Signal or noise? Uncertainty and learning about whether other traders are informed

Snehal Banerjee (Northwestern) Brett Green (UC-Berkeley)

January 2015
Learning about other traders

Investors face uncertainty about:

- fundamentals
- characteristics / motives of other investors

Asset pricing models typically ignore the latter

- Characteristics / motives of others are common knowledge
- Even with asymmetric info, agents know whether others are informed
- Perhaps unrealistic: Uninformed investors know a lot!

Our framework: Uninformed investors are uncertain about other traders, and must learn about them
Learning about other traders

Investors face uncertainty about:

- fundamentals
- characteristics / motives of other investors

Asset pricing models typically ignore the latter

- Characteristics / motives of others are *common knowledge*
- Even with asymmetric info, agents *know* whether others are informed
- Perhaps unrealistic: Uninformed investors *know* a lot!
Learning about other traders

Investors face uncertainty about:

- fundamentals
- characteristics / motives of other investors

Asset pricing models typically ignore the latter

- Characteristics / motives of others are common knowledge
- Even with asymmetric info, agents know whether others are informed
- Perhaps unrealistic: Uninformed investors know a lot!

Our framework: Uninformed investors are uncertain about other traders, and must learn about them
Overview of Results

- Rational investors are **uncertain** about whether others are trading on informative signals or noise
- Over time, they **learn** using dividends and prices
Overview of Results

- Rational investors are **uncertain** about whether others are trading on informative signals or noise
- Over time, they **learn** using dividends and prices

Generates a rich set of return dynamics:

- Price reacts asymmetrically to good news vs. bad news
- Stochastic, predictable expected returns and volatility
- Volatility clustering and the “leverage” effect
- Disagreement-return relation is non-monotonic and time-varying
Overview of Results

- Rational investors are uncertain about whether others are trading on informative signals or noise.
- Over time, they learn using dividends and prices.

Generates a rich set of return dynamics:

- Price reacts asymmetrically to good news vs. bad news.
- Stochastic, predictable expected returns and volatility.
- Volatility clustering and the “leverage” effect.
- Disagreement-return relation is non-monotonic and time-varying.

Underlying Mechanism:

(i) Uncertainty about others leads to non-linearity in prices,
(ii) Learning about others generates persistence.
Related Literature

- Uncertainty about others

- Stochastic volatility and expected returns through learning

- Non-linearity in prices

- Investors “agree to disagree” but update beliefs using prices
 - Banerjee, Kaniel and Kremer (2009)
Benchmark Model: Payoffs and Preferences

Two date, two securities

- Risk-free asset with return normalized to $R = 1 + r$
- Risky asset has price P and pays dividends

$$D = \mu + d,$$
where $d \sim \mathcal{N}(0, \sigma^2)$
Benchmark Model: Payoffs and Preferences

Two date, two securities

- Risk-free asset with return normalized to $R = 1 + r$
- Risky asset has price P and pays dividends

$$D = \mu + d, \quad \text{where } d \sim \mathcal{N}(0, \sigma^2)$$

Mean-variance preferences over terminal wealth

$$x_i = \frac{\mathbb{E}_i[D] - RP}{\alpha \text{var}_i[D]}$$
Benchmark Model: Payoffs and Preferences

Two date, two securities

- Risk-free asset with return normalized to $R = 1 + r$
- Risky asset has price P and pays dividends

$$D = \mu + d, \quad \text{where } d \sim \mathcal{N}(0, \sigma^2)$$

Mean-variance preferences over terminal wealth

$$x_i = \frac{\mathbb{E}_i [D] - RP}{\alpha \text{var}_i [D]}$$

Aggregate supply of the risky asset is \textit{constant}:

$$\sum_{i} x_i = Z$$
Benchmark Model: Information and Beliefs

Two groups of investors, competitive, identical within group:

1) **Uninformed** \((U) \): (e.g., arbitrageurs, liquidity providers) No private information, but can learn from prices and residual demand.

\[S_I = d + \varepsilon_I, \quad \varepsilon_I \sim N(0, \sigma_e^2) \]

Noise / Sentiment \((\theta = N) \): (e.g., retail) Receive uninformative signals

\[S_N = u + \varepsilon_N, \quad \varepsilon_N \sim N(0, \sigma_e^2), \quad u \sim N(0, \sigma_u^2) \]

- Empirically relevant: over-confidence or differences of opinion
- Unconditional distribution of \(S_N \) and \(S_I \) are identical
Benchmark Model: Information and Beliefs

Two groups of investors, competitive, identical within group:

1) **Uninformed** \((U)\): (e.g., arbitrageurs, liquidity providers) No private information, but can learn from prices and residual demand

2) **Potentially informed** \((\theta)\): \(\theta\) chosen by nature, not known to \(U\)

 Informed \((\theta = I)\): (e.g., institutions) Receive informative signals

\[
S_I = d + \varepsilon_I, \quad \varepsilon_I \sim \mathcal{N}(0, \sigma^2_e)
\]
Benchmark Model: Information and Beliefs

Two groups of investors, competitive, identical within group:

1) **Uninformed** (U): (e.g., arbitrageurs, liquidity providers) No private information, but can learn from prices and residual demand

2) **Potentially informed** (θ): θ chosen by nature, not known to U

 Informed ($\theta = I$): (e.g., institutions) Receive informative signals

 \[S_I = d + \varepsilon_I, \quad \varepsilon_I \sim \mathcal{N}(0, \sigma^2_e) \]

 Noise / Sentiment ($\theta = N$): (e.g., retail) Receive uninformative signals

 \[S_N = u + \varepsilon_N, \quad \varepsilon_N \sim \mathcal{N}(0, \sigma^2_e), \quad u \sim \mathcal{N}(0, \sigma^2) \]

 which they **incorrectly** believe to be informative about dividends.
 - Empirically relevant: over-confidence or differences of opinion
 - Unconditional distribution of S_N and S_I are identical
Uncertainty about other investors

Key Feature: U investors are uncertain about who they face

- At any date t, either N or I investors are present (but not both).
- Denote the type of trader at date t by $\theta \in \{I, N\}$.
- Denote the likelihood of others being informed by $\pi = \Pr(\theta = I|\mathcal{I}_U)$.
Uncertainty about other investors

Key Feature: U investors are uncertain about who they face

- At any date t, either N or I investors are present (but not both).
- Denote the type of trader at date t by $\theta \in \{I, N\}$.
- Denote the likelihood of others being informed by $\pi = \Pr(\theta = I|\mathcal{I}_U)$

Model nests rational expectations (RE) and differences of opinions (DO)

- When $\pi = 1$, U and θ investors have common priors (RE)
- When $\pi = 0$, U and θ investors agree to disagree (DO)
Characterizing Equilibria

Following Kreps (1977), we assume investors can observe residual supply

- Non-existence when U investors only observe price

Since aggregate supply Z is fixed, P and $Z - x_U$ can perfectly reveal S_θ
Characterizing Equilibria

Following Kreps (1977), we assume investors can observe residual supply

- Non-existence when U investors only observe price

Since aggregate supply Z is fixed, P and $Z - x_U$ can perfectly reveal S_θ

Definition: An equilibrium is signal-revealing if uninformed investors can infer the signal S_θ from the price and the residual supply

- Unique equilibria in static model & dynamic benchmarks
Characterizing Equilibria

Following Kreps (1977), we assume investors can observe residual supply

- Non-existence when U investors only observe price

Since aggregate supply Z is fixed, P and $Z - x_U$ can perfectly reveal S_θ

Definition: An equilibrium is *signal-revealing* if uninformed investors can infer the signal S_θ from the price and the residual supply

- Unique equilibria in static model & dynamic benchmarks

Important: Signal-revealing \neq fully informative

- U investors are uncertain about fundamentals since they don’t know whether θ is informed!
Learning about dividends

Investor θ’s beliefs about d are:

$$E_\theta [d] = \lambda S_\theta \quad \text{and} \quad \text{var}_\theta [d] = \sigma^2 (1 - \lambda),$$

where $\lambda = \frac{\sigma^2}{\sigma^2 + \sigma^2_\varepsilon} \in [0, 1]$
Learning about dividends

Investor \(\theta \)'s beliefs about \(d \) are:

\[
\mathbb{E}_\theta [d] = \lambda S_\theta \quad \text{and} \quad \text{var}_\theta [d] = \sigma^2 (1 - \lambda),
\]

where \(\lambda = \frac{\sigma^2}{\sigma^2 + \sigma^2_\varepsilon} \in [0, 1] \)

Conditional on \(\pi = \Pr(\theta = I|\mathcal{I}_U) \), investor \(U \)'s beliefs are:

\[
\mathbb{E}_U [d] = \pi \lambda S_\theta + (1 - \pi) 0
\]

\[
\text{var}_U [d] = \pi \sigma^2 (1 - \lambda) + (1 - \pi) \sigma^2_\varepsilon + \pi (1 - \pi)(\lambda S_\theta)^2
\]

- expectation of cond. variance
- variance of cond. expectation
Learning about dividends

Investor θ’s beliefs about d are:

$$\mathbb{E}_\theta [d] = \lambda S_\theta \quad \text{and} \quad \text{var}_\theta [d] = \sigma^2 (1 - \lambda),$$

where $\lambda = \frac{\sigma^2}{\sigma^2 + \sigma^2_e} \in [0, 1]$

Conditional on $\pi = \Pr(\theta = I | I_U)$, investor U’s beliefs are:

$$\mathbb{E}_U [d] = \pi \lambda S_\theta + (1 - \pi)0$$

$$\text{var}_U [d] = \pi \sigma^2 (1 - \lambda) + (1 - \pi)\sigma^2 + \pi (1 - \pi) (\lambda S_\theta)^2$$

Note: When U is uncertain about θ, the variance increases with S_θ^2.

Banerjee & Green (2015) Signal or Noise?
Benchmark Model: Equilibrium

- Static: Uncertainty about θ, i.e., $\pi \in (0, 1)$, but no learning
 - Since unconditional distribution of S_N and S_I are same, cannot update π
Benchmark Model: Equilibrium

- Static: Uncertainty about θ, i.e., $\pi \in (0, 1)$, but no learning
 - Since unconditional distribution of S_N and S_I are same, cannot update π

- Optimal θ demand is monotone in S_θ:

$$x_\theta = \frac{\mathbb{E}_\theta[D] - RP}{\alpha \text{var}_\theta[D]} = \frac{\mu + \lambda S_\theta - RP}{\alpha \sigma^2 (1 - \lambda)}$$

\Rightarrow Equilibrium is signal-revealing
Benchmark Model: Equilibrium

- Static: Uncertainty about θ, i.e., $\pi \in (0, 1)$, but no learning
 - Since unconditional distribution of S_N and S_I are same, cannot update π

- Optimal θ demand is monotone in S_θ:

$$x_\theta = \frac{\mathbb{E}_\theta[D] - RP}{\alpha \text{var}_\theta[D]} = \frac{\mu + \lambda S_\theta - RP}{\alpha \sigma^2(1 - \lambda)}$$

\Rightarrow Equilibrium is signal-revealing

- Optimal U demand depends on conditional beliefs:

$$x_U = \frac{\mathbb{E}_U[D] - RP}{\alpha \text{var}_U[D]} = \frac{1}{\alpha \pi(1 - \lambda)\sigma^2 + (1 - \pi)\sigma^2 + \pi(1 - \pi)(\lambda S_\theta)^2} \left(\mu + \pi \lambda S_\theta - RP \right)$$

- Solve for P using market clearing: $x_U + x_\theta = Z$
Equilibrium price is non-linear in S_θ

$$P = \frac{1}{R} \left(\kappa \mathbb{E}_\theta[D] + (1 - \kappa) \mathbb{E}_U[D] - \alpha \kappa \sigma^2 (1 - \lambda) Z \right)$$

where

$$\kappa = \frac{\text{var}_U [d|S_\theta]}{\text{var}_U [d|S_\theta] + \text{var}_\theta [d|S_\theta]}$$

is increasing in S^2_θ for $\pi \in (0, 1)$, and hump-shaped in π.

Equilibrium price is non-linear in S_θ

$$P = \frac{1}{R} \left(\kappa \mathbb{E}_{\theta}[D] + (1 - \kappa)\mathbb{E}_{U}[D] - \alpha \kappa \sigma^2 (1 - \lambda) Z \right)$$

where

$$\kappa = \frac{\text{var}_U[d|S_\theta]}{\text{var}_U[d|S_\theta] + \text{var}_\theta[d|S_\theta]}$$

is increasing in S^2_θ for $\pi \in (0, 1)$, and hump-shaped in π.

Both components are non-linear in S_θ

- Uncertainty about $\theta \Rightarrow \text{var}_U[d|S_\theta]$ depends on S_θ
- Price is linear in S_θ for standard RE / DO models (κ constant)
Asymmetric price reactions to good vs. bad news

Prediction 1: *The price reacts more strongly to bad news*

Intuition:

- **Good news** (positive S_θ) increases expectations about fundamentals, but also increases U's uncertainty about fundamentals \Rightarrow offsetting effects.
- **Bad news** (negative S_θ) decreases expectations about fundamentals, and also increases U's uncertainty about fundamentals \Rightarrow reinforcing effects.

If risk concerns are large enough, price decreases with additional good news.

Empirical evidence for asymmetric price reactions:

- **Aggregate level:** Campbell and Hentschel (1992)
- **Firm level:** Skinner (1994), Skinner and Sloan (2002)

Banerjee & Green (2015)

Signal or Noise?

January 2015
Asymmetric price reactions to good vs. bad news

Prediction 1: *The price reacts more strongly to bad news*

Intuition: Expectations increase in S_θ, risk-premium increases in S^2_θ

- Good news (positive S_θ) **increases** expectations about fundamentals, but also **increases** U’s uncertainty about fundamentals
 ⇒ offsetting effects

- Bad news (negative S_θ) **decreases** expectations about fundamentals, and also **increases** U’s uncertainty about fundamentals
 ⇒ reinforcing effects
Asymmetric price reactions to good vs. bad news

Prediction 1: *The price reacts more strongly to bad news*

Intuition: Expectations increase in S_θ, risk-premium increases in S^2_θ

- Good news (positive S_θ) *increases* expectations about fundamentals, but also *increases* U’s uncertainty about fundamentals
 \Rightarrow offsetting effects

- Bad news (negative S_θ) *decreases* expectations about fundamentals, and also *increases* U’s uncertainty about fundamentals
 \Rightarrow reinforcing effects

If risk concerns are large enough, price *decreases* with additional *good news*
Asymmetric price reactions to good vs. bad news

Prediction 1: *The price reacts more strongly to bad news*

Intuition: Expectations increase in S_θ, risk-premium increases in S_θ^2

- Good news (positive S_θ) **increases** expectations about fundamentals, but also **increases** U’s uncertainty about fundamentals
 \Rightarrow offsetting effects

- Bad news (negative S_θ) **decreases** expectations about fundamentals, and also **increases** U’s uncertainty about fundamentals
 \Rightarrow reinforcing effects

If risk concerns are large enough, price decreases with additional *good news*

Empirical evidence for asymmetric price reactions

- Aggregate level: Campbell and Hentschel (1992)
Dynamic Model: Setup

- Infinite horizon
Dynamic Model: Setup

- Infinite horizon
- Competitive OLG, mean-variance investors

\[x_{i,t} = \frac{\mathbb{E}_{i,t} \left[P_{t+1} + D_{t+1} \right] - R P_t}{\alpha \text{var}_{i,t} \left[P_{t+1} + D_{t+1} \right]} \]
Dynamic Model: Setup

- Infinite horizon
- Competitive OLG, mean-variance investors
 \[x_{i,t} = \frac{\mathbb{E}_{i,t}[P_{t+1} + D_{t+1}] - RP_t}{\alpha \text{var}_{i,t}[P_{t+1} + D_{t+1}]} \]
- Dividends are persistent
 \[D_{t+1} = \rho D_t + (1 - \rho)\mu + d_{t+1} \]
 where \(d_{t+1} \sim \mathcal{N}(0, \sigma^2) \) and \(\rho < 1 \)
Dynamic Model: Setup

- Infinite horizon
- Competitive OLG, mean-variance investors

\[
x_{i,t} = \frac{\mathbb{E}_{i,t} [P_{t+1} + D_{t+1}] - R P_t}{\alpha \text{var}_{i,t} [P_{t+1} + D_{t+1}]}
\]

- Dividends are persistent

\[
D_{t+1} = \rho D_t + (1 - \rho) \mu + d_{t+1}
\]

where \(d_{t+1} \sim \mathcal{N}(0, \sigma^2)\) and \(\rho < 1\)

- We assume \(\theta_t\) follows a symmetric Markov switching process with

\[
\Pr(\theta_{t+1} = i | \theta_t = i) = q
\]

(Also look at i.i.d. case in paper)
Dynamic Model: Learning about θ

Since θ investors are symmetric, U cannot update π_t using $x_{\theta,t}$ and P_t
Dynamic Model: Learning about θ

Since θ investors are symmetric, U cannot update π_t using $x_{\theta,t}$ and P_t.

But, U can update π_t by comparing realized dividends to $S_{\theta,t}$, i.e.,

$$
\pi_{t+1} = \frac{\pi_t \Pr (S_{\theta,t} | \theta = \text{I}, d_{t+1})}{\pi_t \Pr (S_{\theta,t} | \theta = \text{I}, d_{t+1}) + (1 - \pi_t) \Pr (S_{\theta,t} | \theta = \text{N}, d_{t+1})}
$$

Intuitively:
- When the dividend is in line with the signal → increase π_t
- When the dividend is a surprise given the signal → decrease π_t
Dynamic Model: Learning about θ

Since θ investors are symmetric, U cannot update π_t using $x_{\theta,t}$ and P_t.

But, U can update π_t by comparing realized dividends to $S_{\theta,t}$, i.e.,

$$\pi_{t+1} = \frac{\pi_t \Pr(S_{\theta,t} | \theta = I, d_{t+1})}{\pi_t \Pr(S_{\theta,t} | \theta = I, d_{t+1}) + (1 - \pi_t) \Pr(S_{\theta,t} | \theta = N, d_{t+1})}$$

Intuitively:

- When the dividend is in line with the signal \rightarrow increase π_t
- When the dividend is a surprise given the signal \rightarrow decrease π_t
Figure: Updated beliefs after observing P_t, d_{t+1} starting from $\pi_t = 0.75$.

When θ is serially correlated, π_t is stochastic and persistent
Proposition: In any signal-revealing equilibrium, the price is

\[
P_t = \frac{1}{R} \left(\begin{array}{c}
\bar{E}_t \left[P_{t+1} + D_{t+1} \right] - \alpha \kappa_t \text{var}_{\theta,t} \left[P_{t+1} + D_{t+1} \right] Z \\
\text{expectations}
\end{array} \right)
\]

\[
\begin{array}{c}
\text{risk-premium}
\end{array}
\]

where

\[
\bar{E}_t [\cdot] = \kappa_t E_{\theta,t} [\cdot] + (1 - \kappa_t) E_{U,t} [\cdot]
\]

is the weighted average expectation of future payoffs, and

\[
\kappa_t = \frac{\text{var}_{U,t} [P_{t+1} + D_{t+1}]}{\text{var}_{U,t} [P_{t+1} + D_{t+1}] + \text{var}_{\theta,t} [P_{t+1} + D_{t+1}]} \in (0, 1)
\]

measures the relative precision of the \(U \) and \(\theta \) investors.
Price components in the dynamic model

Similar comparative statics in the dynamic equilibrium

(a) Expectations component

(b) Risk premium component

Implications?
Predictability in expected returns and volatility

Prediction 2: *Learning about other traders leads to stochastic but predictable expected returns and volatility*
Predictability in expected returns and volatility

Prediction 2: Learning about other traders leads to stochastic but predictable expected returns and volatility

Intuition: Prices and, therefore, return moments depend on π_t

- Updates to π_t depend on $S_{\theta,t}$ and $d_t \Rightarrow$ stochastic moments
- Persistence in $\pi_t \Rightarrow$ predictability of return moments
Volatility Clustering

Prediction 3: If π_t is sufficiently large, a return surprise (in either direction) predicts higher volatility and expected returns in the future.
Volatility Clustering

Prediction 3: If π_t is sufficiently large, a return surprise (in either direction) predicts higher volatility and expected returns in the future.

Intuition: π_{t+1} is decreasing in surprises in d_{t+1}

- Recall that, conditional on $\theta = I$, $E[S_{\theta,t}|d_{t+1}] = d_{t+1}$
- A large surprise in d_{t+1}, relative to $S_{\theta,t}$, decreases the likelihood that $\theta = I$, i.e., decreases π
- From high π, this implies U faces more uncertainty about θ
- Higher uncertainty \Rightarrow higher expected return and higher volatility
Disagreement and Returns

Prediction 4: Relation between disagreement and expected returns is non-monotonic and varies over time (with π_t).

Unlike RE / DO models, disagreement depends on π_t:

$$E (|E_{U,t} [D_{t+1}] - E_{\theta,t} [D_{t+1}]|) \propto (1 - \pi_t) \lambda \sigma$$

When π_t drives disagreement:

- **High disagreement (low π_t):** Returns decrease with disagreement
 Disagreement $\uparrow \Rightarrow \pi_t \downarrow \Rightarrow$ lower uncertainty about others

- **Low disagreement (high π_t):** Returns increase with disagreement
 Disagreement $\uparrow \Rightarrow \pi_t \downarrow \Rightarrow$ higher uncertainty about others
Disagreement and Returns

Prediction 4: Relation between disagreement and expected returns is non-monotonic and varies over time (with π_t).

Unlike RE / DO models, disagreement depends on π_t:

$$E \left(|E_{U,t} [D_{t+1}] - E_{\theta,t} [D_{t+1}] | \right) \propto (1 - \pi_t) \lambda \sigma$$

When π_t drives disagreement:

- **High disagreement (low π_t):** Returns decrease with disagreement
 Disagreement $\uparrow \Rightarrow \pi_t \downarrow \Rightarrow$ lower uncertainty about others

- **Low disagreement (high π_t):** Returns increase with disagreement
 Disagreement $\uparrow \Rightarrow \pi_t \downarrow \Rightarrow$ higher uncertainty about others

Consistent with Banerjee (2011): high $\pi_t \approx$ RE and low $\pi_t \approx$ DO
Linear return-disagreement relation may be mis-specified!

Helps reconcile the mixed empirical evidence on the return-disagreement relation:

- Positive relation: Qu Starks Yan (2004), Banerjee (2011)
Linear return-disagreement relation may be mis-specified!

Helps reconcile the mixed empirical evidence on the return-disagreement relation:

- Positive relation: Qu Starks Yan (2004), Banerjee (2011)

Existing specifications are univariate, linear, and constant over time

Need to control for π_t (e.g., PIN (?), institutional ownership)
Parametrization

Show robustness of results

- Theory is in terms of dollar returns i.e., $Q_{t+1} = P_{t+1} + D_{t+1} - RP_t$
- Parametrize the model to generate moments of *rates of return* i.e., $r_{t+1} = Q_{t+1}/P_t$

Get a sense of economic magnitude
Parametrization

Show robustness of results

- Theory is in terms of dollar returns i.e., $Q_{t+1} = P_{t+1} + D_{t+1} - RP_t$
- Parametrize the model to generate moments of rates of return i.e., $r_{t+1} = Q_{t+1}/P_t$

Get a sense of economic magnitude

Set parameters such that for $\pi = 1$ and $\lambda = 0.75$, we have:

$$\mathbb{E}[r_{t+1} - r_f] = 7.5\% \text{ and } \sigma(r_{t+1}) = 22\%$$

- Dividend process: $\mu = 4\%, \sigma = 6\%, \rho = 0.95$,
- Other parameters: $r_f = 3\%, Z = 1, \alpha = 1$ and $q = 0.75$.
Return Moments

(a) Expected Excess Rate of Return
(b) Volatility of Rate of Return

- For $\pi = 1$, change in λ from 0.25 to 0.75
 \Rightarrow exp returns: 9.2% to 7.5%; volatility: 25% to 22%

- For $\lambda = 0.75$, change in π from 1 to 0.5
 \Rightarrow exp returns: 7.5% to 10%; volatility: 22% to 30%
Volatility Clustering

- For $\pi = 1$ or $\pi = 0$, there is no response
- For $\pi = 0.95$, $\lambda = 0.75$,
 - one std. dev. surprise \Rightarrow exp ret: 9% to 9.6%, vol: 25% to 27%
 - two std. dev. surprise \Rightarrow exp ret: 9% to 10.2%, vol: 25% to 32%

(a) Future Excess Returns
(b) Future Volatility
Asymmetric Price Reaction \rightarrow Leverage effect

(c) Excess return ($R_{e,t+1}$)

(d) Squared excess return ($R_{e,t+1}^2$)

Returns exhibit reversals: Signals are i.i.d. and short-lived

Asymmetric price reaction: Bigger reversals, higher volatility after negative returns
Robustness: Rational expectations with aggregate noise

Suppose investors have common prior beliefs, but aggregate supply is noisy

- The $\theta = N$ investor knows he does not have information

$$x_\theta = \frac{\mathbb{E}_\theta [d] - RP}{\alpha \text{var}_\theta [d]} = \begin{cases} \frac{\lambda S_\theta - RP}{\alpha \sigma (1 - \lambda)} & \text{if } \theta = I \\ \frac{0 - RP}{\alpha \sigma} & \text{if } \theta = N \end{cases}$$

- Market clearing condition is given by

$$x_\theta + x_U = Z + z, \quad z \sim N(0, \sigma_z^2)$$
Robustness: Rational expectations with aggregate noise

Suppose investors have common prior beliefs, but aggregate supply is noisy

- The $\theta = N$ investor knows he does not have information

$$x_\theta = \frac{\mathbb{E}_\theta [d] - RP}{\alpha \text{var}_\theta [d]} = \begin{cases} \frac{\lambda S_\theta - RP}{\alpha \sigma (1 - \lambda)} & \text{if } \theta = I \\ \frac{0 - RP}{\alpha \sigma} & \text{if } \theta = N \end{cases}$$

- Market clearing condition is given by

$$x_\theta + x_U = Z + z, \quad z \sim N(0, \sigma_z^2)$$

- U conditions on P and residual supply $Z + z - x_\theta$ to construct:

$$y \equiv \alpha \sigma^2 (1 - \lambda) (x_\theta - z) + P$$

- Since x_θ is not symmetric, y is informative about θ
- Conditional on $\theta = I$, y is informative about dividends
Price decomposition in the Noise Trader Version

Show existence of an equilibrium with price:

\[
P = \frac{1}{R} \left((\kappa + (1 - \kappa) \pi \lambda_y) y - \kappa \alpha \sigma^2 (1 - \lambda) Z \right)
\]

(Expectations component)

Risk-premium component

(a) Expectations Component

(b) Risk-premium Component
Summary

Key feature: Uncertainty and learning about whether others are informed

This uncertainty has rich implications for return dynamics

- Non-linear price that reacts asymmetrically to good news vs. bad news
- Stochastic, persistent return moments, even with i.i.d. shocks
- Volatility clustering and the “leverage” effect
- Disagreement-return relation is non-monotonic and time-varying

Model is stylized for tractability and to highlight intuition

- Intuition should be robust to alternative forms of uncertainty e.g., about proportion of informed trading
- Future work: Extension to study dynamic information acquisition