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The Long-Run Efficiency of Real-Time Electricity Pricing

Severin Borenstein*

Retail real-time pricing (RTP) of electricity – retail pricing that changes 
hourly to reflect the changing supply/demand balance – is very appealing to 
economists because it “sends the right price signals.” Economic efficiency gains 
from RTP, however, are often confused with the short-term wealth transfers from 
producers to consumers that RTP can create. Abstracting from transfers, I focus 
on the long-run efficiency gains from adopting RTP in a competitive electricity 
market. Using simple simulations with realistic parameters, I demonstrate that 
the magnitude of efficiency gains from RTP is likely to be significant even if 
demand shows very little elasticity. I also show that “time-of-use” pricing, a 
simple peak and off-peak pricing system, is likely to capture a very small share 
of the efficiency gains that RTP offers. 

1. INTRODUCTION

Over the last few years, a great deal has been written about time-varying 
retail pricing of electricity. Many authors, myself included, have argued that real-
time retail electricity pricing (RTP) – retail prices that change very frequently, 
e.g., hourly, to reflect changes in the market’s supply/demand balance – is a critical 
component of an efficient restructured electricity market. During the California 
electricity crisis in 2000-2001, RTP boosters pointed out its value in reducing 
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the ability of sellers to exercise market power. While nearly all economists have 
supported RTP conceptually, Ruff (2002) among others has argued that it is 
important to distinguish between RTP’s long-run societal benefits and the short-
run wealth transfers it might bring about. In particular, the reductions in market 
power primarily prevent a short-run wealth transfer from customers to generators, 
though the transfers can still be quite large.

In this paper, I estimate the magnitude of the potential long-run societal 
gains from RTP, abstracting from market power issues and short-run wealth 
transfers in general. I do this by formulating a model of competitive electricity 
generation with demand and production costs based on actual data from U.S. 
markets. I solve computationally for the model’s long-run competitive equilibrium, 
with the results indicating the amount of each possible type of capacity that would 
be built, the prices that would be charged to customers on RTP and on flat-rate 
service, and the total social surplus that would be generated by the system. The 
model also allows estimation of the transfers that would occur among customers 
if customers on RTP had demands that were (absent RTP) peakier or flatter than 
customers not on RTP.

The estimates indicate that RTP would substantially reduce peak 
electricity production and thereby reduce the use of low-capital-cost/high-
variable-cost peaker generation. The social gains from RTP for at least the largest 
customers in the system are estimated to far outweigh reasonable estimates of 
the metering cost. The magnitudes of the social gain are sensitive to the demand 
elasticity that is assumed, but the results indicate that even with quite small 
elasticities, the benefits are substantial.

Section 2 presents the economic model that is the basis for simulations. 
Section 3 explains the data used in the simulations and the process used to 
compute long-run equilibria. The results of the simulations are presented and their 
implications discussed in Section 4. In section 5, I carry out a similar analysis on 
a much simpler pricing system, time-of-use (TOU) pricing, in which there are 
simple peak and off-peak periods, with the prices differing between periods, but 
being held constant for months or even years at a time. Section 6 discusses a 
number of factors that are omitted from the simulations and suggests how those 
factors are likely to affect the results. I conclude in Section 7.

 2. LONG-RUN COMPETITION IN ELECTRICITY MARKETS

The model that is the basis for the simulations is adapted from Borenstein 
and Holland (revised 2003, hereafter BH).1 It assumes a simple competitive 
wholesale and retail market structure. The retail structure is identified only by 
the way in which it charges end-use customers for electricity, using a flat rate 

1. A slightly different version of this model with continuous marginal cost functions is in Borenstein 
and Holland, forthcoming. Holland and Mansur (2005) analyze the short-run efficiency, distributional, 
and environmental effects of RTP in a very similar model.
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or RTP. The price(s) charged to each group allow the retailer to exactly break 
even on service to that group. As in BH, this reflects the outcome of competition 
among many retail providers, but it also could be interpreted as a single regulated 
retail provider that is required to exactly cover its costs and required not to cross-
subsidize between flat-rate and RTP customers. Following BH, I assume for 
simplicity that retailers have no other transaction costs.

I assume free-entry of generators of three different types. Generation 
exhibits no scale economies, with each generation unit having a capacity of one 
megawatt. The types of generation differ in their fixed and variable costs, higher 
fixed costs being associated with lower marginal cost of production. For generator 
type j, annual generator costs are modeled as a fixed cost plus variable costs that 
are linear in the number of megawatt-hours produced during the year, TC

j
 = F

j 

+ m
j
 · MWh

j
. Startup costs and restrictions on ramping are not considered, an 

issue discussed in section 6. Parameters used for this and all other aspects of the 
simulations are discussed in the next section.

Demand is modeled as constant elasticity, using a range of possible 
elasticities. Within any one simulation, demand is first assumed to have the same 
elasticity in all hours. I then consider the effect of demand elasticity varying 
positively or negatively with the level of demand. The level of demand in each 
hour is taken from the distribution based on the actual levels of demand in various 
US electricity regions, as explained in the following section. Cross-elasticities 
across hours are assumed to be zero, another issue discussed in section 6. 

Some proportion of customers, α, are on real-time pricing, and the 
remainder are on flat-rate service. I assume that all customers have identical 
demand up to a scale parameter. Thus, following BH, if the total demand in hour 
h is D

h
(p

h
) and the flat-rate service customers are charged p– in every hour, the 

wholesale demand is 

~
D

h
(p

h
, p–) = α • D

h
(p

h
) + (1 – α) • D

h
(p–). (1)

In this case, demand is modeled as constant elasticity, D
h
(p

h
) = A

h
 • p

h
ε.

Under these assumptions, for any set of installed baseload, mid-merit, 
and peaker capacity, K

b
, K

m
, K

p
, there is a unique market-clearing wholesale price 

in each hour, provided that total installed capacity exceeds demand from flat-rate 
customers in every hour, K

b
 + K

m
 + K

p
 > (1 – α) • D

h
(p–) h. In the following section, 

I discuss the algorithm for finding the short-run equilibrium for any set of installed 
capacity and the long-run equilibrium allowing capacity to vary. In presenting the 
algorithm, I demonstrate that there is a unique long-run equilibrium.

In addition to establishing long-run equilibria for any 0 ≤  α < 1, it will be 
important, as a baseline, to determine an equilibrium with no customers on RTP. 
The model above is not applicable to a market with no RTP customers, because 
without RTP there is no short-run demand elasticity, so in order to meet demand 
in all hours, sufficient capacity must be built so that the market always clears “on 
the supply side,” i.e., at a price no greater than the marginal generation cost of the 
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technology with the highest marginal cost. Such an organization requires some 
sort of additional wholesale payment to generation in order to assure that demand 
does not exceed supply in any period and, at the same time, that generators’ 
revenues exceed their variable costs over a year by an amount sufficient to cover 
their fixed costs.

It is straightforward to show that the annual capacity payment that 
assures sufficient generation and the optimal mix of generation is equal to the 
annual fixed costs of a unit of peaker capacity. To avoid distorting the mix of 
capacity, this payment is made to all units of capacity, regardless of type.2 The 
payment is financed by increasing the price of the flat-rate electricity service 
until it generates sufficient revenue to cover the capacity payments. That is how 
simulation of the baseline flat-rate service is implemented in the following section. 
In contrast, in the RTP simulations no capacity payment is made; generators earn 
all revenues through energy sales. 

3. DATA, MODEL DETAILS AND SOLUTION ALGORITHM

The value of the simulation results depends on the realism of the 
underlying assumptions. In this section, I describe in detail the modeling of 
demand and supply, and then the algorithm for finding the long-run competitive 
equilibrium. I first present the details of the model, and then discuss the data used 
to parameterize the model.

3.1 Demand, Supply and Equilibrium Modeling

Within each hour, each customer’s demand is modeled as constant 
elasticity. Each customer i is assumed to have a demand that is simply a fixed 
proportion, γ

i
, of total demand. In the base simulations, I assume that total demand 

has the same elasticity in all hours, but this is later relaxed to allow elasticity to 
vary positively or negatively with the overall demand level. 

The aggregate demand function for hour h can be specified as D
h
(p

h
) = 

A
h
 • p

h
εh, where elasticity may or may not vary by hour depending on the simulation 

run. For any share of demand on RTP, α, the demand from customers on RTP is 
then D

h
(p

h
) = α • A

h
 • p

h
εh and the demand function for customers on flat rate 

service is D
h
(p–) = (1 – α) • A

h
 • p–εh. The aggregate demand in the wholesale power 

market is then  
~
D

h
(p

h
, p–) = α • A

h
 • p

h
εh  + (1 – α) • A

h
 • p–εh .

Given an elasticity for a certain hour, ε
h
, and the assumption of a 

constant-elasticity functional form, demand is fully specified by A
h
, the scale 

parameter. A
h
 is determined by any one price/quantity point on the demand curve, 

which I refer to as the demand “anchor point” for the hour. I assume that at a 

2. This would also be the outcome if the wholesale price exceeded the marginal cost of the peaking 
generation only in the highest demand hour of the year, and the price in that hour was equal to the 
marginal cost of the peaker plus its annual fixed cost.



given constant price (discussed next), the anchor quantity demanded takes on a 
distribution equal to the actual distribution of quantities demanded from a certain 
electricity control region. 

The constant price used to specify the anchor points is chosen to be the 
price that would allow producers to break even if it were charged as a flat retail 
price to all customers. This is not the actual flat rate (or time-of-use rate) that 
was charged to customers during the observed period from which the demand 
distribution data are taken. The difference, however, will not substantially change 
the results for two reasons. First, at the low elasticities I consider in the simulations, 
a change of 10%-20% in the base flat rate that I assume (which is the magnitude 
of the potential difference between the rate assumed and the actual flat rate in 
use) will change quantity demanded very little. Second, and more important, the 
overall level of base demand is just a scale factor in the simulations. The value of 
using an actual distribution comes from accurately representing the shape of the 
distribution; that changes negligibly with the assumption made about the level of 
the flat retail rate.

Once the wholesale demand function has been specified each hour, 
that can be combined with the production technologies to calculate the long-run 
equilibrium capacity of each technology type. Note that from any given baseload, 
mid-merit, and peaker capacities, K

b
, K

m
, K

p
, one can determine a short-run 

industry supply function and therefore wholesale prices for each hour. From those 
prices, one can calculate the profits of owners of each technology type. In the 
long-run each technology type is built to the point that one more unit of that 
capacity would cause profits of all owners of the capacity to be negative. So, the 
goal is to identify the mix of capacity that causes this condition to hold for all 
three technologies simultaneously.

At first, this might seem difficult, and it might seem that there could be 
multiple long-run equilibria or none, but in fact there is a unique technology mix 
that satisfies this condition. To see this, begin with the peaker technology which, 
if it is used at all, will be used in the highest demand hour. It is straightforward to 
find a unique long-run equilibrium if supply is restricted to use only the peaker 
technology. One simply expands the quantity of peaker capacity, recalculating the 
associated short-run equilibria with each increment in capacity, until expansion of 
capacity by one more unit causes profits to go negative. Call the capacity level that 
satisfies this condition K

tot
 since that will generally turn out to be the equilibrium 

total amount of capacity.
In this peaker-only equilibrium, all rents to generators are earned when 

production quantity is equal to K
tot

. In hours with lower equilibrium quantity, 
price must be equal to peaker marginal cost. Now, begin substituting mid-merit 
capacity for peaker capacity. Once built, the mid-merit capacity will all be used 
in any given hour before any of the peaker capacity is used; it is lower on the 
supply function than the peaker capacity. The key is to recognize that substituting 
mid-merit for peakers units, holding total capacity constant, does not change the 
rents earned by the remaining peaker units. In fact, so long as one peaker unit 
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remains, the rents it earns are unchanged by substituting lower-MC technologies 
for the other units.3 

Continuing to substitute mid-merit for peaker units will drive down the 
equilibrium profits of mid-merit units until one more unit would drive the profits 
of all mid-merit units to be negative. Call the largest capacity of mid-merit units 
that still earns positive profits, K

bm
 because this will generally turn out to be the 

total of the baseload and mid-merit capacity. Next, begin substituting baseload 
capacity for mid-merit units. Note that this does not change the rents to mid-
merit units. Continue this substitution until one more baseload unit would drive 
baseload profits negative. This is K

b
. Then, K

m
 = K

bm
 – K

b
 and K

p
 = K

tot
 – K

m
 – K

b
. 

These are the unique long-run competitive equilibrium capacity levels for a given 
set of available technologies, share of customers on RTP (α), and flat rate (p–).4 

This equilibrium, however, may not satisfy the retailer breakeven 
condition, so one must calculate the profits retailers earn on flat rate customers 
in this equilibrium. If it is not zero, then one adjusts p– up or down and resimulates 
capacity. When the resulting equilibrium yields zero profits for retailers as 
well as generators, this is the unique long-run competitive equilibrium in the 
generator and retailer markets given the set of available technologies and share 
of customers on RTP (α). Using this supply function, one can then calculate the 
equilibrium distribution of prices, loads (quantities), and the consumer surplus 
for each group.5

3.2 Data Inputs for Simulation

The critical inputs for the simulation are a load profile, demand 
elasticities, and cost characteristics of the production technologies.

The load profile determines the distribution of quantity demand and the 
flat rate when all customers are on flat-rate service, as described in the previous 
section. For the simulations presented in here, I use five years of hourly demand 
data from the California Independent System Operator, 1999 through 2003.6 This 

3. This description assumes that equilibrium capacity investment includes at least one unit of each 
type of capacity. If peaker capacity is dominated by mid-merit or baseload for even the least utilized 
peaker unit, or if mid-merit is dominated by baseload for the least utilized mid-merit unit, then the 
same process is followed omitting the dominated technology.

4. These searches were done inefficiently from a computing standpoint, as grid searches with a 1 
MW grid over a very wide range of possible capacity quantities. They still converged quite quickly 
on a desktop PC.

5. The updating algorithm for p– was to always reset it to the level that would have broken even 
given the prior iteration’s quantities demanded by flat-rate customers and the wholesale prices from 
the current iteration. This usually converged in two to four iterations on  p–.

6. I adjust the baseline hourly demand data for the fact that about half of all demand is on time-
of-use rates (TOU). I do this by assuming that the elasticity of demand with respect to TOU price 
variation is -0.1 and that the price ratios among TOU periods are equal to the average ratios in the TOU 
rate schedules offered by Pacific Gas & Electric and Southern California Edison. This adjustment has 
only a slight effect on the results.



period includes both relatively cool summers and quite hot summers.7 As pointed 
out earlier, the importance of the load distribution used is in the shape of the 
load duration curve, not the overall size of the loads. It appears that load duration 
curves don’t differ that much in shape from one control area to another.

Electricity demand elasticities are a subject of nearly endless contention. 
The relevant elasticity would be a short-run elasticity, but still recognizing that 
customers would know well in advance that prices would be volatile. The actual 
elasticity will depend in great part on technology, as automated response to price 
changes will surely become easier over time. I simulate for a fairly wide range 
of elasticities from -0.025 to -0.500. The range -0.025 to -0.150 illustrates that 
likely impact of RTP in the short run and under current available technologies 
for demand response. Probably the two most current and relevant sources for 
elasticity estimates, Patrick and Wolak (1997) and Braithwait and O’Sheasy 
(2002), derive estimates that span this range. In the longer run, however, real-time 
demand response will become easier to automate and larger elasticities might be 
expected, so I include results using -0.3 and -0.5 as well. All demand levels are 
calculated based on the full retail price, which is assumed to be the cost of power 
plus $40/MWh for transmission and distribution (T&D).8 

The assumptions about production technology are presented in Table 
1. They are intended to represent typical capital and variable costs of baseload, 
mid-merit, and peaker technologies, corresponding roughly to coal, combined-
cycle gas turbine, and combustion turbine generation. The numbers were derived 
from conversations with industry analysts. The variable costs depend on fuel 
prices, and are meant to include variable O&M.9 The annual fixed costs are more 
difficult to determine precisely, in part because they depend on the cost of capital 
and on the rate of economic depreciation of the plant. These figures appear to be 
in what most industry analysts would consider to be a reasonable range.

Two further comments on plant costs are warranted. First, the results 
are not particularly sensitive to the exact cost assumptions on the baseload and 
mid-merit technology. The different effects of RTP under varying assumptions on 
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7. I’ve carried out the same analysis using datasets from the ECAR (upper midwest) and NPCC 
(New England) regions with very similar results.

8. I assume that the T&D charge is not time-varying. T&D could also be subject to real-time 
pricing if capacity constraints become binding at some times.

9. For these costs, the price of natural gas is assumed to be $4.25/MMBtu and variable O&M is 
assumed to be $1/MWh.

Table 1:  Generation Costs Assumed in Long-Run RTP Simulations
Generation Type Annual Capital Cost Variable Cost

Baseload $155,000/MW $15/MWh

Mid-merit $75,000/MW $35/MWh

Peaker $50,000/MW $60/MWh
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elasticity and the share of customers on RTP are driven mostly from changes in the 
amount of peaker capacity that is built. In future analysis, I will include a range 
of cost assumptions. Second, this paper presents an easily-replicated algorithm 
for analyzing the long-run effect of introducing demand elasticity. For whatever 
cost assumptions the policy analyst believes are appropriate, this technique can 
be used to analyze the long-run implications.

4. SIMULATION RESULTS AND IMPLICATIONS

The first line of Table 2 presents the equilibrium flat rate ($79.68/
MWh, which includes $40/MWh for transmission and distribution), as well as 
the capacity that is utilized in efficiently providing the demand under the flat 
rate, and the total energy consumed and cost of that energy. The remainder of 
the table presents the equilibrium capacities and information about equilibrium 
price distributions under scenarios with varying proportions of customers on RTP 
and with those customers exhibiting various demand elasticities. Within each 
simulation, demand has the same elasticity in all hours.

It is apparent from Table 2 that with even moderate demand elasticity, 
RTP will significantly change the composition of generation, as indicated in 
columns F, G, H and I. The greatest effect will be a large decline in the amount 
of installed peaker capacity (column H). Mid-merit capacity (column G) would 
likely also decline and baseload capacity (column F) would increase, though these 
changes would be small in comparison to the potential for drastic reductions in 
peaker capacity. Figure 1 shows the load duration curves for simulations with 
varying elasticities and one-third of customers on RTP.10 The highest curve, 
representing all customers on a flat-rate tariff, has one hour in the upper left 
corner in which quantity hits 46928, which is the highest quantity demanded when 
all customers are on flat rates. Note that the other curves, representing differing 
demand elasticities for the one-third of demand on RTP, flatten out at different 
load levels, with lower peak demand levels associated with greater demand 
elasticity. For demands in these regions, the market clears “on the demand side,” 
i.e., on the vertical portion of the supply curve (constant quantity, varying price). 
This illustrates the effect shown in column I in table 2: RTP has a very significant 
effect on the total capacity needed because for the highest demand periods, the 
market equilibrates by raising price rather than building additional generation 
capacity that is used for only a few hours per year.

A question that frequently arises with RTP is how high prices could 
get and whether “bill shock” during a high-price month would undermine the 
program. This concern, of course, is greatly mitigated by forward contracts and 
other financial instruments, as explained in Borenstein (forthcoming). Customers 
that hold fixed-quantity forward contracts can eliminate most price risk without 
reducing the strong price incentives on marginal purchases. 

10. A load duration curve shows the number of hours (horizontal axis) in which the quantity 
demanded will be at least a certain level (vertical axis).
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Setting aside hedging instruments, however, it is apparent from Table 
2, columns J, K, L and M, that an RTP program could yield very high prices for 
a few hours. With very inelastic demand, the prices would be extremely high in 
some hours. The reason for these high prices is shown in column K, which shows 
the average number of hours per year in which all capacity was used and, thus, 
the price was above the marginal cost of a peaker plant. With extremely inelastic 
demand, the peaker plants must recover all of their fixed costs over just a few 
hours per year, so spectacular price spikes are dictated. But taken in the context of 
the annual bill, even the very high prices seem more manageable. With a demand 
elasticity of -0.1, column L shows that the highest price hour would amount to 
4.2% of the annual bill. Column M indicates that the 10 most expensive hours of 
the 5-year period, if they all occurred in a single month, would account for about 
22% of the annual bill. Although these amounts would be substantial in monthly 
bills, the suggestion that a customer would find that half or more of its   bill occurs 
in two or three hours is not consistent with my findings.11

Figure 1: Load Duration Curve with Varying Demand Elasticities of RTP 
Customers (1/3 of total demand on RTP, 2/3 on flat-rate tariff)

 

11. Note that unlike the surplus comparisons I make below, this comparison is to the total bill 
including non-energy (T&D) components of the bill. This seems appropriate given that the concern is 
bill shock. Roughly half of the total bill is energy and the remainder is T&D.



Before leaving table 2, it is worth pointing out that RTP is not an energy 
conservation program. In these simulations, the aggregate energy consumed 
actually increases slightly (0%-2%), though that this could be due to the constant-
elasticity demand function; in theory, total quantity consumed could increase or 
decrease. By lowering off-peak prices and lowering overall average prices, there 
is a real possibility that RTP would stimulate increased aggregate consumption 
of electricity.

The overall effect of RTP on social welfare is presented in Table 3. 
Because I use constant-elasticity demand curves, for which total consumer surplus 
is undefined, I evaluate the effects by calculating the change in consumer surplus 
from the flat-rate tariff consumer’s faced before RTP was introduced. Thus, the 
equation for aggregate change in consumer surplus over the H hours simulated is:

 A
h 

A
hΔCS = (1 – α)  

H

 ∑
h = 1

 —— • (P̂
ε+1

 – P
–ε+1

) + α  
H

 ∑
h = 1

 —— • (P̂
ε+1

 – P
 
h

ε+1
) (2)

 ε+1 ε+1

where P̂ is the flat rate prior to introduction of RTP and P
–

 is the flat rate in equil-
ibrium after α share of demand is on RTP. The A

h 
for each hour are set so as to 

include the actual quantity demanded at a price of P̂ , as described earlier.
The annual average ΔCS is shown in column C of table 3. Columns E and 

G break out that number into the two terms in equation (2), which represent the 
change in surplus, still compared to having everyone on flat rate, for customers who 
stay on flat rate (column E) and for customers who move to RTP (column G).

It is immediately clear that the surplus gains from real-time pricing 
are substantial, even if demand of customers on RTP is quite inelastic. With an 
elasticity of only -0.025, the surplus gain from putting one-third of demand on 
RTP, shown in column C, is over $100 million per year. To give these figures 
some context, in 2001 the state of California appropriated $35 million as a one 
time cost of installing real-time meters for the largest customers in the state, 
representing slightly under one-third of total demand. That isn’t the only cost of 
switching these customers to RTP, since billing systems must be changed as well, 
but there are also other benefits to the meters, including remote meter reading 
that can yield big labor savings. Nonetheless, as shown in column D, the savings 
are still a fairly modest share of the total energy cost for the system, less than 
10% for all but the most optimistic case, and quite possibly less than 5%. Still, as 
discussed in section 6, the long-run energy market impact analyzed here is only 
one part of the value of RTP. 

It is also clear that the total surplus gains from RTP are highly non-linear 
in both the elasticity of demand and the share of demand that is on RTP. There 
are diminishing returns to both greater elasticity and a greater share of demand 
on RTP. For most elasticities, putting one-third of demand on RTP achieves more 
than one-half the benefits of putting all demand on RTP. For any given α > 0, 
a demand elasticity of -0.05 generates more than half the benefits of a demand 
elasticity of -0.15.

The Long-Run Efficiency of Real-Time Electricity Pricing  /  11
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Decomposing the change in total surplus reveals two effects that BH 
demonstrate theoretically. First, column E shows that flat-rate customers are 
made better off by other customers moving to RTP. Column F calculates the “per 
capita” benefit for a hypothetical customer who makes up 0.001% of the total 
demand (D

h
(p

h
)) in any given hour.12 This customer on flat rate billing benefits 

as an increasing share of other customers moves to RTP. This effect is frequently 
argued by parties who advocate subsidizing RTP participants.

A second effect, however, suggests that policy is not always wise: as 
demonstrated theoretically by BH, customers moving to RTP harm other customers 
who are already on RTP. This is shown numerically in column H, which presents 
the “per capita’” benefit of a customer (again representing 0.001% of total demand) 
on RTP when the total share of customers on RTP is the α in column B. We see 
that the benefits to a customer on RTP decline as more customers switch to RTP. 
In fact, the overall externality from a group of customers moving to RTP can be 
positive or negative, as shown in column J.13

4.1 Elasticity Varying with Demand Level

In the simulations presented thus far, the elasticity of demand has been 
the same in all periods, the case in which BH show that the equilibrium flat rate 
will be equal to the optimal flat rate. BH also show that if demand elasticity 
is greater in high-demand periods than in low-demand periods, the equilibrium 
flat rate will be below its optimal level. BH demonstrate that in that case it is 
theoretically possible that moving more customers on to RTP could lower long-
run equilibrium total surplus.

I simulate this case by allowing elasticity of demand to vary with the 
level of demand, where the level is indicated by the quantity demanded if all 
customers were charged the flat rate.14 The elasticity of demand varies linearly 
with demand level, in this case from 50% of the original demand elasticity for 
the lowest demand level to 192% of the original demand elasticity for the highest 
demand level. These boundaries were chosen so that the demand-weighted 
average elasticity is equal to the original demand elasticity in order to allow some 
comparability to the previous simulations.

Omitting a few of the columns, table 4 presents results comparable to 
tables 2 and 3, but for simulations in which demand is more elastic at higher 
demand levels. In fact, the introduction of RTP yields greater benefits in this case 

The Long-Run Efficiency of Real-Time Electricity Pricing  /  13

12. This would be a customer with a peak demand of about 450kW. In California, there were 
approximately 8,000 customers of at least this size during the sample period.

13. BH show that the net externality from a marginal change in α is zero when demand in all 
periods has the same elasticity. There is a non-zero net externality in the cases shown here because the 
change is not incremental: Some of the externality of any one customer switching to RTP is captured 
by other customers in the switching group, so is not an externality from the group as a whole.

14. As explained above, this is by assumption the actual CAISO load during each hour.
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than the base case in which elasticity is the same in all periods. The reason is 
clear from looking at the equilibrium capacities. Elasticity in the peak periods is 
what drives the reduction in peaker capacity when customers move to RTP. This 
effect is larger when demand elasticity is greater in the peaks. So, having greater 
elasticity in peak periods means both greater demand response when there is 
more demand and a larger change in the equilibrium level of capacity, both of 
which contribute to a greater surplus gain from moving to RTP.

Table 5 presents the opposite case, in which demand is more elastic 
in low-demand periods than in high demand periods. The elasticity of demand 
varies linearly with demand level, in this case from 127% of the original demand 
elasticity for the lowest demand level to 50% of the original demand elasticity 
for the highest demand level. These boundaries were again chosen so that the 
demand-weighted average elasticity is equal to the original demand elasticity.

BH demonstrate that when elasticity is greater in low demand periods, the 
equilibrium flat rate will be above optimal and increasing the share of customers 
on RTP must necessarily increase total surplus. Nonetheless, the surplus gains in 
this case are smaller than in the base case, and much smaller than in the case in 
which demand is more elastic at peak times. The result follows intuitively after 
recognizing that inelastic demand during peak times means that RTP has less 
effect of reducing the amount of peaker capacity necessary to meet demand.

4.2 The Efficiency of RTP with Heterogeneous Customers

Throughout this analysis, I have assumed that all customers have identical 
demand patterns. Technically, this means that each customer’s demand function is a 
fixed proportion of the aggregate demand function D

hi
(P

h
) = γ

h
 • A

h
 • p

h
εh.15 One might 

ask how the results would change if customers differed in their demand patterns.
I do not carry out a complete exploration of this complex topic, but a 

few observations are useful. First, if the customers switching to RTP are chosen 
randomly from the population as a whole, and each customer is small relative to 
the aggregate demand, then the results presented here will apply. The aggregate 
wholesale demand will still be approximately   

~
D

h
(p

h
, p–) = α • A

h
 • p

h
εh  + (1 – α) 

• A
h
 • p–εh .

More interesting, however, is the recognition that the RTP adopters are 
likely to differ from the population on average in two important ways. First, they 
are likely to have demand profiles that, even absent any adjustment to RTP prices, 
are less peaky at high-demand times than the aggregate demand. These are the 
customers who cross-subsidize the peaky-demand customers when all are under 
a common flat-rate tariff. RTP gives them an opportunity to reduce or end this 
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15. Note that this means that the demand function is a fixed proportion of the aggregate demand 
function. Because different customers face different prices in a given hour – depending on whether 
they are on a fixed-rate tariff or RTP –  this does not mean that a given customer will consume the same 
share of total system quantity in all hours.
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cross-subsidy. Second, the RTP adopters are likely to be more able to respond 
to high peak prices by reducing consumption, i.e., to have demand that exhibits 
more price-elasticity in response to peak prices.

While this heterogeneity has obvious and important implications for the 
wealth transfers that RTP would effect, it also has potential implications for the 
efficiency of RTP. To the extent that the RTP adopters exhibit less peaky demand 
(but still the same demand elasticity in each hour as all other customers), this 
selection of customers moving to RTP would reduce the efficiency gains from 
the change. This is because the RTP adopters would in aggregate be a smaller 
proportion of total demand at peak times than at other times. The primary 
efficiency gains come from price-responsive demand reduction at peak times, 
so the potential for gains from such response is reduced if RTP adopters have 
relatively less demand at those times.

The fact that RTP adopters are likely to be more able to respond to high 
prices, however, will tend to improve the efficiency gains from RTP. If RTP 
adopters have the same peakiness in their demands as the system aggregate, 
analyzed for instance at the original flat-rate tariff, but have greater elasticity, then 
the gains from RTP would be greater than suggested by the previous calculations. 
The RTP adopters would simply have higher demand elasticity, so one would 
want to use a different row of the tables than if RTP adopters were representative 
of the overall demand elasticity of all customers.

5. IS TIME-OF-USE PRICING A GOOD SUBSTITUTE FOR RTP?

Though RTP has not been implemented in many electricity systems, the 
alternative assumption I’ve made thus far - that all customers are on flat rates 
- is also not accurate. In fact, in nearly all systems, prices for some customers 
vary over time, but in a pre-set manner. These “time-of-use” (TOU) pricing 
systems generally include peak/shoulder/off-peak prices that are set months in 
advance and are in effect for fixed hours of each week. For example, Pacific Gas 
& Electric’s basic TOU rate for small commercial customers in summer 2004 was 
30.0¢/kWh during peak hours (noon-6pm on non-holiday weekdays), 13.9¢/kWh 
during shoulder hours (8am-noon and 6pm-11pm on non-holiday weekdays) and 
8.7¢/kWh during off-peak (all other) hours. Thus, a worthwhile question to ask is 
how much of the welfare gains I’ve identified from RTP are captured with simple 
TOU pricing.

Unfortunately, while the allocation of costs in a flat-rate or an RTP 
system is straightforward, this is not necessarily the case in “middle” cases such 
as TOU or seasonally varying prices. To illustrate, consider a simple example 
with one L-shaped production technology and two TOU pricing periods. 
Assume that the utility must break even overall, exactly covering its fixed 
plus variable costs, and that it must build enough capacity to meet the highest 
quantity demanded. These seem like minimal constraints, but this problem in 
many cases still has no solution. 

The Long-Run Efficiency of Real-Time Electricity Pricing  /  17
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One approach is to allocate all of the fixed costs of capacity to the 
“peak” period, when the full capacity is used in at least one hour, and set the 
price during the off-peak period equal to the variable production cost. This 
approach is appealing because it mimics the outcome that would obtain if the 
prices were equal to the weighted-average (competitive) wholesale price during 
a TOU period (assuming that the wholesale demand exhibited just the slightest 
bit of elasticity so prices were not indeterminate in the peak hour). Even in this 
case, however, things do not work out simply. If the “off-peak” period has even 
one high-demand hour, then with a sufficiently high retail demand elasticity and 
peak-period price, the highest quantity demanded hour for the system could occur 
during the off-peak period, making it effectively the peak period.16 One solution 
is to constrain the prices so that the maximum quantity always occurs during the 
designated peak period, but this is just artificially constraining the peak/off-peak 
price difference to the level that (nearly) equalizes demand in the highest demand 
peak-period hour and the highest-demand off-peak period hour.

Another approach is to allocate the fixed cost of a unit of capacity equally 
over all periods in which that unit is used. For example, the cost of capacity 
used at the minimum quantity time would be spread over all hours, because that 
capacity is used in all hours, while the cost of the last unit of capacity, used 
only at the maximum demand time, would be borne entirely by the consumers in 
that period. This greatly reduces (though does not eliminate) the peak-switching 
problem, but it also greatly dampens the price swing across TOU periods. It does 
have the popular appeal that only, and all, those who use a given unit of capacity 
pay for it.

I have tried three different approaches to constructing a TOU pricing 
scenario that could then be compared to the RTP and the flat rate scenarios. The 
first, which I call the “quasi wholesale” scenario attempts to mimic the weighted 
average competitive wholesale price with all capacity costs of the peaker capacity 
allocated to the hour in which quantity demanded is highest.17 This has a solution 
for low demand elasticities, but does not have a solution if demand elasticity is 
too large. With the five years of California data that I am using, “too large” is an 
elasticity greater in absolute value than 0.05.

The second approach is the “cost-share” scenario in which the allocation 
of capacity costs is determined by the number of hours in which a given unit of 

16. This is obviously related to the “shifting peaks” problem which was identified in the early 
peak-load pricing literature of the 1950s and then, with the help of a Lagrangian multiplier, solved. See, 
for instance, Steiner (1957). The present problem, however, does not disappear so easily. A first-best 
solution cannot be implemented, because there is not a complete set of prices for every demand state.

17. Baseload, mid-merit, and peaker capacities are set to minimize total production costs for 
a given peak, shoulder, and off-peak price, which determine quantity demanded in each hour. The 
competitive wholesale price for each hour is then calculated using those demand quantities (without 
elasticity). Then the TOU prices during each period are reset to be weighted-average wholesale prices 
during the period. This iteration continues until a fixed point is found.



capacity is used during each of the TOU periods.18 With the data I am using, this 
produces a solution for all elasticities up to 0.5 in absolute value.

The third approach is a “fixed-ratio” scenario in which the ratios of 
peak to shoulder and off-peak prices are set exogenously and then the prices and 
capacity are set in much the same way as in the flat-rate simulation described in 
the previous section. The price ratios were set to a level that reflects the average of 
the (fairly similar) pricing structures used by Pacific Gas & Electric and Southern 
California Edison, the two major utilities in California. This yielded a solution for 
elasticities up to 0.15 in absolute value.

For all three scenarios, all prices were allowed to vary between winter 
and summer as well. In particular, similar to the utilities’ actual TOU rate 
structures, there were two prices in the winter: a peak price that was in effect 
8am-9pm on non-holiday weekdays, and an off-peak price that was in effect on at 
all other times in the winter. In the summer, there were three TOU periods: Peak 
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18. Baseload, mid-merit, and peaker capacities are set to minimize total production costs for 
a given peak, shoulder, and off-peak price, which determine quantity demanded in each hour. The 
allocation of the fixed capacity costs is then determined by the quantities demanded in each period and 
the levels of each type of capacity. Based on this allocation, the TOU prices during each period are 
reset to cover each period’s variable costs plus share of capacity costs. This iteration continues until 
a fixed point is found.

Table 6:  Welfare Effects of RTP versus TOU Pricing
A B C D E F

Elas- Share on ANNUAL TOTAL SURPLUS CHANGE VS FLAT RATE  
ticity RTP/TOU  “Quasi-wholesale” Actual TOU “Cost-share” 
  RTP TOU price ratios TOU

-0.025 0.333 112,060,365 16,269,127 10,657,394 6,928,165 
-0.025 0.666 205,800,109 32,538,254 21,314,789 13,856,330 
-0.025 0.999 271,333,946 48,807,381 31,972,183 20,784,495

-0.050 0.333 196,836,537 32,226,253 21,322,177 13,683,652 
-0.050 0.666 314,219,558 64,452,506 42,644,355 27,367,305 
-0.050 0.999 388,316,857 96,678,759 63,966,532 41,050,957

-0.100 0.333 302,262,176 N/A 42,006,103 26,159,344 
-0.100 0.666 439,987,363 N/A 84,012,206 52,318,689 
-0.100 0.999 537,284,137 N/A 126,018,309 78,478,033

-0.150 0.333 370,238,483 N/A 61,775,434 37,387,646 
-0.150 0.666 530,960,593 N/A 123,550,868 74,775,291 
-0.150 0.999 647,620,518 N/A 185,326,302 112,162,937

-0.300 0.333 509,388,631 N/A N/A 65,167,555 
-0.300 0.666 730,577,275 N/A N/A 130,335,110 
-0.300 0.999 888,877,347 N/A N/A 195,502,666

-0.500 0.333 641,472,723 N/A N/A 92,710,676 
-0.500 0.666 922,328,312 N/A N/A 185,421,352 
-0.500 0.999 1,098,811,460 N/A N/A 278,132,028
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was noon-6pm on non-holiday weekdays; Shoulder was 8am-noon and 6pm-11pm 
on non-holiday weekdays; Off-peak was in effect at all other times.19 Summer 
was defined as June-September and winter was defined as October-May. 

In the simulations I present, the prices change by season, but not year-
to-year. The summer peak price, for instance, is the same in all years. This is 
meant to reflect the fact that the year-to-year variation during this period is 
mostly not predictable growth, but idiosyncratic weather variation that would not 
be predictable at the time that the TOU prices were set for each time period.

The welfare results of these simulations are presented in table 6, with the 
figures for RTP also presented for comparison. The conclusion is clear: TOU rates 
capture a small share of the benefits that would be obtained from RTP. Even the 
most efficient form of TOU (“quasi-wholesale”), which generates peak to off-peak 
price ratios well above those observed in actual TOU programs, captures only one-
quarter or less of the RTP gains for those elasticities for which it is feasible. Using 
actual fixed-ratios of prices, the gains also seem to get up to about one-quarter of 
RTP before those price ratios become infeasible at higher elasticities.

I should note, however, that there is a critical assumption in these 
calculations, that elasticity of demand in responding to long-run TOU prices is 
the same as the elasticity in response to RTP prices. Put differently, one can think 
of RTP prices as decomposable into different averages for TOU-like periods and 
deviations from those averages in any given hour. The underlying assumption is 
that customers would be equally responsive to the variations in averages as to the 
deviations from those averages in a particular hour. 

In reality, elasticity with respect to short-term fluctuations could be lower 
or higher than with respect to longer-term predictable average price differences. 
One could argue that the short-term less-predictable deviations are more difficult 
to respond to because of the lack of advanced notice. For instance, companies 
could not reschedule work shifts based on a price spike that becomes apparent 
only hours before it actually occurs. In the extreme, if the only electricity-
consumption modifications that a customer could make would be the result of 
months-ahead planning, then RTP offers a much smaller advantage over TOU.20 
The elasticity of demand with respect to deviations from months-ahead expected 
price for a given hour would be virtually zero.

On the other hand, there may be short-duration adjustments that a firm 
could make to respond to a price spike that they could not maintain for a longer 
period. For instance, if a company knew that a heat spell is driving prices to 
very high levels today, but will likely break by tomorrow, it could possibly shift 
some electricity-intensive activity to tomorrow. The potential for these sort of 

19. For the fixed-ratio scenario, all prices were fixed as a proportion of the summer peak price. The 
proportions were summer/shoulder 57.4%, summer/off-peak 45.0%, winter/peak 61.9%, and winter/
off-peak 47.7%.

20. RTP would still offer better granularity of prices, as the 3-4pm expected price for a day six 
months hence would differ at least slightly from the 2-3pm expected price for that same day.



short-term adjustments suggests that the elasticity could be greater for short-term 
deviations than for long-term average price differences.

The relatively small efficiency gains from TOU pricing are quite intuitive 
when one recalls that the inefficiency from non-optimal pricing in a given hour 
goes up in proportion to the square of the deviation of price from marginal cost. 
Thus, the most costly “mistakes” occur during the times when prices deviate most 
from the mean during a given TOU period. Intuitively, then it would be more 
effective to attain a given average price within a certain TOU period by having 
very high retail prices during the few hours with highest wholesale prices and 
slightly lower retail prices at all other times, thereby substantially mitigating the 
largest pricing mistakes rather than addressing slightly a larger number of small 
price mistakes. A program that roughly takes this approach, called “Critical Peak 
Pricing” is currently being tested in California and elsewhere. My preliminary 
analysis suggests CPP could capture a much greater share of the RTP efficiency 
gains than could TOU.

Still, the TOU results do make clear that the gains I’ve claimed from 
RTP in the previous section were slightly overstated. The baseline from which 
most systems begin is with 50% or more of total demand on TOU, including most 
customers that would be initially put on RTP if only a share of customers were 
moved to RTP. Thus, the gains from moving these customers to RTP should be 
scaled down by between 15% and 25% (using the assumption that elasticity of 
demand is the same for longer-term changes as for shorter-term price variations).

6. LIMITATIONS OF THE RTP SIMULATION MODEL

Though these simulations are useful in giving an idea of the potential 
gains from RTP, they don’t take into account all aspects of electricity markets. 
Incorporating many of these characteristics will be challenging, but it is clear even 
without that additional analysis that these simulations are likely to understate the 
benefits of RTP.

The most important area of omission is the stochastic elements of supply 
and demand. The model does not incorporate the unpredictability of demand 
or the probabilistic outages of generation supply. Currently, responses to these 
stochastic elements of the supply/demand balance are addressed almost entirely 
with supply adjustment. Unless, short-run demand adjustment is impossible, 
which there is increasing evidence is not the case, responding entirely on the 
supply side is clearly not the most efficient way to address such outcomes. 

Including RTP in system balancing will further enhance system 
efficiency. It seems almost certain that RTP would decrease system peak loads, so 
using standard proportional reserve rules, it would reduce the amount of reserve 
capacity needed and the payments for that capacity. More importantly, RTP would 
increase the responsiveness of demand to system stress and thus would reduce the 
level of reserves needed for any given level of demand. In economic terms, RTP 
would not just shift demand to the left at peak times, it would make demand 
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more price elastic, so more balancing could be accomplished with less supply-
side adjustment. Likewise, incorporating generator outages raises the benefits 
of demand responsiveness by reducing the need to compensate for a generator 
outage completely on the supply side.

Assuming competitive supply, an upper bound on the “reserves cost” 
savings from RTP is the total cost of reserve payments. In most systems, operating 
reserves average 5-10% of energy costs. Planning reserves costs may be covered 
by energy and operating reserve payments, or they may require additional 
payments, which would also be subject to reduction through use of RTP. RTP 
is likely to reduce these costs by a significant amount, but much of these costs 
will remain for a long time. Nonetheless, the benefits from RTP are likely to be 
underestimated from the simulations presented, because they do not incorporate 
the benefits from reduced need for reserves.

Closely related to reserves costs are the effect of non-convexities in 
operation of plants and lumpiness in the size of plants. As discussed in detail by 
Mansur (2003), generation units do not costlessly or instantly switch from off to 
full production. There are start-up costs and “ramping” constraints (on the speed 
with which output can be adjusted). These constraints make it more costly to adjust 
supply to meet demand fluctuations. As with reserves, RTP would allow some of 
this adjustment to occur on the demand side in a way that would enhance efficiency. 
Similarly, I have assumed the plants can be scaled to any size at the same long-run 
average cost. If this were not the case, then there would be greater mismatches 
between demand and the capital stock. In conventional electricity systems, these 
mismatches have been handled by over-building and then either selling excess 
production on the wholesale market or leaving excess capacity idle. Having the 
additional option of demand-side adjustment could only lower long-run costs.

The simulations also have ignored market power issues, instead assuming 
that free entry would bring a completely competitive market over the longer run. As 
has been discussed elsewhere, e.g., Borenstein and Bushnell (1999) and Bushnell 
(forthcoming), demand elasticity introduced by implementing RTP reduces the 
incentive of sellers to exercise market power. However, it is unclear how much 
incremental inefficiency the exercise of market power itself introduces in a flat-
rate system, since it simply changes the flat retail rate that is charged in all time 
periods. In fact, Borenstein and Holland’s analysis (forthcoming) suggests that if 
the equilibrium flat rate is less than the surplus-maximizing flat rate, p–e <  p–∗, seller 
market power could increase efficiency. In a full RTP system, market power could 
not increase efficiency. Thus, it is difficult to analyze the bias from excluding seller 
market power.

The demand system I’ve analyzed departs from reality by assuming 
all cross-elasticities are zero. Simulation with a complete matrix of own- and 
cross-elasticities would increase the complexity substantially. Still, if demands 
are generally substitutes across hour, it seems very likely that incorporation of 
cross-elasticities would increase the gains from RTP. Essentially, RTP increases 
efficiency by reducing the volatility of quantity consumed and increasing the 



utilization rate of installed capacity. Holding constant own-price elasticities, 
increasing cross-price elasticities from zero to positive (substitutes) will tend 
to further reduce quantity volatility by increasing off-peak quantity when peak 
prices rise and reducing peak quantity when off-peak prices fall. 

Finally, the simulations take a constant $40/MWh charge for transmission 
and distribution (T & D). This is based on the historical recovery of the costs of 
these services, which are provided by a regulated monopoly. To the extent that 
minimum efficient capacity scale for T & D implies that they are never capacity 
constrained, introducing time-varying prices of these services would not improve 
efficiency. That may be the case with most local distribution, but transmission lines 
frequently face capacity constraints. By ignoring these constraints and holding 
the T & D cost per MWh constant, the simulations understate the potential gains 
for RTP that could also reflect time-varying (opportunity) cost of transmission, 
which are already reflected to varying degrees in wholesale electricity markets.

7. CONCLUSIONS

Real-time electricity pricing has tremendous appeal to economists on a 
theoretical level, because it has the potential to improve welfare by giving customers 
efficient consumption incentives. The theoretical analysis, however, does not 
indicate how large the gains from RTP are likely to be. With a simple simulation 
exercise, I have tried to generate some numbers to go with the theory. This is 
obviously just a first cut, but the results suggest a number of likely findings:

- The benefits of RTP are likely to far outweigh the costs for the largest 
customers.

- The incremental benefits of putting more customers on RTP are likely 
to decline as the share of demand on RTP grows. At the same time, the cost of 
increasing the share of demand on RTP is likely to increase as the size of each 
customer declines. Thus, while there seems to be clear net social value from putting 
larger customers on RTP, the additional gains from putting smaller customers on 
RTP may not justify the cost. A factor weighing against this conclusion is that 
small customers are thought by many electricity analysts to be the most price 
responsive. If that is true, then the argument for RTP metering of them is, of 
course, strengthened. Further analysis of both the costs and benefits is needed.

- Time-of-use rates are a very poor substitute for RTP. Roughly speaking, 
TOU rates capture only 20% of the efficiencies of RTP, though this finding has 
the caveat that it assumes as high an elasticity for response to short-run price 
variation as long-run differences in average prices.

The findings of this study should be viewed as a first step. A number of 
factors have not been addressed in the analysis thus far, though incorporating them 
seems likely to lead to larger estimated gains from RTP. Incorporation of these 
factors into the analysis is not particularly complex. A larger barrier is likely to be 
the data necessary to permit reliable estimates of demand elasticities and supply 
flexibility, which I’ve shown have very large impacts on the efficiency gains.
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Finally, it is worth pointing out that RTP is being adopted in a number 
of places in the U.S. and elsewhere. The programs are relatively young – the 
oldest began in the early 1990s – but there are already a number of examples of 
programs with which both the utilities and the customers are quite happy, and that 
have documented both peak-demand reductions and reduced need for peaking 
capacity. For a very thorough description of voluntary dynamic pricing programs 
in the U.S., see Barbose, Goldman and Neenan (2004). The large RTP programs 
operated by Georgia Power, Gulf Power and Niagra Mohawk should be of great 
interest to those evaluating the efficacy of RTP.
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