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Abstract
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1. Introduction

Understanding exchange rate movements has long been an extremely challenging and
important task for academic and business researchers. Not only is the exchange rate a
significant determinant of aggregate demand in a small open economy such as Canada’s,
but it also responds immediately and materially to monetary policy. However, the response
is not always predictable. This makes it sometimes difficult to achieve the desired results
of monetary policy implementation.

Efforts to deepen our understanding of exchange rate movements have taken on a
number of approaches. Initially, efforts centred on the development of low-frequency
macroeconomic (fundamental) empirical models. More recently, efforts have been aimed at
the development of high-frequency models of the foreign exchange (FX) market, based on
microeconomic (microstructure) variables. Throughout, however, forecasting models have
been developed for obvious utilitarian purposes, but they have also served as a gauge of
our understanding of exchange rate movements. Moreover, they can sometimes help to
pinpoint where the gaps in our knowledge may lie, and therefore suggest new avenues of
research. The exchange rate forecasting model developed in this paper serves all of these
purposes.

Given the failure of traditional FX rate models to explain and predict exchange
rate fluctuations correctly (Meese and Rogoff, 1983), we turn to the market microstructure
of FX markets. In recent years there has been a lot of evidence that the behavior of dealers
and other market participants can influence equilibrium exchange rates (Lyons and Evans,
2002, Covrig and Melvin, 1998). Inventory adjustments and bid-ask spread reactions to
informative incoming order flows are two examples in which dealer behavior affects
exchange rate determination. Indeed, given that different market participants trade based
on private as well as public information sets, it is natural to assume that equilibrium
exchange rate expectations are formed based on a combination of macroeconomic
fundamentals and market microstructure variables (Goldberg and Tenorio, 1997).
Moreover, it is most likely that the macroeconomic information and order flow information
are processed in a non-linear fashion.

This paper contributes to the FX forecasting literature in the following aspects:

First, we extend the empirical macroeconomic FX models to include “non-fundamental”



variables such as order flow. Second, we employ a non-parametric method, artificial neural
network (ANN) to capture the non-linear relationship between exchange rate and the
informational content of trades and public information. Our study shows that non-
linearities and order flows information play important roles for exchange rate
determination and very short-term forecasting. In particular, the inclusion of additional
microstructure variables and ANNs results in out-of-sample forecasts superior to those
from random walk and linear models for daily Canada/U.S. dollar exchange rate
movements. Three statistics are used to compare models: root-mean squared error
(RMSE), mean squared prediction error (MSPE) and the percentage of correctly predicted
exchange rate changes (PERC). Empirical findings are in favour of the ANN model, which
yields a very robust out-of-sample forecasting improvement in RMSE, MSPE and PERC.

Our results generate important empirical and theoretical implications. Prior to this
work, ANN exchange-rate models were built mostly on macroeconomic, technical trading
or autoregressive foundations (Gencay, 1999, Kuan and Liu, 1995, Plasmans et al., 1998)
and the evidence from them was mixed. Our study suggests the importance of market
microstructure variables in FX determination.

Moreover, we point to important implications beyond those given by Lyons and
Evans (2002) and Lyons (2001). What makes their dynamic, temporary equilibrium
structure relatively easy to characterize is its linear structure. However, we find that
market participants (i.e., dealers) are likely to pursue more complex or even mixed
strategies. This brings us to the notion of a non-linear equilibrium where market makers
create a non-linear relation between public information, microstructure effects and
exchange rates. One of the major strengths of this work is its strong empirical evidence
that requires expansion of traditional microstructure linear characterization of equilibria as
well as fundamental models of FX markets. We attempt to describe this new model only to
a limited extent and more extensive research is required. In light of these findings, we
challenge theoretical researchers to derive and explain this non-linear microstructure model
more formally.

Section 2 describes the competing theoretical models. Section 3 offers a short
discussion on the backpropagation ANNs. Section 4 describes the data and the method
used to assess the predictive performance of the models. Section 5 describes the empirical

results of the models. Section 6 concludes the paper and recommends further research.



2. Models of Exchange Rate Determination

Various models aiming at explaining exchange rate fluctuations have been proposed. Meese
and Rogoff (1983) found that a simple random walk model performed no worse than any of
competing representative time series and structural exchange rate models. Out-of-sample
forecasting power in those models was surprisingly low for various forecasting horizons
(from 1 to 12 months).

Subsequent attempts to determine exchange rates shed very little light on the
problem. Baillie and McMahon (1989) pointed out that exchange rates are in general not
linearly predictable. They are described as highly volatile with an elusive data generating
process (DGP). Similarly, Hsieh (1988), Boothe and Glassman (1987) and Diebold and
Nerlove (1989) observed that exchange rate changes are leptocurtic and may be non-
linearly dependent. Further, the observed exchange rates seem to exhibit volatility
clustering, i.e., high (low) volatility periods tend to be followed by high (low) volatile
periods. This conditional heteroskedasticity evidence was reported in Hsieh (1989) and
Engle et al. (1990). Nevertheless, excess kurtosis and conditional heteroskedasticity in the
residuals may not improve point forecasts because these effects operate through even-
ordered moments. To model the observed effects, parametric non-linear models such as
ARCH (Hsieh, 1989) and GARCH (Bollerslev, 1990) were applied to exchange rates
modeling, but with very little success. Gencay (1999) examined the predictability of spot
foreign exchange rate returns using moving average technical trading rules and GARCH,
nearest neighbours (NN) and ANN models. GARCH models generated insignificant sign
forecasts improvement (and less than 1 per cent mean-squared error improvement) over a
simple random walk. As noted in Diebold and Nason (1990), the pre-specification of the
GARCH model form may neglect other possible non-linearities resulting from a true DGP.
Meese and Rose (1991) examined macroeconomic exchange rate models and found that
poor explanatory power of the models cannot be attributed to non-linearities. They
considered five non-linear structural exchange rate models in order to capture possible non-
linearities. The application of several parametric and non-parametric techniques on these
fundamentally-driven models did not show any improvement in our ability to understand
the exchange rate fluctuations.

Meese and Rose (1990) and Diebold and Nason (1990) used a NN non-parametric

method called locally-weighted regression to estimate non-linearities in exchange rates. As



a results, Meese and Rose (1990) rejected the existence of non-linearities. Diebold and
Nason (1990) could not significantly improve upon a simple random walk in the out-of-
sample exchange rate predictions. In contrast, using a NN method, Gencay (1999) and Lisi
and Medio (1997) were able to generate predictions superior to those generated by the
random walk model. This mixed evidence could suggest an existence of non-linear patterns
in the exchange rates which, if revealed, could be exploited to improve both point and sign
predictions.

Kuan and Liu (1995) used backpropagation and recurrent ANNs, a very powerful
tool for detecting non-linear patterns, to investigate the ANN’s out-of-sample forecasting
ability on five exchange rates (British pound, Canadian dollar, Deutsche mark, Japanese
yen, and Swiss franc) against the US dollar. The data were daily opening bid prices of the
NY Foreign Exchange Market and the model of interest was a non-linear autoregressive
model where its performance against random walk and ARMA processes was measured.
Their results showed the presence of non-linearities in exchange rates time series. For the
Japanese yen and British pound, ANNs exhibited significant sign predictions and/or
significantly lower out-of-sample MSPE (relative to the random walk model); for the
remaining three currencies ANNs had inferior forecasting performance. Some other studies
involving ANNs were less encouraging. Plasmans et al. (1998) and Verkooijen (1996) used
macroeconomic models, but they could not produce any satisfactory monthly forecasts.
However, Zhang and Hu (1998) modeled exchange rate as depending non-linearly on its
past values, and their model outperformed simple linear models, but they never compared
it to a random walk. Hu et al. (1999) showed (using daily and weekly data) that ANNs are
a more robust forecasting method than a random walk model. Hence, the application of
ANNs to short-term currency behavior was successful in numerous cases and the results
suggest that ANN models may have some advantages when frequent short-term forecasts
are required.’

All the above-mentioned approaches try to find the exchange rate determinants
among macroeconomic variables such as interest rates, money supplies, inflation rates, and
trade balances. Flood and Rose (1995) concluded that exchange rate modeling based only
on macroeconomic fundamentals might be insufficient to explain the exchange rate

volatility. Recently, Cheung and Wong (2000) conducted a survey of practitioners in the

!'In this context, ANNs focus on daily (weekly) or less-than-a monthly forecasting frequency, while typical

macroeconomic models are at a monthly or quarterly frequency.



interbank foreign exchange markets in Hong Kong, Tokyo, and Singapore. A majority of
participants view short-term exchange rate variability closely related to non-economic
forces including bandwagon effects, over-reaction to news, speculation, and technical
trading. Only 1 per cent of the traders look at economic fundamentals to determine daily
exchange rate movements.

Given the partial empirical success of the macroeconomic models, there is an
increasing interest in the exchange rate microstructure. The microstructure approach
investigates how specific trading mechanisms affect the exchange rate formation. Lyons
and Evans (2002) incorporated a variable reflecting the microeconomics of asset pricing
into a model of the exchange rate. They introduced the most important microstructure
variable, “order flow” as the proximate determinant of the exchange rate (using daily data
over a four-month period) and were able to significantly improve on existing
macroeconomic models. More precisely, they managed to capture about 60% of the
exchange rate daily changes using a linear model.

In general, there are two broad theories of exchange rate modeling: traditional
macroeconomic models and the more recently developed market microstructure models.
Macroeconomic models aim at modeling and estimating exchange rates at monthly or

lower frequency. These models are in general of the following form:

Arpfx, = (M,) + &, , t=1,..,N. (1)

where Arpfx, is the change in the logarithm of the real exchange rate over the month or
some lower frequency of observations, and M, is a vector of typical macroeconomic
variables such as the difference between home and foreign nominal interest rates, the long-
run expected inflation differential, and relative real growth rates.” To control for the key
Canadian macroeconomic variables, this paper uses a variation of the model developed by

Amano and van Norden (1995):

Arpfx, = ¢ (rpfx,, com,, ene, ,intdiff,) + o, , t=1,..,N. (2)

where rpfx, is real Canada/U.S. exchange rate deflated by GDP deflators, com, is the
logarithm of non-energy commodity price index (deflated by the U.S. GDP deflator), ene,

? See Meese and Rogoff (1983).



is the logarithm of energy commodity price index (deflated by the U.S. GDP deflator) and
intdiff, represents the nominal 90-day commercial paper interest rate differential (Canada-
U.S.).

Macroeconomic models provide no role for any “market microstructure” effects to
directly enter into the estimated equation which are thus incorporated through the error
term §..° These models assume that markets are efficient in the sense that information is
widely available to all market participants and all relevant and ascertainable information is
already reflected in exchange rates. In other words, from this point of view, exchange rate
changes are not informed by microstructure variables. However, typical macroeconomic
models perform poorly. Moreover, empirical evidence from Lyons and Evans (2002), Covrig
and Melvin (1998), and this paper suggests that a microstructure variable ‘order flow’
contains information relevant to exchange rate determination. *

For the spot FX trader, what really matters is not the data on any of the
macroeconomic fundamentals, but information about demand for currencies extracted from
purchases and sales orders, or order flow (Cheung and Wong, 2000). Any short-term
exchange rate determinant such as portfolio shifts, over-reaction to news, or speculative
trading would be recorded in order flow. It is presumed that certain FX traders observe
trades that are not observable to all the other traders and, in turn, the market efficiency
assumption is violated at least in the very short term.’

Microstructure models directly rely on information regarding the order flow. Lyons
and Evans (2002) approach an order flow/exchange rate relation through a very realistic
framework - portfolio shifts model. They use the perfect Bayesian-Nash Equilibrium and
explicitly derive an equilibrium price change (between period t-1 and t) and equilibrium
trading strategies. Intuitively, equilibrium price is determined from the common

information set (macroeconomic fundamentals, denoted r,) and aggregate interdealer order

flow (denoted IB,):

3 Microstructure literature examines the elements of the security trading process: the arrival and dissemination
of information; the generation and arrival of orders; and the market architecture which determines how orders
are transformed into trades. Prices are discovered in the marketplace by the interaction of market design and
participant behavior.

* Order flow is explained in the next section.

® It may be that markets, absent these market microstructure frictions would be efficient, but trading frictions

impede the instantaneous embodiment of all information into prices.



AP, =1, + \IB, (3)

where X is a positive constant.

This model was estimated over a four-month span of daily observations controlling
for a key macroeconomic variable, interest rate differential. The results were in favor of
microstructure approach with R? statistic over 50 per cent.

However, there are several unanswered questions which require further research.
First, can this model be used for out-of-sample forecasting? Lyons and Evans (2002) model
is based on realized order flow information which is not available ex-ante.® Secondly, is
there a non-linear conditional mean function that characterizes a true DGP? By employing
ANNs and relaxing the restrictions of the model by Lyons and Evans (2002), we attempt
to find another equilibrium, non-linear by its structure.” Indeed, in this new setting there is
a possibility that other types of order flow might play a role in setting the price. Finally,
can we restrict our model to only one macroeconomic determinant? In this paper, we try
to control (among other candidates available on a daily basis) for another fundamental
variable: crude oil price. We address all of these issues and provide adequate answers based
solely on empirical grounds.

In general, the market microstructure approach assumes the following relationship

between the exchange rate and the driving variables:

Arpfx, = ¥ (Ax,, AL, N, ) + x, , t=1,..,N. (4)

where Ax, represents order flow, Al is a change in net dealer positions, while N, is any
other microeconomic variable. Order flow can be positive (net dollar purchases), or
negative (net dollar sales). Macroeconomic effects are incorporated into error term x,. A
positive relationship between the exchange rate and order flow is expected since

informational asymmetries gradually affect the price until it reaches equilibrium. Figure 1

 We also experimented with the linear regression and realized order flow information as explanatory variables
and obtained the R’ statistic around 40 per cent. However, we choose to use lagged order flow variables
throughout the study since the same-period order flow information is not available ex-ante and it, therefore,
can not be used in a forecasting model.

" For example, Bhattacharya and Spiegel (1991) and Rochet and Vila (1994) show that microstructure models
can have multiple or non-linear equlibria. Lyons and Evans (2002) add a squared order flow term into their

regression, but find it insignificant.



illustrates the explanatory power of an aggregate order flow and its IB component (the

data cover the period from January 1990 to June 2000 at a daily frequency).

Insert Figure 1 about here

As the solid line indicates, the Canadian dollar has depreciated throughout most of
the sample. The relationship between the exchange rate and order flow is quite clear as a
positive correlation between cumulative purchases of U.S. dollars and the depreciation.
This relationship is more obvious from the three-month sample (December, 1999 —
February, 2000) of IB order flow and log Canada/U.S. real exchange rate. However, it
would be inappropriate to assume that order flow contains all the information that is
relevant for exchange rates.

This paper combines macroeconomic and microstructure approaches into a single

high-frequency data model.” More specifically, it embodies modified models from Amano

and van Norden (1995, 1998) and Lyons and Evans (2002):
Arpfx, = ¥(Aintdiff, ;, Aoil ;, Ax,,) + 1, t=1,..,N. (5)

where Aintdiff, is the change in the differential between the Canada and U.S. nominal 90-
day commercial paper rates, Aoil, is the daily change in the logarithm of the crude oil
price, and order flow is denoted by Ax,. Later in the paper, Ax, is substituted by either a
vector of three different order flow types or aggregate order flow. ANNs are employed to

estimate a non-linear relationship between exchange rate movements and these variables.

3. Backpropagation ANNs

The backpropagation ANN, a network type applied in this paper, is probably the

most commonly used ANN. Backpropagation learning algorithm requires continuous

® For example, Goldberg and Tenorio (1997) and Osler (1998) also follow this approach.



differentiable non-linearities and the most commonly used type is the sigmoid logistic (or
logsig) function: *
1
f(w) = Tre (6)

Studies by Cybenko (1989) and Funahashi (1989) show that the backpropagation
non-linear representation with sigmoid non-linearities can approximate a large number of
mappings between inputs and outputs reasonably well. This makes ANN a very useful non-
parametric technique and there is no need for any unjustified restrictions often present in
econometric modeling.

Backpropagation estimation techniques are important for large samples and real-
time applications since they allow for adaptive estimation. However, they may not fully
utilize the information in the data. White (1989) showed that the recursive estimator is
not as efficient as the non-linear least squares estimator. An important aspect of the
backpropagation methods is the choice of the learning rate . The inefficiency of the
backpropagation originates in keeping the learning rate constant in an environment where
the influence of random movements in inputs are not accounted by the target. This would
lead the parameter vector to fluctuate indefinitely, i.e., there would be no convergence. A
minimum requirement is to gradually drive the learning rate to zero to achieve
convergence. In fact, White (1989) demonstrated that m, has to be chosen not as vanishing
scalar, but as a gradually vanishing matrix of a very specific form. These arguments on
learning rates are only valid if the environment is stationary, which is the case in this work
(as well as the constant learning rate). However, instead of tuning the network’s learning
rate, we attempt to balance the bias and variance and avoid non-convergence with early
stopping. This may slightly deteriorate the model’s performance and we acknowledge that

probably by following White (1989) an optimal estimator would be achieved.

w —w

e’ —
) and purelin

w —w
e

° Other types of transfer functions used in this research are tan - sigmoid ( f(w) =
(f(w) = w).
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4. Model Specification

4.1 Data description

The order flow data were obtained from the Bank of Canada’s unique Daily Foreign
Exchange Volume Report, which is coordinated by the Bank and organized through the
Canadian Foreign Exchange Committee (CFEC). Details about the trading flows (in
Canadian dollars) for six major Canadian commercial banks are categorized by the type of
trade (spot, forward, and futures) and transaction type (i.e., with regard to trading
partner).'” Because this paper focuses on a short-term exchange rate forecast, spot
transactions are of interest. In a spot transaction, a currency is traded for immediate
delivery and payment is made within two business days of the contract entry date. Spot
transactions vary, as follows:

e Commercial client transactions (CC) include all transactions with resident and non-
resident non-financial customers.

e Canadian-domiciled investment transactions (CD) include all transactions with non-
dealer financial institutions located in Canada.

e Foreign institution transactions (FD) include all transactions with foreign financial
institutions, such as FX dealers.

e Interbank transactions (IB) include transactions with other chartered banks, credit

unions, investment dealers, and trust companies in the interbank market.

Because it was unavailable prior to 1994, CD transactions are excluded as an
explanatory variable in this work. Moreover, according to Reuters Dealing 2000-1
electronic dealing system, IB transactions account for about 75 per cent of total trading in
major spot markets (Lyons and Evans, 2002). Thus, the CD transactions contribution in
daily exchange rate explanation is relatively small and our results support this conjecture.

Individual order flows (CC, FD, IB) are measured as the difference between the

number of currency purchases (buyer-initiated trades) and sales (seller-initiated trades).

19 The six banks used in this research account for approximately 83 per cent of all Canada/U.S. dollar
transactions. The remaining transactions occur within Canada (4 per cent) and in the US and the rest of the

world (13 per cent). Source: Bank of Canada.
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Aggregate order flow (aggof) is the sum of individual order flows. As noted earlier, the
other variables of interest are the crude oil closing price (in U.S. dollars) deflated by the
U.S. consumer price index (CPI) (Aoil) and the change in the difference between nominal
90-day commercial paper rates in Canada and the United States (Aintdiff). The dependent
variable data set comprises the logarithm of real Canada/U.S. exchange rate daily changes
(Arpfx) between January 1990 and June 2000. The real exchange rate was calculated from
the nominal exchange rate and CPI for the United States and Canada.

All variables are considered in first-difference terms, because the daily change
(positive or negative) prediction is of interest. Also, by using the first differences we avoid
theoretical problems of estimation of non-stationary non-parametric functions (see Diebold
and Nerlove, 1990). To support this claim, standard Dickey-Fuller unit roots tests are
performed on all variables and based on the entire data set (Table 1). The logarithm of the
real exchange rate, interest rate differential and the logarithm of the crude oil price are
found to be integrated of order one. In contrast, the null hypothesis of nonstationarity for

daily order flows is rejected at the 99 per cent significance level.

Insert Table 1 about here

Given the systematic bias in currency forward rates (for more on this “conditional
bias,” see Lyons, 2001), and their unavailability on a daily basis (the minimum contract
length is 30 days), we do not test if the inclusion of a forward rate into our set of
explanatory variables improves the daily predictability of the Canada/U.S. exchange rate.
However, we test for bias in forward rates based on the following equation as suggested by

Lyons (2001):

Diizo — Py =+ ﬁ(ft,?,o — D)+ € (7)

where p,, 5 denotes the spot rate realized at time t+30 (Canada/U.S.), f 4, denotes the 30-
day forward rate of the Canadian dollar, settled at time t+30, and ¢, ,, is a random error
term. The data for this exercise were obtained from the Statistics Canada CANSIM
database (data range: January 1994 — May 2002).

The regression results can be summarized as follows:

12



Dyis — D, = 0.000525 — 0.432875(]3730 - D,), R’ =0.010
(2.937104)  ( — 3.449215) ®)

We report the t-values in parentheses. The estimate of 3 is statistically significant
and negative. In other words, when the forward rate predicts the spot rate will rise, it
actually falls. Additionally, the model has a very poor fit with R? below one per cent. This
confirms the bias in the 30-day forward rate of the Canadian dollar.

In order to investigate the robustness of our ANN-generated forecasts, we focus on
daily and weekly forecasting with backpropagation ANNs where we develop models of four
variables (ANN model 1) and six variables (ANN model 2) using the whole data set of

2,230 observations. Two non-linear models are considered:

ANN Model 1:  Arpfx, =f (Aintdiff,_;, Aoil;, aggof,;) + &; (9)
ANN Model 2:  Arpfx, =g (Aintdiff,;, Aoil;, CC,,, IB;, FD.;) + v;; j={1, 7}; t=1,..,N.
(10)

Only for the purpose of ANN modeling, all data were normalized to the [-1,1]
interval. Each of the above non-linear models was developed based on data sets of four
variables (model 1) and six variables (model 2). The model was used to forecast the daily
change of the Canada/U.S. real exchange rate one day and one week into the future.

The networks trained and tested were the three-layer and four-layer
backpropagation ANNs with the non-linear sigmoid and tan-sigmoid neuron activation
functions in hidden layers. The number of input neurons was three for model 1 and five for
model 2, while the number of hidden neurons varied between three and five for both of the
models. Typically, the number of hidden layers and nodes inside the network is determined
through experimentation, and this paper follows that technique. The last layer had one
linear output neuron.

It is important to note that in this research we do not utilize a more complex
scenario involving other ANN types and methods for determining optimal ANN structure.
Our intention was to emphasize the role and usefulness of the microstructure variables in a
relatively simple setting, without refining the estimation procedures. It is possible that a

more complicated approach such as Gencay and Qi (2001) would be more successful.
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4.2 Assessment of forecast performance

In line with the Meese and Rogoff (1983) evaluation criterion, recursive estimation
(or rolling regressions) is used to evaluate the models’ predictive performance. The initial
estimation starts with the first 90 per cent (chronologically) of the sample N, or, for
instance, m observations. That comprises training and validation sets for the ANN. The
remaining 10 per cent is a testing (forecasting) set of initial size k; having estimated the
model, k forecasts are generated. Subsequent (k-1) steps involve increasing the estimation
sample (so that m increases) and shrinking the testing set (so that k decreases) by one
period. In each subsequent step, (k-s) forecasts are estimated (s=1,...k-1). Finally, k sets of
network responses (of size 1,..,k) can be compared to actual observations and other
models.

This paper considers whether the ANN model can outperform linear and random
walk models in terms of root-mean squared error (RMSE), mean squared prediction error
(MSPE) and the percentage of correctly predicted directions of exchange rate changes. For
most of this paper, RMSE is defined as follows:

1
N;—1 2

A 2
Z [Arpka+mt Arpkaert] l (11)

t=0

1

RMSENk - N_
k

where N, denotes the size of the out-of-sample testing set (N, =1,...,k), Arpf:z:AH,,,,,,t is the
model forecast at time (k+m-t), and Arpfx,,,, is the actual exchange rate change. The
ratio of data allocated to training, validation, and testing was maintained at 6:3:1
throughout the recursive experiment. MSPE is defined as the square root of RMSE over
the out-of-sample forecasts.

To reduce overfitting, i.e., inconsistency in calibration, which results from the
network complexity (too many parameters to be estimated) and (possibly noisy) data
length, one approach would be to use ANNs with hints (homogeneity, consistency, etc.).
Recently, Garcia and Gencay (2000) showed that an ANN with homogeneity hint can
produce a smaller out-of-sample error and a more robust estimator. Gencay and Qi (2001)
found that early stopping can be as effective as the homogeneity hint in pricing options.
By using early stopping in this paper we assume that response functions are estimated

consistently.
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In addition to RMSE, the percentage of correctly predicted signs (PERC) of the
forecasted variable Arpfx, is considered; this is the total number of correctly forecasted

positive and negative movements, defined as:

PERC(N,) = — ", (12)

where

A
L if(Arpfr, - Arpfr) > 0,

0 otherwise.

Py =

Sometimes, the significance of the difference in the performance of alternative
models has to be tested. We use Diebold-Mariano test (Diebold and Mariano, 1995) to test
the null hypothesis that there is no difference in the MSPE and PERC of two alternative
models (in our case of the random walk and the ANN models).

The Diebold-Mariano test statistic for the equivalence of forecast errors is

5 = ——-=— (13)

where M is the testing set size and f(0) is the spectral density of d, at frequency zero.
Diebold and Mariano show that S, is asymptotically distributed as a N(0,1).

As forecasts are done only one step ahead we do not have to include any of the
sample autocovariances to calculate the long-run variance of d, 2nf(0). In this case, a

consistent estimate of 2nf(0) will be the sample variance of d, (see Diebold and Mariano,

1995).

5. Empirical Results

We investigate the robustness of the forecasting performance of ANN models in this

section. The following models are considered:

Random walk model (RW):
rpfx,=o, + rpfx.; + ., t=1,..,N. (14)
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Linear model (LM1):
Arpfx, =~ + ~ Aintdiff ; + ~, Aoil; +~; IB; + &, t=1,..,N. (15)

Linear model (LM2):
Arpfx, = 8, + B, Aintdiff,, + 8, Aoil,, + B, CC,; + B, IB,, +B; FD, + v,,
t=1,..,N. (16)

ANN Model 1:
Arpfx, = f (intdiff,;, Aoil;, aggof,;) + ¢,; t=1,..,N. (17)

ANN Model 2:
Arpfx, = g (Aintdiff,;, Aoil;, CC,, IB,;, FD,;) + v;; t=1,..,N. (18)

j={1, 7} t=1,.. N.

Table 2 presents linear regression estimation results for these models based on the
first 2,005 observations (initial estimation set). The impact of interest rate change is more
significant for lower frequency models (j=7), while the estimator of oil price change is more
significant for one-day-ahead forecasting, Also, order flows are more important for higher
frequency forecasting. Even though it is very small, as expected, the R* increased when

individual order flows were taken into account.'!

Insert Table 2 about here

Two above-specified non-linear models (ANN 1 and ANN 2) were estimated by
feedforward backpropagation ANNs. Overtraining was prevented by stopping the training
process when the validation set error started to increase.

Full sample estimation of 2,230 observations was used to compare the ANN and

linear model’s performance. After the initial estimation of the models in the first 2,005

" This work uses daily data over a ten-year period (as opposed to the four-month span used by Lyons and

Evans, 2002); therefore, the linear “microstructure” model’s R’is significantly lower.
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observations, a set of out-of-sample forecasts was used to generate RMSEs. Each recursive
re-estimation added 10 observations, so that 18 RMSEs were calculated on out-of-sample
data sets ranging in size from 225 to 55 observations. This led to the selection of an ANN
model 1 and ANN model 2 for one-day-ahead (j=1) and for one-week-ahead (j=7) forecasts
of exchange rate changes, which were compared to linear models 1 and 2 and the random
walk model.

Tables 3 (for j=1) and 4 (for j=7) list the RMSE statistics. They show that the
ANN can produce promising short-run forecasts, since the RMSE for the ANN model for a

given forecasting horizon is equal to or below both of the competing models.

Insert Table 3 about here

Insert Table 4 about here

The experiments show that the ANN model forecasts one-day and seven-day-ahead
exchange rate changes better than the linear and random walk models. Nevertheless, the
primary indicator of good forecasting power is not necessarily RMSE, but the percentage of
correctly forecasted directions of real exchange rate fluctuations. In this case, the
estimation involves very small values (exp 10™) that might result in small RMSEs. In turn,
the presence of small RMSEs is not a guarantee that the prediction is accurate, and
caution is required when interpreting the estimation results.

As noted above, the percentage of correctly forecasted exchange rate direction
changes (PERC) is also considered. Recursive regression for horizons between 5 and 225
observations (step 5) reveals the superiority of the ANN model.” ANN model 1 (2)
correctly predicted, on average, 60.14 per cent (61.81 per cent) of the direction of daily
exchange rate movements, while linear model 1 (2) correctly predicted 57.18 per cent
(58.75 per cent) of such changes, and the random walk model predicted 54.88 per cent.
One-week-ahead forecasts yield worse results for ANN model 1 and linear model 1 against
random walk for j=7, but ANN model 2 has the best results. Also, the predictive power of
both non-random walk models is lower. Table 5 compares all the models used in terms of
the second comparison criterion. The results clearly show that the ANN models dominate

in predicting the direction of exchange rate changes one day ahead.

2 Step 5 is used instead of step 10 to impose a more demanding setting for ANN models.
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Insert Table 5 about here

Next, out-of-sample, one-step-ahead forecasts are considered. More precisely, ANN
model 1 (2) is initially estimated for the first 2,006 observations. The forecast errors for the
remaining 225 observations (a testing set) are calculated by extending the estimation set
by one and recalculating the forecast errors until the whole testing set is exhausted. This
differs from the preceding forecast experiment in that the earlier experiment did not re-
estimate the model up to -1 to forecast the exchange rate at t. MSPEs and PERCs for the
one-day-ahead forecasts are listed in Table 6. The striking result here is that ANN 2
correctly predicts almost 72 per cent of the directions of future exchange rate changes,
while the random walk model stays at about a 55 per cent accuracy. In addition, this
procedure provides statistically significant forecasts: at a 1 per cent level for the directional

accuracy and at a 10 per cent with respect to the MSPE.

Insert Table 6 about here

To determine the percentage of correctly predicted changes that relates to positive
changes, the following statistic was constructed for the initial testing sample size (k=225):

number of positive correct responses

PERC(POS) = — (19)
number of sample positive movements
Similarly, for negative good hits another statistic was calculated:
number of negative correct responses
PERC(NEG) = (20)

number of sample negative movements

The term “positive changes” refers to values above the mean of estimation sample
changes, while “negative changes” are values below the mean value. This corrects for the
fact that there is a significantly greater number of positive changes in this sample. Taking
zero as a mean value would affect the reliability of the criterion, since there were mostly

positive changes in the sample.
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According to Table 7, the ANN models forecast positive and negative changes
roughly equally well. In comparison, failing to correct for the positive mean change would
lead to the erroneous conclusion that the model predicts positive changes much better than

negative changes.

Insert Table 7 about here

6. Conclusions and Further Research

In this paper, we study exchange rate models for the Canada/U.S. exchange rate. More
specifically, we focus on their intra-day (high-frequency) and, subsequently, weekly forecast
performances using a set of non-linear microstructure models. This paper combines two
new approaches—artificial neural networks and market microstructure—to exchange rate
determination to explain very short-run exchange rate fluctuations. A variable from the
field of microstructure, order flow (aggregate and its components), is included in a set of
macroeconomic variables (interest rate and crude oil price) to explain Canada/U.S. dollar
exchange rate movements.

We find strong evidence for the microstructure effects. Our horse race for forecast
performance results in a non-linear ANN model as the winner. ANN models are able to
significantly improve upon a simple random walk model. Initially, two criteria are applied
to evaluate model performance: RMSE and the ability to correctly predict the direction of
the exchange rate movements. The ANN is consistently better in terms of RMSE than
random walk and linear models for the various out-of-sample experiments. Moreover, ANN
performs on average at least 3 per cent better than other models in its percentage of
correctly predicted signs. This is true for both of the forecasting horizons. As expected,
more accurate forecasts are generated for the shorter forecasting window, but they are still
superior to the random walk model. Recursive one-step-ahead forecasts lead to
considerable and statistically significant improvements (according to Diebold and Mariano,
1995 statistics) in MSPE and PERC compared to the random walk model.

The results indicate that both macroeconomic and microeconomic variables are
useful to forecast high-frequency exchange rate changes. Moreover, this “hybrid model”

points to the necessity of embodying (in a non-linear sense) information not only from
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interbank order flows, but from CC and FD transactions. Thus, the findings offer
important implications for the models for exchange rate determination. Particularly, Lyons
and Evans (2002) partial equilibrium model could be extended to encompass these non-
linear and microstructure effects. Balancing the tension between microeconomic and
microstructure variables is crucial. The question of which macroeconomic variables to use
remains open for further research as only prices make sense for high-frequency models.
Similarly, the panel of microstructure variables can be extended to a set of non-
fundamentals which would account for the bandwagon effect, over-reaction to news,
speculation, etc. However, these factors are not easy to quantify and we can only rely on
different proxies for them:.

The highest frequency used in this paper is a daily frequency as we try to balance
the tension between macroeconomic and microstructure effects. Ideally, in order to truly
understand foreign exchange markets one can attempt to follow our approach utilizing
data on higher frequencies. In financial markets, the DGP is a complex network of layers
where each layer corresponds to a particular frequency. We leave this complete
characterization of the true DGP to further research and aggregate to daily (and
subsequently weekly) information assuming the influence of random noise does not have a
significant impact on our findings. Thus, the messages from this work to the mainstream
paradigm of possible data generating mechanism of FX rates correspond to a particular

frequency and require further investigation, once the data become available.
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Figures

Figure 1. Above: Aggregate (cumulative) order flow and log Canada/U.S. real exchange rate.
Below: IB (cumulative) order flow and log Canada/U.S. real exchange rate. Note: All values are

normalized to [-1,1].
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Figure Captions

Figure 1. Above: Aggregate (cumulative) order flow and log Canada/U.S. real
exchange rate. Below: IB (cumulative) order flow and log Canada/U.S. real

exchange rate. Note: All values are normalized to [-1,1].



Tables

Table 1. Augmented Dickey-Fuller (ADF) unit root t-tests

Variable t-test Lags (f) Variable t-test Lags (f)
Real exchange -0.84 1 Change in real -34.31%* 1
rate exchange rate
Interest rate -1.48 8 Change in -19.90%* 5
differential interest rate
differential
Crude oil price -2.42 10 Change in -31.35%* 2
crude oil price
CcC -25.31%%* 2
FD -23.43%* 2
1B -31.12%* 1

Notes: The sample is from January 1990 to July 2000. Critical values are from Hamilton (1994): *-
3.43 (1 per cent), **-2.86 (5 per cent).



Table 2. Estimation Results For Linear Models.

Estimates

(standard error)

Model

Linear Model 1

Linear Model 1

Linear Model 2

Linear Model 2

(=1 (=7 (=1 (=7
o (exp 107) 8.09 36.53
(2.93¢-05) (7.08¢-05)
B, (exp 107) 8.72 36.35
(2.93¢-05) (7.15¢-05)
Aintdifft,j (exp 10™) -1.13 -6.76 -1.89 -6.63
(0.00025) (0.00026) (0.00025) (0.00026)
Aoil, -0.0090 -0.003 -0.0087 -0.003
(0.0065) (0.0073) (0.0065) (0.0073)
aggof,; (exp 107) -1.35 -3.74
(8.96¢-08) (2.16e-07)
CC,, (exp 107) 1.33 -4.55
(1.28¢-07) (3.11e-07)
IB,  (exp 107) -1.015 -2.66
(1.69¢-07) (4.07¢-07)
FD,; (exp 107) -3.86 -3.78
(8.98¢-08) (2.16e-07)
R? 0.0021 0.005 0.0049 0.0055




Table 3. RMSE (exp 10* ) for ANN, linear, and random walk models (j=1).

Sample Model

size

Random Linear ANN Linear ANN
Walk Model 1 Model 1 Model 2 Model 2

(4=1) (4=1) (4=1) (4=1) (4=1)

225 1.4321 1.4364 1.4270 1.4331 1.4216
215 1.4168 1.4201 1.4121 1.4155 1.4060
205 1.4232 1.4272 1.4163 1.4218 1.4119
195 1.4216 1.4240 1.4143 1.4188 1.4114
185 1.3962 1.4020 1.3871 1.3969 1.3892
175 1.3702 1.3782 1.3580 1.3717 1.3631
165 1.3482 1.3564 1.3353 1.3475 1.3428
155 1.3368 1.3442 1.3237 1.3362 1.3322
145 1.3381 1.3464 1.3238 1.3388 1.3337
135 1.3639 1.3708 1.3496 1.3622 1.3622
125 1.3696 1.3773 1.3540 1.3691 1.3671
115 1.3926 1.4026 1.3739 1.3933 1.3903
105 1.3057 1.3109 1.2963 1.3008 1.2907
95 1.3335 1.3380 1.3230 1.3256 1.3133
85 1.3652 1.3673 1.3515 1.3578 1.3508
75 1.3308 1.3353 1.3163 1.3243 1.3198
65 1.3851 1.3882 1.3738 1.3761 1.3743

55 1.4168 1.4202 1.4070 1.4156 1.4155




Table 4. RMSE (exp 10? ) for ANN, linear, and random walk models (j=7).

Sample Model

size

Random Linear ANN Linear ANN
Walk Model 1 Model 1 Model 2 Model 2

(=" (=" =" =" (="

225 0.3457 0.3461 0.3458 0.346 0.3448
215 0.3467 0.3474 0.3461 0.3473 0.3462
205 0.3504 0.3516 0.35 0.3515 0.3502
195 0.3431 0.3435 0.3427 0.3437 0.3428
185 0.3358 0.3367 0.335 0.3368 0.3358
175 0.3371 0.3381 0.3364 0.3382 0.3365
165 0.3333 0.3336 0.3328 0.3338 0.3331
155 0.3377 0.3381 0.337 0.3382 0.3373
145 0.3286 0.3308 0.3253 0.3307 0.3278
135 0.3374 0.3396 0.3338 0.3396 0.3366
125 0.3441 0.3461 0.3408 0.3462 0.3438
115 0.3554 0.3576 0.3518 0.3577 0.3553
105 0.3328 0.3351 0.33 0.3349 0.3326
95 0.3384 0.3404 0.3355 0.3404 0.3384
85 0.3523 0.3544 0.3491 0.3544 0.3521
75 0.3657 0.3682 0.3619 0.3683 0.3656
65 0.3768 0.3787 0.3743 0.3790 0.3764

55 0.3882 0.3894 0.3878 0.3895 0.3868




Table 5. The average percentages of correctly predicted signs

AVERAGE
PERC (%) Model
Random LM 1 ANN 1 LM 2 ANN 2
Walk
j=1 54.88 57.18 60.14 58.75 61.81
=7 56.26 54.9 56.15 55.28 58.04

Note: This table presents the average percentages of correctly predicted signs using various models.
LM1 and LM2 stand for linear models 1 and 2; ANN 1 and ANN 2 stand for ANN models 1 and 2.

One-day (j=1) and one-week (j=7) forecasts are considered.

Table 6. PERC and MSPE (exp 10°) statistics for the recursive estimation

Model
RW ANN 1 ANN 2
PERC (%) 54.88 67.56 71.56
(DM) (4.0063)* (5.7107)*
MSPE 2.0509 2.0036 1.9566
(DM) (-1.6841)** (-1.7730)**

Notes: The recursive estimation is performed over the whole testing set (k=225). ANN models 1 and
2 (ANN 1 and ANN 2) and the random walk (RW) model for one-day-ahead (j=1) forecasts are
considered. The Diebold-Mariano (DM) test statistics are reported in the parentheses below MSPEs
and PERCs, where applicable. The critical values are +/- 1.64 and +/- 2.58 for a confidence level of
90% and 99%, respectively. (*) and (**) indicates the DM statistic is significant at 1% and 10%

significance level, respectively.



Table 7. PERC (POS) and PERC (NEG)

Model
ANN 1 ANN 2
PERC(POS)
(%):
j=1 42.98 38.02
(89.43) (80.49)
=7 57.02 53.04
(98.39) (98.39)
PERC(NEG)
(%):
j=1 48.08 67.31
(2.05) (36.27)
=7 41.44 56.36
(0.99) (2.97)

Note: This table presents the average percentages of correctly predicted signs using ANN models 1
and 2 (ANN 1 and ANN 2). PERC (POS) is for percentage of the positive changes and PERC
(NEG) is for percentage of negative changes. One-day (j=1) and one-week (j=7) forecasts are

considered (k=225). Percentages without normalization are in parentheses.



