N(M − 1) ≤ n ≤ NM − 1. All alternative strategies are thus

strictly dominated by the strategy leading to UNM,M . �

Proof of Proposition 4:

i) Existence of nondiversification trap: Follows by checking that the example with pa-

rameters N = 20, M = 5, X̃ ∈ S̃q
μ,ν,σ, with μ = 1, ν = −9, σ = 1 and q = 0.05, k = 100,

u(x) = (x + k)α, with α = 0.0315, satisfies Conditions 2 and 3 simultaneously.

ii) The trap is genuine:

ii a) We first show that Uj,s < U0,1 for all j ∈ {1, . . . , N} and all s ∈ {1, 2, . . .}. This

is sufficient for the nondiversification part of the equilibrium to be satisfied. We do this by

studying

F (j, y)
def
=

j∑
n=1

(
j

n

)
qn(1 − q)j−nWj,n,1/y + (jμy + k)α ,

for the parameter values q = 0.05, μ = 1, ν = −9, α = 0.0315, σ = 1, k = 100. By

verifying that F (j, y) < 0 for y ∈ (0, 1], for j = 1, 2, . . . , 20, this implies that Uj,s < U0,1

for all s ∈ {1, 2, . . .} and each feasible j. In Figure 5, F (j, y) as a function of y is shown

for j = 1, 2, 5, 10, 20. The lowest curve is for j = 1, and the highest for j = 20. We have

also verified the condition for all other feasible j (not shown in the figure). In fact, F is an

increasing function of j for fixed y, so F (20, y) (the highest curve) being strictly negative

for y ∈ (0, 1] is sufficient for the nondiversification part of the equilibrium to be satisfied.

ii b) For the risk-sharing diversification part, we need to show that for some M0, for all
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-0.00025

-0.0002

-0.00015

-0.0001

-0.00005

Figure 5: F (j, y) < 0 for all 0 < y ≤ 1 and for all j ∈ 1, 2, . . . , 20.

M ≥ M0: UNM,M > U0,1 and UN(M−1),M < UN(M−1)+1,M < . . . < UNM−1,M . As U0,1 > Uj,1

for j = 1, . . . , 20 (see Figure 2). This is sufficient for the risk sharing diversification part to

hold.

Let us consider the asymptotics of UtM,M , where t is a fixed natural number, as M → ∞.

In what follows, →P denotes convergence in probability and →d denotes convergence in

distribution. According to (8), we have

UtM,M = E
(∑tM

j=1 X̃j

M
+ k

)α

+
= E

(
μt + (ν − μ)

∑tM
j=1 εj

M
+ σ

∑tM
j=1 εjYj

M
+ K

)α

+
,

where εj are i.i.d. nonnegative Bernoulli r.v.’s with P (εj = 0) = 1 − q, P (εj = 1) = q and

Yj ∈ S0,1 are i.i.d. symmetric Cauchy r.v.’s with scale parameter σ = 1 that are independent

of ε′js. By the law of large numbers,

∑tM
j=1 εj

M
→P tEε1 = tq (9)

as M → ∞.

Since the characteristic function of a symmetric Cauchy r.v. X ∈ S0,σ is given by

E exp(iyX) = exp(−σ|y|), (10)
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we obtain that the characteristic function f(y) = E exp(iyWM) of WM =
PtM

j=1 εjYj

M
satisfies

f(y) =
[
E exp

(iyε1Y1

M

)]tM

=
[
(1 − q) + qE exp

( iyX1

M

)]tM

=

[
1 + q

(
exp

(
− |y|

M

)
− 1

)]tM

→ exp(−qt|y|) ∀y ∈ R (11)

as M → ∞. Since, according to (10), exp(−tq|y|) is the characteristic function of the r.v.

tqY1, from (11) we conclude that

WM →d tqY1 (12)

as M → ∞. Relations (9) and (12) imply that, as M → ∞,

VM =
(
μt + (ν − μ)

∑tM
j=1 εj

M
+ σ

∑tM
j=1 εjYj

M
+ K

)α

+
→d (μt + (ν − μ)tq + σtqY1 + K)α

+. (13)

Since, as is not difficult to see, the sequence of r.v.’s VM is uniformly integrable, from

(13) we get that (see, e.g., Ash (2000), p. 336)

UtM,M = E
(
μt + (ν − μ)

∑tM
j=1 εj

M
+ σ

∑tM
j=1 εjYj

M
+ k

)α

+

converges to

G(t)
def
= E(μt + (ν − μ)tq + σtqY1 + K)α

+ =

(
t2q2σ2 + (k + t(μ − qμ + +qν))2

)α/2
csc(πα) sin

(
1

2
α

(
π + 2 arctan

(
k + t(μ − qμ + qν)

qtσ

)))

as M → ∞. In particular,

lim
M→∞

UnM,M = G(n), n = 1, . . . , N.

It is straightforward to check that G(N) > U0,1.
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Let us now show that UN(M−1),M < UN(M−1)+1,M < . . . < UNM−1,M . Let 0 ≤ m ≤ M −2.

Note that, for Y ∈ S0,σ and α ∈ (0, 1), z ∈ R, the expectation E(Y + z)α−1
+ is finite and

well-defined because the integral

∫ ∞

−z

dx

πσ(x + z)1−α(1 + x2)
converges. This, by induction

and conditioning arguments implies that the expectation E
(∑N(M−1)+m

j=1 Xj

M
+k

)α−1

+
is finite

and positive:

0 < E
(∑N(M−1)+m

j=1 Xj

M
+ k

)α−1

+
< ∞. (14)

Using a Taylor expansion, it is not difficult to check that the following inequality holds

for all x, z ∈ R and all α ∈ (0, 1):

(x + z)α
+ ≥ zα

+ + αxzα−1
+ , (15)

with strict inequality for x, z > 0. Let X ′
1 = μ + (ν − μ)ε′1 + σε′1Y

′
1 denote a r.v. with

Bernoulli-Cauchy distribution (4), where ε′1 is a nonnegative Bernoulli r.v. with P (εi =

0) = 1 − q, P (εi = 1) = q and Y ′
1 ∈ S0,1 is a symmetric Cauchy r.v. with scale parameter

σ = 1 independent of ε′1. Suppose, further that ε′1 and Y ′
1 are independent of the r.v.’s

Xj , j = 1, ..., N(M − 1) + 1. Using (14) and (15) we get that, for all s > 0,

E
(∑N(M−1)+m

j=1 Xj + X ′
1

M
+ k

)α

+
I(|Y ′

1 | < sM) >

E
(∑N(M−1)+m

j=1 Xj

M
+ k

)α

+
P (|Y ′

1 | < sM) + (α/M)E
[
X ′

1I(|Y ′
1 | < sM)

]
E

(∑N(M−1)+m
j=1 Xj

M
+ k

)α−1

+
,(16)

where I(·) is the indicator function.

We further have, by the definition of X ′
1, ε′1 and Y ′

1 and using the symmetry of the
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distribution of Y ′
1 ,

E
[
X ′

1I(|Y ′
1 | < sM)

]
= (μ + (ν − μ)q)P (|Y ′

1| < sM) + σqE
[
Y ′

1I(|Y ′
1 | < sM)

]
=

(μ + (ν − μ)q)P (|Y ′
1| < sM) ∀s > 0. (17)

Inequalities (16) and (17) imply that, for all s > 0,

E
(∑N(M−1)+m

j=1 Xj + X ′
1

M
+ k

)α

+
I(|Y ′

1 | < sM) > E
(∑N(M−1)+m

j=1 Xj

M
+ k

)α

+
P (|Y ′

1 | < sM) +

α(μ + (ν − μ)q)

M
P (|Y ′

1| < sM)(18)

Letting here s → ∞, we obtain

UN(M−1)+m+1 = E
(∑N(M−1)+m

j=1 Xj + X ′
1

M
+ k

)α

+
≥ E

(∑N(M−1)+m
j=1 Xj

M
+ k

)α

+
+

α(μ + (ν − μ)q)

M
.(19)

It is easy to check that, for the values of the parameters chosen in the proposition,

μ + (ν − μ)q = 0.5 > 0. From (19) we thus conclude that

UN(M−1)+m+1 > E
(∑N(M−1)+m

j=1 Xj

M
+ k

)α

+
= UN(M−1)+m

for all 0 ≤ m ≤ M − 2.

Thus, the conditions for a risk-sharing diversification equilibrium are satisfied for all

M ≥ M0. Together, i) and ii) therefore imply that the nondiversification trap is genuine. �

Proof of Proposition 5:

We first prove the special case, with normal distributions (Xi ∼ Normal(μ, σ2)) and

CARA utility (u(x) = −exp(−θx)), which is well known to lead to mean-variance optimizing

agent behavior.

i) No nondiversification trap: Clearly, for there to be a risk-sharing diversification equi-
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librium, we must have UNM,M > U0,1. However, the strict monotonicity of Uj,M in j then

implies that U1,M > U0,M = U0,1. By Proposition 2, this contradicts there being a nondi-

versification equilibrium, which would require that U1,M ≤ U0,1. Thus, a nondiversification

trap can not arise.

ii) Type of equilibria: The properties and uniqueness of equilibrium depend on λm
def
=

2μ − θσ2/m. Clearly, λm is strictly increasing in m. If λM < 0, then Uj,s < U0,1 for all

j > 0, for all 1 ≤ s ≤ M . Therefore nondiversification (N = 0) is the unique equilibrium. If

λM = 0, then a similar argument, together with the laziness assumption ensures that there

is a unique nondiversification equilibrium.

If λM > 0, the conditions of Assumption 3 are satisfied, so there is a risk-sharing diversi-

fication equilibrium. Clearly, there can not be a nondiversification equilibrium in this case,

as U1,M > U0,1, so Condition 2 fails strictly. We study other candidates for equilibria. Let

s∗ = arg minm{m : λm > 0}:
i) Equilibria with no pooling: If s∗ > 1, there can clearly be no equilibrium without pool-

ing, as Un,1 < U0,1 for 1 ≤ n ≤ N in this case, so this would have to be the nondiversification

equilibrium, which is not an equilibrium according to the previous argument. Moreover, if

s∗ = 1, then Un,1 is strictly increasing in n, so the only potential equilibrium without pooling

is the one in which all agents choose nm = N , qm = 0. However, as λm is strictly increasing

in m, UNM,M > Uj,s for all other feasible Uj,s, so this is dominating for all agents and it must

be that q = 1M = E(p). This is a pooling equilibria, which contradicts the assumption of no

pooling. Thus, there can be no equilibrium without pooling of risk.

ii) Equilibria with pooling: Assume that there is an additional equilibrium, with j risks

pooled between s agents. For this to be the case, it must be that s ≥ s∗.

ii a) s∗ > 1. Clearly, agents who do not participate (i.e., have qm = 0) will not take

on own risk, so their expected utility of not participating is U0,1. However, if Uj,s > U0,1,

then, as λs+1 > λs > 0, we have Uj,s+1 > U0,1, so any nonparticipating agent is better of

by participating in the reinsurance market. Thus, any equilibrium will have s = M . Now,

assume that j < NM : A similar argument shows that any agent choosing nm < N would

have increased expected utility by choosing nm = N . Thus, the only equilibrium is the risk

sharing diversification equilibrium.

ii b) s∗ = 1. In this case, agents who do not participate (i.e., have qm = 0) will take
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on full risk, i.e., their expected utility will be UN,1. A similar argument implies that any

agent who participates will choose nm = N . Thus, participating agents will have expected

utility UNs,s. However, as λs+1 > λ1, nonparticipating agents will increase their expected

utility by deviating and reaching UN(s+1),s+1 instead of UN,1. Thus, it must be that all agents

participate, and once again the only equilibrium can be j = NM , s = M .

The general case is identical to the proof in case of CARA investors with normal utility.

As Uj,s = j/s(μ − γ/sσ2), which is monotone in j for each s, and λs
def
= μ − γσ2/s is

monotonously increasing in s, so all the steps of the proof go through. �

Proof of Proposition 6:

i) Assume that there exists a nondiversification traps to the game (u, F,∞, N, M) for

arbitrarily large M , for a strictly concave twice continuously differentiable utility function u

and distribution F , satisfying: ∫ ∞

−∞
x2dF = C < ∞. (20)

For notational convenience, we assume that F is differentiable, so that the p.d.f. φ =

dF/dx is well-defined. However, the whole proof goes through step-by-step without this

restriction. Without loss of generality, we can assume u(0) = 0, u′(0) = 1. For a genuine

nondiversification trap to exist, it must be the case that for arbitrarily large M ,

UNM,M > 0, (21)

and

U1,M < 0. (22)

However, a necessary condition for (22) to hold for arbitrarily large M is that EX ≤ 0, as

seen by the following argument: Assume that μ = EX > 0. We define

U(ε)
def
=

∫ ∞

−∞
u(εx)φ(x)dx.

We decompose

u(x)
def
= x − t(x)

def
= x − x2z(x),
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where t(0) = t′(0) = 0, t′′ > 0, t(x) < x, z(x) is continuous and both t and z are nonnegative.

We then have

U(ε) = εμ −
(∫ −1/ε

−∞
t(εx)φ(x)dx +

∫ 1/ε

−1/ε

(εx)2z(εx)φ(x)dx +

∫ ∞

1/ε

t(εx)φ(x)dx
)
. (23)

The
∫ ∞
1/ε

-term is clearly of o(ε),26 as

∫ ∞

1/ε

t(εx)φ(x)dx ≤
∫ ∞

1/ε

εxφ(x)dx ≤ ε

∫ ∞

1/ε

xφ(x)dx ≤ C2ε
2.

Furthermore, as z(x) is continuous, it is bounded on [−1, 1], so Hölder’s inequality can be

used to bound the
∫ 1/ε

−1/ε
term by

∫ 1/ε

−1/ε

(εx)2z(εx)φ(x)dx ≤ ε2 max
−1≤y≤1

|z(x)| × C = C3ε
2,

so the second term is also of o(ε). Finally, the
∫ −1/ε

−∞ -term is also o(ε), as

∫ −1/ε

−∞
t(εx)φ(x)dx =

∫ −1/ε

−∞

t(εx)

t(x)
t(x)φ(x)dx ≤ εt′(−1)

∫ −1/ε

−∞
t(x)φ(x)dx = o(ε),

where we use Hölder’s inequality to move the t(εx)/t(x) outside of the integral, and the

inequality
t(εx)

t(x)
≤ εt′(−1),

which must hold for x ≥ 1/ε, as t is convex. Finally,

∫ −1/ε

−∞
t(x)φ(x)dx = o(1),

as the integral Eu(X) could otherwise not exist. This altogether implies that U(ε) = εμ −
o(ε), which is strictly positive for small enough ε. Therefore, if EX > 0, then U1,M will be

26The term f(ε) = o(ε) denoting that limε↘0 f(ε)/ε = 0.

45



strictly positive for large enough M , and no genuine nondiversification trap can therefore

exist.

However, if EX ≤ 0, then a nondiversification trap can not exist as Jensen’s inequality

implies that UNM,M is strictly negative for arbitrary M > 0 and N > 0 and thus UNM,M <

U0,1. �

ii) Assume that there exists a nondiversification traps to the game (u, φ, k, N, M) for

arbitrarily large M , for a strictly concave twice continuously differentiable utility function u

and distribution φ, satisfying:

∫ ∞

−∞
x2φ(x)dx = C < ∞. (24)

Without loss of generality, we can assume u(0) = 0, u′(0) = 1.

If EX > 0, then the same argument as in the proof of Proposition 6 rules out a genuine

nondiversification trap, as the limited liability increases U1,M compared with the unlimited

liability case. Thus, for M large enough, U1,M must be strictly positive and a genuine

nondiversification trap can not exist.

If EX = μ < 0, then we use the law of large numbers to show that as M becomes

large, XNM = (NM)−1
∑NM

i=1 Xi converges in distribution to μ. Thus, limM→∞ E((XNM +

kNM)+ − kNM) = μ, so for some large enough M0, E((XNM + kNM)+ − kNM) < 0 for

all M ≥ M0. Jensen’s inequality therefore again implies that UNM,M is strictly negative for

M ≥ M0 and thus that UNM,M < U0,1, so there can be no genuine nondiversification trap.

�

iii) Without loss of generality, we can assume u(0) = 0, u′(0) = 1.

We prove that UNM,M < U0,1 = 0 for large M . We define:

γ = min
x∈[−k/2,k/2]

u′′(x).
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As u is strictly concave and twice continuously differentiable, γ > 0. We define

ũ(x) = x − γ

2
x2I[−k/2,k/2]

(where IA is the indicator function on the set A), implying that u(x) ≤ ũ(x) for all x ∈
[−k,∞). Similar to Uj,s, we define Ũj,s, the “utility” of sharing j risks equally among s

agents, for agents with “utility” functions ũ. Clearly, Uj,s ≤ Ũj,s, so if ŨNM,M < 0 for large

M , then Uj,s < 0 for large M and there cannot be a genuine nondiversification trap.

We next define Y1 =
∑N

i=1 Xi and study uniform portfolios of i.i.d. risks Y1, . . . , YM by

defining Y M
def
= (

∑M
m=1 Ym)/M . As E(Y M) = 0, the condition ŨNM,M < 0 for large M can

be written:

ŨNM,M = E
(
Y MI[−k,∞)

) − γ

2
E

(
Y

2

MI[−k/2,k/2]

)
< 0. (25)

We begin by bounding E
(
Y

2

MI[−k/2,k/2]

)
from below. From the central limit theorem, we

know that ZM
def
=

√
M Y M converges in distribution to Z ∼ Normal(0, σ2), so E(Z2

MI[−k/2,k/2]) →
C > 0, as M grows. As ME

(
Y

2

MI[−k/2,k/2]

)
≥ ME

(
Y

2

MI[−k/2
√

M,k/2
√

M ]

)
= E

(
Z2

MI[−k/2,k/2]

)
,

we can therefore conclude that for large M ,

γ

2
E

(
Y

2

MI[−k/2,k/2]

)
≥ C ′

M
, C ′ > 0. (26)

We next bound E
(
Y MI[−k,∞)

)
from above. As, E

(
Y M

)
= 0, we have E

(
Y MI[−k,∞)

)
=

−E
(
Y MI(−∞,−k)

)
. From the Cauchy–Schwarz inequality, we know that

−E
(
Y MI(−∞,−k)

) ≤ E
(
Y

2

M

)1/2

E
(
I(−∞,−k)

)1/2
,

(as I2
(−∞,−k) = I(−∞,−k)). Of course, E

(
Y

2

M

)
= σ2/M . Moreover, Rosenthal’s inequality

(see Rosenthal 1970, Ibragimov and Sharakhmetov 1997, and de la Peña, Ibragimov, and

Sharakhmetov 2003) implies that E
(
Y

2+ε

M

)
≤ C ′′/M1+ε/2, and by Markov’s inequality, we
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therefore know that

E
(
I(−∞,−k)

)
= P (x < −k) ≤

E
(
Y

2+ε

M

)
k2+ε

≤ C ′′k−(2+ε)

M1+ε/2
.

Altogether, this implies that

E
(
Y MI(−k,∞)

) ≤
√

σ2

M

√
C ′′k−2+ε

M1+ε/2
=

C ′′′

M1+ε/4
.

The bounds in (25) are therefore

ŨNM,M ≤ C ′′′

M1+ε/4
− C ′

M
, C ′ > 0,

which is strictly negative for large M . Thus, as UNM,M ≤ ŨNM,M , we know that UNM,M ≤
U0,1 = 0 for large M . Therefore, there can be no genuine nondiversification trap in this case

either. �

Date Event Insured losses*
[USD Billion]

2005, August 24 Hurricane Katrina 45
1992, September 23 Hurricane Andrew 22
2001, September 11 World Trade Center 21
2004, January 17 Northridge Earthquake 18
2004, September 2 Hurricane Ivan 12
2005, September 20 Hurricane Rita 10
2005, October 16 Hurricane Wilma 10
2004, August 11 Hurricane Charley 8
1991, September 27 Typhoon Mireille (Japan) 8
1990, January 25 Storm Daria (Europe) 7

Table 1: The world’s ten costliest insurance events. * Property and Business interruption;
excludes liability and life insurance. Source: SwissRe (2006).
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