Flexible Exchange Rates

Mundell-Fleming Floating
Floating

• Assume that exchange rates float freely

 – Authorities commit to not using international reserves

 • Many inflation targeters float freely in tranquil times

 • Also large economies (US/EMU/Japan)

 – ORS = 0 in “clean float”

 – Implicit: Money supply stays otherwise fixed

 • Economies that float must have some monetary regime
Static Exchange Rate Expectations

• Continue to assume exchange rate floats freely but is *not* expected to change (!)
 – Reasonable empirically (Meese-Rogoff) and (perhaps) theoretically if most fundamental shocks are noise (news)
 – Similar to other asset markets (expected capital gains imply inflows which change prices)
Tangent

• Can add in expected exchange rate change
• “Uncovered Interest Parity” states
 \[i = i^* - E(\%\Delta e) \] – a speculative condition
• Empirically, UIP works terribly
 – Usually, high interest rate countries have *appreciating* rather than *depreciating* currencies
 – Hence the “carry trade”: borrow in low-interest country, invest in high-interest country
 – Much risk though
• Tangent\(^2\): “Covered Interest Parity”
 \[i = i^* - (Fwd Prem) \] – arbitrage condition, works well
Mundell-Fleming Floating

• Looks similar graphically to case of fixed exchange rates:
 – But money (and international reserves) exogenous, not exchange rate
Formally

\[\frac{M_s}{P} = L(i, Y) \]
\[M_s = \mu(IR + CBC) \]
- M (and others) exogenous

BoP
\[\frac{c}{acc} + \frac{k}{acc} + ORS = 0 \]

LM
\[Y = A(G, i, Y) + NX(\epsilon, Y, Y^*) \]
\[A = \frac{c_0 + cTr + I_0 - bi + G_0}{1 - c(1-t)} \]
- “domestic absorption”
- \(Y^* \) exogenous
- \(\epsilon \) (and \(\epsilon \)) endogenous

IS
\[Y_e \]
Real Exchange Rate Flexibility and Real Economy (IS)

• Recall: $NX = NX(\varepsilon,Y^*,Y)$

 – *Nominal* depreciation here is assumed to be a *real* depreciation (prices fixed in short run, or at least don’t respond fully to depreciation)

 • Reasonable empirically (Mussa), for low-inflation countries

 – Depreciation raises net exports, shifts IS out/right
Real Exchange Rate Flexibility and Real Economy (IS)

- Depreciation raises net exports, shifts IS out/right
Monetary/Financial Markets (LM)

• Since international reserves are now *exogenous*, central bank regains control of monetary base and money (both now exogenous)
 – Hence monetary policy is potent (though central bank gives up control of exchange rate, satisfying Mundell’s Incompatible Trinity)
 – Output determined at intersection of LM curve with BoP equilibrium $i=i^*$
 – Exchange rate adjusts and shifts IS curve (through current account) endogenously
Monetary Policy (Financial Shocks)

• Highly potent

• Decline in interest rates leads to capital outflows, hence depreciation ($e\downarrow$) which is a real depreciation in short run ($\varepsilon\downarrow$)

• Net exports stimulated ($\text{NX}\uparrow$), IS shifts out
Fiscal Policy (Real Shock)

- Impotent; changes composition of output
- Anything that raises interest rates (e.g., fiscal expansion) attracts capital inflows, appreciates nominal and real exchange rates ($e, \varepsilon \uparrow$), reduces net exports ($NX \downarrow$), reverses shift of IS
 - “Twin” deficits;
 - “Dutch disease” (discover exportable)
Graphically
Key Takeaways

• Floating exchange rates make monetary policy effective in short run
• Real shocks can have surprising/small effects if exchange rate changes