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One of the most critical concerns that customers have voiced in the
debate over real-time retail electricity pricing is that they would be exposed to
risk from fluctuations in their electricity cost. The concern seems to be that a
customer could find itself consuming a large quantity of power on the day that
prices skyrocket, resulting in a high monthly bill. I analyze the magnitude of this
risk, using demand data from 1142 large industrial customers, and then ask how
much of this risk can be eliminated through various straightforward financial
instruments. I find that very simple hedging strategies—forward purchase
contracts that are already used with many RTP programs—can eliminate more
than 80% of the bill volatility that would otherwise occur. I then show that a
slightly more sophisticated application of these forward power purchases can
significantly enhance their effect on reducing bill volatility.

1. INTRODUCTION

Over the last few years, a great deal has been written about time-vary-
ing retail pricing of electricity. Many authors, myself included, have argued that
real-time retail electricity pricing (RTP)—retail prices that change very frequently.
e.g., hourly, to reflect changes in the market's supply/demand balance—is a critical
component of an efficient restructured electricity market. During the Caiifomia
electricity crisis in 2000-2001, RTP boosters pointed out the value of RTP in reduc-
ing the ability of sellers to exercise market power. While nearly all economists have
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supported RTP, large-scale adoption has been slowed by at least three factors: cost
of real-time metering and billing, large potential wealth transfers among customers
due to RTP, and the potential volatility of bills that customers could face.

The metering and billing costs, while possibly a serious issue for smaller
customers, are minor compared to the potential benefits of moving larger cus-
tomers to RTP, as I have shown in Borenstein (2005). ' In Borenstein (2006), I
addressed the potential level of transfers among larger customers due to RTP. I
found significant potential transfers and that more than half of all customers could
be worse off. even compared with time-of-use pricing (a simple peak/off-peak
pricing system). The transfers, however, can be greatly mitigated through a two-
part RTP program that gives incumbent customers the right to buy their past load
levels at regulated prices, but still charges/refunds at the real-time energy price for
their deviations from that level.

The third area of concern one frequently hears about RTP is the possible
volatility of costs to the end-use customer. This is often expressed as concern
about the cost the customer would face for electricity consumed during an hour
in which prices hit an extreme spike, such as $10.000/MWh. Two factors should
reduce these concerns. First, customers almost certainly care about volatility of
their payments, which are typically on a monthly or longer cycle, not the volatility
of their hourly incurred liability. Second, in most RTP implementations, there is
some opportunity for the customer to buy fixed-quantity, fixed-price contracts in
advance to cover some of their demand, and then pay/receive the real-time price
for deviations from the contracted quantity. In this paper. I address the question
of how much bill volatility is caused by RTP and the extent to which hedging in
advance, by purchasing forward contracts, might reduce that volatility.-

The concern about volatility is somewhat puzzling to hear from large
corporations for whom electricity makes up a very small share of expenses. One
might think that this sort of risk could be easily absorbed by such customers.
There are a number of possible explanations, though none is entirely satisfying.
One is that electricity may be only one or two percent of total expenses, but could
still be equal to the entire profit margin of the firm, so the proportional effect on
profits could be much more significant. Pressure from equity and debt holders
could cause the firm to be squeamish about even short-term profit fluctuations.' A
second explanation is organizational. For whomever within the firm is responsible
for energy costs, this could be a large component of his or her responsibilities, so
a sudden dramatic increase in costs could have significant career implications.

1. As technology improves over the next decade, the billing/metering cost arguments against RTP,
even at the household level, will likely disapf>ear.

2. Barbose, Goldman and Neenen (2006) give an overview of RTP programs currently in use and
the hedging options available to customers.

3. This is pan of the larger issue of why publicly traded firms worry ahoui such idiosyncratic risk
at all if [heir shareholders are holding diversified portfolios. 1 don'l address this puzzle other than
to note that companies often take costly actions to insure against risks that are much smaller than
the fluctuations in electricity bills that are conceivable. Brown and Toft (2002) provide a numher of
citations to work on the reasons for corporate hedging.
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A third explanation may be simply a cost/benefit analysis in which the customer
sees tangible costs from increased complexity and risk, but doesn't understand the
potential benefits."̂  In any case, bill risk is nearly always raised by opponents of
RTP among even large customers, so it seems worth trying to estimate the size of
that risk and consider how it might be mitigated.-^

The issue of electricity bill volatility from RTP should also be considered
in the context of the volatility tbat customers already face due to electricity con-
sumption variation under historical pricing schemes. Even with a flat-rate tariff,
a customer's bill will vary due to consumption variation. Under a time-of-use
(TOU) tariff—a simple peak/off-peak pricing scheme—there will be more bill
volatility for most customers due to higher prices in the peak hours of the peak
months. From these comparison points., I examine how much RTP further increas-
es bill volatility and how much that increase is mitigated by hedging.

The data I use for this analysis cover 1142 large industrial and commer-
cial customers of Pacific Gas & ElecU-ic during 2000 through 2003.'' I combine
these customer consumption patterns with actual and simulated prices (based on
data from the California Independent System Operator), as described in the next
section, to determine the customers' bills under flat-rate, time-of-use, and real-
time retail pricing programs, where retail rates are set in all cases to cover the full
wholesale cost of the power. From these monthly bills. I calculate measures of
monthly bill volatility for each customer.

Then I recalculate the customer bills and bill volatility under the assump-
tion that they have engaged in actuarially-neutral hedging contracts.^ By construc-
tion, the aggregate of all customer bills over the entire sample period is the same
in all of these scenarios, but the monthly bill volatility of individual customers
varies substantially. I show that while changing from flat-rate or TOU to RTP tar-

4,1 have heard all three of these explanations from representatives of customers who are opposed
to, or at least skeptical of, attempts to implement RTP.

5. A somewhat different concern about analyzing electricity bill volatility of large corporations
is that the bill is determined in part by quantity, which is a choice variable of the firm. While that is
correct, for many customers, variation in quantity is determined largely by weather factors that alter
the amount of electricity necessary to maintain a given level of operations and comfort. Analogously,
the quantity of autos one purchases is a choice, yet most people still insure against the need to purchase
a new car because theirs has been stolen or destroyed in an accident. In the case of electricity, a
customer's high weather-driven demand is also likely to be positively correlated with high electricity
prices. Furthermore, one concern voiced by many industrial customers is that they will fail to monitor
electricity prices hourly under RTP and will accidentally engage in high-consumption activities at a
time when the price has spiked.

6. These are all customers for whom PG&E submitted data for all 1461 days of this time period to
the California Energy Commission. The data are not publicly available, but were made available to me
under a nondisclosure agreement.

7. One can make plausible arguments that buyers would have to pay a premium or would be able
to obtain a discount on average when they lock in purchase prices and quantities on a forward basis.
While a positive or negative forward premium would affect the customer's cost of hedging, it would
not affect the benefit that the customer would receive in decreased bill volatility, which is the subject i
examine here. Siege! and Siegel (1988) present a general discussion of the effect of futures purchases
in reducing cost volatility. O'Sheasy {2002) presents an example specific to electricity and RTP.
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iffs increases customer average bill volatility by two to four times, simple hedging
strategie.s eliminate the vast majority of that volatility. 1 conclude that bill volatil-
ity should not be a significant impediment to implementation of a well-designed
RTP program, but that hedging instruments are likely to be important to building
customer acceptance.

I then explore the levels of hedging in which a customer could engage.
A simple example illustrates the intuition that if price is positively correlated with
a customer's consumption quantity, hedging more than expected quantity can re-
duce bill volatility by more than hedging just the expected quantity. In fact, I show
that such "over-hedging"' can reduce volatility to below the level faced by a cus-
tomer subject to a flat-rate tariff. I evaluate the empirical importance of this result
by examining the effect of various levels of over-hedging on the bill volatility of
the observed customers.

2. CONSUMPTION AND PRICING DATA . .
I . I

The analysis is based on a sample of 1142 large industrial and commer-
cial customers of Pacific Gas & Electric company, which has a service territory
that covers most of northern Califomia, during the period 2000-2003. All of the
customers are in the sample for the entire period. With these data, it is straightfor-
ward to construct a customer's monthly bills by combining the quantity data with
any given price series for the same time period.

By constructing the customer bill this way, I am assuming zero price-
elasticity of the customer's demand. Customer price elasticity would reduce the
bill volatility induced by RTP., because customers would respond to the higher-
priced hours by consuming less. Thus, assuming no such elasticity biases the cal-
culation in the direction of finding a larger impact of RTP on bill volatility.

1 carried out the calculations using three different wholesale price see-
narios. The first is the actual wholesale spot prices that were observed in the con-
trol area of the Califomia Independent System Operator (CAISO) for northern
Califomia during the observed time period. The other two are based on a long-run
breakeven wholesale price simulation that uses the CAISO's actual load during
the sample period. In all three scenarios. I assume that the retail real-time prices
customers face are equal to the wholesale prices plus $40/MWh for transmission
and distribution (T&D)."*

The simulation model, which is described in detail in Borenstein (2(K)5),
establishes a long-run pertectly competitive equilibrium in capacity and whole-
sale prices for a given demand profile (load duration curve), assumed demand
elasticity, and costs of different types of production capacity. The data used for

S. This is a fairly typical assumption for T&D costs. In a more sophisticated implementation of
RTP. the T&D chaise would also be subject to real-time variation that reflects congestion, but that is
not part of most current or planned RTP programs. Most utilities impose a charge related to distribution
capacity, called a demand charge, that is based on the customer's peak usage during a billing period
regardless of when thai peak usage occurs.
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generating the wholesale price series for this paper are not exactly the same as in
Borenstein (2005). First, I use different cost data than those in the earlier paper,
reflecting changes in capital and fuel costs since that paper was written.'̂  Second,
I use only demand data from the 4-year period 2000-2003. By limiting the time
period of simulation to just that period, I can impose tbat the resulting prices are
sufficient in aggregate to cover the amortized capital and variable costs of all gen-
erators during the sample time period.

Absent large elasticity of aggregate electricity demand, much of the cap-
ital costs are recovered in peak hours, though exactly how many hours and how
peaky the prices are depends on the exact elasticity of aggregate demand. I create
two wholesale price series with differing elasticities of aggregate demand and dif-
ferent resulting peakiness of prices.

By some measures the simulated wholesale prices are spikier than actu-
ally occurred during most of 2000-2003 period. Due in part to price caps that
were in place, the highest actual prices are lower than the highest prices in either
simulated scenario, but the simulated prices exhibit fewer total hours with price
above S200/MWh. The actual prices average slightly higher than the simulated
prices over the entire period, but this masks a significant change in mid-2001.
Prior to June 2001, actual prices are considerably higher than simulated, but after
June 2001 that reverses. The earlier period was the Califomia electricity crisis.
The latter was a period in which the state was widely viewed as having signiticant
excess capacity, so prices remained low. These wholesale prices generally were
viewed as too low to support generation investment.'"

The simulation model assures that generators cover their variable plus
amortized fixed costs during the sample period. The simulation is of an energy-
only revenue model; there are no separate capacity payments. Thus, fixed cost
recovery occurs during the highest-demand hours when price exceeds the variable
cost of even the most costly generation units.

The two simulated scenarios differ in the degree of demand elasticity
that within-market producers are assumed to face. Demand elasticity may come
about from actual end-user adjustments, but it can also come from import sup-
ply elasticity or the system operator utilizing out-of-market resources to provide
supply if the market prices rises high enough. With extremely inelastic demand,
the simulated market equilibrium includes a very small number of hours in which
prices are extremely high. These hours produce the net revenues (scarcity rents)
necessary for peaker generation units to cover their amortized fixed costs. With

9, The assumptions I use here for annual production cost are: Baseload (coal) Cost =$208247/MW
+ $25/MWh; Mid-merit (CCGT) Cosl=$9.^549/MW +$50/MWh: and Peaker (Combustion Turbine)
Cost =S722O7/MW + $75/MWh. These figures are taken from the PJM (2005). pages 82-83. Califomia
docs not have coal plants, hut (a) there are coal plants in the westem grid and (b) the results are not
affected suhstanlially by fixing the level of baseload capacity in advance to reflect nuclear and other
muKt-take capacity.

10. The actual prices also include hours in which the reat-time whotesale price was negative, which
can occur due to non-convexities in the production process and the fact that electricity generated
cannot always be disposed of costlessly.
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somewhat greater demand elasticity, the long-run equilibrium involves the peaker
generators collecting scarcity rents over more hours, but a lower level of scarcity
rents and a lower wholesale price in any one of those hours. In scenario I, I assume
that the demand elasticity faced by within-market producers is -0.025. In scenario
II, I assume an elasticity of -0.1." Summary statistics for the three wholesale price
scenarios are presented in table I."

I focus primarily on the analysis of results from scenario I simulated
prices, because this is the sort of scenario under which bill volatility from RTP
would be of the greatest concern. Bills are less volatile under scenario II due to
the higher assumed demand elasticity. Bills are more volatile under scenario III.
the actual prices in Northern California over 2000-2003. That volatility, however,
was due to a combination of extreme market power, sparse forward contracting at
the wholesale level, and almost no demand response at the retail level that led to
the 2000-01 Califomia electricity crisis, a combination that is unlikely to ever be
repeated. I include results for scenarios II and III, for which the qualitative conclu-
sions are the same, in the appendix.

With these prices and customer consumption quantities, I can then cal-
culate each customer's monthly bill under RTP for each month it is in tbe sample.
I then divide each bill by the number of hours in the month in order to eliminate
variation due to varying lengths of months. Henceforth, 1 refer lo this average
hourly bill during each month as the customer's "monthly bill."''

in order to compare bill volatility under RTP witb the alternatives, I also
need to create a flat-rate tariff and a time-of-use (TOU) tariff to use in calculating
the monthly bills for the oKserved customers. 1 do this by continuing to assume no
demand elasticity on the part of the observed customers and calculating the prices
that would cover the costs of tbe observed group of customers as if they were a
distinct tariff class.

For the flat-rate tariff, this is completely straightforward: I calculate the
total revenue that would be required to purchase tbe consumption of the observed
customers in tbe wholesale market over the 48-month period (using eacb of the
wholesale price series discussed above) and then divided that revenue require-
ment by the aggregate consumption of these customers over the 48-months. This
yielded a flat-rate tariff that generated sufficient revenues to purchase the power

11. In both simulalions. I assume zero cross-hour price ela.sticity. Incorporating such cross-
elasticity would likely dampen real-time price volatility and the increase in hill volatility due to RTP.
See Borenstein (2005) fora discussion of this assumption.

12. The average price under scenario 11 is somewhat lower than under scenario I. because greater
price elasticity leads to lower capacity investment and higher capacity utilization in equilibrium, as
discussed in Borenstein and Holland (2005).

13.1 drop nearly all hours in which the consumption is reported as exactly zero. For those in which
the adjaceni hours on each side are present (a single missing hour) and are of typical level for the
customer. I interpolate the missing data. For many hours or days in a row of zero readings. I set these
observations to missing and calculation the "monthly bill" based only on the remaining hours. These
are either meler failures or complete power shutofts, which could be due to on-site generation, plant
shui-down. or other causes. Including these zeros—which are not common in the sample—makes very
little qtiantitative difference to the results and docs not change any of the qualitative findings.
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Table 1. Wholesale Prices in Alternative Scenarios (all prices in $/MWh)
Time Period: 2000-2003 (35064 total hours)

Scenario 1
Very Volatile

Simulated Prices

Scenario II
Less Volatile

Simulated Prices

Scenario III
Actual No. Cal.

Spot Prices

Flat-Rate Tariff 93.50 93.41 103.54

Fixed-Ratio TOU Tariff - Maintaining Actual Price Ratios Among TOU Periods
Winter OIT-Peak
Winter Peak
Summer Off-Peak
Summer Shoulder
Summer Peak

79.45
98.42
79.65
92.96
151.71

Cost-Based TOU Tariff - Breakeven within Each TOU Period
Winter Off-Peak
Winter Peak
Summer Off-Peak
Summer Shoulder
Summer Peak

Real-time Pricing Tariff
Minimum Price
Median Price
Mean Price
Maximum Price
No. of HoursPrice>200
No. of Hours Price is Above Highest
Simulated Generation Marginal Cost

68.80
88.57
74.41
97.07

203.52

65.00
90.00
88.77

6.321.66
287
383

79.38
98.32
79.56
92.87
151.56

68.80
88.56
74.90

• 104.38
192.50

65.00
89.13
88.77

1.051.08
918

1,713

87.98
108.98
88.19

iO2.94
168.00

101.16
110.21
91.82

107.58
120.31

-285.61
76.59

100.95
790.00

2,725
N/A

demanded by this group.
To create a TOU tariff requires first that one determine the different rate

periods. I use nearly the same rate periods that PG&E used in its standard TOU
tariffs during the observed time period. There are two periods during the "winter"
months, in effect November through April: the peak rate is in effect from 8am to
1 Opm on non-holiday weekdays and the off-peak rate is in effect at all other times.
Summer rates, which cover May through October, have three components: Peak
period is noon-6pm on non-holiday weekdays; Shoulder period is 8am-noon and
6pm-10pm on non-holiday weekdays, and off-peak is all other times.'''

Creation of a TOU tariff i.s less straightforward than the flat-rate because
for a given demand history there are an infinite number of tariffs that would cover
the total wholesale power costs. A natural TOU tariff would be for the rate within
each of the five TOU periods to be set to exactly cover the wholesale power pro-
curement costs for that period, i.e., no cross-subsidy across TOU periods. I use that

14. In the four-year period I study, the number of hours each rate is in effect are: winter off-
peak, 10.512 hours: winter peak, 6.888 hours; summer off-peak, 10,440 hours: summer shoulder,
4l28hours;summerpeak, 3096 hours. The actual tariffrate changes at 8:30am. but I have altered ihai
because the data are aggregated to the hour level. Similarly, the evening change occurs at 9:30pm, but
I've altered that to 10pm.
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as one basis of analysis, but the TOU tariff that results from this calculation exhib-
its much larger peak to off-peak rate differences than have historically been uti-
lized by PG&E or most other regulated utilities. After adding a $40/MWh charge
for transmission and distribution, the ratio of the highest TOU-period prices to the
lowest would be 3.11 (using the scenario I real-time prices), while the same figure
for PG&E's standard TOU rate is 1.91. Thus, this constructed TOU tariff, wbich I
refer to as "cost-based TOU," is economically appealing, but it would yield more
volatile bills than are likely to occur under actual TOU tariffs.

To address this, 1 also create a TOU tariff that mimics the inter-period
rate ratios that existed under the standard TOU tariff that PG&E offered during the
sample p)eriod. To construct this tariff. I calculated the ratios between the rates in
tbe PG&E tariff for the five periods. I tben adjusted ali of the TOU rates together,
maintaining these ratios, until the resulting revenue covered the wholesale pro-
curement costs of all power consumed by the observed customers in aggregate. I
refer to tbis as "fixed-ratio TOU." The resulting flat-rate and TOU tariffs, along
witb summary statistics of tbe RTP prices, are shown in table 1.

By assuming throughout these rate calculations that all of the observed
customers exhibit zero price elasticity. 1 am implicitly assuming tbat moving these
customers to RTP does not further dampen wholesale price volatility. That price
dampening effect must instead be recognized in evaluating the results of the exer-
cise. It suggests that tbe extremely volatile price scenario, scenario I, is less likely
to occur once some customers are on RTP.

Finally, comparing a customer's bill volatility under different pricing and
hedging regimes requires a measure of volatility. Because the customer's concern
is with risk, I assume that predictable monthly variation is not at issue. Tbus, I
measure tbe "unexpected deviation" component of tbe bill as the difference be-
tween tbe actual monthly bill and the customer's average bill for tbat month of the
year. I use two measures of bill risk. The first I refer to as a "coefficient of devia-
tion", which is tbe standard deviation of tbe customer's monthly unexpected bill
deviation divided by the mean of the customer's monthly bill.'^ The second is an
attempt to capture some customers' concerns about extreme events, particularly
bill spikes wben the wbolesale price increases drastically for a sbort period. Tbe
second measure, wbicb I refer to as tbe "coefficient of maximum deviation" is tbe
customer's maximum monthly unexpected bill deviation over the sample period
divided by its mean monthly bill.'^

15. This is nearly the coeRlcieni of variation of monlhty bills, but not quite, because I am using the
deviation Irom the monthly seasanal-adjiL^ted a.\exa.%e, bill.

16. Using a monthly seaNonal adjustmenf with only four years of data suggests that a degrees of
freedom correction .should be applied to all estimates of standard deviations, multiplying the sample
statistic by 4/3 to correct for the fact thai the mean is calculated from the same data. Such a correction
would, of course, make no difference to the comparisons of volatility across pricing regimes. A similar
correction to the coefficients of maximum deviation, however, is less clear since these are essentially
order statistics. To maintain some comparability between the two measures, I have not pertbrmed a
degrees of freedom correction on either.
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3. BILL VOLATILITY WITH NO HEDGING

Table 2 presents the measures of bill volatility under the four tariff re-
gimes—flat-rate tariff, cost-based TOU, fixed-ratio TOU and RTP~for whole-
sale price scenario I, the most volatile wholesale prices. Results for the two other
wholesale price scenarios are presented in the Appendix. As noted, one would
expect to observe hill volatility even absent time-varying prices due to consump-
tion variation. This is reflected in the variation under a flat-rate tariff. Indeed,
the left-hand column indicates that under the fliat-rate tariff the average customer
coefficient of deviation is 0.155. The volatility is almost exactly the same under
either TOU pricing plan. While prices are more volatile under these plans, the dif-
ferences are captured in the predictable seasonal variation. This is not surprising
in that the prices are, by construction, identical across years for a given month.
Because the coefficient of deviation is bounded below at zero, the distribution is
highly skewed. The median variation is about half the mean.

Bill volatility under RTP is, however, many times greater than under the
other billing arrangements. The mean volatility is more than double and the me-
dian is about four times greater than under the alternatives.

The table presents the statistics on the full distrihution of customer bill
volatilities, indicating that there are some customers with extremely high volatil-
ity. The fact that this results even with a flat-rate tariff indicates that this bill-
volatility is a result of large fluctuations in the amount of electricity the customer
uses. In fact, it appears that the more volatile bills are due more to consumption
volatility than price volatility. Moving up the distribution from lower to higher
bill volatility, it is clear that the ratio of volatility under RTP to volatility under
the conventional billing arrangements declines. In other words, RTP exacerbates
volatility for the bills that have low and medium volatility under conventional
billing, but has a relatively smaller effect on volatility for the bills that are most
volatile under conventional billing.

Table 2. Monthly Bill Volatility Under Alternative Billing Arrangements
(1142 Customers in Sample)

Coefficient of Deviation in Monthly Bill

Tariff
Flat-Rate
TOU - Fixed-ratio
TOU - Cost-based
RTP

Mean

0.155
0.156
0.159
0.419

1st

0.021
0.021
0.022
0.187

PERCENTILES
10th

0.035
0.037
0.039
0.264

50th

0.087
0.086
0.088
0.367

90th

0.364
0.365
0.371
0.602

Same-customer Comparison of Coefficient of Deviation Under RTP and TOU-F

Tariff
cd f RTP )/cdf TOU-F)

Mean

4.737

1st

0.963

PF.RC ENTILES
10th

1.393

50th

4.300

90th

8.854

99th

1.048
1.057
1.083
1.272

99th

12.843
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The bottom panel of table 2 presents a by-customer analysis, showing
the ratio of bill volatility (as measured by the coefficient of deviation) under RTP
to volatility under fixed-ratio TOU (TOU-F). Consistent with the first panel, the
median customer sees its bill volatility increase hy more than four times. For more
than ten percent of the sample, bill volatility is at least eight times higher under
RTP than under TOU-F.

While the coefficient of deviation is a good measure of overall volatil-
ity, what many customers seem to be concerned about is the outlier event, when
they are hit with a huge unanticipated bill spike. I attempt to capture than in table
3. Table 3 has the same structure as table 2 except it presents the coefficient of
maximum deviation, the ratio of a customer's maximum bill deviation (from it's
seasonally-adjusted expectation) in the sample to its average bill.

Table 3 confirms that there is very little variation in unanticipated bill
costs among flat rates, fixed-ratio TOU and cost-based TOU, but RTP opens up
much more possibility for bill shock from a single month. In this sample of 1142
customers, the coefficient of maximum deviation averages between 30% and 35%
under flat rate or TOU. But the coefficient of maximum deviation under RTP is
on average more than 150%. suggesting that a typical customer would at .some
time during this sample receive a bill that is more than two and a half limes the
expected level. For more than 10% of the sample the largest unexpected bill dif-
ferential would cause more than a tripling of the bill.

These analyses confirm that real-time pricing without hedging could sig-
nificantly increase customer bill volatility, at least if wholesale prices are quite
volatile. As mentioned earlier, this wholesale price volatility is probably greater
than would obtain if a significant number of customers were on RTP. Still, the
volatility increase could very well be sufficient to cause substantial unease among
some customers.

Table 3. Coefficient of Maximum Deviation Under Alternative
Billing Arrangements

(1142 Customers in Sample)

Coefficient of Deviation in Monthly Bill

Tariff
Flat-Raie
TOU • Fixed-ratio
TOU - Cost based
RTP

Mean

0.318
0.324
0.346
1.595

1st

0.042
0.043
0.048
0.592

PERCENTILES
lOih

0.072
0.078
0.088
0.994

fiOth

0.182
0.186
0.199
1.417

90th

0.658
0.668
0.690
2.294

Same-customer Comparison of Coefficient of Deviation Under RTP and TOU-F

Tariff
ex (RTP)/(.x (TOU-F)

Mean

8.869

1st

0.909

PERCENTILES
lOth

2.551

50th

8.050

90th

16.603

99th

2.359
2.392
2.455
4.301

99th

25.545
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4. BILL VOLATILITY WITH SIMPLE HEDGING

Because of the potential for large unexpected bills under RTP. those
utilities that offer or require an RTP plan for some customers usually also offer
a hedging option. The hedging program allows the customer to purchase some
of its power month.s in advance at a less-volatile expected price. These programs
are often used as inducements by setting the hedge price below the expected spot
price, thereby combining a hedging program with a transfer, which is often done
to compensate the customer for the loss of a cross-subsidy it was receiving under
conventional billing." The analysis here does not encompass this aspect of long-
term power purchases; instead I set hedging prices to be actuarially fair. I imple-
ment this not on a forward-looking probabilistic basis, but simply by setting the
price of the hedge equal to the unweighted average price during the hours that it
covers in the sample.

The hedging products that I examine here are modeled after structures
in some of the RTP hedge program.s: different products for peak and off-peak
periods. For simplicity, I model five hedge products that correspond to the five
TOU periods over the year: a peak and an off-peak product during the winter,
and a peak, shoulder and off-peak product during the summer. The product itself
is defined as purchase of one unit of power during each of the hours in the sam-
ple that falls under the specified TOU period. The price of the hedge, per MWh,
is the unweighted average price of power during the hours covered. To prevent
cherry-picking of the hours with the highest expected prices within a TOU period,
a customer cannot buy different quantities for different hours within the same
TOU period. The prices for the hedges under price scenario I are: Summer-Peak
(3,096 hours): $198.69. Summer-Shoulder (4,128 hours): $96.70, Summer-Off-
peak (10,440 hours): $73.80, Winter-Peak (6,888 hours): $88.36, Winter-Off peak
(10,512 hours): $68.43. A comparison of these prices with table 1 reveals that
they are closer to cost-based TOU than to fixed-ratio TOU, but they are a bil more
compressed than TOU-C. The reason is that the hedge prices are unweighted av-
erages ofthe wholesale prices while the TOU-C prices are weighted averages in
order to recover the full wholesale cost. These are still breakeven hedge prices,
because the hedge product is for the same quantity (one MWh) in all hours within
the period.

These are obviously not very sophisticated hedge products. Hedges could
potentially be offered and priced for even individual hours at some expected cost
for that specific hour. Without resorting to a forecasting model, I can't mimic that
process. Instead, I'm using a broad hedging product based on the average prices

17. Such advance purchases of a .sel quantity are usually referred lo as customer baseline (CBL)
programs and the quantity that the customer purchases in advance is its CBL quantity. Unlike a
voluntary hedging program, the CBL quantity is not a choice of the customer, but is usually based on
the customer'.s past usage. Brailhwait and O'Sheasy (2()O2) and O'Sheasy (2002) discuss conceptually
the effect of CBL programs on bill volatility. See Borenstein (2006) for further discussion of the use
of CBL quantity purchases to compensate for lus!> of a cross-subsidy.
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over a long time span, the four-year sample period. Because the wholesale price
simulations generate different prices only due to demand variation, this approach
approximates the distribution of prices a customer might anticipate in the spot
market going into a period, before information about abnormal demand (or sup-
ply) is revealed.

To examine the magnitude of bill volatility under RTP with hedging, I
also need to determine the quantity of power purchased as part of the hedge. Here
again I take a very simple approach. The quantity that a customer purchases is as-
sumed to be the customer's naive expected consumption in all hours to which the
hedge product applies. For example, for all hours that belong to the Summer-Peak
TOU period, the customer purchases the same hedge quantity and that quantity
is the customer's average consumption during Summer-Peak TOU hours during
the four-year sample period. In an actual implementation, the customer could al-
most certainly do better than this iti predicting it's consumption for. for instance,
a given summer period. The customer might know if it is ramping up its own
production or closing most of the operations for some period of time. Thus, this
approach is likely to underestimate the risk reduction from hedging.

A customer on RTP who hedges is assumed to have a power cost for hour
/ that Is in TOU period h equal to Co.st^ = q'^^ P^_ + (q- q\) P^,.p,. where q'^^ is the
customer's average consumption during hours in that TOU period and P,_ is the
hedge price of a MWh of power during that TOU period.

From these hourly power costs, the customer's monthly bill (actually
hourly average bill during the month, as explained earlier) is created for each
month and, just as in the previous .section, the deviation from expected cost, con-
ditional on month of the year, is then calculated for each month.

The results are shown in table 4. which repeats table 2, but with a line
for RTP-Hedged. The effect of hedging is quite strong: On average, this simple
hedging plan removes about 90% of the unanticipated bill volatility that would
otherwise occur as a result of changing from TOU-F to RTP. Table 5 repeats table
3, but with a line for RTP-Hedged. Measuring now the coefficient of maximum
deviation, hedging again removes most of the volatility due to RTP. On average
RTP-H eliminates more than 80% of the additional volatility that would otherwise
occur under RTP. These effects are also present with pricing scenarios II and III,
the results for which are shown in the appendix. Under all three pricing scenarios,
hedging eliminates the vast majority of volatility that would otherwise result from
implementation of RTP. .. . .

5. BILL VOLATILITY WITH VARIABLE HEDGING 'i

In the previous section, I assumed a naive hedging strategy and demon-
strated that even such a simple approach could eliminate a great deal of the bill
volatility that would be associated with real-time pricing. More granular hedging
products and precise demand forecasts would further reduce the unanticipated
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Table 4. Monthly Bill Volatility Under Alternative Billing Arrangements
(1142 Cuslomers In Sample)

Coefficient of Deviation in Monthly Bill

Tariff
Flat-Rate
TOU - Fixed-ratio
TOU - Cost-based ^ ,
RTP - Hedged
RTP

Mean

0.155
0.156
0.159
0.187
0.419

1st

0.021
0.021
0.022
0.028
0.187

PERCENTILES
10th

0.035
0.037
0.039
0.048
0.264

50ih

0.087
0.086
0.088
0.114
0.367

90th

0.364
0.365
0.371
0.416
0.602

Same-cuslomer Comparison of Coefficient of Deviation Under RTP and TOU-F

Tariff
cd(RTP-H)/cJ (TOU-F)
cd(RTF)/cd{TOV-F)

Mean

1.308
4.737

1st

0.900
0.963

PERCENTILES
10th

0.982
1.393

50th

1.230
4.300

90th

1.732
8.854

99th

.048
1.057
1.083
1.120
1.272

99th

2.420
12.843

Table 5. Coefficient of Maximum Deviation Under Alternative Billing
Arrangements

(1142 Customers in Sample)

Coefficient of Deviation in Monthly Bill
• • • -

Tariff
Flat-Rate
TOU - Fixed-ratio ,. .
TOU - Cost-based
RTP - Hedged
RTP

Mean

0318
0.324
0.349
0.559
1.595

1st

0.042
0.043
0.049
0.063
0.592

PERCENTILES
lOlh

0.072
0.078
0.089
0.134
0.994

50! h

0.182
0.186
0.202
0.351
1.417

90th

0.658
0.668
0.694
1.121
2.294

Same-customer Comparison of Coefficient of Deviation Under RTP and TOU-F

Tariff
cx(RTP-H)/cx(TOU-F)
fx (RTP)/rx (TOU-F)

Mean

1.961
8.86M

1st

0.817
0.909

PERCENTILES
lOth

0.975
2.551

50th

1.870
8.050

90th

2.977
16.603

2.35y
2.392
2.483
3.444
4.301

99th

4.563
25.545

volatility.'" If the customer's goal is to minimize its bill volatility, however, there
is additional value in considering the correlation between its own unanticipated
high demand and high electricity prices.

18. I have explored the effect of using more granular hedging instruments by assuming that a
customer can buy a different hedging product for each month-hour-weekday/weekend. More precise
hedging of this sort does further reduce the measures of volatility, but the effect is relatively small.
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There is an intuition, often expressed hy large electricity customers, that
a customer is at increased risk of high hills if its demand is positively correlated
with price. This is more than a theoretical concern for a customer that, for in-
stance, runs its air conditioners hardest on the hottest days of the year when prices
are also likely lo be highest.

A simple example demonstrates both that this intuition is correct and that
this correlation can make hedging especially valuahle. Consider the examples in
figure 1. A customer consumes a quantity of either 4 or 6 with equal probahility.
The market price is either 8 or 12. also with equal prohability. In example A. the
customer's consumption is uncorrelated with the system price. A bit ot arithmetic
reveals that the customer's expected bill is 50 with a standard deviation of 14.28.
An actuarially fair hedge contract in this market would sell for 10, the expected
price. Assume that the customer purchases a q^=5 unit hedge, equal to its expected
demand, for a price of p-10 before either its demand or the market price is re-
vealed. If its demand turns out to be 6. it will buy one additional unit on the spot
market, and if its demand turns out to be 4, It will .sell the extra unit on the spot
market. A bit more arithmetic shows that the expected hill is still 50, but now with
a standard deviation of 10.20. In fact, it is straightforward to show that a hedge of
q'=5 minimizes the standard deviation of the distribution of possible bills.

Now consider example B in which the prices and customer's quantity
each have the same distribution as in A. but are now perfectly correlated with one
another. Either the customer consumes 4 when the price is 8 or it uses 6 when the
price is 12. The customer's expected bill is now 52 with a standard deviation of
20. If the customer buys a hedge of (/"=5. still at the actuadally fair price of 10.
it reduces it's standard deviation to 10, less than the standard deviation resulting
from the same hedge position when price and quantity are uncorrelated. Now,
however, consider if the customer took an even larger hedge position. g"= W. This
hedge would cost the customer 100. On low price/quantity days, it would sell back
6 units at a price of 8. On high price days, it would sell back 4 units at a price of
12. With probability 0.5, its cost of power would he 100-6x8 = 52 and with prob-
ability 0.5. its cost of power would be 100-4x12 = 52. That is, over-hedging would
not only compensate for the positive price/quantity correlation, but would take
advantage of it to reduce bill volatility to zero.

The result is surprising (to most people, at least), but in retrospect it is
just the mirror image of a familiar result. Consider the case of perfect negative
correlation, shown in example C. In this case, most people are not surprised that
complete under-hedging. q^=0. purchasing all quantity on the spot market, results
in zero bill volatility. Increasing the hedge position above zero results in great-
er bill volatility. McKinnon (1967) develops optimal hedging for a risk-averse
fanner trying to stabilize income when price and his crop yield are negatively
correlated. He shows that "the more highly negatively correlated are price and
output the smaller will be the optimal forward sale." More generally, he derives
the optimal hedge position as
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Figure 1. Example of the Effect of Over-Hedging

n * I * D - fjyrob = 0.b P=12 ^ ^ ^ .-, fpro6-0.5 q=4
Market Price = \ . n n r> a Customer Quantity ^ <'^ , nr ^

lproo —0.5 P=8 ^ •' Ipro6=0.5 q—6

Example A: Zero Correlation Between Market Price and Customer Quantity

= 0.25 q-4, P=8, BilI-32
0.25 q-4, P^12, Bill^48
y25 q=6, P=8. Bin^48
0.25 q-6, P=12, Bill=72

Average Bill — 50 Standard Deviation - 14.28

f prob = 0.25 q=4, P-8, Bill = 5 • 10 - 1 • 8 = 42
. - in Ipro6-0.25 q=4, P=12, Bill - 5 • 10 - 1 • 12 - 38

atp = 10 . r^^^^^ j25 q^6, P^8, Bill = 5 • 10 + 1 • 8 ̂  58
I prob - 0.25 q-6, P=12, Bill = 5 • 10 + 1 • 12 = 62

Average Bill = 50 Standard Deviation = 10.20

Example B: Perfect Positive Correlation Between Market Price and Customer Quantity

„ „ , . j prob = 0.5 q=4, P=8, Bill-32
N o H e d g m g : | ^ ^ ^ p g q=6, P=12, Bill=72

Average Bill = 52 Standard Deviation = 20

= 0.5 q=4, P^8, Bill = 5 1 0 - 1 8 - 4 2
^ j j5 q^6, P^12, Bill - 5 • 10 + 1 • 12 = 62

Average Bill = 52 Standard Deviation = 10

= 0.5 q-4, P=8, Bill = 10 • 10 - 6 8 = 52
= 0.5 q-^6, P-12, Bill -- 10 • 10 - 4 • 12 = 52

Average Bill — 52 Standard Deviation = 0

r i;.

Example C: Perfect Negative Correlation Between Meirket Price and Customer Quantity

XT Tl J • i prob = 0.5 q-4, P=12, Bill^48
No Hedging: <^ . „ c c u o o n AO

lproo = U.5 q=6, P=8, Bill—48

Average Bill = 48 Standard Deviation = 0

q"/ Efql = 1 + p (cv(q)/cv(p)) ' ' (1)

where cv(q) and cv(p) are the coefficients of variation of quantity and price, re-

spectively, and p is the correlation between the price and the firm's quantity. Equa-

tion (1) implies thai 100% hedging is optimal when price and quantity are uncor-

related, p =0. When p is positive, optimal hedging will be greater than 100% and
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the degree to which it increases is an increasing function ofthe variability ofthe
firm's q and a decreasing function of the variability of the market p. Likewise, if
fxO, the optimal hedge is less than 100% and by a greater amount as the variabil-
ity of q increases relative to the variability of p. The result makes intuitive sense.
For instance, if a firm's quantity is highly predictable. cv(q) near zero, it is best off
to just hedge that expected quantity, regardless of the correlation between price
and quantity. McKinnon's result has been applied broadly in an agricultural eco-
nomics literature on optimal hedging. I have not found an application to a buyer
facing positive price/quantity correlation, a case that McKinnon does not discuss,
but that follows immediately from his analysis.

To investigate how much empirical bite this insight has in the context
of RTP, I evaluated the bil! volatility of the same 1142 PG&E customers under
various levels of under- and over-hedging. For this exploration, I simply fixed
the level of hedging for a customer at different percentages of the customer's
average consumption during the hedge/TOU period. So. for example, for a single
customer. I calculated its bill volatility if it bought a hedge for each hedge/TOU
period equal to 130% of its average consumption (over the four-year sample)
during that hedgeA'OU period. For each customer. I did this calculation for every
10% interval from 0% to 200% hedging.''' I've carried out this analysis using price
scenario I.

Defining "optimal hedging" for a customer as the level of hedging that
minimizes its bill coefficient of deviation, the bars in figure 2 show the distribu-
tion of optimal hedge levels for the 1142 customers. About 77% of all customers
are best off with some amount of over-hedging, i.e., a hedge level above 100% of
their average consumption for each hedge period. With every customer hedging
optimally, the average coefficient of deviation drops to 0.147, down from 0.187
that resulted when all customers hedged 100% of their average consumption. In
fact, unexpected bill volatility is lower on average under RTP with optimal hedg-
ing than it is under even a flat-rate tariff. The three lines in figure 2 show the
average coefficient of deviation for customers in each of the hedging bins under
three different billing arrangements. The difference between the "100% hedged"
line and the "optimal hedge" line shows that the reduction in volatility for RTP
customers can be quite substantial for those customers with optimal hedge posi-
tions that are far from 100%. Comparing the "optimal hedge" to the "TOU-F'line
illustrates that optimally hedged RTP customers of all types have bill volatility at
least as low as under the fixed-ratio TOU tariff they currently face.

Figure 3 presents the same analysis for the coefficient of maximum de-
viation. The value of over-hedging appears to be even greater in reducing the bill
shock from an extreme outlier. About 84% of customers reduce their maximum
unexpected bill deviation by over-hedging. The bill volatility lines show that op-
timal hedging is a substantial improvement over simple 100% hedging for most
customers in reducing the highest unexpected bills. This somewhat more sophis-

19. The 0% hedge results correspond to those showo in tables 4 and 5 for RTP and the 100% hedge
results correspond to those for RTP-H.
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Figure 2. Distribution of Optimal Hedging and Effect on Coefficient
of Deviation

10 20 30 40 50 eo 70 SD 90 100 110 120 130 140 150 160 170 190 200
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Figure 3. Distribution of Optimal Hedging and Effect on Coefficient of
Maximum Deviation
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ticated hedging strategy reduces the highest bills for most customers to about the
same level they now face under TOU-F. i ,
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While this analysis suggests that variable hedging may be important in
reducing customer bill risk, it likely overstates the potential benefits, because it
considers the effect of the optimal ex post hedging strategy for each customer.
In reality, customers will not know ex ante exactly how much hedging will be
optimal for their future demand pattern. Their ex ante choices will necessarily
be suboptimal on average. Still, variable hedging with even imperfect informa-
tion would almost certainly be an improvement over naive hedging of 100% of a
customer's expected demand. Further research into methods for ex ante determi-
nation of (constrained) optimal hedging levels is likely to be valuable.

6. CONCLUSION

Despite the fact that electricity bills are a small part of costs for most
commercial and industrial customers, there is a great deal of concern with the
volatility of this cost component. Such concerns have prompted some large cus-
tomers to oppose real-time pricing on the grounds that it could increase the risk
they face from volatility in their monthly bills.

I have shown thai RTP without hedging could indeed substantially in-
crease customer bill volatility, potentially leading to bills that in some months are
double or triple the level that the customer would normally expect. That increased
bill risk, however, can be almost entirely eliminated through use of simple for-
ward purchase contracts that hedge price risk for a fixed quantity of power. Tve
demonstrated that the simple strategy of a customer buying its expected demand
quantity through a forward purcha.se contract eliminates more than 80% of the
additional bill volatility.

I then consider a somewhat more sophisticated approach to hedging, rec-
ognizing that the optimal amount of hedging for a customer will depend on the
correlation between its demand and the real-time price. Because most customers
exhibit a positive correlation, it is optimal for most to over-hedge, Le., purchase for-
ward more than 100% of their expected demand. Among customers in the sample,
the optimal level of hedging varies considerably; for some, less that 100% hedging
would have minimized bill volatility. I show that optimal hedging would bave sub-
stantially reduced bill volatility compared to 100% hedging for many customers. On
average, optimal hedging even reduced bill volatility below the level customers face
on conventional TOU tariffs. Ex post optimal hedging is probably not achievable,
but this suggests that it would be worthwhile to explore further approaches to deter-
mining ex ante a customer's best hedging strategy based on limited information.

I have not considered the implications of variable hedging for the forward
market. While it seems likely that sellers would also be interested in stabilizing
their revenues—so would be interested in selling significant quantities forward—it
is not clear that the demand for over-hedging that this analysis suggests would be
met by an equally willing supply of over-hedging without a significant premium.
In fact, to tbe extent that producers are subject to random outages and that they
occur more frequently when prices are high. McKinnon's analysis suggests that
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they might want to hedge less than 100% of their expected output if there were
no risk premium or discount. Bessembinder & Lemon (2002) suggest that if only
risk-averse industry participants trade in a forward market for electricity, an equi-
librium risk premium will result that will be negative during low-demand/low-
volatility times and positive during high-demand/high-volatility times. This would,
of course. leave speculative opportunities that have positive net present value. Bo-
renstein, Bushneil. Knittel. and Wolfram (forthcoming) find significant forward
premia/discounts in the California electricity market, but argue that they could not
plausibly be attributable to risk aversion. Whether entry from other financial par-
ticipants, which has occurred to some extent in electricity, would be sufficient to
drive forward prices to expected spot price levels is an open question.

I also have not yet analyzed the role that option contracts could have in
addressing bill volatility. It might at first appear that a call option contract would
eliminate all bill volatility for the buyer that is due to price fluctuations, because
it gives the option to buy (or not) at a fixed price. This intuition, however, is not
accurate. A financial option yields positive returns whenever the market price is
above the strike price, regardless of the demand of the customer holding the op-
tion at that particular time. So, profit-maximizing exercise of options would not
eliminate bill volatility (net of profits from holding the option). The degree to
which the contingent payoff structure of option contracts would help to mitigate
bill volatility merits further research.*'"

Appendix. Bill Volatility Using Alternative Wholesale Price Scenarios
Price Scenario 11: Less Volatile Simulated Prices

Coetficienl of Deviation in Monthly Bill

Tariff
Flat-Rate
TOU - Fixed-ratio . ,
TOU - Cost-based
RTP - Hedged
RTP

Mean

0.155
0.156
0.159
0.171
0.284

1st

0.021
0.021
0.022
0.025
0.132

Coefficient of Maximum Deviation in Monthly Bill

Tariff
Flat-Rate
TOU-Fixed-ratio
TOU - Cost-based
RTP - Hedged
RTP

Mean

0.318
0.324
0.346

' 0.447
0.920

1st

U.042
0.043
0.048
0.0.56
0.372

PERCENTILES
lOth

0.035
0.037
0.039
0.044
0.163

50th

0.087
0.086
0.088
0.097
0.228

PF.RC ENTILES
10th

0.072
0.078
0.088
O.I 10
0.536

50th

0.182
0.186
0.199
0.266
0.769

90th

0.364
0.365
0.365
0.385
0.449

90th

0658
0.668
0.691
0.908
1.368

99th

1.048
1.057
1.083
1.083
1.176

99th

2.359
2.392
2.456
2.897
3.366

continued

20. Brown & Toft (2002) and Oum. Oren & Deng (2005) consider optimal hedging with options
when price and quantity are sEochaslic.



130 / The Energy Journal

Appendix. Bill Volatility Using Alternative Wholesale Price Scenarios, cont.
Price Scenario 111: Actual Northern Californi:! Rt-al-Time Wholesale Prices

Coefficient of Deviation in Monthly Bill

Tariff
Flat Rate
TOU - Fixed-ratio
TOU - Cost-based
RTP - Hedged
RTP

Mean

0.155
0.156
0.155
0.186
0.637

1st

0.021
0.021
0.021
0.025
0.367

Coefficient of Maximum Deviation in Monthly Bill

Tariff
Flat-Rate
TOU - Fixed-ratio
TOU" Cost-based
RTP - Hedged
RTP

Mean

0.318
0.324
0.317
0.508
1.783

1st

0.042
0.043
0.043
0.051
0.809

PERCENTILES
10th

0.035
0.037
0.036
0.044
0.519

50th

0.087
0.086
0.086
0.107
0.586

PERCENTILES
lOth

0.072
0.078
0.073
0.100
1.380

501 h

0.182
0.186
0.181
0.280
L5S5

90th

0.364
0.365
0.363
0.427
0.811

90lh

0.658
0.668
0.672
1.127
2.261

99th

1.048
1.057
1.045
1.093
1.425

99th

2.359
2.392 !.
2.350
3.894
5.036
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