Dynamics, Asymmetric Information and News

Brett Green

Designed for PhD course on Daley and Green (2012)
Overview

The literature studies a plethora of static environments where agents have private information.

- Important to distinguish between mechanism design/contract theory (optimal incentive schemes) and competitive market equilibria. We’ll focus on the latter today.

- A natural question to ask is: How robust are the predictions of our static models to dynamic environments? This is what we will explore today.

- Then we will investigate the impact that gradual information revelation has on trade dynamics.
The Basic Setting

Single seller with asset of type $\theta \in \{L, H\}$

- Asset is H (w.p. π), L (w.p. $1 - \pi$)
- Seller privately knows θ, buyers do not
- Seller has flow value k_θ, buyers derive flow value v_θ.
- Common knowledge of gains from trade: $k_\theta < v_\theta$
- All agents are risk neutral and have common discount rate r
Preliminaries

- We use this setup to analyze both Akerlof and Spence. Then investigate their dynamic counterpart.

- Seller’s outside option (i.e., if she never trades):

 \[K_\theta = \int_0^\infty e^{-rs}k_\theta \, ds = \frac{k_\theta}{r} \]

- Next, consider how much a buyer is willing to pay assuming both types sell:

 \[E[V_\theta] = \pi V_H + (1 - \pi)V_L \]

 where \(V_\theta = \frac{v_\theta}{r} \).
Preliminaries

- We use this setup to analyze both Akerlof and Spence. Then investigate their dynamic counterpart.

- Seller’s outside option (i.e., if she never trades):

\[K_\theta = \int_0^\infty e^{-rs} k_\theta ds = \frac{k_\theta}{r} \]

- Next, consider how much a buyer is willing to pay assuming both types sell:

\[E[V_\theta] = \pi V_H + (1 - \pi) V_L \]

where \(V_\theta = \frac{v_\theta}{r} \).
Preliminaries

▶ We use this setup to analyze both Akerlof and Spence. Then investigate their dynamic counterpart.

▶ Seller’s outside option (i.e., if she never trades):

\[K_\theta = \int_0^\infty e^{-rs} k_\theta \, ds = \frac{k_\theta}{r} \]

▶ Next, consider how much a buyer is willing to pay assuming both types sell:

\[E[V_\theta] = \pi V_H + (1 - \pi) V_L \]

where \(V_\theta = \frac{v_\theta}{r} \).
Akerlof’s Market for Lemons

The extensive form:

- There is a single date at which trade can occur \((t = 0)\).
- Multiple \((> 2)\) buyers arrive and make-take-it-or-leave-it offers. Note: Buyers compete ala Bertrand so make zero-profit.
- If seller rejects, her payoff is \(K_\theta\).
- If seller accepts an offer of \(w\), her payoff is just \(w\).
- Winner buyer’s payoff is \(w - V_\theta\). Losing buyers make zero.

What is the equilibrium outcome?
Akerlof’s Market for Lemons

The extensive form:

- There is a single date at which trade can occur \((t = 0)\).
- Multiple \((> 2)\) buyers arrive and make take-it-or-leave-it offers. Note: Buyers compete ala Bertrand so make zero-profit.
- If seller rejects, her payoff is \(K_\theta\).
- If seller accepts an offer of \(w\), her payoff is just \(w\).
- Winner buyer’s payoff is \(w - V_\theta\). Losing buyers make zero.

What is the equilibrium outcome?
Akerlof’s Market for Lemons

Two cases:

1. $K_H < E[V_\theta] \implies$ Market for Everything
 - Equilibrium price is $w = E[V_\theta]$
 - Both types trade w.p.1. \implies Outcome is efficient.

2. $K_H > E[V_\theta] \implies$ Market for Lemons
 - Hit won’t sell for less than K_H.
 - Any $w \geq K_H$ will lose money on average.
 - Hence $w < K_H$. Zero profit implies $w = V_L$.
 - Hits don’t trade. Letdowns sell for V_L w.p.1. \implies Outcome is inefficient.
Akerlof’s Market for Lemons

Two cases:

1. $K_H < E[V_\theta] \implies$ Market for Everything
 - Equilibrium price is $w = E[V_\theta]$
 - Both types trade w.p.1. \implies Outcome is efficient.

2. $K_H > E[V_\theta] \implies$ Market for Lemons
 - Hit won’t sell for less than K_H.
 - Any $w \geq K_H$ will lose money on average.
 - Hence $w < K_H$. Zero profit implies $w = V_L$.
 - Hits don’t trade. Letdowns sell for V_L w.p.1. \implies Outcome is inefficient.
Akerlof’s Market for Lemons

Is the prediction from the Market for Lemons ($K_H > E[V_\theta]$) robust to a dynamic setting?

▶ What happens the next day ($t = 1$)?
 ◆ There will be more buyers
 ◆ Only H is left—price should increase to V_H
 ◆ Letdown’s regret their decision to sell at $t = 0$
 ◆ The equilibrium unravels

Note: Similar criticism applies to Myers and Majluf. If only certain types of firms issue equity and invest at $t = 0$, the decision not to issue/invest reveals information about the firms type. Beliefs/price tomorrow will be different.
Akerlof’s Market for Lemons

Is the prediction from the Market for Lemons \((K_H > E[V_\theta])\) robust to a dynamic setting?

- What happens the next day \((t = 1)\)?
 - There will be more buyers
 - Only H is left—price should increase to \(V_H\)
 - Letdown’s regret their decision to sell at \(t = 0\)
 - The equilibrium unravels

Note: Similar criticism applies to Myers and Majluf. If only certain types of firms issue equity and invest at \(t = 0\), the decision not to issue/invest reveals information about the firms type. Beliefs/price tomorrow will be different.
Akerlof’s Market for Lemons

Is the prediction from the Market for Lemons \((K_H > E[V_\theta])\) robust to a dynamic setting?

- What happens the next day \((t = 1)\)?
 - There will be more buyers
 - Only H is left—price should increase to \(V_H\)
 - Letdown’s regret their decision to sell at \(t = 0\)
 - The equilibrium unravels

Note: Similar criticism applies to Myers and Majluf. If only certain types of firms issue equity and invest at \(t = 0\), the decision not to issue/invest reveals information about the firms type. Beliefs/price tomorrow will be different.
The extensive form:

- Seller can *commit* to any amount of costly delay: strategy is a mapping \(\sigma : \Theta \rightarrow \Delta(\mathbb{R}_+) \).

- Buyers observe seller’s action \((t \in \mathbb{R}_+)\) and update their beliefs from \(\pi \) to \(\mu(t) \).

- Buyers simultaneously and make offers at date \(t \). Buyer \(i \)'s strategy is a mapping \(w_i : \mathbb{R}_+ \rightarrow \Delta(\mathbb{R}) \).

- Seller decides which offer to accept (if any).
Spence’s Market Signaling

Payoffs:

- To seller from trading at time t for price w:

 $$ u_\theta(t, w) = \int_0^t e^{-rs} k_\theta ds + e^{-rt} w = (1 - e^{-rt}) K_\theta + e^{-rt} w $$

- To buyers:

 $$ V_\theta - w \quad \text{if trades with type } \theta \text{ at price } w

 0 \quad \text{if does not trade} $$

- Again, seller will be paid his expected value based on Buyers’ beliefs (i.e., Bertrand competition drives profits to zero).
Spence’s Market Signaling

Payoffs:

- To seller from trading at time t for price w:

$$u_\theta(t, w) = \int_0^t e^{-rs} k_\theta ds + e^{-rt} w = (1 - e^{-rt}) K_\theta + e^{-rt} w$$

- To buyers:

$$V_\theta - w \quad \text{if trades with type } \theta \text{ at price } w$$
$$0 \quad \text{if does not trade}$$

Again, seller will be paid his expected value based on Buyers’ beliefs (i.e., Bertrand competition drives profits to zero).
Spence’s Market Signaling

Payoffs:

- To seller from trading at time t for price w:

 \[u_\theta(t, w) = \int_0^t e^{-rs}k_\theta ds + e^{-rt}w = (1 - e^{-rt})K_\theta + e^{-rt}w \]

- To buyers:

 \[V_\theta - w \quad \text{if trades with type } \theta \text{ at price } w \\
 0 \quad \text{if does not trade} \]

- Again, seller will be paid his expected value based on Buyers’ beliefs (i.e., Bertrand competition drives profits to zero).
Spence’s Market Signaling

Typical parametric restriction in “signaling” environments:

- \(K_H < V_L \): No adverse selection problem
- \(K_L < K_H \): Single-crossing condition

Under these conditions, the model admits two types of equilibria:

1. Full Pooling: \(\sigma_L = \sigma_H = t_p \) for any \(t_p \) such that

\[
u_L(t_p, E[V_\theta]) \geq V_L \iff t_p \leq \frac{1}{r} \ln \left(\frac{V_L - K_L}{E[V_\theta] - K_L} \right)
\]

2. Separating: \(\sigma_L = 0, \sigma_H = t_H \), where \(t_H \) is such that

\[
\begin{align*}
&u_L(0, V_L) = V_L \geq u_L(t_H, V_H) \iff t_H \geq \frac{1}{r} \ln \left(\frac{V_L - K_L}{V_H - K_L} \right) \\
&u_H(t_H, V_H) \geq u_H(0, V_L) = V_L \iff t_H \leq \frac{1}{r} \ln \left(\frac{V_L - K_H}{V_H - K_H} \right)
\end{align*}
\]
Spence’s Market Signaling

Typical parametric restriction in “signaling” environments:

- $K_H < V_L$: No adverse selection problem
- $K_L < K_H$: Single-crossing condition

Under these conditions, the model admits two types of equilibria:

1. Full Pooling: $\sigma_L = \sigma_H = t_p$ for any t_p such that

$$u_L(t_p, E[V_\theta]) \geq V_L \iff t_p \leq \frac{1}{r} \ln \left(\frac{V_L - K_L}{E[V_\theta] - K_L} \right)$$

2. Separating: $\sigma_L = 0$, $\sigma_H = t_H$, where t_H is such that

$$u_L(0, V_L) = V_L \geq u_L(t_H, V_H) \iff t_H \geq \frac{1}{r} \ln \left(\frac{V_L - K_L}{V_H - K_L} \right)$$

$$u_H(t_H, V_H) \geq u_H(0, V_L) = V_L \iff t_H \leq \frac{1}{r} \ln \left(\frac{V_L - K_H}{V_H - K_H} \right)$$
Spence’s Market Signaling

Typical parametric restriction in “signaling” environments:

- $K_H < V_L$: No adverse selection problem
- $K_L < K_H$: Single-crossing condition

Under these conditions, the model admits two types of equilibria:

1. Full Pooling: $\sigma_L = \sigma_H = t_p$ for any t_p such that

 $$u_L(t_p, E[V_\theta]) \geq V_L \iff t_p \leq \frac{1}{r} \ln \left(\frac{V_L - K_L}{E[V_\theta] - K_L} \right)$$

2. Separating: $\sigma_L = 0$, $\sigma_H = t_H$, where t_H is such that

 $$u_L(0, V_L) = V_L \geq u_L(t_H, V_H) \iff t_H \geq \frac{1}{r} \ln \left(\frac{V_L - K_L}{V_H - K_L} \right)$$

 $$u_H(t_H, V_H) \geq u_H(0, V_L) = V_L \iff t_H \leq \frac{1}{r} \ln \left(\frac{V_L - K_H}{V_H - K_H} \right)$$
Equilibrium Selection in Signaling Models

- To make sharp predictions, we are left with the (difficult) task of selecting which equilibrium is “most reasonable.”
- Standard equilibrium refinements (Intuitive Criterion, D1, Universal Divinity), which are based on refining the set of off-equilibrium path beliefs, all arrive at the same conclusion.

Proposition

The unique equilibrium outcome satisfying standard refinements is the least-cost-separating equilibrium. That is, \(\sigma_L = 0 \) and \(\sigma_H = t^* \) where \(t^* \) is such that \(u_L(0, V_L) = u_L(t^*, V_H) \).

Intuition: From indifference curves (optional)
Separating Equilibria in Dynamic Settings

Question: Is this prediction robust to a dynamic setting?

- If only H waits to sell, type is revealed by not selling at $t = 0$...
 - Buyers should snatch up any seller that remains for $V_H - \epsilon$
 - L regrets decision to sell at $t = 0$
 - Equilibrium again unravels in a dynamic setting

Note: A similar criticism applies to Leland and Pyle.

- If a firm reveals its type through how much equity it retains at $t = 0$, then it should be able to sell the rest of the equity at fair market value at $t = 1$.
- But then low type firm who sold all their equity at $t = 0$ will regret their decision and the equilibrium unravels.
Separating Equilibria in Dynamic Settings

Question: Is this prediction robust to a dynamic setting?

- If only H waits to sell, type is revealed by not selling at $t = 0$...
 - Buyers should snatch up any seller that remains for $V_H - \epsilon$
 - L regrets decision to sell at $t = 0$
 - Equilibrium again unravels in a dynamic setting

Note: A similar criticism applies to Leland and Pyle.

- If a firm reveals its type through how much equity it retains at $t = 0$, then it should be able to sell the rest of the equity at fair market value at $t = 1$.

- But then low type firm who sold all their equity at $t = 0$ will regret their decision and the equilibrium unravels.
Separating Equilibria in Dynamic Settings

Question: Is this prediction robust to a dynamic setting?

- If only H waits to sell, type is revealed by not selling at $t = 0$...
 - Buyers should snatch up any seller that remains for $V_H - \epsilon$
 - L regrets decision to sell at $t = 0$
 - Equilibrium again unravels in a dynamic setting

Note: A similar criticism applies to Leland and Pyle.

- If a firm reveals its type through how much equity it retains at $t = 0$, then it should be able to sell the rest of the equity at fair market value at $t = 1$.
- But then low type firm who sold all their equity at $t = 0$ will regret their decision and the equilibrium unravels.
Akerlof vs Spence

These static models are quite different:

- Akerlof - seller chooses whether to trade now or never
 - Somewhat stark as mentioned previously.
- Spence - seller can commit to any amount of costly delay
 - Is this commitment power reasonable? What stops buyers from making offers sooner?

Observation

In a dynamic market (without commitment), these two strategic settings are virtually identical!
Akerlof vs Spence

These static models are quite different:

- **Akerlof** - seller chooses whether to *trade now or never*
 - Somewhat stark as mentioned previously.
- **Spence** - seller can *commit* to any amount of costly delay
 - Is this commitment power reasonable? What stops buyers from making offers sooner?

Observation

In a dynamic market (without commitment), these two strategic settings are virtually identical!
A Dynamic Market with Asymmetric Information

Reformulated version:

- Seller is interested in selling her asset but she is not forced to do so on any particular day
- If she does not sell today, she derives the flow value from the asset
- And can entertain more offers tomorrow
The Model: Daley and Green (2012)

Players:
- Initial owner, \(A_0 \)
- Mass of potential buyers (the market)

Preferences:
- All agents are risk-neutral
- Buyers have discount rate \(r \)
- \(A_0 \) discounts at \(\bar{r} > r \)
The Model

The Asset:

- Single asset of type $\theta \in \{L, H\}$
- Nature chooses θ: $P(\theta = H) = P_0$
- A_0 knows θ and accrues (stochastic) flow payoff with mean v_θ
- High-value asset pays more: $v_H > v_L$
- Let $V_\theta \equiv \int_0^\infty v_\theta e^{-rt} dt$ and $K_\theta \equiv \int_0^\infty v_\theta e^{-\bar{r}t} dt$
- Assume that $K_H > V_L$ (SLC)
News Arrival

- Brownian motion drives the arrival of news. Both type assets start with the same initial score X_0.
- Type θ asset has a publicly observable score (X^θ_t) which evolves according to:

$$dX^\theta_t = \mu_\theta \, dt + \sigma \, dB_t$$

where B is standard B.M. and WLOG, $\mu_H \geq \mu_L$.
- The quality (or speed) of the news is measured by the signal-to-noise ratio: $\phi \equiv \frac{\mu_H - \mu_L}{\sigma}$.
- You can think about ϕ as either a quality: how much can be learned in a certain amount of time or as a rate: how fast can something be learned. It is a sufficient statistic for the drift terms and the volatility.
- One interpretation:
 - News=cashflows or information about them: $\mu_\theta = \nu_\theta$.
News Arrival

- Brownian motion drives the arrival of news. Both type assets start with the same initial score X_0.
- Type θ asset has a publicly observable score (X^θ_t) which evolves according to:
 \[dX^\theta_t = \mu_\theta \, dt + \sigma \, dB_t \]
 where B is standard B.M. and WLOG, $\mu_H \geq \mu_L$.
- The quality (or speed) of the news is measured by the signal-to-noise ratio:
 \[\phi \equiv \frac{\mu_H - \mu_L}{\sigma} \]
- You can think about ϕ as either a quality: how much can be learned in a certain amount of time or as a rate: how fast can something be learned. It is a sufficient statistic for the drift terms and the volatility.
- One interpretation:
 - News=cashflows or information about them: $\mu_\theta = \nu_\theta$.
Timing

- Infinite-horizon, continuous-time setting

- At every t:
 - Buyers arrive and make offers.
 - Owner decides which offer to accept (if any).
 - News is revealed about the asset.

Diagram:

- Buyers arrive and make private offers
- Seller accepts (and the game ends) or rejects
- News is revealed about the seller
- New buyers arrive observing everything except previous offers

dt
Payoffs

To the initial owner who accepts an offer of \(w \) at time \(t \) is:

\[
\int_0^t e^{-\bar{r}s} \nu_\theta ds + e^{-\bar{r}t}w = (1 - e^{-\bar{r}t})K_\theta + e^{-\bar{r}t}w
\]

To a buyer who purchases the asset for \(w \) at time \(t \):

\[
V_\theta - w
\]
Market Beliefs and Owner’s Status

 Buyers begin with common prior: \(\pi = \mathbb{P}_{t=0}(\theta = H) \)

- At time \(t \), buyers know:
 (i) The path of news arrival and shocks up to time \(t \)
 (ii) That trade has not occurred prior to \(t \)

Equilibrium beliefs will conditioned on all of the above.

- Let \(P \) denote the equilibrium belief process
- Define \(Z = \ln \left(\frac{P}{1-P} \right) \): “beliefs” in z-space
Market Beliefs and Owner’s Status

Buyers begin with common prior: $\pi = \mathbb{P}_{t=0}(\theta = H)$

- At time t, buyers know:
 1. The path of news arrival and shocks up to time t
 2. That trade has not occurred prior to t

Equilibrium beliefs will conditioned on all of the above.

- Let P denote the equilibrium belief process
- Define $Z = \ln \left(\frac{P}{1-P} \right)$: “beliefs” in z-space
We will construct a stationary equilibrium of the game.

- **The state** is the market belief z. Any history such that:
 - Market beliefs are z: $Z_t(\omega) = z$

- Note that the state evolves endogenously over time—since beliefs must be consistent with strategies.

- Buyers’ strategy is summarized by the function w
 - $w(z)$ denotes the (maximal) offer made in state z

- The owner’s strategy is a stopping rule τ. Roughly, a mapping from (θ, z, w) into a decision of whether to “stop” (i.e., accept).
We will construct a stationary equilibrium of the game.

- The **state**, is the market belief \(z \). Any history such that
 - Market beliefs are \(z \): \(Z_t(\omega) = z \)
- Note that the state evolves endogenously over time—since beliefs must be consistent with strategies.

- Buyers’ strategy is summarized by the function \(w \)
 - \(w(z) \) denotes the (maximal) offer made in state \(z \)

- The owner’s strategy is a stopping rule \(\tau \). Roughly, a mapping from \((\theta, z, w)\) into a decision of whether to “stop” (i.e., accept).
Strategies and Equilibria

Given w and Z, the owner’s problem is to choose a stopping rule to maximize her expected payoff given any state.

$$\sup_{\tau} E_t^\theta \left[\int_0^\tau v_\theta e^{-\bar{\eta}s} \, ds + e^{-\bar{\eta}\tau} w(Z_\tau) \bigg| Z_t \right]$$ \hspace{1cm} (SP_\theta)

Definition

An equilibrium is a triple (τ, w, Z):

- Given w and Z, the owner’s strategy solves SP_θ.
- Given τ and Z, w is consistent with buyers playing best responses.
- Market beliefs, Z, are consistent with Bayes rule whenever possible.
Evolution of Beliefs based only on News

A useful element in the equilibrium construction is the belief process that updates only based on news:

- Starting from the initial prior P_0
- Let \hat{P} denote the belief process resulting from Bayesian updating based only on news:

$$\hat{P}_t \equiv \frac{\pi f^H_t(X_t)}{\pi f^H_t(X_t) + (1 - \pi)f^L_t(X_t)}$$

- Where f^θ_t is the normal pdf with mean $\mu_\theta t$ and variance $\sigma^2 t$
- The evolution of \hat{P} is type dependent

Why is this useful? If strategies call for trade with probability zero over any interval of time, then the equilibrium (consistent) beliefs must evolve according to \hat{P} over that interval.
Evolution of Beliefs based only on News

A useful element in the equilibrium construction is the belief process that updates only based on news:

- Starting from the initial prior P_0
- Let \hat{P} denote the belief process resulting from Bayesian updating based only on news:

$$\hat{P}_t \equiv \frac{\pi f^H_t(X_t)}{\pi f^H_t(X_t) + (1 - \pi)f^L_t(X_t)}$$

- Where f^θ_t is the normal pdf with mean $\mu_\theta t$ and variance $\sigma^2 t$
- The evolution of \hat{P} is type dependent

Why is this useful? If strategies call for trade with probability zero over any interval of time, then the equilibrium (consistent) beliefs must evolve according to \hat{P} over that interval.
Evolution of Beliefs based only on News

A useful element in the equilibrium construction is the belief process that updates only based on news:

- Starting from the initial prior P_0
- Let \hat{P} denote the belief process resulting from Bayesian updating based only on news:

$$\hat{P}_t \equiv \frac{\pi f^H_t(X_t)}{\pi f^H_t(X_t) + (1 - \pi)f^L_t(X_t)}$$

Where f^θ_t is the normal pdf with mean $\mu_\theta t$ and variance $\sigma^2 t$

- The evolution of \hat{P} is type dependent

Why is this useful? If strategies call for trade with probability zero over any interval of time, then the equilibrium (consistent) beliefs must evolve according to \hat{P} over that interval.
Evolution of Beliefs based only on News

Make a change of variables to $\hat{Z} = \ln(\hat{P}/(1 - \hat{P}))$:

$$\hat{Z}_t = \ln\left(\frac{\hat{P}_t}{1 - \hat{P}_t}\right) = \ln\left(\frac{\hat{P}_0 f_t^H(X_t)}{(1 - \hat{P}_0) f_t^L(X_t)}\right)$$

$$= \ln\left(\frac{\hat{P}_0}{1 - \hat{P}_0}\right) + \ln\left(\frac{f_t^H(X_t)}{f_t^L(X_t)}\right)$$

$$= \hat{Z}_0 + \ln\left(f_t^H(X_t) / f_t^L(X_t)\right) + \frac{\phi}{\sigma}(X_t - \frac{(\mu_H + \mu_L)t}{2})$$

Using Ito’s lemma and the law of motion of dX^θ_t gives:

$$d\hat{Z}_t^H = \frac{\phi^2}{2} dt + \phi dB_t$$

$$d\hat{Z}_t^L = -\frac{\phi^2}{2} dt + \phi dB_t$$
Evolution of Beliefs based only on News

Make a change of variables to $\hat{Z} = \ln(\hat{P}/(1 - \hat{P}))$:

$$\hat{Z}_t = \ln \left(\frac{\hat{P}_t}{1 - \hat{P}_t} \right) = \ln \left(\frac{\hat{P}_0 f_t^H(X_t)}{(1 - \hat{P}_0)f_t^L(X_t)} \right)$$

$$= \ln \left(\frac{\hat{P}_0}{1 - \hat{P}_0} \right) + \ln \left(\frac{f_t^H(X_t)}{f_t^L(X_t)} \right)$$

\hat{Z}_0 $\hat{Z}_0 + \phi \frac{1}{\sigma} (X_t - (\mu_H + \mu_L)t)$

Using Ito’s lemma and the law of motion of dX_t^θ gives:

$$d\hat{Z}_t^H = \frac{\phi^2}{2} dt + \phi dB_t$$

$$d\hat{Z}_t^L = -\frac{\phi^2}{2} dt + \phi dB_t$$
Equilibrium Beliefs

In equilibrium, the market beliefs evolve based on news as well as:

- The owner’s equilibrium strategy and the fact that trade has not yet occurred.

That is,

\[dZ_t = d\hat{Z}_t + dQ_t \]

Where \(dQ_t \) is the information contained in the fact that trade occurred or did not occur at time \(t \).

For example, suppose trade does not occur at time \(t \):

- If strategies call for trade with probability zero: \(dQ_t = 0 \)
- If strategies call for a low type to trade with positive probability and a high type to trade with probability zero: \(dQ_t > 0 \)

Note: We have just linearized Bayesian updating (very convenient).
Equilibrium Beliefs

In equilibrium, the market beliefs evolves based on news as well as:

▶ The owner’s equilibrium strategy and the fact that trade has not yet occurred.

That is,

\[dZ_t = d\hat{Z}_t + dQ_t \]

Where \(dQ_t \) is the information contained in the fact that trade occurred or did not occur at time \(t \).

For example, suppose trade does not occur at time \(t \):

▶ If strategies call for trade with probability zero: \(dQ_t = 0 \)
▶ If strategies call for a low type to trade with positive probability and a high type to trade with probability zero: \(dQ_t > 0 \)

Note: We have just linearized Bayesian updating (very convenient).
Equilibrium Beliefs

In equilibrium, the market beliefs evolve based on news as well as:

- The owner’s equilibrium strategy and the fact that trade has not yet occurred.

That is,

\[dZ_t = d\hat{Z}_t + dQ_t \]

Where \(dQ_t \) is the information contained in the fact that trade occurred or did not occur at time \(t \).

For example, suppose trade does not occur at time \(t \):

- If strategies call for trade with probability zero: \(dQ_t = 0 \)
- If strategies call for a low type to trade with positive probability and a high type to trade with probability zero: \(dQ_t > 0 \)

Note: We have just linearized Bayesian updating (very convenient).
Equilibrium Beliefs

In equilibrium, the market beliefs evolves based on news as well as:

- The owner’s equilibrium strategy and the fact that trade has not yet occurred.

That is,

\[dZ_t = d\hat{Z}_t + dQ_t \]

Where \(dQ_t \) is the information contained in the fact that trade occurred or did not occur at time \(t \).

For example, suppose trade does not occur at time \(t \):

- If strategies call for trade with probability zero: \(dQ_t = 0 \)
- If strategies call for a low type to trade with positive probability and a high type to trade with probability zero: \(dQ_t > 0 \)

Note: We have just linearized Bayesian updating (very convenient).
Equilibrium Beliefs

In equilibrium, the market beliefs evolves based on news as well as:

- The owner’s equilibrium strategy and the fact that trade has not yet occurred.

That is,

\[dZ_t = d\hat{Z}_t + dQ_t \]

Where \(dQ_t \) is the information contained in the fact that trade occurred or did not occur at time \(t \).

For example, suppose trade does not occur at time \(t \):

- If strategies call for trade with probability zero: \(dQ_t = 0 \)
- If strategies call for a low type to trade with positive probability and a high type to trade with probability zero: \(dQ_t > 0 \)

Note: We have just linearized Bayesian updating (very convenient).
Finding the Equilibrium
Some preliminaries

Proposition

Let $F_\theta(z)$ denote the seller’s value function. Properties that must be true of any equilibrium:

1. **Buyers make zero expected profit**
2. $F_L(z) \geq V_L$ and $F_H(z) \geq E[V_\theta|z]$ for all z
3. $F_L(z) \leq E[V_\theta|z]$ and $F_H(z) \leq V_H$ for all z
4. **The only prices at which trades occurs are V_L and $E[V_\theta|z]$**
5. **If $E[V_\theta|z]$ is offered, it is accepted with probability 1**
Equilibrium for $\phi > 0$

Main Result:
There exists an equilibrium of the game which is characterized by a pair of beliefs (α, β) and the function s.t.

- If $z \geq \beta$: $w = B(z)$ and both type sellers accept with probability one.

- If $z \leq \alpha$: $w = V_L$, a high type seller rejects with probability one and a low type seller accepts with probability $\rho_L = 1 - e^{z-\alpha}$.

- If $z \in (\alpha, \beta)$: no trade occurs. Buyers make offers that are rejected by both type sellers with probability one.
Equilibrium for $\phi > 0$

Main Result:
There exists an equilibrium of the game which is characterized by a pair of beliefs (α, β) and the function s.t.

- If $z \geq \beta$: $w = B(z)$ and both type sellers accept with probability one.

- If $z \leq \alpha$: $w = V_L$, a high type seller rejects with probability one and a low type seller accepts with probability $\rho_L = 1 - e^{z-\alpha}$.

- If $z \in (\alpha, \beta)$: no trade occurs. Buyers make offers that are rejected by both type sellers with probability one.
Equilibrium for $\phi > 0$

Main Result:
There exists an equilibrium of the game which is characterized by a pair of beliefs (α, β) and the function s.t.

- If $z \geq \beta$: $w = B(z)$ and both type sellers accept with probability one.
- If $z \leq \alpha$: $w = V_L$, a high type seller rejects with probability one and a low type seller accepts with probability $\rho_L = 1 - e^{z-\alpha}$.
- If $z \in (\alpha, \beta)$: no trade occurs. Buyers make offers that are rejected by both type sellers with probability one.
Equilibrium for $\phi > 0$

Main Result:
There exists an equilibrium of the game which is characterized by a pair of beliefs (α, β) and the function s.t.

- If $z \geq \beta$: $w = B(z)$ and both type sellers accept with probability one.
- If $z \leq \alpha$: $w = V_L$, a high type seller rejects with probability one and a low type seller accepts with probability $\rho_L = 1 - e^{z-\alpha}$.
- If $z \in (\alpha, \beta)$: no trade occurs. Buyers make offers that are rejected by both type sellers with probability one.
Sample Path of Equilibrium Play

Low type mixes over accept/reject at \(p = a \)

Beliefs jump to zero if a low type accepts \(w = V_L \)

High type eventually reaches \(b \) and trades at \(E[V_0|b] \)

High type rejects w.p.1. at \(p = a \)

Figure: A low type may eventually sell for \(V_L \) at \(p = a \) (left), a high type never does (right). Notice that the low type accepts in such a way that the equilibrium beliefs reflect of the lower boundary. That is \(Z \) has a lower reflecting barrier at \(\alpha \).
Proof By Construction

Take \(w \) as given and assume that \(Z \) evolves as specified for some unknown \(\alpha \).

Let \(F_\theta(z) \) denote the seller’s value for the asset. The Bellman equation for the seller’s problem is:

\[
F_\theta(z) = \max \left\{ \text{payoff from accepting} \left(w(z) \right), \text{payoff from rejecting} \right\} \\
= \max \left\{ \int v_\theta \, dt + E^\theta \left[e^{-\bar{r}dt} F_\theta(z + dZ) \right], \right\}
\]

In the no-trade region:

\[
F_\theta(z) = v_\theta \, dt + E^\theta \left[e^{-\bar{r}dt} F_\theta(z + dZ) \right]
\]

And \(Z \) evolves only based on news, implying that \(\forall z \in (\alpha, \beta), F_\theta \) satisfies a second-order ODE. The two ODEs have simple closed-form solutions e.g.,

\[
F_L(z) = c_1 e^{u_1 z} + c_2 e^{u_2 z} + K_L
\]
Proof By Construction

Take w as given and assume that Z evolves as specified for some unknown α.

- Let $F_\theta(z)$ denote the seller’s value for the asset. The Bellman equation for the seller’s problem is:

$$
F_\theta(z) = \max \left\{ \underbrace{w(z)}_{\text{payoff from accepting}}, \underbrace{v_\theta dt + \mathbb{E}^\theta \left[e^{-\bar{r}dt} F_\theta(z + dZ) \right]}_{\text{payoff from rejecting}} \right\}
$$

- In the no-trade region:

$$
F_\theta(z) = v_\theta dt + \mathbb{E}^\theta \left[e^{-\bar{r}dt} F_\theta(z + dZ) \right]
$$

- And Z evolves only based on news, implying that $\forall z \in (\alpha, \beta)$, F_θ satisfies a second-order ODE. The two ODEs have simple closed-form solutions e.g.,

$$
F_L(z) = c_1 e^{u_1 z} + c_2 e^{u_2 z} + K_L
$$
Proof By Construction

Take \(w \) as given and assume that \(Z \) evolves as specified for some unknown \(\alpha \).

- Let \(F_\theta(z) \) denote the seller’s value for the asset. The Bellman equation for the seller’s problem is:

\[
F_\theta(z) = \max \left\{ \begin{array}{c}
w(z) \\ v_\theta \, dt + E^\theta \left[e^{-\bar{r} dt} F_\theta(z + dZ) \right]
\end{array} \right\}
\]

- In the no-trade region:

\[
F_\theta(z) = v_\theta \, dt + E^\theta \left[e^{-\bar{r} dt} F_\theta(z + dZ) \right]
\]

- And \(Z \) evolves only based on news, implying that \(\forall z \in (\alpha, \beta) \), \(F_\theta \) satisfies a second-order ODE. The two ODEs have simple closed-form solutions e.g.,

\[
F_L(z) = c_1 e^{u_1 z} + c_2 e^{u_2 z} + K_L
\]
Proof By Construction

Take w as given and assume that Z evolves as specified for some unknown α.

- Let $F_\theta(z)$ denote the seller’s value for the asset. The Bellman equation for the seller’s problem is:

$$F_\theta(z) = \max \left\{ \begin{array}{c}
\text{payoff from accepting} \\
\text{payoff from rejecting}
\end{array} \right\}$$

$$= \max \left\{ \begin{array}{c}
w(z) \\
v_\theta dt + \mathbb{E}^\theta \left[e^{-\bar{r}dt} F_\theta(z + dZ) \right]
\end{array} \right\}$$

- In the no-trade region:

$$F_\theta(z) = v_\theta dt + \mathbb{E}^\theta \left[e^{-\bar{r}dt} F_\theta(z + dZ) \right]$$

- And Z evolves only based on news, implying that $\forall z \in (\alpha, \beta)$, F_θ satisfies a second-order ODE. The two ODEs have simple closed-form solutions e.g.,

$$F_L(z) = c_1 e^{u_1z} + c_2 e^{u_2z} + K_L$$
Six unknowns remain:

- Each ODE has two unknown constants (4 unknowns)
- α and β also need to be determined (2 unknowns)

There are six necessary boundary conditions:
Six unknowns remain:

- Each ODE has two unknown constants (4 unknowns)
- \(\alpha \) and \(\beta \) also need to be determined (2 unknowns)

There are six necessary boundary conditions:
Six unknowns remain:
- Each ODE has two unknown constants (4 unknowns)
- α and β also need to be determined (2 unknowns)

There are six necessary boundary conditions:
Six unknowns remain:
▶ Each ODE has two unknown constants (4 unknowns)
▶ α and β also need to be determined (2 unknowns)

There are six necessary boundary conditions:

- Market Belief (z)
- Asset Value
- α, β
- $F_L(\alpha) = V_L$
- $F_L'(\alpha) = 0$
- $F_L(\beta) = B(\beta)$
Six unknowns remain:

- Each ODE has two unknown constants (4 unknowns)
- α and β also need to be determined (2 unknowns)

There are six necessary boundary conditions:

- **refl:** $F'_H(\alpha) = 0$
- **vm:** $F_H(\beta) = B(\beta)$
- **sp:** $F'_H(\beta) = B'(\beta)$
Six unknowns remain:

- Each ODE has two unknown constants (4 unknowns)
- α and β also need to be determined (2 unknowns)

There are six necessary boundary conditions:

\[
\begin{align*}
\text{vm: } F_H(\beta) &= B(\beta) \\
\text{sp: } F_H'(\beta) &= B'(\beta) \\
\text{vm: } F_L(\beta) &= B(\beta) \\
\text{vm: } F_L(\alpha) &= V_L \\
\text{sp: } F_L'(\alpha) &= 0
\end{align*}
\]
Solution to the Seller’s Problem

Lemma

There exists a unique \((\alpha^*, \beta^*)\) that simultaneously solves the high and low-type sellers’ problem optimal stopping problem.

Proof:

- For any \(\alpha\) (i.e., lower barrier on \(Z\)), there exists a unique \(\beta\) such that the stopping rule \(\tau_H = \inf\{t : Z_t \geq \beta\}\) solves \(SP_H\). Call this mapping \(\beta_H(\alpha)\).

- Similarly, for each \(\beta\), there exists a unique \(\alpha\) such that both \(\tau_H\) and \(\tau_L = \inf\{t : Z_t \notin (\alpha, \beta)\}\) solve \(SP_L\) (i.e., the low type is indifferent between playing \(\tau_H\) and \(\tau_L\)). Call this mapping \(\beta_L(\alpha)\).

- \(\beta_H\) and \(\beta_L\) intersect exactly once (requires \(K_H > V_L\)). The intersection is \((\alpha^*, \beta^*)\).
Solution to the Seller’s Problem

Lemma

There exists a unique \((\alpha^*, \beta^*)\) that simultaneously solves the high and low-type sellers’ problem optimal stopping problem.

Proof:

- For any \(\alpha\) (i.e., lower barrier on \(Z\)), there exists a unique \(\beta\) such that the stopping rule \(\tau_H = \inf\{t : Z_t \geq \beta\}\) solves \(SP_H\). Call this mapping \(\beta_H(\alpha)\).

- Similarly, for each \(\beta\), there exists a unique \(\alpha\) such that both \(\tau_H\) and \(\tau_L = \inf\{t : Z_t \notin (\alpha, \beta)\}\) solve \(SP_L\) (i.e., the low type is indifferent between playing \(\tau_H\) and \(\tau_L\)). Call this mapping \(\beta_L(\alpha)\).

- \(\beta_H\) and \(\beta_L\) intersect exactly once (requires \(K_H > V_L\)). The intersection is \((\alpha^*, \beta^*)\).
Solution to the Seller’s Problem

Lemma
There exists a unique \((\alpha^*, \beta^*)\) that simultaneously solves the high and low-type sellers’ problem optimal stopping problem.

Proof:

- For any \(\alpha\) (i.e., lower barrier on \(Z\)), there exists a unique \(\beta\) such that the stopping rule \(\tau_H = \inf\{t : Z_t \geq \beta\}\) solves \(SP_H\). Call this mapping \(\beta_H(\alpha)\).

- Similarly, for each \(\beta\), there exists a unique \(\alpha\) such that both \(\tau_H\) and \(\tau_L = \inf\{t : Z_t \notin (\alpha, \beta)\}\) solve \(SP_L\) (i.e., the low type is indifferent between playing \(\tau_H\) and \(\tau_L\)). Call this mapping \(\beta_L(\alpha)\).

- \(\beta_H\) and \(\beta_L\) intersect exactly once (requires \(K_H > V_L\)). The intersection is \((\alpha^*, \beta^*)\).
Solution to the Seller’s Problem

Lemma

There exists a unique \((\alpha^*, \beta^*)\) that simultaneously solves the high and low-type sellers’ problem optimal stopping problem.

Proof:

- For any \(\alpha\) (i.e., lower barrier on \(Z\)), there exists a unique \(\beta\) such that the stopping rule \(\tau_H = \inf\{t : Z_t \geq \beta\}\) solves \(SP_H\). Call this mapping \(\beta_H(\alpha)\).

- Similarly, for each \(\beta\), there exists a unique \(\alpha\) such that both \(\tau_H\) and \(\tau_L = \inf\{t : Z_t \notin (\alpha, \beta)\}\) solve \(SP_L\) (i.e., the low type is indifferent between playing \(\tau_H\) and \(\tau_L\)). Call this mapping \(\beta_L(\alpha)\).

- \(\beta_H\) and \(\beta_L\) intersect exactly once (requires \(K_H > V_L\)). The intersection is \((\alpha^*, \beta^*)\).
Intersection of β_L and β_H

Each curve represents a solution to a class of stopping problems:

- Lower Boundary (α)
- Upper Boundary (β)
- (α^*, β^*)
- $\beta_H(\alpha)$
- $\beta_L(\alpha)$
- 45-degree line
Completing the Seller Value Functions

Outside the no-trade region, the seller’s value function is as follows:

\[
F_L(z) = F_L(\alpha^+), \quad F_H(z) = F_H(\alpha^+) \quad \forall z \leq \alpha
\]

\[
F_L(z) = B(z), \quad F_H(z) = B(z) \quad \forall z \geq \beta
\]
Completing the Seller Value Functions

Outside the no-trade region, the seller’s value function is as follows:

\[F_L(z) = F_L(\alpha^+) \]
\[F_H(z) = F_H(\alpha^+) \quad \forall z \leq \alpha \]
\[F_L(z) = B(z) \]
\[F_H(z) = B(z) \quad \forall z \geq \beta \]
Why is there no trade for \(z \in (\alpha, \beta) \)?

Intuition for the no-trade region?

- \(H \) can always get \(B \) if she wants it. This endows \(H \) with an option. For \(z \in (\alpha, \beta) \), \(H \) does better by not exercising the option.

- \(L \) can always get \(V_L \) if he wants it. But for \(z \in (\alpha, \beta) \), \(L \) does better to mimic \(H \).
Equilibrium Beliefs at $z = \alpha$

- $F_L(\alpha) = V_L$, $F'_L(\alpha) = 0 \implies$ low-type seller is just indifferent

- Seller cannot accept with an atom at $z = \alpha$

- On the other hand, Z cannot drift below α

Proposition

The low-type sells at a flow rate s/σ proportional to dX_t at $p = a$ such that:

- Z reflects off $z = \alpha$ if trade does NOT occur

- Z is absorbed (drops to zero) at $z = a$ if trade does occur
Equilibrium Beliefs at $z = \alpha$

- $F_L(\alpha) = V_L, \; F'_L(\alpha) = 0 \implies$ low-type seller is just indifferent

- Seller cannot accept with an atom at $z = \alpha$

- On the other hand, Z cannot drift below α

Proposition

The low-type sells at a flow rate s/σ proportional to dX_t at $p = a$ such that:

- Z reflects off $z = \alpha$ if trade does NOT occur

- Z is absorbed (drops to zero) at $z = a$ if trade does occur
Reflection in Discrete Time
Reflection in Discrete Time

$p = a^+$

$p = a$

$p = a^-$

$t = \Delta$

$t = 2\Delta$

Low type accepts with some probability
Reflection in Discrete Time

\[p = a^+ \]

\[p = a \]

\[p = a^- \]

\[t = \Delta \]

\[t = 2\Delta \]
Reflection in Discrete Time

\[p = a^+ \]

\[p = a \]

\[p = a^- \]

\[t = \Delta \]

\[t = 2\Delta \]
Uniqueness Argument
Uniqueness Argument

High type never trades when $p < p$
Uniqueness Argument

\[V_H \]

\[K_H \]

\[V_L \]

\[K_L \]

Low type cannot be waiting for all \(p < p \)
Uniqueness Argument

There exists a p_1 where only the low type trades (with positive probability)
Uniqueness Argument

Beliefs then jump to a following a rejection.
Uniqueness Argument

Only the low type is trading. The price must be V_L:

\[F_L(p_1) = F_L(a) = V_L \]
Uniqueness Argument

Constrain F_L to be non-decreasing
Uniqueness Argument

Low type is indifferent at \(a \)
Cannot get \(E[V|p] \) immediately
Waiting must occur

No Trade Here
Uniqueness Argument

High type must accept $E[V | p]$ eventually

No Trade Here
Uniqueness Argument

High type must accept $E[V|p]$ eventually

No Trade Here
Uniqueness Argument

High type must be just indifferent at $p = b$

Smooth Pasting Condition: Slopes Match
Uniqueness Argument

Optimal for \(H \) to accept \(E[V|p] \) everywhere above \(b \)

High type prefers to accept here
Uniqueness Argument

Hence, $E[V \mid p]$ must be offered for all $p > b$
Uniqueness Argument

Low type waits in hopes of getting good news
Uniqueness Argument

V_H

- **High type**
- **Low type**

K_H

V_L

$p \quad a \quad b \quad 1$
When News is Completely Uninformative

Figure: Notice, the payoffs are the same as in the static Akerlof model.
As News Becomes More Informative
As News Becomes More Informative
Welfare Analysis

Starting from p_0, total welfare is:

$$p_0 F_H(p_0) + (1 - p_0) F_L(p_0)$$

Total potential welfare is the expected value of the asset to buyers:

$$p_0 V_H + (1 - p_0) V_L$$

All seller’s trade eventually so delay is the only source of inefficiency
Welfare with No News
News “Shifts” Inefficiency

\[V_H \]

- High type
- Low type

\[K_H \]

\[V_L \]

Efficiency Increases
Efficiency Decreases
Dynamic Signaling in Non-Lemons Markets

What happens when the Static Lemons Condition does not hold?

- Up to this point, we have interpreted the flow payoff to the seller as a “benefit”

- In some cases, delay may impose a “cost” to the seller
 - e.g., signaling through education or the used car dealer

- In such cases, the Static Lemons Condition may not hold
 - *That is, the high type prefers to trade at* V_L *rather than never trade*
Dynamic Signaling in Non-Lemons Markets

What happens when the Static Lemons Condition does not hold?

- Up to this point, we have interpreted the flow payoff to the seller as a “benefit”
- In some cases, delay may impose a “cost” to the seller
 - e.g., signaling through education or the used car dealer
- In such cases, the Static Lemons Condition may not hold
 - That is, the high type prefers to trade at V_L rather than never trade
Equilibrium when $K_H < V_L$

Theorem

When the Static Lemons Condition does not hold the equilibrium depends on the quality of the news:

1. When the news is sufficiently informative $(\phi > \bar{\phi})$, there exists an equilibrium of the same (three-region) form. Moreover it is the unique equilibrium in which the seller’s value is non-decreasing in p.

2. When news is sufficiently uninformative, the unique equilibrium involves immediate trade at $B(z)$ for all z (similar to Swinkels, 1999).

3. For some parameter values, there exists another type of equilibrium...
Equilibrium when $K_H < V_L$

Theorem

When the Static Lemons Condition does not hold the equilibrium depends on the quality of the news:

1. When the news is sufficiently informative ($\phi > \phi$), there exists an equilibrium of the same (three-region) form. Moreover it is the unique equilibrium in which the seller’s value is non-decreasing in p.

2. When news is sufficiently uninformative, the unique equilibrium involves immediate trade at $B(z)$ for all z (similar to Swinkels, 1999).

3. For some parameter values, there exists another type of equilibrium...
Equilibrium when $K_H < V_L$

Theorem

When the Static Lemons Condition does not hold the equilibrium depends on the quality of the news:

1. When the news is sufficiently **informative** ($\phi > \phi$), there exists an equilibrium of the same (three-region) form. Moreover it is the unique equilibrium in which the seller’s value is non-decreasing in p.

2. When news is sufficiently **uninformative**, the unique equilibrium involves immediate trade at $B(z)$ for all z (similar to Swinkels, 1999).

3. For some parameter values, there exists another type of equilibrium...
Equilibrium when $K_H < V_L$

Theorem

When the Static Lemons Condition does not hold the equilibrium depends on the quality of the news:

1. *When the news is sufficiently informative* ($\phi > \Phi$), there exists an equilibrium of the same (three-region) form. Moreover it is the unique equilibrium in which the seller’s value is non-decreasing in p.

2. *When news is sufficiently uninformative*, the unique equilibrium involves immediate trade at $B(z)$ for all z (similar to Swinkels, 1999).

3. *For some parameter values*, there exists another type of equilibrium...
Another Type of Equilibrium

The other equilibrium looks like this:

- **Average type offered:** Both types accept w.p.1
 - **β** region

- **No Trade Region:** Non-serious offers made
 - Both types reject w.p.1
 - News drives posterior
 - **p** region

- **Average type offered:** Both types accept w.p.1
 - **α** region
Seller’s Value in Other Equilibrium

Intuition?

- (α, β) determined solely from high type
- Low-type plays no role in determining the structure
- As s increases, α decreases
 - β increases
 - α decreases

![Marginal Benefit of Waiting](Image)
Seller’s Value in Other Equilibrium

Intuition?

- \((\alpha, \beta)\) determined solely from high type
- Low-type plays no role in determining the structure
- As \(s\) increases \(\rightarrow\) more incentive to wait
 - \(\beta\) increases
 - \(\alpha\) decreases
Seller’s Value in Other Equilibrium

Intuition?

- (α, β) determined solely from high type
- Low-type plays no role in determining the structure
- As s increases \Rightarrow more incentive to wait
 - β increases
 - α decreases
Intuition?

- \((\alpha, \beta)\) determined solely from high type
- Low-type plays no role in determining the structure
- As \(s\) increases \(\Rightarrow\) more incentive to wait
 - \(\beta\) increases
 - \(\alpha\) decreases
Remarks

Summary thus far...

- Introduced gradual information revelation into a dynamic lemons market
- The equilibrium involves three distinct regions: capitulation, no trade and liquid markets
- News can have a dramatic effect on trade
 - More is not necessarily better
- Developed a framework to encompass both signaling lemons markets
 - The two have the same equilibrium when news is sufficiently informative