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Abstract

A Bayesian decision maker is choosing among two alternatives with uncertain payoffs and an outside
option with known payoff. Before deciding which alternative to adopt, the decision maker can purchase
sequentially multiple informative signals on each of the two alternatives. To maximize the expected payoftf,
the decision maker solves the problem of optimal dynamic allocation of learning efforts as well as optimal
stopping of the learning process. We show that the decision maker considers an alternative for learning or
adoption if and only if the expected payoff of the alternative is above a threshold. Given both alternatives in
the decision maker’s consideration set, we find that if the outside option is weak and the decision maker’s
beliefs about both alternatives are relatively low, it is optimal for the decision maker to learn information
from the alternative that has a lower expected payoff and less uncertainty, given all other characteristics of
the two alternatives being the same. If the decision maker subsequently receives enough positive informative
signals, the decision maker will switch to learning the better alternative; otherwise the decision maker will
rule out this alternative from consideration and adopt the currently more preferred alternative. We find that
this strategy works because it minimizes the decision maker’s learning efforts. We also characterize the
optimal learning policy when the outside option is relatively high, and discuss several extensions.
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1. Introduction

In many circumstances, agents have the opportunity to learn sequentially about multiple
different alternatives before making a choice. Specifically, consider a decision maker who is
deciding among several alternatives with uncertain payoffs and an outside option with a known
payoff. Before deciding which one to adopt, he can gather some information on each alterna-
tive. After learning more about an alternative, the decision maker gains more precise knowledge
about its payoff, with initial learning being more informative than later learning. It is costly to
gather and process information. Therefore, at some point, the decision maker will decide to stop
learning and make a choice on which alternative to adopt or to take the outside option.

For example, consider a consumer in the market for a car. The consumer could first learn in-
formation about a certain model A, then choose to get information about model B, then go back
to get more information on model A again, and so on, until the consumer decides to either pur-
chase model A, model B, or some other model, or not to purchase a car for now. With the recent
development of information technologies, it becomes more and more important to understand
this information gathering behavior of consumers.

Information gathering is not unique to the consumers’ purchase process. In fact, many other
important economic activities involve similar costly gradual information acquisition: companies
allocating resources to R&D, individuals looking for jobs, firms recruiting job candidates, politi-
cians evaluating better public policies, manufacturers considering alternative suppliers, etc.

We study a decision maker’s optimal information gathering problem under a Bayesian frame-
work. We consider a setting in which the payoff of each alternative follows a two-point distri-
bution, being either high or low. The decision maker has a prior belief on the probability that an
alternative is of high payoff. Each time he learns some information about an alternative, he incurs
a cost and gets a noisy signal on its payoff. This signal does not reveal the payoff of this alterna-
tive completely; rather. it updates the decision maker’s belief of the distribution of the payoff. The
decision maker could buy another signal on the same alternative if he would like to learn more
about it or, alternatively, he could buy signals on other alternatives. In this setting the precision
of the decision maker’s belief is a function of his belief. Therefore. we only need to account for
one state variable per alternative during the learning process—the probability that each alterna-
tive is of high payoff. Despite its simplicity, this setup captures the ideas that the decision maker
gains more precise information during the learning process, and that the marginal information
per learning effort decreases with the cumulative information gathered so far on an alternative.
This two-point distribution assumption also implies that the agent becomes more certain about
the payoff of an alternative when the payoff is either relatively high or low. The decision maker
solves the problem of optimal dynamic allocation of learning efforts as well as optimal stopping
of the learning process, so as to maximize the expected payoff.

We consider a two-alternative continuous-time model with infinite time horizon, which en-
ables a time-stationary characterization of the optimal learning strategy when the outside option
takes relatively large or small values.! The result is a partition of the belief space into regions.

1 See, for example, Bolton and Harris (1999), Moscarini and Smith (2001), for the use of the same learning process in
continuous time. See also Daley and Green (2012).
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within which it is optimal to learn each alternative, adopt each alternative, or take the outside
option.

We find that if the belief on an alternative is below a threshold, the decision maker will never
consider that alternative—he will neither learn nor adopt that alternative. This then provides
an endogenous formation of a consideration set, given the decision maker’s belief on the payoff
distribution, his learning costs, the value of the outside option, and the noisiness of the signals re-
ceived. If two alternatives have the beliefs above that threshold, then the decision maker chooses
to stop learning and adopt one alternative if the expected payoff of that alternative is sufficiently
higher than that of the other alternative. That is, when the expected payoffs from the alternatives
are not too different, the decision maker will continue to learn.

We also investigate the effect of the value of the outside option on optimal learning behavior.
We find that when the value of the outside option is relatively high, the decision maker always
chooses to learn about the alternative with the higher expected payoff first. More interestingly, we
find that this is not necessarily the case when the value of the outside option is sufficiently low.
In this case it may be optimal to first learn about the alternative that has a lower expected payoff,
all else being equal among alternatives, with the purpose of possibly ruling it out early. If the
decision maker receives sufficiently poor signals on this alternative, he will stop learning and im-
mediately adopt the other alternative. We find this strategy works because it saves learning costs.

It is interesting to understand the intuition about why a decision maker’s optimal learning
strategy depends on the value of the outside option. When the outside option has a relatively
high value, it will be relevant for the decision maker’s ultimate choice at the end of the learning
process. In this case, by learning the alternative with a higher expected payoff, the decision maker
keeps both the outside option and the other alternative as reservation options. Therefore, the
decision maker prefers to learn the alternative with higher expected payoft. On the other hand,
when the outside option has a relatively low value, it is no longer as relevant for the decision
maker’s ultimate choice. In this case, the decision maker is basically deciding between the two
uncertain alternatives, and it may be better to learn about the alternative with a lower expected
payoff first to potentially rule it out early, so as to make a clear distinction between the two
uncertain alternatives with minimum learning effort.

We also compute the decision maker’s likelihood to adopt each alternative given his current
belief, when he follows the optimal learning strategy. We find that the probability of choosing
either one of the alternatives can fall as there are more alternatives available. This is because
having more alternatives makes it harder for the decision maker to make a choice, and thus leads
to more learning, which can ultimately result in no adoption of any of the alternatives. Specif-
ically. information is ex ante neutral. It is possible that with more learning, the decision maker
gets positive information on either alternative, in which case he will, at best, adopt one of the
alternatives. On the other hand, it is also possible that with more learning, the decision maker
gets negative information, in which case he may choose to take the outside option. We also com-
pute the decision maker’s expected probability of being correct ex post given his current belief,
when he follows the optimal learning strategy. Finally, we consider the optimal learning problem
when alternatives have heterogeneous learning costs or payoff distributions, when the number of
alternatives is greater than two, and when there is time discounting instead of learning costs.

The problem considered here is related to the multi-armed bandit problem (e.g., Rothschild
1974a; Gittins 1979; Whittle 1980; Bergemann and Vilimiki 1996; Felli and Harris 1996; Bolton
and Harris 1999). where a decision maker learns about different options by trying them, one in
each period, while earning some stochastic rewards along the way. That problem has an elegant
result that the optimal policy is to choose the arm with the highest Gittins index, which for each
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arm only depends on what the decision maker knows about that arm until then. However, the
problem considered here is different from the bandit problem in one major aspect. In our setting,
a decision maker optimally decides when to stop learning and make an adoption. Therefore, the
decision horizon is endogenous, and optimally determined by the decision maker. In contrast,
multi-arm bandit problems generally presume an exogenously given decision horizon, which
could be either finite or infinite. In fact, our problem belongs to a general class of the stoppable
bandits problem, first introduced by Glazebrook (1979), which generalizes simple bandit pro-
cesses to allow for two arms per bandit. By adding a second “stopping arm™ to each bandit, extra
payoff can be generated when the stopping arm is pulled. In general, index policies are not opti-
mal for this type of problems (Gittins et al. 2011, Chapter 4). Glazebrook (1979) shows that an
index policy can be optimal under certain conditions. However, as shown below, Glazebrook'’s
sufficient conditions are not satisfied in our setting, and the index policy is sub-optimal. We will
compare our optimal policy with that of Glazebrook (1979) below. Forand (2015) considers a
revised multi-armed bandit problem where the decision maker must incur maintenance costs to
keep an alternative available for choice and any positive signal is fully revealing. Forand finds
that it may be optimal to first try the worst alternative to rule it out, and then continue learning
the other alternative. In contrast, we consider a decision maker that receives gradual signals on
an alternative, either positive or negative. If he receives enough negative signals on the worst
alternative, the decision maker chooses the other alternative immediately, without learning more
about it.

The literature on search theory is also related to the results presented here. Although the prob-
lem considered here is central to choices in a market environment, it is quite under-researched
when all of its dimensions are included. For the simpler case in which all learnable information
about an alternative can be learned in one search occasion, there is a large literature on optimal
search and some of its market implications (e.g., McCall 1970; Diamond 1971; Weitzman 1979;
Doval 2014). This literature, however, does not consider the possibility of gradual revelation of
information throughout the search process. There is also some literature on gradual learning when
a single alternative is considered or information is gathered to uncover a single uncertain value
(e.g.. Roberts and Weitzman 1981; Moscarini and Smith 2001; Branco et al. 2012; Fudenberg
et al. 2015).% and the choice there is between adopting the alternative or not. In the face of more
than one uncertain alternative (as is the case considered in this paper) the problem becomes more
complicated. This is because opting for one alternative in a choice set means giving up potential
high payoffs from other alternatives about which the decision maker has yet to learn more infor-
mation. This paper can then be seen as combining these two literatures, with gradual search for
information on multiple alternatives. Kuksov and Villas-Boas (2010) and Doval (2014) consider
a search problem where everything that can be learned about one alternative is learned in one
search occasion, but the decision maker can choose an alternative without search. This feature
is also present here by including an outside option and allowing for adoption of an alternative
without gaining full information about it. Doval, in particular, finds that in this case the decision
maker may be indifferent to search an alternative that does not have the highest reservation price,
which can be seen as related to the case in this paper of choosing to learn an alternative other than
the best one under some conditions. Different from Doval, this paper considers gradual learning

2 The case with a single alternative can be traced back to the discrete costly sequential sampling in Wald (1945).

The continuous time treatment of the single alternative case was also presented in Dvoretzky et al. (1953), Mikhalevich
(1958), and Shiryaev (1967).
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of each alternative, and we find that it could be strictly optimal to learn an alternative that has
both lower expected payoff and lower uncertainty.”

Keetal. (2016) considers a stationary problem of gradual search for information with multiple
products, where the precision of beliefs does not increase with search, and where earlier learning
is not more informative than later learning. One important result in this paper is that it can be
optimal to learn about an inferior alternative, which is never optimal in Ke et al. (2016). Another
important difference is that the possible payoffs are bounded here, while they are unbounded
in Ke et al. (2016).* The problem considered here also relates to the literature studying search
while learning the payoff distribution (e.g., Rothschild 1974b; Adam 2001), but there what can
be learned about each alternative is learned in one search occasion, so there is no gradual learning
on each alternative.

The remainder of the paper is organized as follows. Section 2 presents the optimal learning
problem. Section 3 solves the problem and presents the optimal learning strategy. and Section 4
looks at the implications of the results for adoption likelihood and probability of being correct.
Section 5 presents several extensions of the main model, including asymmetric alternatives, the
effect of the number of alternatives, and time discounting. Section 6 compares our optimal learn-
ing strategy with Weitzman (1979) and Glazebrook (1979), and presents concluding remarks. All
technical proofs are presented in the Appendix.

2. Optimal learning problem

A decision maker (DM) is uncertain about the payoffs of two alternatives.” It is assumed
that the payoff of alternative i, m;. is either “high” as 7; or “low” as z;, with 7; > z; for
i =1, 2. The payoff x; is independent across alternatives. Besides the two alternatives, there is
an outside option with known deterministic payoff as rp. The DM is assumed to be Bayesian and
risk-neutral, or that the payofts are in utils. To avoid trivialities. let us assume that g < 7; for
all i, so that no alternative i will be dominated by the outside option in all circumstances. The
payoff mg could be lower than m; for some alternative i, in which case, the outside option would
be dominated by alternative i and thus be irrelevant. Before deciding which alternative to adopt,
the decision maker can gather information sequentially on the two alternatives. Specifically, we
consider a continuous-time setup. At any time point #, when the DM spends extra time dt in
learning some information on alternative i, he pays cost c;dt and gets an informative signal on ;.
This signal does not reveal ; completely; instead, it updates the DM’s belief of the distribution
of 7; according to Bayes’ rule. The DM could buy another signal on the same alternative if he
would like to learn more about it or, alternatively, he could buy signals on the other alternative.
Signals are assumed to be i.i.d. conditional on the payoffs, for each alternative and across both
alternatives. It is assumed that the flow learning cost ¢;, once paid. is sunk.®

3 In a concurrent paper, Che and Mierendorff (2016) consider which type of information to collect in a Poisson-type
model, when the decision maker has to choose between two alternatives, with one and only one alternative having a high
payoff. See also Hébert and Woodford (2017) for a rational inattention formulation.

4 This paper also provides proof of existence and uniqueness of the optimal solution, and a more complete character-
ization of the stochastic process, which is not presented in Ke et al. (2016). With the possibility of a single observation
process one can also consider the case of choosing one among several alternatives whose payoffs depend on the same
state variable (see, for example, Décamps et al. 2006).

3 The case of more than two alternatives is considered in Section 5.2.

5 Another possible dimension, not explored here, is that the DM can also choose the intensity of effort in the learning
process at each moment in time, with greater effort leading to a more precise signal (as in Moscarini and Smith 2001).
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Consider a dynamic decision process with infinite time horizon. Let us define the DM’s pos-
terior belief of 7r; being high at time ¢ € [0, 00) as x; (7).

xi(t) =Pr(m =7;i|%), (1)

where {.%;}7, is a filtration that represents all the observed signals by time 7. The set .%#; depends
on the DM’s choice of alternatives for learning up to time 7. Then we have that x;(0) is the DM’s
prior belief at time zero before obtaining any signal. For the sake of simplicity, we will just call
x;(t) the belief of alternative i at time ¢ below, and in the cases without confusion, we will drop
the argument ¢ and write it as x;. The DM’s conditional expected payoff from adopting alternative
[ at time ¢ is then,

E(xi|#]=xit)7; + (1 —xi(t) z; = Am; - x; (1) + 7, (2)

where Am; =7 —m; > 0. Below, we will use Ax; and 7; to replace 7; and x; as our primary
parameters. When we consider symmetric alternatives below, we will drop the subscript i and
use Ax and m, respectively.

At any time ¢, the decision maker makes a choice from five actions: to learn alternative 1, to
learn alternative 2, to adopt alternative 1, to adopt alternative 2, or to take the outside option. The
decision process terminates when the DM adopts either one alternative or the outside option. He
makes the choice of which action to take based on the information acquired so far, .%;. Since xr;
follows a two-point distribution, intuitively, all information about 7; can be summarized by one
variable—the posterior belief x;. Formally, it is straightforward to prove that x(¢) = (x(7), x2(¢))
is a sufficient statistic for the observed history .%;. Therefore, the DM’s learning problem is
essentially for each time 7, to find a mapping from the belief space where x(7) lives in to the set
of five actions, so as to maximize the expected payoff.

We can actually classify the five actions into two categories: to continue learning, and to stop
learning and make an adoption decision. From this perspective, the decision maker’s optimal
learning problem can be equivalently viewed as dynamically deciding which alternative to learn
at each time, and when to stop learning and make an adoption decision. In other words, the
DM needs to solve the problem of eptimal allocation (which alternative to learn) and optimal
stopping (when to stop learning) at the same time, so as to maximize his expected payoff.

To formalize the DM’s optimal learning problem, let us introduce the allocation policy as
I, (x(r)) € {1, 2} that specifies which alternative to learn at time #, based on the DM’s current
posterior belief x(z). Formally speaking, .# = {I;(x(1))};=, is a progressively measurable pro-
cess adapted with respect to the natural filtration of {_x(r)}fio (see. e.g., Karatzas 1984, p. 174),
where, as noted above, at each time 7 the action taken only depends on the DM’s current pos-
terior belief, x(¢), a sufficient statistic for all the observed history. Let us also introduce t as
the stopping time adapted with respect to the natural filtration of {x(7)}7°,. Given any allocation
policy .# and stopping time =, let us define T;(¢) as the cumulated time that alternative / has
been engaged in learning until time ¢ < 7, or formally,

i =p0=<z=rLx@)=1), 3)

where p(-) is the Lebesgue measure on R. The observation process for the i-th alternative is
assumed to follow the stochastic differential equation (SDE),

dsi(t) =midTi(t) + oid Wi (Ti(1)) . “)

where W;(¢) is a standard Brownian motion, and aiz > ( specifies the noise level for signals of
alternative / (see, for example, Roberts and Weitzman 1981; Karatzas 1984; Bolton and Harris
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1999; Weeds 2002, for a similar formulation). As an analog to the discrete-time counterpart,
the continuous-time signal ds;(t) consists of two parts: the “true value” 7;dT;(¢), and a white
noise term o;d W; (T;(¢)). Under this framework, if the DM keeps learning information from
one alternative continuously, his observation will be a Brownian motion with the drift as the
(unknown) payoft.

The decision maker’s expected payoff given his allocation policy .# and stopping time 7 can
be written as the following expression:

2
J(x; 7, 1) = E|:max {Am -x (1) 4wy, A - x2(7) + 7, rco} — ZciT;(r)
i=l

x(0) = X:|
(5)

The allocation policy .# not only enters into the cost term in (5) directly via 7;(t), but also
influences the belief updating process, and thus x(7). Starting from any belief x, it is obvious that
the DM’s expected payoff is no greater than max; 7;. so the supremum of the objective function
in (5) exists. Therefore, we can write the DM’s optimal learning problem as the following.

V(x) =supJ(x; .7, 1), (6)
bt
where V (x) is the so-called value function.
Now let us formulate the DM’s optimal learning problem in (6) as a dynamic decision prob-
lem. Given the signal generation process in (1) and (4), by applying Theorem 9.1 from Liptser
and Shiryaev (2001), we can write down the following SDE for the belief updating process,

Am;
dxi() = =5 (0[] =i ()] {dsi (1) — Elmi| 143 (1)

- %Xi (O [1—x;(0)] {[H; — 7, (1 —x; (1) —fix{-(f)]dTi(f) +G;de(Ti(r))}

1
(D
for i = 1, 2. and given some initial beliefs at + = 0. Equation (7) can be understood intuitively.
The first multiplicative term on the right hand side, Ax; /criz, is the signal-to-noise ratio for alter-
native . The second term, x; (#) [1 — x; (r)]. illustrates that the belief updates are more significant
at x; () = 50% than at the extremes. The third term just states that the DM will update his be-
lief upward if and only if the observation process rises faster than his current expectation. We
can also see that d.x;(f) does not depend on ¢ explicitly due to time stationarity, and therefore
we can drop the argument of s in the above equation. Note also that E[dx; (r)|.%#;] = 0, and
Eldx; (1) %] = (An;)? /o - xi(1)*[1 — x; (1)]°dr. By applying Theorem 6.1 in Karatzas (1984),
we have that there exists a weak, unique-in-distribution solution to the SDE in (7) for any policy
function.
Applying the principle of optimality for dynamic programming, we can obtain the following
Hamilton—Jacobi—-Bellman (HJB) equation that is associated with the optimal learning problem
in equation (6).

Am;)? .
max{ max {( i) 2201 —x1)* Vi (X) —Ci} .
20_52 1 iXi

=12

max {Amxl +m. Amxs —|—£2.no} — V(x)} =0, (8)
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where Vx, x; (X) represents the second-order partial derivative of V(x) with respect to x;. Let us
provide some intuition on equation (8). The first term in the max operator says that the DM’s
maximum expected payoff should be no less than the expected payoff from continuing learning
one alternative. The second term of the max operator says that the DM’s maximum expected
payoff should be no less than the expected payoft from adopting the current best alternative.
Finally, the outside max operator says that at any time, the DM will choose to either stop learning
or continue learning. Note that from equation (8), all information about each alternative that
is relevant for the solution is determined by c,-orr-z. We keep the two different variables in the
presentation because of the different conceptual implications of the learning cost ¢; and the
variance of the noise of the signal criz.

It can be shown that the value function, as it is continuous, is a viscosity solution of the par-
tial differential equation (8) (see Crandall et al. 1992 for an extensive description of this type
of solutions; see, e.g., Corollary V.3.1 in Fleming and Soner 2010). In the following lemma,
we prove that the viscosity solution of the partial differential equation (8) exists and is unique.
Then, this implies that the viscosity solution of equation (8) is the value function. We will con-
struct, under some parameter conditions, an allocation policy .#* and a stopping time policy
T* that generates the solution V(x) to the partial differential equation (8), with V(X) bounded,
continuous, and with continuous first derivatives. Both the allocation and stopping time policies
can be represented by a set of boundaries in the belief space, where the DM chooses different
actions across the boundaries. Under these policies ‘7(}() = J(x; ¥* 1¥), VX, which means the
optimality of .#* and t* and we obtain the value function V(x) = V(x), ¥x. To simplify the
presentation, in the following sections, we will use the notation V (x) to represent both V (x) and
V (x). as we concentrate on the case of optimality of the allocation and stopping time policies. In
order to show that the viscosity solution to the H/B equation (8) exists and is unique, we show
how the HJ/B equation (8) can be adjusted to satisfy degenerate ellipticity, and then apply the
results in Crandall et al. (1992). We state next the existence and uniqueness result, and the proof
is presented in the Appendix.

Lemma 1. There exists a unique viscosity solution ‘7(X) to the HIB equation (8).

In the next section, we present our main results on two symmetric alternatives. We will study
the case with asymmetric alternatives, and with more than two alternatives in Section 5.

3. Optimal learning strategy

We consider two symmetric alternatives in this section with Am; = Ax, 7; =0, 0, =0,
and ¢; = ¢, where it is without loss of generality to set 7; = 0 with symmetric alternatives.
Define xo = mg/(Am), which measures the relative value of the outside option. To solve the
DM’s optimal learning problem, we will first propose a solution, and then verify that it satisfies
equation (8). Then, by Lemma [, it must be the only solution.

Single alternative To solve the problem with two alternatives, it is illustrative to first work
out the simpler case with only one alternative. In this case. the decision maker is solving an
optimal stopping problem—when to stop learning information and make an adoption decision.
This problem is known as the classic Wald problem (Wald 1945), and in similar settings, has
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been studied by Roberts and Weitzman (1981) and Branco et al. (2012).7 The optimal learning
strategy is that there exist 0 < x <X < 1 such that the DM continues learning when x < x <X,
and he stops learning to take the outside option when x < x or to adopt the alternative when
x > x. In the Appendix, we show that x and ¥ can be solved by

2 _
(; + 1 _) _ (l + 1 ) _ _(Am) (AJ:' 271'0)’ ©)
¥ 1-=x x l—x 204¢
_ (Am)?
DE) —P(x)=— 3070 (10)
where,
(l —x) 1 1
®(x)=2In +-— , (11)
X x 1—x

which is a strictly decreasing function in (0, 1). Therefore learning is preferred only when the
DM’s belief is in the middle range, i.e.. when the DM is uncertain between the outside option
and the alternative.

Next, we will proceed to analyze the optimal learning problem with two symmetric alterna-
tives. We find that the solution structure critically depends on the value of the outside option. We
will start with the case with a sufficiently low outside option. This is the case that has the surpris-
ing result that it may be better to learn about the worse alternative under some conditions. Then,
we will consider the case with a sufficiently high outside option. and finally, we will present
some results on the more complex case with an intermediate outside option.

Two alternatives with low-value outside option In this subsection, we consider the case where
the value of the outside option is sufficiently low such that there is essentially no outside option,
i.e., xo < 0. We will propose a solution and verify that it satisfies the HJ/B equation (8).

First, we note that the two alternatives are symmetric in the belief space of x|-x7, so with-
out loss of generality, we only need to consider the case with x| = x,. Within the subspace of
X1 = x2, we will further consider two cases. When x| + x2 > 1, we propose that there exists a
smooth function X (-) such that the DM learns alternative 1 when x» < x; < X (x2), and adopts
alternative 1 when x; > X (x2): on the other hand, when x| +x3 < 1, we propose that there exists
a smooth function X (-) such that the DM learns alternative 2 when x; > x2 > X (x1). and adopts
alternative 1 when x; < X (x). Intuitively, we call x; = X (x2) for x; +x2 > | and x3 = X (x1)
for x; + x2 < 1 the adoption boundary for alternative 1, and we have 0 < X(x), X(x) <1 for
all x. Let us analyze the two cases one by one below.

In the first case, with x| + x2 > 1. when x> < x1 < X(x2), as proposed, it is optimal for
the DM to learn alternative 1, and therefore, the HIB equation (8) implies the following partial
differential equation (PDE),

(Am)?
202
Thanks to its simple parabolic form, (12) has the following general solution,

'!‘.12(1 _-xl)zvxl.JC](xl--xZ)_C:O. (12)

2.

20°¢ 1 —x
V(XI'XZ):(/_\J,;Z(I_le)h]( ” l)

7 As noted above, see also Dvoretzky et al. (1953), Mikhalevich (1958), and Shiryaev (1967).
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+ A1(x2)x] + Az(x2), ifx; +x2 > 1and x; < x1 < X(x2), (13)

where A;(-) and A»(-) are two undetermined functions.® On the other hand, when x; > X (x3),
as proposed, it is optimal for the DM to adopt alternative I, and therefore we have that,

V(x1,x2)=Am-x1, ifx; +x2 > 1 and x; > X(x2). (14)

In the second case, with x| 4+ x2 < 1, following a similar analysis as above, we have that,

202¢ 1 —x2
(1 —2x)In
y . (Am) X2 15)
(x1,x2) = +Bi(x1)x2 + Ba(x1), xt+x2<landx; =x2 = X(xy) ' (
AT - x| x1+x < land xs < X(x1)

where B|(-) and B»(-) are two undetermined functions.

Thus far we have proposed a solution of V (x1,x2) for each region in the belief space of
x1-x2. Next, we consider all the boundary conditions connecting all the regions. It remains an
open question to prove the necessity of the smoothness conditions for a general two-dimensional
mixed optimal stopping and optimal control problem.” In this case, we use the smoothness con-
ditions to construct a solution, and the uniqueness result of Lemma | implies that the value
matching and smooth pasting conditions hold for our problem, since our solution is a viscosity
solution of (8) and satisfies those conditions by construction. We follow Chernoff (1968) and
Chapter 9.1 of Peskir and Shiryaev (2006) to provide in the Appendix an intuitive argument on
the smooth pasting conditions based on a Taylor expansion.

First, we require V(xy, x2), Vi, (x1,x2) and Vy,(x,x2) to be continuous at the adoption
boundary of alternative 1. Let us consider the case with x; 4+ x2 > | first. By substituting (13)
and (14) into these three conditions, we find that one of them is redundant (see also Mandelbaum
et al. 1990, p. 1016, for a similar result), and the three conditions are equivalent to the following
two equations,

do2c N 1 —X(x) 202c 1 —2X(x)
(Am)? X(x) (A1) X (x) (1= X(x))

Al(x) = A, (16)
202¢ 1 —X(x) 2o%c 1—=2X(x)

A =_ — — —
2(x) a2 n %G A 1%

(17)

The redundancy of one condition is not a mere coincidence. Instead, it is due to the learning
problem structure that the DM can learn only one alternative at a time. Consequently, only one

8 When x; = 1, the solution to the HIB equation is not well defined, but the optimal learning problem is trivial. Under
x1 = 1, the payoff of alternative | is known to be high, therefore, the DM’s optimal strategy is to adopt alternative |
immediately, and V (x|, x2) = 7. Similarly we can solve the case where xo = 1. For the sake of convenience, we only
consider the case that x; < 1 and x5 < | below. Later, we will show that V (xy, x3) is continuous at x; = .

9 See Strulovici and Szydlowski (2015) for recent progress on smoothness conditions for one-dimensional mixed opti-
mal stopping and optimal control problems. Peskir and Shiryaev (2006), p. 144, note that for optimal stopping problems
if the boundary is Lipschitz-continuous, then the smooth pasting conditions will hold at the optimum. Caffarelli (1977),
Theorem 2, shows that if the payoff for stopping is continuously differentiable, which occurs in this case, then the
boundary is Lipschitz-continuous. Caffarelli (1977), Theorem 3, also shows that if the payoff of stopping is continu-
ously differentiable, then the boundary is continuously differentiable. In our case, that means that X (x7) is continuously
differentiable.
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Brownian motion can move at a time and we have a parabolic PDE in (12)." In the Appendix.
we show that, due to the parabolic nature of the PDE, we will always end up with one redundant
condition.

By substituting the expressions of Aq(x) and Az(x) in (16) and (17) into (13), we have that,

2

Vi =~ (1 =20 | 1n(
(Xl,kz)—m—n)z( —2x1) n(

—X1) I —X(x2)
—In| ————
X1 X(x2)

202¢ 1 —2X(x32) X(x2) — x;

(AT 1-X(x2)  X(x2)
+ Ax-xq, ifx;+x>1and x2 < x; < X(x2). (18)

Now let us consider the other case, with x| + x2 < 1. Similarly, by utilizing the value match
and smooth pasting conditions at the adoption boundary of x; = X (x|), we can solve B;(x) and
By(x), and rewrite V (x, x2) in (15) as the following:

202¢ 1 —x2 1 —X(x1)
(Anﬂ“_z”)[ln( “ )_m( X(x1) )}

20%c 1 =2X(x1) X(x1) —x2
(Am)? 1—=X(x1)  X(xp)
ifx;+x<landx; > x> X(xy)

Vixp,x2) = +Am - xp, (19)

Am-xy  ifxp+x < land v < X(x)

Second, we require V(xy,x2), Vy, (x1, x2) and V,,(x1, x2) to be continuous at the boundary
x1 + x2 = |. Similarly, we find that one of the three boundary conditions are redundant. Based
on the expressions of V(x,x2) in (18) and (19), the continuity of V(xy,x2) (value matching
condition) implies that,

X(x)=1—-X(1—x). (20)

This implies that the adoption boundary of alternative 1 is symmetric with respect to the line
of x; 4+ x2 = L. In the following. we will substitute the expression of X(-) in (20) into (19), so
that we will work with X(-) only. Based on the expressions of V(xy,x2) in (18) and (19), the
continuity of Vy, (x1,x2) (smooth pasting condition) implies that y(x) satisfies the following
ordinary differential equation (ODE),

D (X(x)) + P(x) 1
— = , forx < —,
P (X)) (X(x)+x—1) 2

X (x) = (21

10 We could generalize our learning problem to allow the DM at any time, to allocate a fraction of his effort to learn
alternative | and the complementary fraction of the effort to learn alternative 2. If we impose a capacity constraint on
the total number of “signals™ per unit of time from the two alternatives, we can show that the optimal learning strategy
will be exactly the same as that in our main model, i.e., the DM will optimally allocate his effort to one alternative at a
time. That is to say, sequential learning is optimal. This is because we have a continuous-time learning framework. On
the other hand, if we do not impose this capacity constraint on the number of total signals per time, depending on the
model setting, we may end up with the case where it is optimal for the DM to learn multiple alternatives simultaneously.
This would correspond to an elliptic PDE instead of the parabolic PDE that occurs here.
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where @®(-) has been defined in (11). The ODE above only applies to the region with x < 1/2,
because in writing down (21) in terms of X (x2), we consider the boundary of x| 4+ x> = I under
the condition that x| > x2.

Third, we require V(xj.x2), Vi (x1,x2) and V,,(x1,x2) to be continuous at the boundary
x1 = x3. Due to the symmetry of V(xy,x3) in x-x7 space, it is not difficult to recognize that
the only necessary boundary condition is the continuity of V, (xy,x2). Due to the symmetry
with respect to the line of x| + x2 = | implied by (20), we only need to consider the case with
x1 4+ x2 > 1. Based on (18), continuity of Vi, (x1,x2) (smooth pasting condition) implies the
following ODE,

P (X(x)) — @(x) + (Am)*/(20%c)
O (X(x)) (X(x) —x)

where the ODE only applies to the region with x > 1/2, because in writing down (22) in terms

of X (x3), we consider the boundary of x| = x7 under the condition that x; + x> > I.

Lastly, we require V (xy,x2). Vi (x1,x2) and Vi, (x1,x2) to be continuous at the boundary
point of x| = x5 = 1/2. In fact, recall that, we have proposed the expressions of V (x|, x») for the
four regions divided by the two lines of x| = x and x; +x2 = 1 separately. We then paste the four
regions together by continuity conditions at the boundary lines of x| = x» and x| 4+ x2 = 1. The
point x| = x2 = 1/2 is the intersection of the two boundary lines x| = x2 and x; +x2 = 1. Only at
this point, the region of {x] > x7 and x| +x7 > 1} touches the region of {x; < x; and x| +x2 < 1}
(and similarly, the region of {x; > x and x| 4+ x2 < 1} touches the region of {x| < x; and x| +
x2 > 1}). Basically, at the point of x; = x2 = 1/2, we require V (x1, x2) to be smooth across the
two regions of {x; > x2 and x; +x2 > 1} and {x; < x2 and x| + x2 < l}. Due to symmetry, it is
straightforward to show that all but one condition is redundant, and the continuity of V,, (xy, x2)
at the boundary point of x; = x; = 1/2 implies that,

3
E(%) — ! (—(ﬁ;i ) (23)

To summarize, X (x) can be determined by combining (21), (22) and (23) as two boundary
value problems. We are unable to solve the ODEs analytically, but we prove the existence and
uniqueness of the solution, as well as some useful properties by the following lemma.

X'(x)=—

1
, forx > X (22)

Lemma 2. There exists a unique continuous function X(x)in (x*, 1), with x* < 1/2, that solves
the_rwo boundary value pzﬁblems in._(2] ) ( 22 and (23), where x* is defined as the solution
to X(x*T)y =1 — x* Let X(x*) = X(x*"). X(x) is smooth, increasing, and X(x) = x with
X(1)=1.

Recall that Y(x) was defined for x; 4+ x2 > 1 which translates to x € (x*, 1). The adoption
boundary across the regions x; +x2 > I and x| 4+ x2 < 1 is defined in (26) below.

Thus far we have considered all the boundary conditions which, together with the expressions
of V(xy,x2) given by (14), (18) and (19) entirely characterize the solution to (8). Lastly, to verify
this is indeed the solution. we need to guarantee that the DM prefers to learn alternative 1 when
x1 4 x2 =1 and x3 < x; < X(x2), and he prefers to learn alternative 2 when x1 4+ x2 < 1 and
Xp = x2 > X(x1). By (8) and (12), we require that,

2.

for Vxy, x2, s.xp+x2 > 1 and xa <x; < X(x2),

(24)

7 B :
"5(1 _x2)hvx2x2(xl~x2) = (AJT)Z,
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Fig. 1. Maximum expected payoff (left panel), payoff from learning (right panel), given a DM’s current belief, with
relatively low value of outside option, xg < 0. coz/An =0.1. Both panels are color coded in the following way: blue
represents the area where it is optimal to learn alternative 1, red for learning alternative 2, light blue for adopting alter-
native 1, and light red for adopting alternative 2. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

2
x12(1 —xl)Zme (x1,x2) < ﬁ, for Vxp, x2, s.t.xy +x2 < land x1 > x3 = X(x1).
T
(25)

By (20), it is easy to show that the condition in (25) is equivalent to that in (24). Therefore,
we only need to verify that (24) is valid. We prove this in the Appendix. We provide more
intuition on equation (24) below, when we present the DM’s optimal learning strategy. Finally,
to summarize everything so far for this subsection on the value function, Theorem Al in the
Appendix presents the value function for this case when the outside option is relatively low, i.e.,
xp < 0 (the optimal learning strategy is characterized in Theorem 1 below). The existence and
uniqueness of the solution has been established in Lemma | and, based on the way we construct
the solution, we have already verified that it satisfies (8) except for lines, of measure zero, where
the second derivatives may not exist. As the second derivative exists almost everywhere, and we
have smooth pasting, we can apply It6’s Lemma, and verify that the function obtained is indeed
the value function (along the lines of Theorem 5.7 in Touzi 2010). I

Fig. | shows the value function V' (xy, x2), as well as the payoff from learning L(xy, x2) un-
der some parameter setting. The payoff from learning is defined as L(xy, x3) = V(x1,x2) —
Am max{xy.x2,xp}, which is basically the difference between a DM’s value function and his
expected payoff in the case that learning is not allowed. As the figure illustrates V(xy, x7) is
increasing in x; and xp and convex, and L(xp, x2) is always non-negative. L(x1, xp) peaks at
x1 = x2 = 1/2, at which point the DM is most uncertain between adopting alternative i and
taking the outside option. This is the point where the DM benefits most from learning.

Based on the value function given by Theorem Al, we can construct the optimal learning
strategy that achieves the value function, and the corresponding belief updating process under
the optimal strategy.

1" Note also that the second derivative is continuous at the points where the DM is learning and switches between which
alternative to learn about.
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Fig. 2. Optimal learning strategy with relatively low value of the outside option, xg < 0, and CO‘Z/AT[ =0.1. It is optimal
for the decision maker to adopt alternative / in region A7, and to learn alternative i in regions Li and Li*, fori =1, 2.

To simplify notation, we can unify the adoption boundary for alternative i in two regions of
x1 +x1 =1 and x| 4+ x2 < | by defining

X (x). xex* 1]

= % 0, cep0r]

(26)

and the following theorem formalizes the description of the optimal policy.

Theorem 1. Consider the decision maker’s optimal learning problem in (6) with two symmetric
alternatives, and suppose that the value of the outside option is relatively low, i.e., xo < 0. Then
there is a function Y (x) with 7’(.!;) >0,Y(x) > x for all x € (0, 1), Y(0)=0, and Y(1) = 1,
such that: (1) the DM adopts alternative i if x; > Y (x3_;) and continues learning if that condition
does not hold for any alternative; (2) When learning, the DM learns about the alternative with the
higher belief if x| + x2 > 1, and learns about the alternative with the lower belief if x| + x3 < 1.

Fig. 2 shows the optimal learning strategy under some parameter setting. The belief space is
divided into six regions by black lines. Al and A2 stand for the regions, where it is optimal to
adopt alternative 1 and 2, respectively. Both L1 and L1* stand for the regions where it is optimal
to learn alternative 1; similarly, both L2 and L2* stand for the regions where it is optimal to
learn alternative 2. As noted above, it is optimal for the DM to learn the worse alternative when
x1 + x2 < 1. as shown in the starred regions (L1* and L2%). If this alternative turns out to be
really poor, the DM will adopt the other alternative immediately; otherwise, if this alternative
turns out to be not as poor as thought earlier, the DM will switch to learn the other alternative.

It is interesting to understand why sometimes it is optimal for a DM to prioritize learning
on the worse alternative. Let us consider a DM with belief in L2* in Fig. 2. One may suspect
that while alternative 2 has a lower expected payoff than alternative 1, the DM may be more
uncertain about alternative 2 and thus prefer to learn alternative 2 first. This speculation turns out
to be incorrect. In fact, given (x, x2) in L2%, we have x1 > x2 and x; + x2 < |, which implies
that
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E[m]= Amx| > Axxy; =E[m], (27
Var[zi] = (Am)x1(1 — x1) > (An) x2(1 — x2) = Var[r2]. (28)

Therefore, the DM not only expects a higher payoff from alternative 1 but also is more uncertain
about the payoff of alternative 1.

It turns out that the reason for the DM to learn a worse and more certain alternative first is to
save expected learning costs. Here is the intuition. Given the DM’s belief (x|, x7) in region L2%,
if he learns alternative 2, he will either end the learning process by adopting alternative 1 if he
accumulates enough bad news on alternative 2, or continue to learn alternative 1 if he accumulates
enough good news on alternative 2. As the DM aims to save learning costs (the outside option is
dominated, by assumption), he would like to end the learning process as soon as possible, so he
cares about the probability of getting bad news on alternative 2, which is equal to 1 — x2. On the
other hand, if the DM instead chooses to learn alternative 1, he will either end the learning process
by adopting alternative 1 if he accumulates enough good news on alternative 1, or continue to
learn alternative 2 if he accumulates enough bad news on alternative 1. With the aim of saving
learning costs, the DM would like to end the learning process as soon as possible, so he cares
about the probability of getting good news on alternative 1, which is equal to x|. To minimize
future learning costs, the DM chooses to learn alternative 2 if | —x > xy,1.e., x; +x2 < |, which
is exactly the upper-right boundary condition for L2*.'> To summarize, in the starred regions,
the DM finds it optimal to learn the worse alternative first with the possibility of ruling it out
early so as to choose the other alternative immediately.

We now consider the stochastic dynamics. We use region L1 as an example for illustration,
and other regions can be understood similarly. Suppose that the process starts in region L1, with
x1 > x2 > 1/2. In this region, the optimal alternative to learn on is alternative 1, and therefore,
the stochastic process moves horizontally. If the process moves sufficiently to the right, region
AT is hit and the DM stops the learning process and chooses alternative 1. On the other hand,
if the process moves sufficiently to the left, it hits the line x| = x2 and the DM stops gathering
information on alternative | and starts gathering information on alternative 2. There are two cases
to consider.

First, if the DM gets positive news on alternative 2, we are now in region L2, with the stochas-
tic process moving vertically, and if the process reaches region A2 then the DM stops the learning
process and chooses alternative 2.

Second, the DM receives bad news about alternative 2. To get an intuition of what happens in
this situation, let us consider a discrete approximation of the problem. Starting in region L1 close
to x| = x7, if the DM learns bad news about alternative 1, the process moves horizontally to the
left of x1 = x2. Then the DM checks alternative 2, and if receiving bad news on alternative 2,
the process moves vertically below the line of x| = x; and the DM checks on alternative 1 again
at a level of x> that is lower than the original level. Therefore, when the DM keeps getting bad
news on the two alternatives, he will move down the line of x| = x». In other words, min{xy, x3}
falls over time with positive probability, and it never increases, as noted by the arrows in Fig. 2.
To see this more formally in our continuous-time diffusion process, note that min{x;, x2} can
be written as min{x, x2} = % (x1 +x2 — |x; — x2|). The existence of the absolute-value term
|x; — x2| requires the use of the Tanaka’s formula (e.g., Karatzas and Shreve 1991, p. 205) to
obtain the local time at x; = x5, which then leads to the result that min{x;, x>} falls over time,

12 We have also analyzed a two-period discrete time learning problem, and find that the intuition of saving learning
costs here becomes the exact condition there. The analysis is available upon request.
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and it never increases. In the literature this is known as a case of switching Brownian motions
(e.g.., Mandelbaum et al. 1990). The Appendix presents further details.

Now consider the other region in L1 with x; > 1/2 > x;. In this region the process moves
horizontally, and if it moves to the right, it hits region A1 where the process is stopped and
alternative 1 is chosen: and if it moves to the left, it hits the line of x; + x» = 1 and reaches
region L.2%, where the DM switches to learning about the worse alternative, alternative 2. In that
case, the process starts moving vertically, and if there are enough bad news about alternative 2,
the process hits region Al, and alternative | is chosen. If there are good news on alternative 2, the
process moves back to the line x; +x3 = 1, and alternative 1 gets learnt again. By the same local
time argument as above, each time the process hits x; + x2 = 1, which occurs infinitely many
times given the Brownian motion processes, the process moves up along the line of x; +x2 =1
towards the point x| = x2 = 1/2, as noted by the arrows in Fig. 2.

Note that in all regions, if it is not optimal for the DM to stop the learning process and choose
one of the alternatives, the process keeps going toward x| = x2 = 1/2. That is, if the DM receives
signals that do not allow for a sufficient separation of the beliefs regarding the two alternatives,
both beliefs converge to the maximum uncertainty. This implies that the longer the DM is search-
ing for information, the more uncertain the DM becomes due to a selection effect—those who
become certain enough stop the learning process and make an adoption. Once the process is at
x] =x2 = 1/2, the DM is indifferent about which alternative to learn information on, but he will
continue learning, and therefore x; = xo = 1/2 is not an absorbing state.

Lastly, we can compute the comparative statics of the optimal learning strategy with respect to
the learning costs, noise of the signals, and value of the outside option. The results are intuitive.

Proposition 1. As co? increases, the adoption boundary Y (x) decreases, and the value function
V(x1,x2) decreases.

Two alternatives with high-value outside option In this subsection, we consider the case of two
symmetric alternatives with the value of the outside option sufficiently high. Similarly, we will
propose a solution, and then verify that it satisfies the H/B equation (8). After that, we will come
back and determine the exact threshold for the outside option to be considered sufficiently high.
Similarly, due to symmetry, we only need to consider the case with x| > x>, where there are
further two cases to consider.

In the first case, when x < x, we propose that alternative 2 will not be considered for
either learning or adoption, and one goes back to the case with a single uncertain alternative—
alternative 1. Correspondingly, we have

Vixy,x2) =U(xy), ifxp <x, (29)

where U (x), given by equation (vi) in the Appendix, is the value function for the optimal learning
problem in the single-alternative case. In the second case, when x; > x2 > x, we propose that
there exists a smooth function X (+) such that the DM learns alternative 1 when x2 < x1 < X(x2).
and adopts alternative | when x| > Y(xg). We have used f(xg) in the case of a low-value outside
option above to denote the adoption boundary for alternative 1. Here we have slightly abused the
notation of X (x»), which also denotes the adoption boundary for alternative | in the case of a
high-value outside option. By applying a similar analysis as above. we can determine V (xy, x2)
as the following by solving the partial differential equation (12) subject to the value matching
and smooth pasting conditions at the adoption boundary of x; = X (x2).
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Vi ) 20%¢ (-2 |1 (] —xl) | 1 —X(x2)
x)=——=(1-— n —In| ——
X1, X2 (Aﬂ)z X1 X1 X(x2)

_ 20%¢ 1 —2X(x2) X(x2) — x)
(A7) 1=X(x2) X(x2)

+ Ax - xp ifx < xp < X(x2), (30)

where X (x) is determined by the following boundary value problem of an ODE:

Yoo 2 (X(x) = @(x) + (An)*/(20%¢) a1
- o (X)) (X(x) — x) ’ ‘

Y(i) =X, (32)

where x and X are defined by (9) and (10), and ®(-) is defined in (11). Equations (31) and (32)
result from the value matching and smooth pasting conditions at x; = x2 and x = x respectively.
We are unable to solve the ODE analytically, but we can similarly prove its existence and unique-
ness, and some useful properties of the solution in the following lemma. (The proof is similar to
the one of Lemma 2 and thus is omitted.)

Lemma 3. There exists a unique continuous function X(x) in [x, 1] that solves the boundary
value problem of an ODE in (31) and (32). X(x) is smooth, increasing, and X (x) > x with
X(17)=1.

Thus far we have considered all the boundary conditions which, together with the expressions
of V(x1,x2) given by (29) and (30), entirely characterize the solution to (8). Lastly, to verify
this is indeed the solution, we need to guarantee that the DM prefers to learn alternative 1 for
x<xy<x < X(x2). By (8) and (12), we require that

2.

x%(l —xg)ZszxE(xl.xz) < for Vxp,xo, s.bx <xp <xp < X (x2). (33)

Without solving X (x), it is difficult to translate the inequality above into expressions in terms
of model primitives. Nevertheless, we are able to prove the following necessary and sufficient
condition for (33).

Lemma 4. The DM prefers learning alternative 1 for x < xo < x; < X(x2), if and only if

X(x2) (1 = X(x2))

X (x) = (=)

, for¥xa € [x, D). (34)
There exists a xa‘ < 1/2, such that this condition holds if and only if xo = 7o /(Am) > xa‘.

The variable xp measures the relative value of the outside option compared with the uncertain
alternatives. This lemma implies that the solution that we just proposed exists only when the
outside option is sufficiently high.

Finally, to summarize everything so far for this subsection, we have Theorem A2, presented
in the Appendix, which fully characterizes the value function for the case of a high outside
option (the optimal learning strategy is characterized in Theorem 2 below). The existence and
uniqueness of the solution has been established in Lemma | and, based on the way we construct
the solution, we have already verified that it satisfies (8). In order to define the adoption boundary



400 T.T. Ke, J.M. Villas-Boas / Journal of Economic Theory 180 (2019) 383-437

Fig. 3. Maximum expected payoff (left panel), payoff from learning (right panel), given a DM’s current belief, with
relatively high value of outside option, xg = 0.5. (‘O'Z/AJZ =0.1. Both panels are color coded in the following way:
blue represents the area where it is optimal to learn alternative 1, red for learning alternative 2, light blue for adopting
alternative 1, light red for adopting alternative 2, and yellow for adopting the outside option.

and write down the value function in a uniform way, we expand the support of X(-) to [0, 1]. by
defining X(x)=x for x €[0,x) and X(1)=1. It is easy to verify that X (x) is still smooth,
increasing, and X (x) = x forx €[0, 1].

Because x;j < 1/2 and xo = mp/Am, we have that a sufficient condition for the function de-
fined by (xix) in Theorem A2 to be the value function is that g > 7 /2.

Fig. 3 shows the value function V' (xy, x2). as well as the payoff from learning L (xy, x2) under
some parameter setting. This illustrates how L(x1, x7) peaks at x| = x2 = x, at which point the
DM is most uncertain between adopting alternative ; and taking the outside option.

Based on the value function given by Theorem A2, we can construct the optimal learning
strategy that achieves the value function. Formally, the following theorem summarizes the DM’s
optimal learning strategy.

Theorem 2. When the value of the outside option is relatively high, i.e., xo = xak, a decision
maker considers alternative i for learning or adoption if and only if his belief of i is sufficiently
high, i.e., x; = x. Given one alternative i under his consideration, the DM keeps learning it if
x < x; <X, adopts it if x; > X, and takes the outside option if x; < x. Given two alternatives
under his consideration, the DM always learns information from the alternative with higher
belief."> He stops learning and adopts it if and only if his belief of this alternative is above a
threshold. This threshold (i.e., the adoption boundary) increases with the DM’s belief of the other
alternative, and gets closer to the line x| = x2 as x2 increases, with the threshold converging to
Xy as xp — 1.

Fig. 4 shows the optimal learning strategy under some parameter setting, which can be under-
stood intuitively. There are five regions. When the DM’s belief of alternative i is quite high, it is
optimal to adopt the alternative immediately without learning (regions Al and A2 in the figure).

13 In the case of equal beliefs, the DM is indifferent about which alternative to search, and we assume that the DM
learns alternative 1.
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Fig. 4. Optimal learning strategy with relatively high value of the outside option, xg = 0.5, and (‘0‘2/A.71' =0.1.1Itis
optimal for the decision maker to adopt alternative i in region Ai, and to learn alternative i in region Li, fori =1, 2.

When the DM’s beliefs of both alternatives are quite low, it is optimal to take the outside option
(region O in the figure). Roughly speaking, learning becomes preferred when the DM’s beliefs
of the two alternatives are similar or take medium values (regions L1 and L2 in the figure).

Note that when x; < x, the DM only focuses on the comparison between the outside option
and the other alternative j # i. He decides only among learning j, adopting j, and taking the
outside option (j # i), and he never considers alternative i for learning or adoption. This means
the DM optimally uses a simple cutoff strategy when forming a consideration set of alternatives
for learning or adoption. Given both alternatives in his consideration set, i.e., x, x2 > x, the DM
always prioritizes learning about the alternative with higher belief, and adopts it when the belief
is sufficiently high. As shown above, this learning strategy critically depends on the assumption
that the value of the outside option is sufficiently high.

Similarly, we can construct the belief updating process under the optimal learning strategy,
which completes the analysis to show that the value function V(xj, x2) given by Theorem A2 is
attainable. We can show that during the learning process, min{xy, x2} falls over time with positive
probability and that it never increases. This means that starting from a prior belief in the regions
that it is optimal to learn, there is a positive probability of the outside option being chosen.

That is, if the DM starts in either L1 or L2, with some probability the process will hit the
line x; = x2. Then, every time that line is hit, the process goes down that line (as min{xy, x2}
falls over time), and with some positive probability can reach region O, where the DM takes the
outside option. This is noted by the arrows in Fig. 4

Lastly, we can compute the comparative statics of the optimal learning strategy with respect
to the learning costs, noise of the signals, and value of the outside option. The results are intu-
itive.

Proposition 2. As ca? increases, x increases, X (x) decreases, and V (xi, x») decreases. As 7
increases, x decreases, X (x) decreases, and V (x|, x2) increases. As mq increases, x increases,
X (x) increases, and V(xy, x2) increases.
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Fig. 5. Optimal learning strategy with medium values of the outside option, xg = 0.13, 0.2, 0.27 from left to the right,
and CUZ/AJT =0.1. It is optimal for the decision maker to adopt alternative i in region A, and to learn alternative i in
regions Li and Li*, for i = 1, 2. We mark the directions for belief trajectories only for the case with x = 0.2, while the
other two cases with x =0.13 and x = 0.27 follow a similar pattern.

Two alternatives with medium-value outside option ~ So far, we have completely solved the op-
timal learning problem for the cases where xg <0 and xg > x(’)". For the intermediate case with
0<xg< xa‘, we are not able to characterize the value function analytically. However, we can
show that the optimal policy does not involve always learning about the better alternative. That
is, in this intermediate case there has to be a region on the belief space where the DM chooses to
learn about the worse alternative.

Computing the optimal policy numerically, Fig. 5 illustrates the optimal policy of the learning
problem under some parameter setting where the outside option takes a medium value. The
optimal learning strategy becomes more complex.'? For both high and low beliefs, it is optimal
for the DM to learn the better alternative first; however, for the medium beliefs, it is optimal
for the DM to learn the worse alternative first. For low beliefs, it is optimal for the DM to learn
about the superior alternative because the beliefs about the worse alternative could fall below the
consideration set threshold, x.

By comparing the optimal learning strategies under high, medium, and low value of the out-
side options, we can evaluate numerically that the higher the outside option, the smaller the
starred regions. That is to say, a good outside option makes the better alternative more attrac-
tive for learning.'> The reason is that with a good outside option, if the DM learns the better
alternative and ends up with bad news on it, he can use the outside option instead of the worse
alternative as the backup option. In contrast, if the DM chooses to learn the worse alternative,
the outside option may not be useful as a backup option, since it can be dominated by the better
alternative.

4. Adoption likelihood and probability of being correct

In this section, we continue the analysis on the case with two symmetric alternatives. Under
the two cases of a high-value and low-value outside option, we derive a decision maker’s adoption

14 The features of this more complex learning strategy can also be obtained analytically in a two-period model.

15 Quah and Strulovici (2013) consider the possibility of counterintuitive comparative statics with respect to discounting
in dynamic problems, and present simple conditions such that those counterintuitive results stop holding. In this case,
such a condition could be the outside option having a sufficiently high value.
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Fig. 6. Adoption likelihood of alternative 1, given a DM’s current belief, under cai/An =0.1, and xg < 0 for the left
panel and xg = 0.5 for the right panel. The figures are color coded as in Fig. 3.

likelihood of each alternative as well as expected probability of being ex-post correct, based on
his optimal learning strategy.

It is interesting to understand the adoption likelihood in many applications. For example,
in product markets, at the aggregated level, the adoption likelihood corresponds to the demand
function of multiple products under consumer learning. Given a DM’s current posterior beliefs
as x| and x>, we denote his adoption likelihood of alternative i as P;(xy, x7). By symmetry. we
have P>(xy, x2) = P1(x2, x1), therefore, we only need to focus on Pj (x|, x2) below. We calculate
P1(x1, x2) by invoking the Optional Stopping Theorem for martingales, and solving an ordinary
differential equation. From this one can obtain the adoption likelihood for either low or high
outside option which is presented in Theorem A3 in the Appendix.

Fig. 6 presents Pj(x1, x2) under two sets of parameter settings with xg > xa‘ and xg < 0. The
figure illustrates the intuitive result that the DM is more likely to adopt an alternative if his belief
of the alternative is higher, or his belief of the other alternative is lower.

We are also interested in the adoption likelihood of (either) one alternative, which is defined
as P(xy,x2) = Pi(x1,x2) + P2(x1,x2). It is interesting to note that P (x1, x2) does not always
increase with xj or x2. This means that a higher belief of one alternative may lead to a lower
adoption likelihood of the two alternatives combined. To understand the intuition, let us consider
a special case. Given the DM’s beliefs of the two alternatives as x| and x2, if x; is high enough
such that it exceeds the adoption boundary X (x3), the DM will adopt alternative 1 immediately.
In this case, the adoption likelihood is one. Now consider an exogenous increase of x» such that
x1 is now below the adoption boundary X (x2). In this case, the DM will optimally learn more
information before making an adoption decision. After obtaining more information, it is possible
that the DM likes the alternatives more, in which case, he will adopt at most one of them; it is
also possible that the DM gets some negative signals and decides to take the outside option. In
general, the adoption likelihood will be lower than one after the increase of x;. Fig. 7, which
presents P (xj, x2) under some parameter setting with xo > xj, illustrates this point.

The introduction of a new alternative can be equivalently viewed as increasing its belief from
below x to some level above x. By the same argument, we can show that more alternatives
available for learning and adoption may decrease the adoption likelihood. Applying this result to
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Fig. 7. Adoption likelihood of either one alternative, given a DM’s current belief, under ccrzfAn =0.1 and xg =0.5.
The figure is color coded as in Fig. 3.

product markets, can be seen as providing a rational explanation to consumer choice overload,'®
under the circumstance that a consumer engages in costly information gathering before making a
choice. More options to choose from may potentially lead a consumer to exert a greater effort to
distinguish the best from the rest, resulting possibly in a lower probability of choosing anything.

It is also interesting to investigate a decision maker’s expected probability of being correct.
The DM decides whether to learn more information and which alternative to adopt based on his
current imperfect information. Therefore, it is possible that he will make mistakes in an ex post
point of view, when all the uncertainties about both alternatives have been resolved. Theorem A4
in the Appendix characterizes a decision maker’s expected probability of being correct ex post,
Q(x1.x2), given his current beliefs of the two alternatives (xy, x2). in both cases with xg <0 and
X0 > X

Fig. 8 presents Q (x|, x2) and A Q(x1, x3) under some parameter setting, where AQ (x1, x2) =
Q(x1.x2) — Qo(xy, x2) represents the improvement in probability of being correct ex post due
to learning, and where Qq(x1, x2) is the probability of being correct ex post when learning is
not allowed before adoption. Fig. 8 illustrates that it is easier to make mistakes ex post if two
alternatives have similar intermediate beliefs ex ante. This is also the case where optimal learning
before adoption reduces the probability of ex-post mistakes the most, similar to Fig. 3.

5. Extensions

In this section we study several extensions, including asymmetric alternatives, the effect of
the number of alternatives, and time discounting.

5.1. Asymmetric alternatives

We consider the case that the outside option has a sufficiently high value. We allow the two
alternatives to differ in their payoff distributions, noise levels of signals, as well as learning

16 For lab and field experiments on choice overload, refer to a review by Scheibehenne et al. (2010). Different from our
setting, Fudenberg and Strzalecki (2015) consider a dynamic logit model with choice aversion where a consumer may
prefer to have a smaller choice set ex ante.
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Fig. 8. Probability of being correct ex post (left panel) and the improvement in probability of being correct due to learning
(right panel), under xg = 0.5 and CO’Z/AT( =0.1.

costs. We aim to solve for the decision maker’s optimal learning strategy or, equivalently, we
want to understand when to switch learning between the two alternatives, and when to stop
learning and make an adoption decision. We should expect that for the asymmetric alternatives
case the solution structure will be similar to that of the symmetric alternatives case. We must
have the adoption boundaries for the two alternatives, X(x>2) and X, (x), different from each
other. Moreover, the boundary separating “Learn 1 and “Learn 2” will no longer be a 45-degree
line, and thus needs to be determined at the same time. This is a more difficult problem from a
technical point of view.

Let us first look at the case that one alternative is “better” than the other, in terms of a higher
information-to-noise ratio or a lower learning cost. Without loss of generality, let us assume
that alternative 1 is better, i.e., we consider the case that Am; > Amp, or ¢ < 62.17 Intuitively,
in this case, we expect that alternative 1 will be preferred for learning, and thus the boundary
separating “Learn 1" and “Learn 2" should be above the 45-degree line. We further assume that
there is a point (x}, x3) such that the boundary separating “Learn 1" and “Learn 2" intersects
with the adoption boundary of alternative 2 under this belief. Based on this assumption, we can
characterize the solution to the HJ/B equation (8) analytically, and we present the solution in the
Appendix. Fig. 9 illustrates the optimal learning strategy under some parameter settings. The
left panel shows the case of different learning costs between the two alternatives, ¢ < ¢2, with
everything else being the same. The right panel shows the case with different payoff ranges
between the two alternatives, Ay > Ama, with everything else the same.

Consistent with the symmetric alternatives case, when x; < x;, alternative 7 is not considered
for learning or adoption. When x| > x; and x2 > x,, both alternatives are in the consideration
set, and the decision maker’s optimal learning strategy is now slightly more complicated.

Interestingly, when the expected value of both alternatives is high enough, i.e., when x2 > x;,
the DM only learns alternative 1. The DM keeps on learning alternative 1 until either x; exceeds
the adoption boundary of alternative 1, X (x2). in which case he adopts alternative 1, or x| drops
below the adoption boundary of alternative 2, X, (x2), in which case he adopts alternative 2. In

17 Mathematically, 012 < 62,2 will be exactly the same as ¢| < ¢3, because in our model only ol-zc,- is identified, as noted
above. In this subsection, as the alternatives are not symmetric, we consider the possibility of ; # 0.
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this case, as the expected value of both alternatives is high enough, the DM searches only the
alternative for which either the search costs or the noise of the signal is lower, or for which the
benefit of having the high outcome is higher. This can be seen as intuitive: If the expected value
of both alternatives is high enough, the question is mostly one of which alternative to end up
choosing, and therefore the DM learns information on the alternative for which there is a greater
information to search cost ratio. Note then, that in comparison with the case of the previous sec-
tions where the noisiness of signals, search costs, and possible payoffs were symmetric across
alternatives, we have now a situation in which if the expected value of both alternatives is suf-
ficiently high the DM makes a choice between the two alternatives with probability one, while
in the previous sections the DM could end up choosing the outside option with some positive
probability.

When the expected value on the worse alternative is not so high, i.e., when xi‘ > X2 > x5, and
the outside option has a high value, we are back in the situation of the previous sections where the
DM chooses to learn the alternative with relatively higher expected value. In the case of previous
section, this was just learning about the alternative with the higher expected value. In the case
here, with asymmetric alternatives, this means learning about alternative 1, the alternative with
an advantage in search for information, if the expected value of alternative 1 is not much lower
than the expected value of alternative 2. The results are then that the DM learns alternative 1 if
and only if

_ 202c _
(X1(x2) —x1) (;#;ZUD(XMH))—CD(M))%-AH]
_ 207 —
< (Xa(x1) — x2) ﬁ(q)(xz(xn)—@(n))-l-mm . 35)

where X(x2) and X5 (x) are the adoption boundaries for alternatives | and 2, respectively. for
the region that x| > x; and xik > x2 > x,. While it is not intuitive to understand the condition
above, it does show that a simple index policy is not optimal.



T.T. Ke, J.M. Villas-Boas / Journal of Economic Theory 180 (2019) 383437 407

Lastly, we want to point out that the boundary separating “Learn 1" and “Learn 2", denoted as
x2 = y(x1) in the figure, cannot be obtained with value matching and smooth pasting conditions
alone. This is intuitive, because even with the boundary exogenously given, we find that both
value matching and smooth pasting conditions are necessary to pin down the solution. Now, to
maximize the expected payoff by choosing the boundary optimally is equivalent to imposing an
extra set of conditions, so called super contact conditions (Dumas 1991; Strulovici and Szyd-
lowski 2015), which guarantee that V., (x1,x2), Vyyr, (¥, x2) and Vi, (X1, x2) are continuous
across the boundary. We find that two of the three super contact conditions are redundant, and
we only need to guarantee V,,(x1,x2) to be continuous across the boundary that separates
“Learn 1” and “Learn 2”. Similarly, we can show that the redundancy is due to the learning prob-
lem structure that the DM can only learn one alternative at a time and the resulting equation (12)
is a parabolic PDE.

On the right panel of Fig. 9, note also that because Amy > Am,, the DM is more likely to learn
and adopt alternative | than alternative 2, and the adoption thresholds do not converge anymore
when the beliefs converge to (1, 1).

So far, we have characterized the DM’s optimal learning strategy when one alternative is
“better” than the other in terms of a higher information-to-noise ratio and a lower learning cost.
More generally, there are also cases where one alternative has a higher information-to-noise
ratio, but at a higher learning cost. This case is complicated with discrete “jumps” of the DM’s
optimal learning strategy with respect to the parameters (e.g., learning costs). We briefly discuss
this case in the Appendix. We have also considered asymmetric alternatives when the outside
option is low. In that case, it is difficult to characterize the optimal solution analytically, but
with numerical analysis, we can find examples that with small heterogeneity between the two
alternatives, we still have the starred regions in the optimal learning strategy where it is optimal
to learn an alternative with lower belief first.

5.2. More than two alternatives

In this subsection, we consider the optimal learning problem with more than two alternatives.
The optimal learning problem and the associated HJB equation can be formulated similarly.
Although it is difficult to solve the general problem analytically with more than two alternatives
(except for the infinite number of alternatives case presented below), we can see numerically how
the optimal policy is affected. Consider three symmetric alternatives without an outside option.
By symmetry. we only need to obtain the optimal learning strategy under the belief x| > xp > x3.
Fig. 10 illustrates the optimal learning strategy. In this case it is optimal to learn the second best
alternative (alternative 2) under some belief only when x3 is relatively low. Comparing the three
panels in Fig. 10 with Fig. 4, 5, and 2 respectively, we find the impact of the third alternative on
the optimal learning strategy to be similar to that of the outside option.

Moreover, we could not find cases where it was optimal to learn the third best alternative
(alternative 3). It is interesting that the DM only considers learning from the top two alternatives,
and sometimes does not learn about the top alternative, in order to possibly rule out the second
best alternative, to then decide to adopt the top alternative.

We have also numerically solved the optimal learning problem with three alternatives and an
outside option, and in that case the cutoff strategy is still valid—a decision maker considers an
alternative for learning or adoption if and only if his belief of this alternative is sufficiently high.

Lastly, we consider the optimal learning problem of infinite symmetric alternatives with the
same prior belief x. By the standard analysis, we can show that the optimal learning strategy
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Fig. 10. Optimal learning strategy with three alternatives and no outside option. co2/Am =0.1. x3 = 0.1,0.25,0.5 from
left to the right.

in this setting follows a simple reservation value policy. A DM continues to learn information
on alternative i until either x; exceeds xp, in which case he adopts alternative 7, or x; drops
below x. in which case he moves to learn the next alternative. For X < x < xp, the value function
U(x) is given by equation (v) in the Appendix. We can determine xp by the following set of
boundary conditions: U’(x) =0, U(xg) = Am - xg. and U’(xg) = Ax. By combining these
three conditions, we have xp as:

(Anﬁ)

202¢

xp=o"! (cp(;?) — (36)
We also get that x is greater than X (%), illustrating that with more alternatives the DM is more
demanding on what an alternative has to deliver before the DM settles on it.

That is, when there is the possibility of learning about other alternatives, the DM becomes
more demanding on the threshold on the difference between the top two alternatives that would
make the DM stop the learning process and adopt one alternative. This can be seen as intuitive
as the DM has now more options to get a higher expected payoff. This also illustrates how the
expected value of the alternatives beyond the second best affect the decision of the DM of when
to adopt an alternative. As the DM could get enough bad news on the first and second best
alternative, the third best alternative matters, and so forth.

5.3. Time discounting

In this subsection, we consider a similar problem setting with no flow cost for learning but
with time discounting. Similar to (8), we can write down the following HJB equation.

2
(ii—;) K21 =3V (0 = rV () Fog(x) = Vix) § =0, 7

max { max
1<i<n

Along the same lines as above, we can show that there exists a unique solution to this problem.
For the case of a single alternative, the optimal learning strategy is that there exist 0 < x <

X = 1 such that the DM continues learning when x < x = ¥, and he stops learning to take the

outside option when x < x or to adopt the alternative when x > x.
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For the case of two symmetric alternatives, similarly to above, we propose a solution, and
then verify that it satisfies the H/B equation (37). Due to symmetry, we only need to consider
the case with x; > x. There are two cases to consider. First, if x <.x, we propose that alter-

native 2 will not be considered for either learning or adoption, and one goes back to the case
with a single uncertain alternative—alternative 1. Second, if x; > x> > x, we propose that there
exists a smooth function X (-) such that the DM learns alternative 1 when x2 < x; < X (x2), and

adopts alternative 1 when x| > f(xz). By applying a similar analysis as above, we can determine
V(x1, x2) by solving the partial differential equation

(Am)?
202
subject to the value matching and smooth pasting conditions at the adoption boundary of x; =
X (x2). This yields

XF (1= x1)? Vayry (x1.x2) =7V (x1, x2) =0 (38)
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if x <x2<x; < X(x2), (39)

where a = /1 + (EX;; > 1, f(x) = (1 + Z(x)) ", and Z(x) is determined by the following

boundary value problem:
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(40)

Lastly, to verify this is indeed the solution. we need to guarantee that the DM prefers to learn
alternative 1 for x <x; <x| < X(x2). By (37), we need to have that

2

%x%(l —)cz)z‘/xzx2 (x1,x2) <rVi(xy, x2) for Vxy, x2, s.t.x <xa < x| < f((xz), 41)
which holds for all xg. This was the condition that failed for the case with no discounting, and
that leads to the optimal strategy having the DM learning on the worse alternative when xg
was sufficiently low, and x| and x» are not too high. In this case of discounting, this condi-
tion is satisfied for all xq, x1, and x2, and we then have that the DM when choosing to learn
about an alternative, always chooses to learn about the alternative that has a higher expected
value.

The intuition is that it does not help to minimize the learning costs by learning an inferior
alternative. Specifically. with time discounting, the learning cost depends on the current expected
payoff. By learning the inferior alternative first, if the DM receives negative signals, the learning
costs will fall, which will give an incentive to continue learning. On the other hand, if he receives
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Fig. 11. Optimal learning strategy with time discounting under the parameter setting that 7y /Ax =0.5. o/A7 =1, and
r=0.2.

positive signals, he will continue learning. However, his learning cost is also high because he
just received positive signals. Therefore, the DM will not save costs by not learning the best
alternative first.

From this analysis we can obtain the value function which is presented in Theorem A6 in
the Appendix. Following an almost identical analysis as in Section 3, we can construct the op-
timal allocation and stopping rule and the corresponding belief updating process to attain the
value function. Formally, we have the following theorem that characterizes the optimal learning
strategy.

Theorem 3. Consider the DM’s optimal learning problem defined in (6) but with time discount-
ing instead of a constant flow learning cost. Given one alternative i under his consideration, the
DM keeps learning it if x < x; <X, adopts it if x; > X, and takes the outside option if x; < x.
Given two alternatives under his consideration, the DM always learns information from the
alternative with higher belief. He stops learning and adopts it if and only if his belief of this
alternative is above a threshold, which increases with his belief of the other alternative.

Fig. 11 presents a DM’s optimal learning strategy under some parameter setting. illustrating
that with discounting it is always optimal to learn the best alternative first.

One could also have a model with both cost of information gathering and discounting. Such a
model would replicate some of the results above of the case with no discounting and with positive
cost of information gathering, but with more complicated characterization of the value functions
and of the optimal policy. In such a model, the result above that the DM would prefer to learn
first about the worse alternative under some conditions would continue to be a possibility.

6. Discussion and conclusion
This paper examines a canonical problem of optimal information gathering. We allow gradual

learning on multiple alternatives before one’s choice decision. The decision maker solves the
problem of optimal dynamic allocation of learning efforts as well as optimal stopping of the



T.T. Ke, J.M. Villas-Boas / Journal of Economic Theory 180 (2019) 383437 411

learning process, so as to maximize the expected payoff. We show that if the outside option is
low enough, a decision maker may choose to gather information on the worse alternative, that
has lower expected payoff and less uncertainty, in order to rule out that alternative, and that the
optimal policy is not a single-index policy.

It is interesting to compare the optimal learning rule in our setting with that under “complete
learning” in Weitzman (1979), where everything learnable about an alternative is learned with
the first signal. For complete learning, one can show that the optimal rule is to learn about the
alternative with the highest belief if everything else is the same. Our result highlights that with
the possibility of gradual learning, a decision maker’s optimal learning strategy can be quite
different and complex—sometimes it is not optimal to learn the best alternative first. It is true
that under complete learning, it can be optimal for the DM to first learn an alternative that has low
expected payoff but high variance, in the hopes of capturing its high payoff. Strictly speaking,
in that possibility, the alternative with low expected payoff is “seemingly” worse, but is, in fact,
different from the other alternatives in terms of different payoff distributions. In contrast, we find
that a DM may optimally learn a worse alternative first, given everything else between the two
alternatives the same in this binary environment. Note also that this worse alternative is also the
alternative with lower variance, so that the DM may optimally learn an alternative with lower
expected value and lower variance. Also. our underlying mechanism works in a different way.
With complete learning, after learning an alternative with low expected payoff and high variance,
the DM will either adopt that alternative if he gets a very positive signal, or learn other alternative
if he gets a negative signal. In contrast, in our setting with gradual learning, when learning a
worse alternative, the DM will either potentially switch to learning the better alternative if he
gets enough positive signals on the worse alternative, or adopt the better alternative immediately
if he gets enough negative signals on the worse alternative.

It 1s also worthwhile to revisit the index policy proposed by Glazebrook (1979) as the opti-
mal policy for stoppable bandits problem under some conditions. Under the index policy, a DM
chooses alternative 7/ to act on (either learn or adopt) if it has the greatest index, which, like the
Gittins index, only depends on the state of alternative /. Given that alternative i is chosen, the
DM chooses to learn or to adopt it based on some strategy that only depends on the state of
alternative i. Here, we have shown that the DM chooses to stop learning and adopt alternative ¢
if and only if x; > 7(,\']-), which depends on x; as well. Therefore, Glazebrook’s index policy is
suboptimal for our problem.

The model that we present can be applicable to consumer search for information across dif-
ferent products prior to purchase, with the consumer only being able to learn about each product
at a time. In terms of the result above, a consumer may potentially try to get information on
a seemingly worse product in order to rule it out and decide to purchase the seemingly best
product.

Given this environment of consumer search for information, it would also be interesting to
investigate how a monopolist carrying both products should behave in terms of information to
provide, and prices to charge. It would also be interesting to investigate what would happen in
an oligopoly competition setting with each firm carrying one product.

Another interesting application is the case of a policy maker who has to make a decision
between different policies and can research each policy separately before deciding which policy
to choose. The policy maker can decide to research a worse policy to potentially rule it out, and
opt for the seemingly better option if the policy maker receives bad information about the worse

policy.
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In some situations the technology of search for information is such that when learning about
a category. a decision-maker learns about the fit with several alternatives at the same time. For
example, by learning about the automobile market in general, for example, by reading an auto-
mobile magazine, a consumer may learn about his relative preferences between two car models.
It would be interesting to study such a situation in future research.

Appendix A

Proof of Lemma 1: existence and uniqueness of the solution. For this proof we consider the
results for existence and uniqueness of a solution of a nonlinear second-order partial differential
equation (Crandall et al. 1992, which we will denote as CIL'®). Note also that given that the
value function is a viscosity solution, and we know that the value function exists given that it
is bounded, existence is straightforward. Consider now the question of uniqueness. Consider a
nonlinear second-order PDE of the form

H(x,u, Du, Dzu) =0, (i)

where Du € R" is the differential of u (at x), D%u e S, (R) is the Hessian matrix of i (at x), and
H:R" xR x R"” x §,(R) — R, with S,(R) the set of symmetric n x n matrices. The function
H is said to satisfy degenerate ellipticity if and only if H(x,u, p, X) < H(x,u, p,Y) for all
x,u, p, X and Y such that X — Y is positive semi-definite or X = Y. Another property of the
function H that we will need is that it is nondecreasing in u.

To see that the HIB equation (8) satisfies degenerate ellipticity and that it is nondecreasing in
u, note that in our case n = 2, and it is equivalent to consider

max {_max {—ZE,- (X)Vxl.xi (x) — c,-} L g(X)+ V(X)) =0. (i1)

i=1,2

where @;(x) = %zﬁx?(l — _xl-)z, g(x) = max{Amxl + . Amaxg +£2,7r0} and V(x) =
—V(x). for all x.

Note then that the left hand side of (ii) is nondecreasing in V and nonincreasing in Vx,-x,- for
all i, which means that (i1) satisfies degenerate ellipticity.

A continuous function u is said to be a viscosity solution to equation (i) if for all twice
continuously differentiable functions ¢ : R" — R: (1) if u — ¢ attains a local maximum at
xo € R” then H (xo, ¢ (x0)., Dp(x0), D*¢(x0)) <0 (viscosity subsolution); and (2) if u — ¢
attains a local minimum at xg € R”, then H (xg, ¢ (xg), D¢ (xg), Dz(j)(xo)) > 0 (viscosity super-
solution). Note that this definition uses the fact that equation (i) satisfies degenerate ellipticity.
For later use let us also define that « is a strict viscosity subsolution if for all twice contin-
uously differentiable functions ¢ such that u — ¢ attains a local maximum at xo € R”, then
H (x0, ¢ (x0), Dp(x0). D (x0)) < —1 < 0.

We apply the modification to Theorem 3.3 described in Section 5.C in CIL,'" a comparison
result, which implies uniqueness of the viscosity solution. We re-state here Theorem 3.3 in CIL:

Theorem (Theorem 3.3 in CIL). Let 2 be a bounded open space of RN, 32 be the boundary of

QQ=QUaQ, and H :R" x R x R" x §,(R) — R be a continuous function satisfying

18 See also Gksendal and Reikvam (1998) for the analysis of viscosity solutions in optimal stopping problems.
19" See also Barles (1997), p. 38.
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(C1) There exists a y > 0 such that y(r —s) < H(x,r, p, X) — H(x,s, p, X) for r = s,
x, p. X) e @ xR" x §,(R),

(C2) H satisfies degenerate ellipticity,

and

(C3) H satisfies the following structure condition for any « > 0. There is a continuous function
w: [0, 00) — [0, 00), safisfying w(0) = 0 such that

Hy,rax—y).,Y)-HX rax—y),X) <ow(alx— y\z +x—y|) (111)
when x,y € (0, 2, reR XY € Su(R) and

I 0 X 0 I I .
—30((0 ])5(0 _Y)53a(_] 1). (1v)

Let u be an upper semicontinuous function and a subsolution of H =0 in 2, v be a lower
semicontinuous function and a supersolution of H =0, and u < v on Q2. Then u < v in Q.

Note that if we know that the solution is continuous and is unique on the boundary of €,
we can apply this theorem to two any possible solutions « and v to show that u < v and v < u,
to obtain # = v. We state this condition of uniqueness at the boundary of €2 as the following
condition:

(C4) In the boundary of (0, 1)? the viscosity solution is unique.

Condition (C1) is not satisfied in our case, as we only have that H is nondecreasing in u, so
we have to modify this condition as discussed in Section 5.C in CIL.>” We discuss below how to
make this modification in our case.

Condition (C2) is satisfied as shown above.

To check condition (C3) note that, as discussed in CIL, p. 20, the max operation of functions
satisfying the structure condition with a common e, satisfies the structure condition. The part
g(x) + V(xj) satisfies directly the structure condition. So, the only remaining part is to show

Ami)”
that _(Ei)_
condition (iii) becomes

xiz(l — x,-)ZVx‘.xj (x) — ¢; satisfies the structure condition. In that case the structure

(Am)*
S 1 =) Xi =y (1 =y il S olalx —yIP + X =y

Note that starting from the left hand side of the equation above we can obtain

Am; 2
( 5 2) L (1 = xi)* Xii — y7 (1 — y)*Yii]
o
3
_ (Am)? - X1 —x)? xiyi (L= x) (1= yi) [Xn' 0 }
20} X yi(l = x)(1 = yi) Y21 —y;)? 0 Y

(A7) X2 (1 —xj)? xiyvi(l—x) (1= yp) [ I —1}
< 3a trace 5 )
20} xiyi(l=xi)(1—yi) yi(l=yi) -1 1

20 Note that Condition (C1) is satisfied if we add discounting to the model. A possible argument is then also to add
discounting to the model, and make the discount rate go to zero.
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(Am;)?

=3
20»2

al (i (1 —x;) — yi (1 — yp)]?

Ami)?
= ( n)(z__i)2s

.'

where the first inequality comes from equation (iv), and the second inequality is obtained by

noting that [x; (1 — x;) — v;(1 — y) > = (xi — v)>(1 —x; — y;)?> and |1 — x; — y;| < [ for all
2

(x;. vi) € (0, 1)2. Then, with w(r) = 3r max; %2)— condition (iii) is satisfied.

To check condition (C4), note that forn = 1, at the boundary we have the value function equal
to max{mg, } if x =0, and equal to max{mg, 7} if x = |. Then, applying the result we have a
unique viscosity solution, and therefore the value function, for the case of n = |. Suppose now
that we have a unique viscosity solution, which is also the value function, for the case in which
n =k > 1. Then, the value function at the boundary is known for the case of n =k 4 1. To see
this, let Vk(xk) be the value function when » = k and the beliefs for those & alternatives are x*.
Consider now the value function at the boundary when n = k& + 1. We have that if x;. | =0,
VL (k1) = max{VE(xb), Ty ) and. if xgyp = 1. VEH (xFH) = max{(VE(xk), 75 0).

Finally, we have to adjust condition (C1) in Theorem 3.3 in CIL to the case in which there is
no strict monotonicity (following Section 5.C in CIL). The uniqueness result is obtained through
a comparison of a subsolution and supersolution of (i) in (0, 1). Suppose that V is a subsolution
of (i) and that W is a supersolution of (i). Set K = —max{m |, 72, mg} — | which we know to be
strictly below the lower bound of V(x). Then V,(x) = (1 — )V (X) + 1K is astrict subsolution
of (i) in our case for p € (0, 1], as (i) is convex in (u, Du, Dzu) in our case, and K, a constant,
is a strict subsolution to (i). This implies that H(x, V,,(x), DV, (x), D? V,(x)) < —n for some
n > 0.

We can then follow the proof of Theorem 3.3 in CIL along the same lines. The proof is
by contradiction. Suppose that there is a z € (0, 1)% such that V(z) > W(z). Then, there is a
w € (0, 1) such that V,,(z) > W(z). Defining (X,y) = argmaxyy V. (x) — W(Y) —a/2|x — y|?
for & > 0, we have that V), (X) > W (¥) as there is a z € (0, 1)2 such that V,(z) = W(z). Then,
there is a « € (0, 1) such that V,(z) > W(z). Then, because V), is a strict subsolution and W is
a supersolution, we know that there is a » such that, moditying (3.15) in CIL,

0<n=HF.WF.a«X-7),Y)—HEX V,X aX=7). X)
SHYWE.«X=Y.Y)-HXWEF «X-Y). X)
<w@R-§’+ K-

where the third inequality come from the function H in (i) being nondecreasing in u, and the

fourth inequality comes from the structure condition (iii). As in CIL (p. 18), we can then make
o — 00, have w (X —¥]? + [X —¥]) — 0. which yields the contradiction.

Analysis of the single alternative case For the single-alternative case, we denote the value func-
tion as U (x), so V(x) is used only for n = 2, to make the presentation clearer.

To solve for the value function U (x), let us consider three cases. In the first case, when x <
x <X, equation (8) is reduced to the following second-order ordinary difterential equation (ODE)

(An)?
202 *
The general solution to this ODE is

— )" (x) —c=
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ol 1 —x

Ul(x) ’
X) =
(Am)?
where C; and C; are two undetermined constants. In the second case, when x < x, we have
U (x) = mp. Finally, in the third case, when x > X, we have U(x) = Ax - x. To summarize the
three cases, we have the following expression for the value function

(]—2x)ln( )+C|_¥+C2, (v)

0, X <x

202¢ I —x _ .
Ulx)= (1=2)In| —— )+ Cix+Cr, x<x=<Xx. (vi)

(Am)? X

A - x, X >X

To complete the computation of the optimal policy, we need a set of boundary conditions to de-
termine x, X, C| and Cs. In fact, U (x) has to be continuous and smooth at x and x, which implies
value matching and smooth pasting conditions. Value matching and smooth pasting are standard
conditions for optimal stopping problems of diffusion processes. See, e.g.. Dixit (1993), Dixit
and Pindyck (1994), Chapter 9.1 of Peskir and Shiryaev (2006) and Strulovici and Szydlowski
(2015) for more discussion. Particularly, in the single alternative case, the value matching and
smooth pasting conditions are,

UxT)=U(x"),
UrhH=Ux),
U'txt)y=U"(x"),
U'chH=U'x).

We can determine x, X, C1 and C; by substituting U/ (x) into the four equations above, which
leads to (9) and (10).

Smooth pasting conditions at the adoption boundary and derivation of (16) and (17) We provide
an intuitive argument for the smooth-pasting condition at the adoption boundary of alternative 1.
Consider a DM spending time dt in learning alternative 1 at the boundary (f(xg),xz). The
corresponding belief update dx| can be either positive or negative, with equal odds. If dx; > 0,
the DM will adopt alternative 1 immediately; otherwise if dx; < 0, the DM will stay in the
market learning more information on alternative 1. Therefore, the DM’s expected payoff given
that he will spend dr to learn alternative 1 would be:

— 1 —
Vi (X(Xz).xz) =—cdt + 3 [Arr (X(xz) + Eldx|dx; > 0]) -Q—i]

+ %E [V(X(x2) +dx1, x2)ldx1 < 0]

— Amr— — d —
=V (X, x2) + X [1 = X)) S [Ar = Vi, (a2, 22)]
+o(Vdr),

where we have used that (1) E[dW|dW > 0] = —E[dW|dW < 0] = g—fz for {W ()|t = 0} being

a standard Brownian motion; (2) the value matching condition V (Y(xz). xz) = Az X (x2).
On the other hand, let us consider a DM who spends dr in learning alternative 2 at the
boundary (X (x2), xz). If the resulting belief update dx, = 0, the DM’s adoption threshold for
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alternative 1 increases, so he will continue to learn alternative 1; otherwise, if dx; < 0, the DM
will adopt alternative | immediately. Therefore, the DM’s expected payoff given that he will
spend dt to learn alternative 2 would be:

_ 1 — 1 —
Vo (X(x2), x2) = —edt + 3 [ATX(xp) + x|+ EE[V(X(xz). x3 +dxa)|dxs < 0]

_ A ar
=V (X(x2), 12) — 2—:)(2 (1 —xﬂﬂlﬁsz (X(x2), x2) + 0(Nd1).

The DM chooses which alternative to learn on based on expected payoff maximization. By
definition, his value function should satisfy:

V (X (x2), x2) = max{Vy (X (x2). x2) . V2 (X (x2), x2)}.

By substituting the expression of Vj (?(xz). xz) and V (Y(xg), x2) into the above equation, we
have

max{X (x2) [1 = X (x2)] [A7m = Vi, (X (x2), x2)]. 22 (1 = x2) Vi, (X (x2). x2)} = 0.

Meanwhile, by taking derivative of both sides of the value matching condition V (Y(xg), xg) =
A X (xs) with respect to xp, we have

X (x2) [Ar = Vi (X(x2), x2)] = Vi (X (x2), 32) .

Combining the above two equations, we obtain that V,, (Y(xg),xg) = Ax and V,, (X (x>),
x2) = 0, which are the smooth pasting conditions at the adoption boundary of alternative 1.
It is straightforward to derive (16) and (17) based on the value matching and smooth pasting
conditions.

Redundancy of one smoothness condition As shown in (13), the general solution to the parabolic
PDE in (12) can be written as the following:

Vixi, x2) = Ao(x1) + Ar(x2)x1 + A2(x2),

1—xq
1

2
25°¢

where Ag(x)) = (A—n)_;(l — 2x1)ln(

). The value matching and smooth pasting conditions

at the adoption boundary of alternative 1, x; = Y(xz) are:

Ap(X (x2)) + A1 (x2) X (x2) + Ax(x2) = AT X (x2) + 77, (vii)
AY(X(x2)) + A1 (x2) = A, (viii)
Al (x2)X (x2) + Ab(x2) =0. (ix)

We will show that given (vii) and (viii). (ix) is redundant. In fact, taking derivative of both sides
of (viii) with respect to x3, we have,

AKX (o)X (12) + A} (1) X (x2) + A1 (x2) X (x2) + Ab(x2) = AT X (x2).

[An(X(x2)) + A1 (x2) — Am| X (x2) + A} (x2) X (x2) + A (x2) = 0.

By substituting (viii) to the above equation, we get (ix). O
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Proof of Lemma 2: existence and uniqueness of a solution to the ODE boundary value
problem in (21), (22), and (23). Denote the right hand sides of (21) and (22) as f{(x, X(x)) and

. =, . T\ _ =1 {_ (An)? —1 _ :
f2(x. X (x)), respectively. As X (5) = P L1l )~ &=1(0) = 1/2, we have that there exists

402¢
g > O such that f| is Lipschitz continuous on X and continuous on x forall x € [1/2—&, 1/2] and
that f> is Lipschitz continuous on X and continuous on x forall x € [1/2, 1/2+¢]. Note also that
X (-) is continuous, and continuously differentiable at x = 1/2. By applying the Picard—Lindel&f
theorem, we have that the solution to the boundary value problems in (21), (22), and (23) exists
uniquely in the neighborhood of x = 1/2.

Our objective is to show that the solution exists uniquely for all x € (x*, 1). Let us consider
the boundary value problem of (22) and (23) first, and we will prove that the solution exists
uniquely in [1/2, 1) and satisfies that X (x) > x for x € [1/2, 1). To prove this, we can apply the
Picard-Lindelof theorem iteratively for [1/2, z) for any z € (1/2, 1). Consequently, there are two
possibilities.

(1) X(x) > x for x €[1/2, z). This implies that f> is Lipschitz continuous on X and continu-
ous on x for all x € [1/2, z). In this case, we will be able to cover the entire interval of [1/2, z)
by applying Picard-Lindel6f theorem iteratively, because there is a positive lower bound on the
neighborhood size &y for each iteration. Particularly, g9 > %max{'l/M. 1/L}, where M is the
maximum absolute value of the slope of f; with respect to x € [1/2,z) and X € (x, 1). and L
is the Lipschitz constant of f; with respect to X. For any z € (1/2, 1), and given X (x) > x, we
can show that both M and L are positive and finite, so &¢ is positive and finite. This implies that
by applying Picard-Lindelof theorem iteratively, we are able to show that there exists a unique
solution in [1/2, 2).

(2) There exists x” € [1/2, z) such that X (x") < x". We will show that this is impossible. First,
let us define £ as the infimum of all x” that satisfies that X (x) < x’. By definition, we must have
that X (x) > x for x € [1/2,x). Moreover, lim,_, ;- X (x) = £: otherwise, the solution will exist
uniquely at £, and X(%) > %. Meanwhile, by (22), we have that lim,_, ;- Y’(x) = +00. This
implies that there exists € > 0, such that Y/(x) > | for x € [x — &, X). As a result, we have,

X
lim X(x) —f=X(f—6)— (f—e) + ] (X' (x) — 1)dx > 0,
X—X iis
which contradicts the fact that lim, ;- X (x) = *.

So far, we have proved that there exists a unique solution X (x) to (22) and (23) and X (x) > x
for all x € [1/2,z) for Yz € (1/2,1). We can let z go to one, and this completes the proof.
Following a similar analysis, we can show that there exists a unique solution X(x) to the other
boundary value problem of (21) and (23) and X >1—x>xforxe(x* 1/2]. Notice that as
X goes to x¥, Y('x) goes to 1 — x*, and the denominator of (21) goes to zero. Moreover, the
numerator of (21) also goes to zero. By L’Hopital’s rule, we can show that f’(x*) =1.

Smoothness of X (x) is easy to verify by taking derivatives for x € (x*, 1/2) and x € (1/2, 1),
and it is also straightforward to verify that at x = 1/2. X (x) is smooth. Therefore. X (x) is smooth
inx e (x*1).

Let us prove the monotonicity of X (x). By (18) and the monotonicity of V (x|, x2), we have
that

aVi(xy,x2) _ 202¢ (f(xg) —.¥1)Y,(xz)
v (AT R(0)2 (1 - K ()

>0, forx <x <x; < X(x2),
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which implies Y’(x) >0 for x €[1/2,1). Similarly, by (19) and the monotonicity of V (x1, x7),
we can show that Y/(x) > 0 for x € (x*, 1/2]. Now let us prove X(17) = 1. In fact, we have
proved that X (x) > x for any x € [1/2, 1) and we know that X (x) < 1 because it is the adoption
boundary. When x goes to one, we then obtain that X(1)=1. O

Theorem Al. Consider the decision maker’s optimal learning problem in (6) with two symmetric
alternatives. When the value of the outside option is relatively low, i.e., xo < 0, the value function
V(x1,x2) is given by

Vixy, x2) =

—2‘”2(1 —24)) 1n(1 — ) g (12X
(Am) x| X (x2)

B 202¢ 1 =2X(x2) X(x2) — x;
(A7) 1 -X(x2)  X(x2)

202 1 —x2 1=X(1=x)

—— (1 —=2xp) |1 1 <. .
a2 U["( © )+n( X(1—x1) ﬂ
202¢ 1=2X(1—x) 1 =X(1 —x1) —x2

(AT)? 1=X(1—x) X(1—x1)

vm<l—x<l—x<X(—x)

20°c (1 24y) ln(l_xz)—ln I:X(xl) (x)
(Am)? x2 X (x1)

_ 20%¢ 1=2X(x1) X(x1) — x2
(AT)? 1=X(x1)  X(x1)

20%c (121 (l—xl)_H 1 =X(1=x3)
ar2t T T "X
20%¢ 1=2X(1=x2) 1 = X(1 —x2) — x;

(AT)? 1 —X(1 —x3) X(1—x2)

M =l—xn=<l—x <X(1-x)

+A7-x;, l—x;<x2<x <X(x2)

+ Am - Xy,

+AT-x2, 1—x2<x;<x2 < X(xp)

+ Am - xa,

Am -max{xy, x2}, otherwise,

where f(x) is determined by the two boundary value problems in (21), (22) and (23).

Proof of Theorem Al. According to the way we constructed the solution, the only remaining
thing in need of a proof is the condition in (24). In fact, given x| +x2 > 1 and x < x; < X (x2),
V(x1,x2) is given by (18). There are two cases to consider: 1/2 < x; < x} < X(xy) and 1/2 <
1 —x2 < x| < X(x2). The proofs are very similar for the two cases. Below, we only provide the
proof for the first case with 1/2 <x < x1 < X (x2), where X (x) is determined by the boundary
value problem in (22) and (23).

Let us simplify the condition in equation (24) first. By taking partial derivative with respect to
x2 on both sides of (18), we have that,
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202 (X(x2) —xDX (x2)
(A7)? X(x2)2(1 = X (x2))?

_ 2co? X(x2) —x; — (Am)3
T (Am)? X(x2) — x2 (CD (X(X)) — P+ 202¢ ) ’

ng(x]s)@) =

where the second equality is by using (22). By taking the partial derivative with respect to x, and
using (21) again, we have that,

202 [X(xy) — |
Vigr (X1, x2) = co |: (x2) — x

(Am)? X(x2) —x2 x%(l —x2)?

)X ()2 (1=X()) /[ 332
Iz X) ( . (r2)) (CI)(X(x))—(D(x)-&-(ATZ) ) }
(X (x2) —x2) 2o7c

Using this expression of Vy,y, (x1, x2). the condition in (24) can be written as

T (rn) — o 2(] — 2T o2 (1 — X (x)) 342

X(x2) — xi n (x1 —x2)x5(1 _xz) X(Jtz)1 (I —X(x) (q) (X)) — o) + (An;) )

X(x2) —x2 (X(x2) —x2) 202¢
<1

By multiplying (Y(xg) — xz) and rearranging, the inequality above is equivalent to,
2 V2N ()2 Y 2 3y 2
x5 (1 —x2)7X (x2)7 (1 — X(x2) - (Am)
(x] —x2) | =2 — ( - ) ¢(X(,x))—q>(x)+ﬁ —1|=<o0.
(X(x2) —x2) ae

Because x| > x7, this is equivalent to

(1 — 02X (02 (1 - X))
(X(x2) — Xz)2

which is equivalent to

3y 2
(Am) ) <1,

((D (X(X)) — e+ 202¢

x2(1 = x2) X (x2) (1 — X(x2))
X(x2) —x2

3
(cp (X () — b(x) + (ZAG—?) =1,

which in turn, is equivalent to

(xi)

(Anﬁ) X(x2) — x2

H(xy) = x2(1 — O (X(x2)) — P(x - = —
(x2) = xa( xz)( (X(x2)) (x2) + 7o ls X (1 —X(52)

Notice that the condition in (xi) is in terms of x2 solely. To ensure (24) for any x| and x> that
satisfy 1/2 <xp <xp < X(xa), we only need to ensure (xi) for any x; € [1/2, 1).

Let us define m = (Axw)?/(do0). By (23), we can calculate that H(1/2) = m/4 —
(@~ 1(=m) — 1/2)/[®@~ (=m)(1 — @' (—m))]. Using the definition of ®(-), it is not dif-
ficult to show that H(1/2) < 0. Now, let us prove (xi) by contradiction. Suppose it does
not hold for some x3 € [1/2,1). Since H(x) is continuous, this implies that there exists
X3 = minj <y, {x2|H(x2) = 0} such that H'(x3) > 0. By taking derivative on both sides
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of (xi), and using (21) as well as H(x3) =0, we can simplify and get the following expres-
sion:

3
H'(x3)=-2 ((I) (X(x3)) — ®(x3) + (a 2 ) (x5 + X(x3) —1) > 0.

However, from the proof of Lemma 2, we know that ® (Y(xé‘)) (I)(xik) + =5 (A”) > 0, and

x5 +Y(x3)—1>2x5— 1> 0. This is a contradiction to the inequality above, Wh1ch 1mplies that
(xi) holds forany x» € [1/2,1). O

Construction of the belief updating process under the optimal learning strategy Consider the
case of Theorem Al when the value of the outside option is relatively low. We have already
divided the belief space of xj-x; into six regions corresponding to the DM’s five choices of
action. Updating the beliefs of both alternatives ceases when entering the regions where it is
optimal to adopt 1, or adopt 2. Therefore, we only need to construct the belief updating process
for the regions where it is optimal to learn 1 or learn 2. Equation (7) can be equivalently rewritten
as the following:

AT
dx;(t) = xx(f)[ —x; ()] 1y, (x1(8). x2(e)) {[m; —7Tx; ()] dt + odW;(1)}, (xii)

where 17, (¥ (f), x2(t)) is an indicator function. It is equal to one when (x1(¢), x2(1)) € L;. 1.e.,
when the DM’s beliefs are in the region where it is optimal to learn alternative /; it takes zero oth-
erwise. We have L| = {xl,x2|] —x1<xm<x;<X()orx; <l—x<1-—x <X(l —xz}
and L, = {xl,x2\x2 <l—xj<l—xy<X(l—xporl —x3<x; <x2 <Y(x1)}.21 Further-
more, {W;(z); t = 0} is a standard Brownian motion, and Wy(-) is independent of Wa(-).

It is interesting to see what happens to the stochastic process when we are at x| = x or at
x1 +x7 = 1. Let us consider the case where we start at xj, x > 1/2. Given the optimal learning
strategies, let us investigate what happens to min{x; (), x2(¢)} conditional on the DM’s belief
bemg in Ly or Ly and xy,x3 > 1/2. In terms of the SDE in (xii), let us define @;(x;(r)) =
—;r’cz Ol — x;i(t)][;i — 7xi(1)]. fori = 1,2, and b(x, (1) = —x,(t)[] — x;(r)] such that we
can write equation (xii) as

dxi (1) =1L, (x1 (1), x2(0))[@ (xi ()t + b(xi(1)dWi ()] (i =1,2).

The particular case where a1 = @>, and b are constants is considered in Fernholz et al. (2013),
which presents pathwise unique solutions for x| (¢) and x> (7).

To see the stochastic behavior of min{x(r), x2(¢)}, we follow the presentation in Fernholz
et al. (2013), p. 357, with the adjustments that @ (x| (?)) # a2(x1(¢)), and @; (x; (1)) for i =1, 2,
and 3(.“- (1)) are bounded and continuous functions of x;(¢), and where x;(r) and x»(r) are
unique-in-distribution solutions to (xii) for i = 1, 2. Let us define Y (r) = x1(¢) — x2(¢). Then
we can obtain

t t

Y(r)=Y(0) "F/Hl (X1 Ay (s)=01ds — fEZ(JQ(S))jl[Y(s)-:O]dS + W), (xiii)
0 0

21" This sets up the model such that in the points of indifference alternative | is the one searched. This set-up with
one alternative moving is as in Fernholz et al. (2013). Alternatively, one could have that in the points of indifference
alternative 2 is the one moving, or that either alternative is searched with equal probability.
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where W (1) = [ b(x1 () Ly 5)201d W1(s) — [y D(x2(5)) L1y (s5) <01d Wa(s). We can also obtain
t t

x1(t) +x2(t) =X1(0)+xz(0)+f271 (Xl(S))Jl[Y(s)EO]dS+fEz(xz(S))ﬂ[Y(n<O]dS+W(f),
0 0
(xiv)

where W(t) = [y b0 () Iy )=01d Wils) + fy b(x2() 11y (s)<01d Wa(s). The processes W (1)
and W (r) are continuous martingales, and then Y (7) is a semimartingale. Using the definitions
W (t) and W (t) we can also obtain

f
W) = / sgn(Y ()dW(s), (xv)
0
where the signum function is defined as sgn(y) = 1j0,00) () — L(—00,0 ().
Note now that

t

Y ()| = \Y(O)I-I-/SgH(Y(S))dY(S)+2LY(I) (xvi)
0

by Tanaka’s formula (Karatzas and Shreve 1991, p. 205) applied to semimartingales, and where
LY(t) is the local time of Y(r) at Y(t) = 0, which is defined as LY(r) =
limg o ﬁ fé Lio<y(s)<e)ds. Substituting the derivative of (xiii) and (xv) into (xvi) we can ob-
tain

t t
Y (D) =[Y(O)]|+ jal (x1 (s Tpy (5)=01ds +f52(xz(8))11[1’(s)<0]d5 + W) +2LY ().
0 0
(xvil)
Noting that min{x(#), x2()} = 1/2[x1(2) + x2(¢) — |x1 () — x2(f)]], we can then use (xiv)
and (xvii) to obtain

min{x (1), x2(r)} = min{x (0), x2(0)} — LY (1),

which shows that min{x (), x2(¢)}, conditional on the DM being in the region where it is optimal
to learn more information and xy, x2 > 1/2, falls over time under the optimal learning strategy.22

By the same argument we can also look at the evolution of the stochastic process in the regions
L; where x| < 1/2 and/or x; < 1/2. For example, for the case of x|, x < 1/2, the evolution close
to x1(t) = x2(¢) has to do with the max{x(z), x2(f)} and we can obtain that, given the optimal
learning in those regions, max{x(f), x2(¢)} = max{x;(0), x2(0)} + LY (t). increases over time. In
the region where x; > x2 and x2 < /2, we can obtain that max{x2, | — x;} increases over time,
and in the region where x; > x| and x; < 1/2, we can obtain that max{x, | — x3} increases over
time.

In those all these regions in L| and L, the process evolves towards x| = x = 1/2. Once x| =
x2 = 1/2 is reached the DM is indifferent on which alternative to gather information on. Given

22 Note that local time appears on the process min{x (t), x2(¢)} but it does not appear in the formulation of the processes
x1(f) and x2 (1), in (7). This is exactly as in, for example, Mandelbaum et al. (1990) and Fernholz et al. (2013).
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our definition of the optimal policy, where in case of indifference the DM gathers information
on alternative I, once the process reaches x; = x2 = 1/2 the DM only gathers information on
alternative | going forward.

Proof of Proposition 1: comparative statics. Let us first show that V' (x1, x7) decreases with c.
This is straightforward by a simple argument. Consider ¢’ > ¢”. Under learning cost ¢”, the DM
can always replicate the optimal strategy under ¢” but now incurs less learning cost.

Next, we prove that X (x) decreases with c. In fact, let us consider any x; and x; satisfying
1 —x1 <x2 <x1 < X(x2). By (18), we have,

AV(x;,x2) Vxi,x2)—Amw-x; 202 X(x2) — xy X (x2)
— = 5 — . s—— =<0.
ac c (AJT) X(x2)2 (1 _ X(xg)) dc

Since V(x1,x2) = Anm S X1, the inequality above implies that Y(xz)/ac < 0 for Vx; € [x*, 1].
This further implies that ¥ (x)/dc <0 for Vx € [0, 1].
Lastly, notice that the HIB equation (8) can be equivalently written as,

{(Arri)z

2
2o7¢

max { max xiz(l —x,-)zfix,.x, (x) — 1} ,e(x) — V(X)} =0,
1<i<n

so only o ?¢ is identified in the model. Therefore, the comparative statics with respect to o will
be the same with that withc. 0O

Proof of Lemma 4. Let us prove the condition in (34) first. In fact, following the same deriva-
tion, we can show that the condition in (33) is equivalent to that in (xi). By using (31), (xi) can
be equivalently written as (34).

Now we prove the existence of xj from inequality (xi). To guarantee inequality (xi) for any
x2 € [x, 1], we need

max H(x2) <0. (xviii)
x<x=l

Note that H(x) = —(x —x)/[x(l —X)] < 0 and H (x) is continuous, so the inequality (xviii) will
be violated if and only if there exists x3 = min, <y, <1{x2|H (x2) = 0}, such that H’(xz‘) > 0. By
using (31) and the condition that H (x3) = 0, we can simplify and get the following expression,

_ An)3 _
H (x}) =2 (cb (X)) — dxd) + %) (x5 + X — 1).

From Lemma 3, we know that @ (Y(x;)) - o(x)) + %’31—3 > 0. Let us define h(x) = x +
X (x) — 1. Therefore, the equality above implies that

H'(x3) >0 & h(x3) <0.
Meanwhile, from (9) and (10), it is easy to show that

x+x=lex=1/2.

Therefore, when xg > 1/2, h(x) =x + X — | = 0. According to Lemma 3, we also know that
h(x) is strictly increasing. This implies that when xg > 1/2, h(x) = 0 for any x € [x, I]. This in
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turn implies that /(x3) > 0, and inequality (xviii) must hold. Therefore, if xj exists, it must be
less than 1/2.
Next, we will prove the existence of xa‘, ‘We also note that

dh(x3)  3X(x) —r .1dx;
dmo - Jmo x=x3 + |:1 +X (xz)] d_j'ro
_aX(x) 14X dH AX(x)
- amy  lx=x} H’(.‘C;) dx x=x3 damp  lx=x}
e (X —x)? + 2050 —xD][X D) (1 = X (xd) +x5(1 —x3)]
2h(x3) (X(x3) — x3) X(x3) (1 — X (x3))
X (x)
X
dmo x=x3

As shown in Proposition 2, 8X (x) /87 > 0. so dh(x3)/dmg > 0 when h(x}) < 0. Consider x|, >
x. If under x{. inequality (xviii) is violated. then there exists x3 € [x, 1] such that H'(x}) > 0,
which implies that h(x’z") < 0, which in turn implies that dh (x;)/a’rro > 0. This implies that under
x( < x;). h(x}) will get even smaller, and inequality (xviii) will also be violated. In summary, to
guarantee inequality (xviii), we must have xp > xa‘ for some xé‘.

The threshold xS‘ can be obtained as the xq that makes max,, H (x2) = 0, which is a function
of xg as X () is a function of both x and X and both x and X are a function of xg. O
Theorem A2. Consider the decision maker’s optimal learning problem in (6) with two symmetric
alternatives. When the value of the outside option is relatively high, i.e., xo > xg, the value
function V (x1, x7) is given by

202 [ /11— 1-X ]

=T (=2 111( xl)—ln 1= X(a)

(Am) X1 X(x2)
20%¢ 1 —2X(x2) X(x2) — —

_ T _(XZ) (iz) al Am-xy, max{xz,x} <x; < X(x2)
(Am)? 1 -X(x2)  X(x2)

Vixix)=1 252 - =X\ |

7 (1= 2xy) ln( ”)—m 1 Xt

(Am) i x2 X(x1) /|
20%¢ 1 —2X(x1) X(x1) — —

- (2 _(H) (i]) 2 + Am-xp, max{x;,x} <x < X(xp)
(Am)” 1—=X(x1)  X(xp)

A -max{xy, x2}, otherwise,

(xix)

Khere X (x) is determined by the boundary value problem in (31) and (32) for x € [x, 1], and
X(x) =X for x €[0, x].

Proof of Proposition 2: comparative statics. We first show the comparative statics with re-
spect to c. Let us initially show that x increases with c. In fact, by taking derivative with respect
to ¢ on both sides of (9) and (10) and combining the two resulting equations to cancel dx/dc, we
have
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X
de T —x 202¢2

To show dx/dc > 0. we only need Az -X > 0. In fact, let us consider any x € (x,X). First,
we know U (x) = 0, because the DM can always take the outside option and get zero. Also,
by following the optimal strategy, the DM ends up either adopting the alternative, or taking the
outside option, after paying the learning cost. so we have

Ux)=Px)Anr - X+ (1 = P(x))Amr-x —cT(x) =0,

where P(x) is the probability that the DM ends up adopting the alternative given his current
posterior belief as x. and T (x) is the expected time spent on learning. By the inequality above
and x > x, we know that Ar - X > 0. Therefore, dx/dc > 0.

The comparative statics of X (x) and V (x1, x2) with respect to ¢ can be similarly proved as
in the proof of Proposition 1. Similarly, only o2¢ is identified in the model. so the comparative
statics with respect to o is the same with that of c.

Next, we prove the comparative statics with respect to 7. Let us first show that 3V (x|, x2)/
om < L. In fact, given A fixed, consider an increase of ¥ by Ax > 0. If the outside option g
also increased A7, then obviously, V (x1, x2) would be shifted upward by exactly A7. Since the
outside option is kept unchanged, V (xy, x») must increase no more than A7w. This implies that
3V (x1,x2)/d7 < 1. Consider any x| and x, satisfying x» < x| < X(x2) and x| > x. By (xix).
we have,

V(xi.x)) - 20% X(x2)—xi X(x2) -
0T (An)zy(xz)z(l_y(xz)f or T

This implies that 39X (x2)/07 < 0 for x» € [0, 1]. Because X (x7) =X for xs € [0, x]. we have
dax /o < 0. By taking derivative with respect to 7 on both sides of (10), we have

0x _ x2(1—x)? 9% _
T X1 —x)2 07

Finally, we prove the comparative statics with respect to 7rg. Obviously, V (x1, x2) increases with

the outside option g, so we have,

OV (x1.x2) _ 202c X(x2) — x X (x) -~ 0
BE (Am)? y(xz)z(l_y(m)l amy

This implies that Bf(x)/ayro > 0 for x € [0, 1], which in turn implies that dx /9w = 0. So we
also have

. 201 _ 2 o+
dx _x7(l—x)” 9%

= = > 0
dmo  x2(1 —x)% dmo
Theorem A3. Consider two symmetric alternatives. Under the optimal learning strategy, given
his current posterior beliefs as (x1, x2), a decision maker’s probability of adopting alternative |
is Py(x1, x2), where if xo <0,
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Pi(x1,x2)
lX(X_Z)_'——xl_zxzi 1/25»"25}515?()?)
2 X(x)—x

1 X(x2) —x effmdé
2X(xp) +x—1 ’

1 X(1—x1)+2x; —x2 — 1

2 X(1—xp)+x —1
IXA—x)+x—1 f' e
2 X(I—X])—xl

= l_lX(XI)+X2—ZX1

1/2<1—x <x1 < X(x2)

12<l—x1<1—x; SY(] —X1)

12<x <1 —x2 <X(1—x1)

1/2<x) <x2 < X(x))

’

2 X(xp) —x
| X —xn S ekt _
I X=n Jy 5ot 1/2<1—x <x2<X(x)
2X () +ar— |

1 X(1—x2) +2x —x; — 1

2 Y(l—xo)-l—x‘z—l
1X(1 —x2)+x;—1 f} - ﬁdé
2 X(1 —x2) —x2 ‘

1/2<1—x2<1—x SY(] —X2)

12<x<1—x1=X(1—x2)

Lxy=x55 otherwise,
(xx)
and if xo = x;3,
Pi(x1,x2)
0, x| <xorxy > X(xp)
1Y _ o _ng _
—M[l—e le Xms] x <x; <x < X(x))
2 X(x1) —x -

X <Xy <X <X (x2) (xx1)

I £ _ Xy 2dE
S N ek B 1X(x) —x1 [1 _ )k Y(s)s],
X(x2)—x2  2X(x2) —x2

X —X —
—_—, x<xy<xandx) <x
X —Xx - -
1, x1 = X(x2).

Proof of Theorem A3: adoption likelihood. Let us consider the case with xo > xj first. When
X1 > X(x2). the DM adopts alternative 1 immediately, so Pj(xj,x2) = 1. When x| <x or x >
X(xl) the DM will never adopt alternative 1. therefore Pj(xy, x2) = 0. Otherwise when x <
x| < X(xz) and x> < X(xl) there are two cases, depending on the value of x».

In the first case with xp < x, the DM considers alternative | only. Given his current belief x,
he will continue learning until his belief equals either x or X. According to the Optional Stopping
Theorem, we have x| = P (x|, x2)x + [l — P(xy, x2)] x, therefore

™

x| —
—X

Pi(x1,x2) =

, X<xI=x,x<x

= \
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In the second case, x3 > x. When x| = x3, the DM keeps learning alternative 1 until his belief
reaches either X (x2) or x2. Let us define the probability of reaching X (x2) as g1 (x1,x2). Then
by invoking the Optional Stopping Theorem, we similarly get

X1 — X2

QI(XI,X2)=m-

According to symmetry, the probability of reaching X(x1). starting from (xp, x2) with x| < x7,
would be ¢1(x2, x1). Let us further define Pp(x) as the probability of taking the outside option,
given the DM’s current beliefs as (x, x). Let us consider an infinitesimal learning on alternative
| at (x, x), with belief update as dx. By conditioning on the sign of d.x. we have

Po(x) = Pr[outside option|(x, x)]

1 |
= 5 Prfoutside option|(x, x), dx = 0] + 3 Prloutside option|(x, x), dx < 0]

1 |
=3 [1 —gi(x +|dx]|, x)] Po(x) + 3 (I —q1(x,x — |dx|)] Po(x — |dx])

gy ldxl T, (0qi(x1,x2)  dg1(x1,x2)
= Fol) 2 [Po(x) ( dx2 ax1 )

where the last equality is obtained by doing a Taylor expansion of g1 (x + |dx]|,x), g1 (x,x —
|dx|), and Py(x — |dx|). By canceling out Py(x), dividing by dx and taking limit of dx going to
zero for the equation above, we have

P(x) _ (aql(xl.xz) _ aql(m,xz))
Po(x)

Po(X)] +o(dx),

X|=X2=X

2

X]=Xxp=x _Y(x) —X .

dxo x|

Combining the differential equation above with the initial condition Py(x) = |. we can solve
Py(x) as

X 2
- Y(E)—Eds

Po(x)=e¢e

Starting from (xy, x2) with x| > x3, the DM learEs information on alternative 1. With proba-
bility g1 (x1, x2). he reaches the adoption boundary X (x2), and immediately adopts alternative 1.

With probability 1 — g (x1, x2), he reaches x. Then starting from (x2, x2), he eventually adopts
alternative | with probability 1/2[1 — Py(x;)]. Therefore, we have

1 _
Pi(x1,x2) =q1(x1, x2) +[1 —q1(x1, x2)] 5[1 — Py(x2)], x <xx <xp < X(x2).

Similarly, starting from (x|, x2) with x; < x3, the DM learns information on alternative 2.
With probability | — g1 (x2, x1), he reaches x|. upon which, he eventually adopts alternative |
with probability 1/2[1 — Py(x)].

1 —
Pi(xp,x2) =[1 —q1(x2, x1)] 5[1 — Po(x))], x <xp <2 < X(xp).

Now, let us consider the other case with xg < 0. Obviously, in the region Al, Pj(xy, x7) =1,
and in the region A2, P (x1,x2) =0. -

Consider the region L1, there are two cases. In the first case, 1/2 <x; <x; < X(x2), the DM

keeps learning alternative 1 until his belief reaches either X (x2) or x2. By the similar analysis
above, we have that
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1 _
P1(X1J2)=¢11(-‘<1.X2)+§[1 —q1(x;,x2)], 1/2<x <x1 < X(x2).

In the second case, 1/_2 <1 —1x3 <x; < X(x2), the DM keeps learning alternative 1 until his
belief reiches either X(x2) or | — x2. Given the DM’s belief (x|, x2), the probability that he
reaches X (x7) is
x1+x—1

o+ X)) -1
To calculate Pj(xj, x2) in this case, we need to first consider another case with 1 — X (1 — x;) <
xp =1 —x; =1/2 in the region of L2*. In this case, the DM keeps learning alternative 2 until
his belief reaches eiger I — X(1 —xp)orl —x;. Given the DM’s belief (x1, x2). the probability
that he reaches 1 — X (1 — xj)is rj(1 —x2. 1 — x7).

Let us further define Pp(x2) as the probability of adopting alternative 1 eventually, given the

DM’s current beliefs as (I — x2, x2). Let us consider an infinitesimal learning on alternative 1 at
(1 — x32, x2), with belief update as d.x. By conditioning on the sign of dx, we have

ri(xg, xp) =

Pp(x2) = Pr[alternative 1|(1 — x2, x2)]
|
= 3 Pr[alternative 1|(1 — x2, x2),dx = 0]

1
+ — Prlalternative 1|(1 — x2, x2),dx < 0]

[F1(1 —x2 4 |dx|, x2) + (1 = ri (1 —x2+ |dx|, x2)) Pp(x2)]

— | = 2

+5 [ri(1 —x2,x2 4+ |dx]) + (I —r1(1 — x2, x2 + |dx])) Pp(x2 + |dx])]

d ary(xy, 9 .
— Py + T*'[Pb(xzw( non ) “"2)) (1- Pn(xz))]
dx| 0x2 x1=1-x3
+ o(dx).
Similarly, we have the following ODE:
Pp(x2) __(Brl(xth) N ar (xl,-‘»‘z)) o 2
1= Pp(xa) x| 9x2 xi=l-xa X)) +x—1

Combining the differential equation above with the initial condition Pp(l/2) = 1/2, we can
solve Pp(x) as

S
2

In this case, we have that,
Pi(xr, x2) =ri(er, x2) +[1 = rier, x2) Pp(x2), 1/2<1—x2 <x1 < X(x2).
Similarly, we can calculate the adoption probability for regions L2, L1*, and L2*. O

Theorem A4: probability of being correct

Theorem A4. Consider two symmetric alternatives. Under the optimal learning strategy, given
his current posterior beliefs as (x1, x2), a decision maker’s expected probability of being correct
ex post is Q(xy, x2), where if xo <0,



428 T.T. Ke, J.M. Villas-Boas / Journal of Economic Theory 180 (2019) 383-437

Q(x1,x2) =
f(xz)fxl[g[gm,l (_(An?)’)] 17 Yo
X(xz)—x:;_ 212 daice
+fef‘;2 X(E)Es 2X(i’]) :|+7x|7.x2 Y(xz),
X(n) — X(x2) —x2

X(x2) —x1 {1 {1%_1( (Am)? )] IY T
xm+X(x)—112]2

4elc
x2
X 2d¢ — -
,fg-ﬁ?Z XE)+i— |X(n) ’7+1d ] ol txz ! _(xz),
X(m+n—1 X2+ X(xg) — 1

— I—x %
X1 —x) +am | [l [l+¢—l (_(An)3)i|eff% D
X(1—x)+x—112[2 402c

1—x)

1—x 2dE —
" f P 2X(n) d” n X2 — X
) X(n)

] X1 —x)4x—1

— I—x 2d
X(l—xl)+xz—1[1[1+®,.(_(Anﬁ)]e@ R
X(1—x—x; |2]2 402c

3

x| —
_fn s X - v,
+fe fn X)-& (n) d;]] +7x2 il X(Xl)s
X —n X(x1) —x1

1
2

X(x1)—x {1 {1”,] (7(An)3)]e‘f§%§:
xi+Xx)—10212 dole

x|
x 2d¢ — —
_fng XE+- IX(W) W—Hd ] 2 tx] : X(x)
X +n—1 X1+ X(x) — 1

E(lfxz)ﬂ]*l[l [ler)—l (7
X(l—x)+x—11L21[2
I
+fe W g 22X,
X —n

1
3

X(1— —1[11
%H_m—n(_
X(l—x2)—xy [2]2
1=x 1 we Y
_ f efn 4?@{&&—1 f(n)in+ld :|+717x27x|
X(m+n—1 X(1—x2)—x2

(A”)l)] f} ? Tos -

402c

x| — X2

= X(1—x),
”:| X(1—x)+x—1 ( *2)

3 I-xp _ 2df
(Am) )]e& X1

402c

1
3

max{xy, xa},

and if xo = x,

X(1—x),

1—x)
_ f efnl_x Toree ]X(n)—n+1 ] —2 X1 —x1),
X +n—1 X(lfxl)fxl
Y(«‘?l)*-’fz[l |:l+ ,1( (A-’T) )] l xmé
Y(xl)fxl 212 do2¢

X(1—x2),

1/2<x2 <x1 < X(x2)

1/2<1—x2<x1<X(x2)

1/2<1—x; <1 —x2<X(1 —xq)

1/2<x1 <1—x2<X(1—x1)

1/2<x; <x3 = X(x1)

1/2<1—x1 <xp<X(x1)

1/2<l—xp<1—x <X(1—x7)

1/2<x<1—x; < X(1 —x9)

otherwise,

(xxii)
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Q(xp,x2)
Ym0+ 1 =0)EF —x) —x2) _

X—x

X(xg —x) + (I —x)(x —x2)(1 —x1)
X—x ’

(x1 — x2) X (x2) n X(x2) — x1
X(x2)—x2  X(x2) —x2

2~

[(1 —1) e X X(E)-&

X2 _
oM™ _211&' 2X e
‘|‘/€ Jn X -t _7(]7)([,7]! X <x<x) < X(Xz)
J X)) —n
e e AV Y. _ x 2dE
(=) X)) | XGx) —x [(1 _ )2 To
X(x1) —x; X(xp) —xy
X1 J—
e DX ¥
+f€ I X@E)—-¢ _7(?7)([,7]! X <xp <x< X(xy)
X —n
X
X1, x; = X(x2)
. x2 = X(x1)
(1L —x1)(1 —x2), otherwise.

(xxiii)

Proof. Let us consider the case with xo = x;j first. By symmetry, we only need to consider the
case that x| > xp. There are four cases to consider.

In the first case. when x; > X (x2). the DM adopts alternative 1 right away. In this case, he will
be correct if and only if the alternative | turns out to be of high value. Therefore, Q(xy, x2) = x1.

In the second case, when x; < x| < x, the DM will adopt the outside option, which is ex-post
correct if and only if both alternatives are of low value, i.e., Q(xy, x2) = (1 —x1)(1 — x2).

In the third case, when x2 < x < x; <X, the DM will continue learning until his belief equals
either x or x. Therefore,

Q(x1,x2) = 4 =¥ 4 [1 ~ _i} (1 —x)(1 —x2),

X—x X—x
=7(X1 —x)+ (1 =x)&F—x)(1 —x2)

X—x

In the last case, when x < x2 < x] < X (x2). the DM keeps learning alternative 1 until his
belief reaches either E(xz) or x7. Let us define éo (x) as the probability of being correct, given
the DM’s beliefs as (x, x). Let us consider infinitesimal learning on alternative 1 at (x, x), with
belief update as dx. By conditioning on the sign of dx, we have

@0 (x) = Pr[correct|(x, x)]

1 1
= 3 Pr[correct|(x, x),dx = 0] + 3 Pr[correct|(x, x), dx < 0]

1 — 1 -
= EQI(X + |dx], X)X (x) + 3 [1—qi(x +|dx|. x)] Qo(x)
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1 — 1 ~
+oaix = ldxX (x = ldx]) + S {1 = g1 (x. x = |dx] Qolx — dx]).

Similar to the proof of Theorem A3, by doing a Taylor expansion of g (x +dx, x), g1 (x, x —dx),
Qg(x —dx).and X (x — dx), and simplifying, we have

_2[X) - Q0(x)]

x| =x2=x X(x)—x

q1(x1,x2) g (xy, x2)
dx| dxo

0h(x) = [X(x) — Qo(x)] (
(XXiv)

Combining the differential equation above with the initial condition @0(£) = (1 —x)% we
can solve Qp(x) as

. N f - e 2X0p
(x)=(1- XE)—£ 4 nX@g)—& "7
cot) D' X"

X
Given Qo(x), we have,

Q(xp, x2) = q1(x1, x2) X (x2) + [1 — g1 (x1, x2)] Qo(x2).

e Now, let us consider the other case with xg < 0. Due to symmetry, we only need to consider
the case with x| > x7. Let us first consider the case with 1/2 <x; <x| < Y(xz), Similarly, we
can define Qo(x) as above, and verify that it satisfies the ordinary differential equation (xxv).
However, the initial condition is different with that in the case of xg > x(’)*. Particularly, we have

that,
()-tr(2) e el (22
Qo G AT P 402 )|

We can solve Qo(x) as

—~ 171 _ (An)3)} = j _fr e 2X(n)
=— |-+ - 3 X®-% n Y-t M g
Qo) =7 [2 * ( 407 )¢ " X1

1
2
Given Qo(x), we have,

Q(x1,x2) = q1(x1, x2) X (x2) + [1 — g1 (x1, ¥2)] Qo(x2).

Now, let us consider the case with 1/2 <1 —x2 <x] < X (x2). Let us define @D(xg) as the
probability of being correct, given the DM’s beliefs as (1 — x2, x»). Let us consider an infinites-
imal learning on alternative | at (1 — x7, x7), with belief update as dx. By conditioning on the
sign of dx, we have

@D(xz) = Pr[correct|(] — x2, x2)]

1
= — Pr[correct|(] — x3,x2),dx > 0] + 3 Pr[correct|(1 — x2, x2), dx < 0]

[r1(1 = x2 + |dx], x2) X (x2) + (1 — (1 = x2 + |dx|, x2) Op(x2)]

M\—NI—‘[\J —_

+ S [r1( = x2, x2 + |dx[)(1 = x2 — |dx])
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+ (1 —ri(1 —x2,22 +|dx ) O p(x2 + |dx])]

|dx| ory(xy, x2) —
—QD(X2)+— QD( )+T { X(x2)
x1=l—xp
d ,
n ri(xy, x2) (1—x)
3)(2 x1=l—x2
o L X2 d ‘1, X2 ~
_( r (x¥ x2) n rl(.xl xv)) QD(Xz)] + o(dy),.
dx| ax2 x=l-x
We have the following ODE,
Qp(x) B I

— — =—= . (XxV)
I+ X(x)—x—20Qp(x) X(x)+x—1

Combining the differential equation above with the initial condition that

00 (3)=5[5+7 (-555)]
¢r\3)=3]|3 4o2c )|

we can solve Qp(x) as

3 2t
QD(X):l[l+¢—l ( (Am) )] 3 X®e f Yo X(n)—r7+]dn
4o’ X(m+n—1

Given QD(x), we have,
O(x1,x2) = ri(x, x2) X (x2) + [1 = ri(x1,x2)] Op(x2). O
Lastly, it is straightforward to show that, if xo > xé‘, we have that,

X1, x| = max{xz, xo}
Qolxy, x2) = § x2, x7 > max{xy, xo} ,
(I —x1)(1 —x2), xo > max{xy,xz}

and if xg <0, we have that,
Qo(xy, x2) = max{x, x2}.

Solution to the problem with two asymmetric alternatives  The following theorem characterizes
the optimal learning strategy in the case of two asymmetric alternatives under the assumption
that alternative 1 is “better” than alternative 2, and (xi“, xak ) exists. Similar to the proof of The-
orem A2, it is straightforward but tedious to show that the variational inequalities in (8) are
satisfied. The details are thus omitted here.

Theorem AS. Consider the Decision Maker’s optimal learning problem in (6) with two asym-
metric alternatives, Amy > Az (or ¢ < c2). Suppose that (xf. x’z") exits. When the value of the
outside option is relatively high, the value function V(xy, x2) is given by
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201251

2o n(5) ()]

X(x2)
_ _o]cl 1-2X (x2) X(x2)—x1
(Amp)? 1— X(x2)  X(x2) + Aﬂl t +£l’

max{x,, X, (x2)} <x; < X (x2), x2 < y(x))

200 (o)

S50l ) ()]
Vi(xy,x2) = ;

_ 20202 12X (x1) X(x1)—x2

Am)? 1-X(x1)  X(p) + (Am)xz + 7,

Xy <xp < Xo(xy), x2 > y(xp)
Amy-xi+my, x> X(x2)

Amy - x2+ 1y, x2> Xalxy) orxy < X, (x2)

o, otherwise.
The adoption boundary of alternative 1, X |(x2) is given by

X1(x2) X2 = x5
Xix) =3 %1 (v ).

X1,

X3 > X2 = Xy
otherwise.

The adoption boundary of alternative 2, X2(x1) supported in [0 x{is given by

(x1), «f=zxi=x
L

X2, X <X

The adoption boundary of alternative 2, X | (x2), and | (x2), both supported in [x3, 1], are given
by the following equations:

_ (Amy)?
F(31(x) — F(X (x) = ——
2oic)

1 1 1 1
(71@\’2) i —71()‘2)) - (Kl(xz) i —Xl(xz))
B (Amp)? [2 (A.Tt'z S X2+ T, —gl) - Arrl]
N ZJIZC] '

7o (x1), X1(x1), and y(x1), all supported in [x,. x7], are determined Dy the following boundary
value problem:

F(Yg(xl)) (Am)g (F (O (xn) — F(x) + Ay
dxi

2
205 ¢

B2 (62(x) — y(x1))

20}e)
dF(ja(XI))——v’(xl)_(A;rz)( (Xo(xl)) F(,\‘(xl)))-'rAJIZ
dx; o

2
;—I‘,Sf(m(ﬂ)—xl)

’

. 2012C] -
Ger(xp) — x1) 5 (F (}x1(x1)) — F(x1)) + Amy
(Amy)-
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1.0 T T T 1.0
A2
0.8¢ Az 1 0.8 1
0.6r 0.67 1
9 L2 2 L2
0.4 A1 0.4r Al 1
L1
L1
0.2r o} 1 0.2r o 1

0. : : : : 0. : : : J
8.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0
X1 X4

Fig. Al. Optimal learning strategy with asymmetric alternatives. We have C]O'lz/A:rr = 0.33 for the left panel and
C]G'IZ/AJT = 0.34 for the right pancl. For both panels: Am) = 1.2Am = 1.2An, (mgp — 1) /An = (mp —15)/ /A =
0.5, and CQO’QZ/AJI = CQU%/AJT =1.

2

204¢
= (Falx1) — y(x1) ﬁ(ﬂmm)—F(,v(xl)))+Am ,
X2(xy) =x2,
Xilx,) =%y,
vx))=x,

Case of asymmetric alternatives with Amy; > Amz and ¢ > ¢ Now, let us have a look at the
more complicated case that alternative | may have a higher information-to-noise ratio, while at
the same time a higher learning cost. Fig. Al shows the optimal learning strategy under some
parameter settings. As we can see, the solution structure remains mostly unchanged. We still
have a simple cutoff policy to construct consideration set, but the boundary separating “Learn 1™
and “Learn 2” can become more complicated now, and can be sensitive to the parameter setting.

Solution fo the problem with time discounting
Theorem A6. There exists a unique solution V (x1, x2) to (37):

atl
S TZ() T 5 (I—x) T

relwZ00) T —m”“ v < < K)o >x
atxl —1
‘HIJTZ(Xl)TX T(1l-x)TT
Vixy, x2) = « ~
ol zen~ ey T (- x=x = Koo > x
AT - xq, x| >i(ﬁ’2)
AT - X2, X2>i(«\’1)

770, otherwise,
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wherea =,/ 1 + &i; > 1, and i(x) is given by
l - >
~ Zrl =X
X(x)=
X, otherwise.

Z(x) is determined by the following boundary value problem:

(aez— l)x(] —x)Z(X) =a‘2+oe(1 —2x )M—H+(l —2x)

Z(x) Z(x)® ( )
Sz + ()
Czer = ()7
1 —x

X and x are determined by the following equations:

a—1 a+l
-
X 1 —x . Arx(a —1)x
X I —x _Jro(a—l—l—Z)g)'
u:j)»l _a—1
¥y [1-% _ Am(a+ DF
X l—x _TFO(Q—1+2{)-

(xxvi)

(xxvii)

(xxviii)

To prove Theorem A6, we can construct the solution following the similar steps in the proof
of Theorem A2. We only need to show that for x < x; <x; < X(x3). itis always optimal to learn

alternative 1. Equivalently, we need to prove the following inequality given x < x2 <xj < g(xz),

202
AT A2
where the first equation above is due to (37).
Given x <xp <x < X(x2), we have that,

Vixr,x) =x7(1—x1) Vi (1, 00) = 03 (1 — x2)2 Vi (31, %2),

5 a+l
X (1 —x1) 2

V(x1, x2)
1 el a— a— —1 -
- [“‘ L 1 — ) R 200+ T (- Z(xa)__]_.
2u o
By taking the partial derivative with respect to x2 on both sides of the equation above, we have
that,
a’—1 a+1 efl o—1 —efl
Vi (x1,x2) = T U —x)™ T Za) T —
- do 2u

_etl | Z'(x2)
X Z(x2) T]n Z(x)
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1—x \“ 1—2x)
; ( xg) _atlat( x)Z(xz)a

. T X2 a—1 a—(1-2x2)
do xz(l —Xz) (%) —Z(Xz)a
1 a+l — 1 _a—l . @
x[“+ - xlfﬂ—nr#ﬂmrfﬂ,
o

where the second equality is by using (xxvi). By taking the partial derivative with respect to x;
and using (xxvi) again, we have that,

202

AT A2

T atl 1 —x> I—x\*
T () ()]
a? — X2 X1

Xmm%[m—nC”)+m+namﬂ

[( 1;2"2) — Z(xz)“T

1 —x2\*
X {(Of—])(d-l-xz)( ) —(d+1)(0€—xz)Z(x2)a]

X2

Vix1.x2) = Viyx, (X1, x2)

: 1—x \¢ 1—x; \¥% o —1
Notice that x| > x2. so we have that ( 2) — (—') > 0. Also, X(x2) =1+ Z(x2) ' >

X2 x|

o
X7, so we have that 1;;2 > Z(x72). and thus (%) — Z(x2)® > 0. This implies that

271V (1, x2) — Vigy(x1,32) = 0 if and only if [(a‘—l)(af—l—xa)(l ”)a—(a+1)(a—x2)

X Z(xg)“] > 0, or equivalently,

o)aa—la—i-xz (xxix)

1 —x2

Z(x)* = :
X2 a+1oa—x

Let us prove (xxix). In fact, similar to the proof of the monotonicity of X(x) in Lemma 2, we can

prove that X (x) increases with x. This implies that Z (x) decreases with x. By (xxvi), Z'(x2) <0

implies that,

(]—xz)a_a+la+(l— x2)
oa—la—(1—2x)

Z(x2)* <0.

X2
This implies that,

Z(x)* = [—n aa_la_u_le)g I—x 0’0(—105+J62.
" o+ lat(l=2x) X2 a+la—x

To summarize, we have proved that for x <x; <x < i(xz). it is always optimal to learn alter-

native . O

References

Adam, Klaus, 2001. Learning while searching for the best alternative. J. Econ. Theory 101 (1), 252-280.
Barles, Guy, 1997. Solutions de viscosité et équations elliptiques du deuxiéme ordre. Manuscript, Université de Tours.



436 T.T. Ke, J.M. Villas-Boas / Journal of Economic Theory 180 (2019) 383-437

Bergemann, Dirk, Vilimiki, Juuso, 1996. Learning and strategic pricing. Econometrica 64795, 773.

Bolton, Patrick, Harris, Christopher, 1999. Strategic experimentation. Econometrica 67 (2), 349-374.

Branco, Fernando, Sun, Monic, Villas-Boas, J. Miguel, 2012. Optimal search for product information. Manag. Sci. 58
(11), 2037-2056.

Caffarelli, Luis A., 1977. The regularity of free boundaries in higher dimensions. Acta Math. 139, 155-184.

Che, Yeon-Koo, Mierendorff, Konrad, 2016. Optimal Sequential Decision with Limited Attention. Working paper.
Columbia University.

Chernoff, Herman, 1968. Optimal stochastic control. Sankhya, Ser. A, 221-252.

Crandall, Michael G., Ishii, Hitoshi, Lions, Pierre-Louis, 1992. User’s guide to viscosity solutions of second order partial
differential equations. Bull., New Ser., Am. Math. Soc. 27 (1), 1-67.

Daley, Brendan, Green, Brett S., 2012. Waiting for news in the market for lemons. Econometrica 80 (4), 1433-1504.

Décamps, Jean-Paul, Mariotti, Thomas, Villeneuve, Stéphane, 2006. [rreversible investment in alternative projects. Econ.
Theory 28 (2), 425-448.

Diamond, Peter A., 1971. A model of price adjustment. J. Econ. Theory 3 (2), 156-168.

Dixit, A., 1993. Art of Smooth Pasting, vol. 55. Harwood Academic, Chur, Switzerland.

Dixit, Avinash K., Pindyck, Robert S., 1994. Investment Under Uncertainty. Princeton University Press.

Doval, Laura, 2014. Whether or Not to Open Pandora’s Box. Working paper. Northwestern University.

Dumas, Bernard, 1991. Super contact and related optimality conditions. J. Econ. Dyn. Control 15 (4), 675-685.

Dvoretzky, A., Kiefer, F., Wolfowitz, J., 1953. Sequential decision problems for processes with continuous time parame-
ter. Ann. Math. Stat. 24 (2), 254-264.

Felli, Leonardo, Harris, Christopher, 1996. Learning, wage dynamics, and firm-specific human capital. J. Polit. Econ. 104
(4), 838-868.

Fernholz, E. Roberts, Ichiba, Tomoyuki, loannis, Karatzas, Prokaj, Vilmos, 2013. Planar diffusions with rank-based
characteristics and perturbed Tanaka equations. Probab. Theory Relat. Fields 156 (1), 343-374.

Fleming, Wendell H., Soner, H.M., 2010. Controlled Markov Processes and Viscosity Solutions. Springer.

Forand, Jean G., 2015. Keeping your options open. J. Econ. Dyn. Control 53, 47-68.

Fudenberg, Drew, Strzalecki, Tomasz, 2015. Dynamic logit with choice aversion. Econometrica 83 (2), 651-691.

Fudenberg, Drew, Strack, Philipp, Strzalecki, Tomasz, 2015. Stochastic Choice and Optimal Sequential Sampling. Work-
ing paper. Harvard University.

Gittins, John C., 1979. Bandit processes and dynamic allocation indices. J. R. Stat. Soc. B 41, 148-164.

Gittins, John C., Glazebrook, Kevin D., Weber, Richard, 2011. Multi-Armed Bandit Allocation Indices, 2nd edition.
Wiley Online Library.

Glazebrook, Kevin D., 1979. Stoppable families of alternative bandit processes. J. Appl. Probab., 843-854.

Hébert, Benjamin, Woodford, Michael, 2017. Rational Inattention with Sequential Information Sampling. Working paper.
Stanford University and Columbia University.

Karatzas, loannis, 1984. Gittins indices in the dynamic allocation problem for diffusion processes. Ann. Probab.,
173-192.

Karatzas, loannis, Shreve, Steven E., 1991. Brownian Motion and Stochastic Calculus. Springer, New York.

Ke, T. Tony, Shen, Zuo-Jun Max, Villas-Boas, J. Miguel, 2016. Search for information on multiple products. Manag.
Sci. 62 (12), 3576-3603.

Kuksov, Dmitri, Villas-Boas, J. Miguel, 2010. When more alternatives lead to less choice. Mark. Sci. 29 (3), 507-524.

Liptser, Robert S., Shiryaev, Albert N., 2001. Statistics of Random Processes: General Theory, vol. 1. Springer.

Mandelbaum, Avi, Shepp, Larry A., Vanderbei, Robert J., 1990. Optimal switching between a pair of Brownian motions.
Ann. Probab. 18 (3), 1010-1033.

McCall, John Joseph, 1970. Economics of information and job search. Q. J. Econ., 113-126.

Mikhalevich, A.S., 1958. A Bayes test of two hypotheses concerning the mean of a normal process. Visn. Kyiv. Univ. 1,
101-104.

Moscarini, Giuseppe, Smith, Lones, 2001. The optimal level of experimentation. Econometrica 69 (6), 1629-1644.

QOksendal, Bernt, Reikvam, Kristin, 1998. Viscosity solutions of optimal stopping problems. Stoch. Stoch. Rep. 62,
285-301.

Peskir, Goran, Shiryaev, Albert, 2006. Optimal Stopping and Free-Boundary Problems. Birkhduser Verlag, Basel,
Switzerland.

Quabh, John K.-H., Strulovici, Bruno, 2013. Discounting, values, and decisions. J. Polit. Econ. 121 (5), 896-939.

Roberts, Kevin, Weitzman, Martin L., 198 1. Funding criteria for research, development, and exploration projects. Econo-
metrica 49 (5), 1261-1288.

Rothschild, Michael, 1974a. A two-armed bandit theory of market pricing. J. Econ. Theory 9 (2), 185-202.



T.T. Ke, J.M. Villas-Boas / Journal of Economic Theory 180 (2019) 383437 437

Rothschild, Michael, 1974b. Searching for the lowest price when the distribution of prices is unknown. JI. Polit. Econ. 82
(4), 689-T711.

Scheibehenne, Benjamin, Greifeneder, Rainer, Todd, Peter M., 2010. Can there ever be too many options? A meta-
analytic review of choice overload. J. Consum. Res. 37 (3), 409-425.

Shiryaev, A.N., 1967. Two problems of sequential analysis. Cybernetics 3, 63-69.

Strulovici, Bruno, Szydlowski, Martin, 2015. On the smoothness of value functions and the existence of optimal strategies
in diffusion models. J. Econ. Theory 159, 1016-1055.

Touzi, Nizar, 2010. Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE. Springer.

‘Wald, Abraham, 1945. Sequential tests of statistical hypotheses. Ann. Math. Stat. 16 (2), 117-186.

‘Weeds, Helen, 2002. Strategic delay in a real options model of R&D competition. Rev. Econ. Stud. 69 (3), 729-747.

Weitzman, Martin L., 1979. Optimal search for the best alternative. Econometrica 47 (3), 641-654.

‘Whittle, P., 1980. Multi-armed bandits and the Gittins index. J. R. Stat. Soc. 42 (2), 143-149.



2/28/2019 Elsevier Enhanced Reader | Optimal learning before choice

https://reader.elsevier.com/reader/sd/pii/S0022053119300092?token=4AE7F28B843DD5B1B5664D7C7A0... 56/56



