
International Journal of Industrial Organization
17 (1999) 611–640

Why do all the flights leave at 8 am?: Competition and
departure-time differentiation in airline markets

a , b*Severin Borenstein , Janet Netz
aHaas School of Business, University of California, Berkeley, CA 94720-1900, USA and National

Bureau of Economic Research
bDepartment of Economics, Krannert School of Management, Purdue University, W. Lafayette,

IN 47907-1310, 765-494-4452, USA

Received 31 October 1996; received in revised form 26 April 1997; accepted 26 August 1997

Abstract

Theoretical models of spatial product differentiation indicate that firms face two opposing
incentives: (1) minimize differentiation in order to ‘‘steal’’ customers from competitors, and
(2) maximize differentiation in order to reduce price competition. Using data on U.S. airline
departure times from 1975, when fares were regulated, and 1986, when fares were not
regulated, we empirically estimate the effect of competition on differentiation. We find a
negative relationship in both periods. In 1986, however, reductions in exogenous scheduling
constraints increase differentiation, implying that firms may be differentiating their products
where possible to reduce price competition. This effect is not apparent in the 1975 data.
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1. Introduction

A great deal of theoretical work on product differentiation and spatial competi-
tion has been done since Hotelling’s path-breaking 1929 paper ‘‘Stability in
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Competition.’’ This theory literature, however, has developed without the benefit
of virtually any empirical investigation. Our paper examines a particular type of
product differentiation in the airline industry—the scheduling of flight departure

1times—in an attempt to shed light on the predictions of the theoretical models.
Airline flight scheduling provides a natural, though complex, empirical test of
spatial competition theories. The major theoretical findings have natural analogs in
this market and a key factor in the theories—the endogeneity of price de-
termination—changed between the 1970s and the 1980s as the airline industry was
deregulated.

Hotelling’s initial model of spatial competition was very simple, assuming
perfectly inelastic demand and a uniform distribution of consumers over the space.
His surprising results—minimum differentiation with two firms and no stable
equilibrium with three firms—spurred substantial investigation of sensitivity of the

2results to his assumptions. These works extend Hotelling’s model in many
directions, allowing elastic demand, a variety of conjectural variations for firms,
nonuniform distributions of consumers, and various shapes and dimensions of
spaces. While many of the extensions have supported Hotelling’s finding of
minimum, or at least reduced, differentiation, other work has indicated that
competition is consistent with, or does not differ much from, the social optimum.

The mixed results of the theoretical work arise from two conflicting incentives
faced by firms competing in two dimensions. On the one hand, firms attempt to
locate close to their competitors’ locations in order to ‘‘steal’’ customers, which
we call an ‘‘attraction’’ force. However, reducing differentiation increases price
competition, reducing the profit to be made on each sale. This effect we term a
‘‘repulsion’’ force since it gives each firm an incentive to locate farther from its
competitors. Different assumptions cause one or the other of these forces to
dominate, resulting in a tendency towards minimal or maximal differentiation,
respectively.

Unfortunately for our purposes, the airline industry is much more complicated
than the assumptions of any of the models: demand is elastic; passengers are
distributed nonuniformly in their preferred departure times; passenger delay costs,
analogous to transport costs in a typical spatial model, vary over consumers; each
route is part of a network; and airlines compete on departure time, prices, and
other quality factors. We attempt to control for the effects of these factors that vary
across route observations in order to analyze the strategic incentives of firms to
position their brands either closer to competitors’ brands or farther away than they
would in the absence of competitive considerations. Our approach to this analysis

1 Greenhut et al., 1987, briefly discuss airline scheduling in the context of spatial theory, suggesting
that more competition leads to less differentiation.

2 As discussed below, these are not actually equilibria. Existence (and uniqueness) of equilibrium is a
common problem in models of spatial equilibrium when price is endogenous.
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is to ask whether, for a given number of flights on a route, the departure times of
those flights are closer together or farther apart if they are scheduled by a
monopolist than if different flights are scheduled by different airlines. Our results
provide support for the assertion that multiple airlines on a route will locate their
flights more closely together in time than will a single firm controlling the same
number of flights. We argue, however, that this result may capture effects other
than competitive positioning of brands. Results indicate that when scheduling
possibilities are more constrained by landing slot availability and other factors, the
observed scheduling exhibits less differentiation than does unconstrained schedul-
ing.

In Section 2, we review some theoretical models of spatial competition and
discuss the factors that seem to determine the degree of product differentiation that
obtains. The application of these theories to the airline industry is discussed in
Section 3. The most important complication is that flights are part of a network,
which affects the incentives for a firm to strategically reschedule flights on a
specific route. In Section 4, we describe the data and their sources, introduce the
measures we use for analyzing departure-time differentiation, and present simple
summary statistics that begin to address the empirical issues. These statistics
indicate that as competition on a route increases, the degree of differentiation
declines. We present an empirical model of departure-time differentiation in
Section 5 and discuss the econometric issues that arise in attempting to estimate
this model. The results from our 1986 postderegulation dataset are presented and
discussed in Section 6. Analysis using data from 1975, prior to deregulation of the
airline industry, is shown in Section 7. Section 8 concludes with some further
interpretations of our results.

2. Theories of spatial differentiation

Hotelling (1929) proposed his model of spatial competition in order to explain a
certain puzzle: when there are two sellers of a homogeneous good and price is not
equal, why doesn’t the firm charging the higher price lose all its customers
instantaneously? Hotelling assumed that buyers are distributed uniformly over a
line of finite length; that consumers pay the seller’s price plus a transport cost per
unit distance; that demand is perfectly inelastic; that firms choose price and
location in an effort to maximize profits; and that relocation is costless. Hotelling
considers a game where firm A is permanently located. Firm B then locates, and
then firms choose price. The equilibrium with two firms proposed by Hotelling is
characterized by minimum differentiation, i.e., the two firms are paired at the
center of the market. This is in contrast to the socially optimal locations that
minimize transport costs, where the firms locate at the first and third quartiles and
realize identical profits as under minimum differentiation. In the case of three
firms, Hotelling finds no stable equilibrium.
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d’Aspremont et al. (1979) analytically demonstrate that Hotelling’s proposed
two-firm equilibrium is not an equilibrium. At minimum differentiation, price
would be driven to marginal cost, but if price is equal to marginal cost, either firm
has an incentive to relocate further from its competitor and raise its price. Given
one firm’s location and price, however, the other firm always has an incentive to
locate infinitesimally close and to undercut the first firm’s price. A number of
alternatives have been proposed to guarantee an equilibrium in a model similar to

3Hotelling’s. Alternative strategies include (1) eliminating the problem by assum-
ing that price is given exogenously; (2) permitting firms to randomize over prices;
(3) allowing one firm to be a Stackelberg leader; (4) assuming that transportation
costs are quadratic in distance; and (5) introducing heterogeneity in consumer
preferences across brands (i.e., gross surplus varies across brands and consumers).
The results of all this theoretical analysis indicate that the degree of differentiation
is very sensitive to the exact specification of the competitive interaction.

Osborne and Pitchik (1985) allow firms to randomize over prices while
otherwise maintaining Hotelling’s assumptions. Their proposed equilibrium has
firms located very close to the quartiles. Hence the locations are close to the social
optimum, in contrast to Hotelling’s finding. Anderson (1987) invokes a Stackel-
berg framework. The equilibrium in this case involves the first firm to enter the
market locating at the mid-point. The second firm enters relatively close to one of
the ends. Anderson’s equilibrium locations are asymmetric, in contrast to the
equilibria in most other models. The asymmetry arises from the sequential play; in
the equilibrium the second entrant becomes the price leader. In Prescott and
Visscher’s (1977) model, which is similar to Anderson’s, but which takes prices as
exogenous, symmetry obtains. If there is only one potential entrant, equilibrium
involves minimum differentiation. If there are additional potential entrants, the first
two firms will locate symmetrically, but at some distance from the center in order
to deter additional entry. d’Aspremont et al. (1979) assume quadratic transporta-
tion costs and find an equilibrium in which firms locate as far apart as possible.
DePalma et al. (1985) introduce heterogeneity in consumer demand. If there is
sufficient consumer heterogeneity, minimum differentiation obtains regardless of

4the number of firms.
Apart from extensions designed to guarantee existence of an equilibrium,

Hotelling’s model has been extended in numerous other directions to make the
model more applicable to real-world situations. Eaton and Lipsey (1975) and
Denzau et al. (1985) each present rigorous expositions of Hotelling’s model in

3 For thorough discussions on existence of equilibria in spatial models, see Anderson, 1987, and
Gabszewicz and Thisse, 1986.

4 With consumer heterogeneity, consumers no longer necessarily buy from the firm with the cheapest
(net) price; other factors now matter. With sufficient consumer heterogeneity, existence of an
equilibrium is guaranteed.
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which sellers locate simultaneously and compete via location only. These papers
analyze the properties of location equilibria for any number of firms. By assuming
that firms compete only in location, they skirt the existence problem. They also
ignore the complication of potential entry. They are able to specify equilibria for
any number of firms with the exception of three. Although minimum differentia-
tion obtains only for two agents, equilibria for more firms is characterized by
pairing of firms. For example, on a line of unit length with four firms, the

1 3 1
] ] ]equilibrium has two firms at and two at . With five firms, two locate at , one4 4 6

1 5
] ]at , and two at . Multiple equilibria exist for greater than five firms, and all2 6

equilibria are characterized by a pairing of firms, at least near the endpoints of the
line, and by symmetry.

Location theory also has been applied to situations where firms locate more than
one outlet. For example, Martinez-Giralt and Neven (1988) examine a duopoly
where firms first locate two outlets, then choose price. Based on an assumption of
quadratic transportation costs, they find that firms will minimally differentiate their

5,6own locations and maximally differentiate relative to each other. However, the
result of maximum differentiation with respect to competitors is not robust. For
one thing, the assumption of quadratic transportation costs is crucial. Models
allowing each firm to locate a single outlet (with price endogenous) also find
maximal differentiation under quadratic transportation costs. However, if equilib-
rium is achieved by changing another assumption, for example, by introducing
heterogeneity in consumer preferences, minimal differentiation obtains, as dis-
cussed above. Work by Gabszewicz and Thisse (1986) and Bensaid and dePalma
(1993) suggest that the finding of maximal differentiation may be driven by the
assumption that each firm locates two outlets or the assumption that there are only
two firms, respectively. Gabszewicz and Thisse allow two firms to locate as many

7plants as they desire. In this case, the equilibrium will involve competitive pairs of
plants located evenly over the market space, similar to the equilibria in the above
models for even numbers of firms. That is, the firms differentiate their own outlets,
but locate next to their competitors. Bensaid and de Palma extend the analysis to
three firms each locating up to two outlets. While confirming Martinez-Giralt and
Neven’s maximum differentiation result for two firms with two outlets each, they
find that (almost) anything goes when there are three firms. The three candidate
equilibria under a two-stage, locate then price, game include: an equilibrium where
outlets are evenly spaced, with each firm locating its two outlets at opposite sides
of the circle; an equilibrium where each firm reduces differentiation of its own

5 Hence, on a bounded line, each firm locates its outlets at one of the ends of the market. On a unit
circle, each firm locates its outlets together and directly across the circle from its competitor’s location.

6 In contrast, a monopolist would never locate two firms at the same point. Thus, a monopolist leads
to more differentiation than more competitive market structures.

7 Fixed costs are assumed to exist, which limits the number of plants each firm will establish.
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outlets (though not to the point of minimum differentiation), while increasing
differentiation relative to competitors’ outlets; and a mixed equilibrium, where two
firms bunch their own outlets at opposite sides of the circle, while the third firm

8locates its outlets between the competitors, on opposite sides of the circle. Thus, it
appears that the literature with regard to firms locating multiple outlets leads to
roughly the same equilibria as the literature constraining firms to locate only one
outlet: reduced (but not minimal) differentiation, maximal differentiation, and a
variety of outcomes in between these two extremes.

Hotelling’s model also has been extended to allow for elastic demand and
various conjectural variations on the part of firms. Smithies (1941) allows elastic,
albeit linear, demand and examines several conjectural variations. Again firms are
competing across two dimensions, price and location. When one firm assumes that
its competitor will react via price but maintain its location, or assumes its
competitor will strategically react via price and location, Smithies concludes the
firms will locate towards the center, although minimum differentiation may not
obtain. With elastic demand, moving toward the center can result in the loss of
customers near the endpoints, depending on parameter values, hence this will
mitigate the tendency towards minimum differentiation. Eaton (1972) confirms
Smithies’ most important results in a more mathematically rigorous investigation.
He then derives the parameter values that result in minimum differentiation,
showing that for a market length less than a critical value, which is a function of
the demand parameters and the transport cost, minimum differentiation obtains.
However, Eaton also notes that this equilibrium is unstable as no pure strategy
price choices exist. Furthermore, with elastic demand, Eaton demonstrates that an
equilibrium with three firms can be reached in which the middle firm makes lower
profits, charges a lower price, and has a smaller market share.

Eaton and Lipsey (1976) analyze the sensitivity of minimum differentiation to
the conjectural variations of firms and to the distribution of consumers on one- and
two-dimensional, bounded and unbounded spaces. While they maintain some
simple assumptions—that demand is completely inelastic and that firms charge the
same base price—their contribution comes from allowing any distribution of
customers that can be represented by a well-behaved density function. In the case
of a finite linear space with zero conjectural variations, i.e., firms assume rivals
will leave their location unchanged, minimum differentiation occurs as both firms
locate at the median of the density function. However, for a unimodal density,

8 Bensaid and dePalma also consider equilibrium locations when two firms each locate two outlets
but recognize that a third firm may enter and locate up to two outlets. In that case outlets of the original
two firms are more differentiated, and depending on the magnitude of the fixed cost, the third firm may
be blockaded from the market, may locate one outlet, or may locate two outlets. This effect does not
seem relevant to the case of airline scheduling, since airlines can re-schedule flights very quickly in
response to entry. Netz and Taylor (1997) find that in locating retail gas stations, where the cost of
re-locating in response to entry is high, firms will increase locational differentiation in order to reduce
the likelihood of entry.
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there is no equilibrium for more than two firms. Eaton and Lipsey establish that
‘‘[w]ith a variable customer density function that is not rectangular over any finite
range of [the line], a necessary condition for equilibrium is that the number of

9firms does not exceed twice the number of modes.’’ This theorem also applies to
unbounded one-dimensional, e.g., circular, spaces. Eaton and Lipsey conclude that
Hotelling’s results are sensitive to changes in conjectural variation and changes in
the distribution of customers. Importantly for our analysis, however, they show
that their results are generally not sensitive to market shapes and boundaries, e.g.,
as one moves from a linear to a circular space. One characteristic of the equilibria
of Hotelling’s model for more than three firms—pairing of the firms closest to the
endpoints—is of course not applicable to a circular space.

Thus, much of the theoretical work to date has concluded that less product
differentiation results when many different firms control location choices than
when a single firm controls all outlets. Some studies, however, have found that the
difference between the monopoly and competitive location choices may be quite
small if the firms compete in price as well as location, with the degree of
differentiation also depending on conjectural variations and the elasticity of
demand. With prices set exogenously, the pure location decision yields only an
‘‘attraction’’ force, which systematically results in minimum or decreased differen-
tiation as each firm tries to steal customers from its competitors. When price is
endogenous, the desire of each firm to limit price competition by increasing the
degree of differentiation results in the opposing ‘‘repulsion’’ force. Which
influence dominates when price is set endogenously depends upon the assumptions
made, especially with regard to conjectural variations. We empirically estimate the
degree of differentiation in the airline industry to get a sense of whether the

10‘‘repulsion’’ force or the ‘‘attraction’’ force dominates in this particular industry.

3. Applying location theory to airline scheduling

The scheduling of airline departure times can be analyzed within a spatial
framework, where the space on which we study airline location competition is a
one-dimensional circle, in essence a 24-hour clock. Instead of consumers being

9 Eaton and Lipsey, 1976, p. 35. Wherever the density function is rectangular, the number of modes is
infinite.

10 While little empirical work has been done on the issue of spatial differentiation, Brown-Kruse et
al., 1993, have conducted experimental work that supports the idea of minimum differentiation. In the
theoretical model on which they base the experiment, minimum differentiation is in the set of possible
equilibria. The observed equilibrium in the one-shot game experiment is minimum differentiation. In a
repeated game with an unknown ending and without communication, players exhibit some, largely
unsuccessful, attempts to signal to the unknown partner a willingness to coordinate to the collusive
locations (at the quartiles), but in general minimum differentiation obtains. However, with non-binding
communications the observed location pattern is at the quartiles.
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physically located, their ‘‘most preferred departure times,’’ as termed by Douglas
and Miller (1974), are located over time. Given the distribution of preferred
departure times, airlines then schedule their flights. In reality, of course, airlines
choose many strategic variables in a market simultaneously—including number of
flights, departure times, prices, and service quality—in order to maximize profits.
The airline industry deviates from theoretical models in a variety of other respects
as well: flight schedules on a route must be integrated into the carrier’s network of
flights; the cost of rescheduling flights is neither prohibitive nor zero; and each
carrier may schedule several flights on the same route. We do not attempt to create
or estimate a full-blown model of an airline manager’s decision-making process.
Instead, we estimate a structural equation for departure-time differentiation on a
route and attempt to account in the estimation for some of the network effects and
other constraints faced by an airline.

One question that the literature does not tend to address is the effect of
competition in general on locational patterns. That is, how does the locational
pattern differ between a market characterized by two firms each locating three
outlets compared to a market characterized by six firms each locating one outlet?
The literature that assumes each firm locates one outlet in some cases compares
the equilibria to outcome that obtains if a monopoly locates all the outlets. A
monopolist locates to minimize transportation costs (thus maximizing gross
surplus to consumers, allowing the monopolist to set higher prices). Thus, models
that predict minimal differentiation will find that a less competitive market (a

11monopoly market) has a more differentiated outcome, while models that predict
maximal differentiation will find that a monopoly market has a less differentiated
outcome. The literature on multiproduct firms appears to support the above
conclusions, though Bensaid and dePalma show that one candidate equilibrium
involves firms replicating the monopoly outcome of equal-spacing over the
market. None of the models studies asymmetric markets where firms locate a
different numbers of outlets. The routes that we analyze range from monopolies to
each carrier locating one flight, and any outcome in between. We assume that the
relationship between the degree of competition and the degree of differentiation is
monotonic, and attempt to discover whether the relationship is positive or
negative. Some models suggest that, for a given number of flights on a route, an
increase in the number of firms competing on the route might decrease departure-

12time differentiation. On the other hand, alternative assumptions, for example
quadratic transportation costs or elastic demand, may mitigate or even reverse this
tendency.

With differentiation by departure time in an airline market, the cost to a
consumer of taking a certain flight is the ticket price plus the cost to the consumer

11 Greenhut et al., 1987, suggest this is the case for airlines, though their argument rests in part on the
possibility that more concentrated markets lead to collusion.

12 In the next section we define an index for measuring the degree of differentiation.
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of adapting travel plans to the flight’s departure time. Passengers’ most preferred
departure times (MPDTs) are distributed around the clock, analogously to
consumers being physically located in a market relative to the physical location of
stores. A passenger incurs a cost from what Douglas and Miller term schedule
delay, i.e., the time between the MPDT and the flight taken. The cost per unit time
will vary across passengers according to their value of time, e.g., delay costs will
be greater for business travelers than for tourists. This departs from the theories
discussed above, which assume equal transport cost per unit distance for all
consumers. Of course, passengers’ MPDTs are not distributed uniformly about the
24-hour clock. As Eaton and Lipsey’s analysis indicates, one can expect a
nonuniform distribution to lead to a demand-driven lessening of departure-time
differentiation, with the degree of this effect influenced by the amount of
competition on the route.

Airlines obviously compete on price as well as departure times in a market.
Another complication lies in the fact that, unlike the theoretical work that assumes
each firms charges a single price, airlines charge a wide range of prices on most
routes. However, average fares do not usually differ much among competing
airlines on the same route. On routes with two or more active competitors (defined
as a market share above 10%), less than 5% of the variance in fares on a route is
due to cross-carrier variation in average fares; the remainder is attributable to

13within-firm price variation. In the analysis below, we therefore assume all
carriers on a route charge the same average fare, though we recognize that the
level of that average fare is determined simultaneously with the differentiation of
flights through departure times. To gain more insight into the role that price
competition plays in influencing the degree of differentiation, we empirically
analyze data from 1986, when prices were unregulated and determined en-
dogenously, and 1975, when the Civil Aeronautics Board set price exogenously, at
least relative to departure times on any one route.

Finally, the analysis must take into account the complicating factors referred to
earlier. In particular, the analysis must take into account the externality that
scheduling a flight imposes on the rest of the network, since the plane used on one
route is in use in prior and subsequent routes; scheduling constraints that arise at
slot-constrained airports; and capacity constraints.

4. Data sources and measures of departure-time differentiation

We begin our empirical study of departure-time crowding in the airline industry
by examining airline schedules in 1986, eight years after the industry was
deregulated. The flights are taken from the May 15, 1986 Official Airline Guide
(OAG), North American Edition, which lists all scheduled direct flights between

13 See Borenstein and Rose, 1994.
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14all North American airports. Our sample is limited to routes between the largest
15200 domestic airports. The Herfindahl index, based on carrier shares of nonstop

flights, is also derived from the OAG listings.
All traffic data are from the Department of Transportation’s Database 1A

(DB1A) for the second quarter of 1986, a 10 percent sample of all airline tickets
sold in the United States. We further limit the sample to routes on which at least
80% of all passengers fly direct and at least 36 passengers appeared in the DB1A
during the quarter. If a substantial proportion of passengers do not fly direct, then
the direct flights will be competing with connecting itineraries for which we
cannot control given data limitations. We also assume that on routes with 3 to 6
nonstop flights per day (in one direction), indirect flights that make one or more
intermediary stops are considered substantially inferior products that are largely

16ignored by airlines when they set departure times. Routes with less than 36
passengers are excluded because we do not have sufficient data to calculate many
of the variables for these routes.

In order to analyze the causes of differentiation of departure times on a route,
we must first construct a measure of it. In most spatial competition models, each of
the outlets competes with only its most nearby neighbors for marginal sales. In
reality, however, every flight competes with every other flight on a route to a
greater or lesser extent. For example, if two flights are scheduled around 8 am and
one is scheduled at 10 am, each of the 8 am flights competes about equally with
the 10 am departure, even if one departs at 7:58 am and the other at 8:03 am; it
would be misleading to assume that the 10 am flight and the 7:58 am flight are not
competing for the same passengers. For this reason, our analysis focuses on a
measure of departure time differentiation that takes into account the differentiation
between every pair of flights on a route.

On a route with n daily departures departing at d , . . . d each expressed as1 n

minutes after midnight, we study the average distance between flights measured
17as:

n21
n2 a]]]AVGDIFF 5 O O [minhud 2 d u, 1440 2 ud 2 d uj] ,j.1 i j i jn(n 2 1) i51

0 , a , 1. (1)

AVGDIFF is the average of the absolute time difference between each pair of
flights on the route raised to the a power. It is minimized at zero, when all flights

14 To be eligible to be included in an observation, a flight had to be operating during the week that
included May 15 and had to be scheduled to operate at least 5 days per week.

15 The 200th largest airport is Prudhoe Bay, Alaska, with average daily enplanements of 136 in the
second quarter of 1986.

16 Inclusion in our regression analysis of a variable representing the number of multi-stop direct
flights did not affect our results and was never significant.

17 The number 1440 appears because this is the number of minutes in a day.
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depart at the same time. It is maximized when the n flights are equally spaced
around the 24-hour clock. If a is near 0, then the measure is much more strongly
influenced by changes in the time between flights that are close together to begin
with. For instance, a one minute increase in the time between two flights that are
ten minutes apart will increase the index by more than a one minute increase in the
time between two flights that are three hours apart. As a increases, a change in the
time difference between two flights that are close together has a relatively smaller
effect on AVGDIFF. As a approaches 1, the index is almost equally affected by
changes in the distance between flights that are close together or far apart to begin
with.

18,19We arbitrarily choose a 50.5, but also explore alternative values. We then
normalize the average distance by the maximum possible time difference, given
the number of flights, i.e., the AVGDIFF that would result if the flights were

20,21equally spaced around the circle, which we term MAXDIFF. The measure
used, then, is

18 We also try a equal to 1 /3 and 2/3. The results are robust to these variations.
19 The primary results of the analysis are also robust to two alternative measures. Both of these

alternatives depend only on the time between each flight and its immediate neighbors in time. The first
alternative measure assumes that the last flight of the day competes with the first flight out the next
morning (as well as with the next-to-last flight of the day). The second alternative assumes that the first
flight of the day only competes with the second flight, and that the last flight of the day only competes
with the second-to-last flight of the day. Mathematically, the two measures are computed as

n
a a(d 1 (1440 2 d )) 1O [(d 2 d ) ]1 n i52 i i21

]]]]]]]]]]ALLNEIGHBORS 5 ,a1440

and
n

aO [(d 2 d ) ]i52 i i21
]]]]]SOMENEIGHBORS 5 .a1440

The two variables are then normalized by the value of the variable when all flights are spread evenly
over the day. Three values of a are examined: 1 /3, 1 /2, and 2/3. The results are robust to these
alternative measures. In addition, we tried removing from the daily clock a period in the early morning
hours when no flights are generally scheduled, i.e., 2 am to 5 am; that variation also had no effect on
the basic conclusions.

a1440
]]F3 ?S D GY3, n 5 3

3
a a 1440 144020 ]] ]]F4 ?S D 1 2 ?S2 ? D GY6, n 5 4

4 4
MAXDIFF 5 a a1440 1440 ]] ]]F5 ?S D 1 5 ?S2 ? D GY10, n 5 5

5 5
a a a1440 1440 1440

]] ]] ]]F6 ?S D 1 6 ?S ? D 1 3 ?S3 ? D GY15, n 5 6 6 6 6

21 Normalizing in this manner allows for comparisons of DIFF across samples with different
numbers of flights on the route.
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AVGDIFF
]]]DIFF 5 . (2)MAXDIFF

Thus, DIFF gives the proportion of the maximum possible differentiation in flight
times, and has a value in the interval [0, 1]. The closer the index to 1, the closer
the flights are to being evenly distributed over a 24-hour clock.

Table 1 presents the average values of the differentiation index for each of the
n-flight samples we study from May 1986 and the average index values for each of

22the observed market structures within each sample. Each observation includes all
nonstop flights on a directional route, e.g., from Oakland to Denver (Denver to
Oakland is treated as a separate observation). This preliminary evidence supports

Table 1
1Average differentiation index by sample and market structure

3-flight markets-236 observations (DIFF /HERF correlation: 0.520)

Mkt Struc 3–0 2–1 1–1–1 All

Obs 182 44 10 236

Avg DIFF† 0.884* 0.794* 0.463 0.850

SE of Avg‡ (0.006) (0.019) (0.092) (0.009)

4-flight markets—222 observations (DIFF /HERF correlation: 0.497)

Mkt Struc 4–0 3–1 2–2 2–1–1 1–1–1–1 All

Obs 110 46 50 14 1 222

Avg DIFF† 0.877* 0.807 0.777 0.728 0.649 0.829

SE of Avg‡ (0.005) (0.013) (0.015) (0.051) (0.057) (0.007)

5-flight markets-166 observations (DIFF /HERF correlation: 0.492)

Mkt Struc 5–0 4–1 3–2 3–1–1 2–2–1 2–1–1–1 All

Obs 63 25 65 5 9 1 166

Avg DIFF† 0.901* 0.875* 0.846 0.828 0.794 0.737 0.878

SE of Avg‡ (0.006) (0.011) (0.006) (0.027) (0.044) – (0.005)

6-flight markets—152 observations (DIFF /HERF correlation: 0.286)

Mkt Struc 6–0 5–1 4–2 4–1–1 3–3 3–2–1 3–1–1–1 2–2–1–1 All

Obs 21 6 40 3 58 16 1 7 152

Avg DIFF† 0.877 0.854 0.828 0.805 0.850 0.861* 0.635* 0.747 0.842

SE of Avg‡ (0.010) (0.015) (0.009) (0.041) (0.007) (0.013) – (0.030) (0.005)

1The market structure indicates the number of flights by each carrier, e.g., 4–2 means one carrier
schedules four flights and one carrier schedules two flights.
*Indicates the mean is significantly different than that of the neighbor to the right at the 5% level.
†The mean value of the differentiation index is significantly different from 1 at the 1% level for all
samples and market structures, except 1–1–1–1, which is significantly different from 1 at the 10%
level.
‡Standard errors of averages calculated under the assumption that all observations are independent.

22 The market structure refers to the distribution of flights among firms. Observations are divided into
different samples depending on the number of flights on the route.
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the conjecture that competition is associated with less differentiation than
monopoly. In all four samples, DIFF is positively and significantly correlated with
the Herfindahl index based on the number of flights. The average index increases
monotonically with the Herfindahl index in the three-, four-, and five-flight
samples. In several of the cases, the averages are significantly different between
neighboring cells.

Table 1 does not indicate the source of the decline in product differentiation
with competition. One explanation is that each firm schedules its flights more
closely to competitors’ flights, as suggested by Hotelling, in an effort to sell to
more consumers. Alternatively, competition might lead to market segmentation,
with each firm trying to schedule its flights far from the competitor’s flights and, as
a result, crowding together its own flights, in an effort to reduce price competition.
For instance, one firm might schedule all its flights on a route (in a given direction)
in the morning and the other firm might schedule all its flights in the evening. The
former explanation would imply that the interfirm differentiation would be less
than intrafirm competition, while the latter would imply the opposite.

The measure of differentiation in a market can be partitioned into average
within- and between-firm differentiation, since each pair of flights considered in
the measure is either scheduled by the same airline or is scheduled by different
airlines. Simply comparing the average within and between measures of differen-
tiation across routes, however, could be misleading, because the possible values of
each measure depend on the market structure that determines the number of within
and between pairings. To compare within-firm with between-firm differentiation,
we use a measure that takes as given the market structure, i.e., the allocation of the
number of flights among firms, as well as the departure time of each flight. We
calculate the average time distance between flights scheduled by competitors by
applying Eq. (1) to the subset of flight differences, ud 2d u, where the carriersi j

scheduling flights departing at d and at d are different. We refer to this variable asi j

BTWNDIFF. We then normalize BTWNDIFF by the average time distance
between all flights on the route, i.e., AVGDIFF. The resulting variable is
BTWNRATIO, the ratio of the average time distance between flights scheduled by

23different carriers to the average time distance between all flights. BTWNRATIO
is an indicator of whether the observed between-firm differentiation is greater

23 BTWNRATIO can be calculated in another manner as well. We can compare the between (or
within) measures with that which would result if the same departure times were distributed differently
among the firms. For example, consider a route with 3 flights, departing at (A1) 8 am, (B) 9 am, and
(A2) 3 pm, with (A1) and (A2) flown by firm A and (B) flown by firm B. We compare the average of

a athe two between-firm time difference measures, u8 am–9 amu and u9 am–3 pmu , with the average
between-firm difference that would result if firm B operated the 8 am or the 3 pm flight instead of the 9
am flight. This alternative interpretation of BTWNRATIO, the ratio of the observed between-firm
average differentiation to the average between-firm measure for all possible allocations of the same
flight shares across the same departure times, is also an indicator of whether between-firm or
within-firm differentiation dominates on the route.
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(ratio .1) or less (ratio ,1) than the flight differentiation in the market as a
24whole.

Table 2 presents the average values of BTWNRATIO for the route structures on
which both within- and between-firm differentiation exists. A value of
BTWNRATIO less than one implies that the average between-firm differentiation is
less than the average differentiation among all flights on the route and, therefore,
less than the average within-firm differentiation on the route. In all market
structures except 5–1 and 4–1–1, between-firm differentiation is significantly less
than within-firm differentiation at the 5% level. Though the ratio does not
immediately map to a particular flight schedule, the result on a four-flight route is

Table 2
1Average BTWNRATIO , by sample and market structure 3-flight markets

3-flight markets
Mkt Struc 2–1
Obs 44
Avg BTWNRATIO† 0.886
S.E. of Avg

4-flight markets
Mkt Struc 3–1 2–2 2–1–1
Obs 46 50 14
Avg BTWNRATIO† 0.595* 0.691* 0.860
S.E. of Avg (0.023) (0.006) (0.021)

5-flight markets
Mkt Struc 4–1 3–2 3–1–1 2–2–1 2–1–1–1
Obs 25 65 5 7 1
Avg BTWNRATIO† 0.912 0.904 0.928 0.965* 0.937
S.E. of Avg (0.017) (0.003) (0.018) (0.008) –

6-flight markets
Mkt Struc 5–1 4–2 4–1–1 3–3 3–2–1 3–1–1–1 2–2–1–1
Obs 6 40 3 58 16 1 7
Avg BTWNRATIO† 0.924 0.907 0.999 0.921* 0.949* 0.972 0.968
S.E. of Avg (0.041) (0.004) (0.066) (0.003) (0.008) – (0.012)
1BTWNRATIO is the average time distance of flights scheduled by different carriers relative to the
average time distance between all flight pairs on a route.
†BTWNRATIO for all market structures is significantly less than 1 at the 5% level, except 5–1 and
4–1–1.
* Indicates the mean is significantly different than that of the neighbor to the right at the 5% level.

24 A similar ratio can be calculated for the within-firm differentiation, but it is redundant: a ratio less
than one for between-firm differentiation necessarily implies a ratio greater than one for within-firm
differentiation, since the average differentiation between all flights, AVGDIFF, is the same for all
possible allocations of the given departure times across carriers.
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more consistent with two firms each having one morning and one evening flight
than with one firm having two morning flights and the other having two evening
flights. In other words, on average, firms schedule their flights more closely to
competitors’ flights than to their own flights. However, it is not clear whether this
scheduling occurs for strategic reasons or due to constraints such as network
consideration. To more thoroughly investigate the effect of competition on
differentiation of departure times, we must also control for other factors that affect
flight scheduling.

5. An econometric model of departure-time differentiation

In the regression analysis, we seek primarily to estimate the effect of
competition on departure-time differentiation. We measure competition with
COMP, which is equal to the inverse of the Herfindahl index calculated by shares

25of nonstop flights. Based on Hotelling’s conjecture and the preliminary results,
we would expect that as competition on the route increases, holding constant the
total number of flights, product differentiation is lessened. Another category of
variables that is likely to significantly affect departure time differentiation is
demand patterns. As demonstrated by Eaton and Lipsey, demand patterns will
influence the scheduling of flights, causing flights to be less crowded together on
routes where the MPDTs of the potential customers are more diffuse. We employ
two variables to capture such demand-driven crowding, reflecting the distribution
of MPDTs and the cost to passengers of deviating from their MPDT. First, the
distribution of MPDTs tends to be more concentrated on routes where certain
normal hours of departure time, not in the middle of the night, would result in
arrivals in the middle of the night. If demand is substantially less for flights that
either depart or arrive during the early morning hours, then MPDTs and actual
departure times will be more concentrated on long flights and on flights from the
western to the eastern U.S., due to the associated time change. Flights from San
Francisco to New York, for instance, involve a nine-hour time loss including the
time change. For such a route, few passengers will want to depart between 3 pm
and 10 pm local San Francisco time, as they would arrive in New York in the very
early morning hours. In contrast, flights from New York to San Francisco
effectively take only three hours, so that passengers can leave New York as late as
9 pm and still arrive in San Francisco before midnight. We control for this MPDT

25 This variable exhibits much better explanatory power than the Herfindahl index. We have also
estimated the model with separate dummy variables for each market structure. The qualitative results
are unchanged and the additional variables are not a statistically significant improvement over the more
parsimonious model.
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distribution effect with a travel time variable, TRVTIME, the average scheduled
26nonstop time of travel on the route plus the effect of any time zone changes.

Another factor in flight scheduling involves the cost to passengers of flying on
an inconvenient flight. Theoretical work has tended to assume that this cost is
identical across consumers. In a homogeneous setting with elastic demand, as the
cost to passengers of inconvenience rises, ceteris paribus, the airline will have an
incentive to increase differentiation in order to avoid losing customers at the ends
of the market. Of course, in reality this cost differs over passengers. Though we
are not able to analyze the effect of heterogeneity in delay costs among customers
on a single route, we attempt to control for differences in average delay costs of
passengers on different routes. We attempt to control for differences in delay costs
between tourists and business travelers. Business travelers probably differ from
others in at least two important ways: they place a higher cost on deviating from
their MPDTs and their MPDTs are probably more concentrated into a few hours of
the day. The second factor clearly suggests that there will be less departure time
differentiation on business-oriented routes. The first factor, however, suggests that
tourist travelers have weaker preferences among flights. This could mean that
competitive scheduling is both less costly to consumers and less effective in
attracting them. Airlines would be more free to schedule flights strategically,
whether that means greater or less differentiation, because they are less constrained
by consumer demand. Thus, the effect could be to increase or decrease differentia-
tion compared to a business route with the same demand pattern. We measure the
proportion of customers on a route who are on vacation or other nonbusiness

27matters using the variable TOUR.
The degree of departure-time crowding also will be affected by supply-side

considerations other than the spatial competition that is our primary focus. The
cost to an airline of rescheduling a flight for competitive purposes will depend on
the degree to which the flight is integrated into the network of the airline. For
instance, if TWA’s flight from Philadelphia to St. Louis carries mostly passengers
who switch planes at St. Louis in order to continue their trips westward, then TWA
will schedule this flight to coincide with its other flights from the east coast that
arrive at St. Louis at nearly the same time and then depart 30–60 minutes later for
various points to the west (which is known in the industry as a ‘‘bank’’ of flights).
It would be quite costly for TWA to reschedule this flight in order to compete with
another airline for local Philadelphia–St. Louis passengers, since rescheduling may

26 We also tried including a variable indicating flights that were sufficiently long, over six hours of
travel time, that they could be scheduled on a red-eye basis. Including this variable did not affect the
other results, and was significant only in the 3-flight sample.

27 Borenstein, 1989, explains the construction of this variable. Briefly, it is an estimate of the
proportion of total city income derived from hotel expenditures of tourists. To construct the variable at
the route-level, we weight the tourist index at each endpoint city by the proportion of tickets originating
at the other city.
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make layovers too short or too long, so that TWA would lose connecting
passengers. Thus, scheduling rigidities caused by integration of a flight into the
carrier’s network would tend to dampen the effect of strategic scheduling
incentives. We attempt to capture this effect with a dummy variable, HUB, equal to

28one when either endpoint of the route is a hub for one of the carriers. If carriers
desire to locate their flights near competitors’, then the additional logistical costs
of doing so at a hub would lead to increased departure time differentiation relative
to a situation without network considerations. Conversely, if carriers prefer to
locate their flights away from competitors’, then logistical complexities of a hub
would lead to decreased departure time differentiation.

Another consideration in strategic scheduling is capacity constraints. Even on a
route with no connecting passengers and no flights integrated into the airlines’
networks, the incentive to strategically adjust departure times may be lessened if
demand is high relative to the number of flights or seats offered. If there is a
tendency for carriers to locate flights near their competitors’ in order to steal
customers, that incentive would be reduced if most flights are nearly full. If there
is an incentive to locate flights away from competitors’ in order to reduce price
competition, the threat of price competition would also be reduced if flights are
near full, so this motivation for rescheduling flights away from competitors would
decline. To capture this effect, we include the average load factor, which is the

29,30percentage of seats occupied, on nonstop flights on the route, LOADFAC. We
expect that on routes with high load factors, carriers will be less likely to
strategically schedule flights.

At some airports, congestion is controlled not by queuing, but by a system of
property rights for take-off and landing clearance at different times of the day,
known as slots. We posit that slots would impede attempts to schedule flights
strategically in response to competition. SLOT is equal to one if one of the
endpoint airports is slot controlled—Chicago O’Hare, Washington National, New
York’s Kennedy and La Guardia airports, Orange County, or Long Beach—and
zero otherwise. If strategic scheduling results in a net attraction between different
brands (less brand differentiation), then because SLOT impedes strategic schedul-

28 The following airport-carrier pairs are identified as hubs: Chicago O’Hare for American Airlines
and United Airlines; Atlanta for Delta and Eastern; Dallas–Ft. Worth for American and Delta; Denver
for Continental, United, and Frontier; St. Louis for TWA and Ozark; Miami for Eastern; Detroit for
Republic; Minneapolis for Republic and Northwest; Phoenix for Southwest and America West;
Pittsburgh for USAir; Houston Intercontinental for Eastern and Continental; Charlotte for Piedmont;
Salt Lake City for Western; Memphis for Republic; Baltimore for Piedmont; and Kansas City for
Eastern. In this analysis, we take the location and existence of hubs to be exogenous to the
departure-time differentiation on individual routes.

29 LOADFAC may be endogenous, an issue we discuss below.
30 The issues of congestion, capacity, or increasing marginal cost are not addressed in the theoretical

literature that we have reviewed because those models assume constant, usually zero, marginal costs.
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ing, it would be expected to have a positive coefficient, i.e., SLOT constrains a
carrier to schedule with more differentiation than desired. Likewise, if strategic
scheduling results in a net repulsion between different brands (more brand
differentiation), then SLOT would be expected to have a negative coefficient.

Finally, it is possible that profits per passenger will affect the tendency of firms
to crowd near competing locations. The discussion above identifies the costs to
airlines of strategically scheduling a flight. Whether an airline is willing to bear
such costs depends on its gain from doing so. In particular, on a route with a high
price /cost margin, a firm might have a greater incentive to schedule flights
strategically to gain more local passengers on the route at the cost of poorer
connections for passengers changing planes or poorer overall integration of the
flight into the carrier’s network schedule. On the other hand, high profits per
passenger may increase the ‘‘repulsion’’ force, since carriers have more to lose by
increasing price competition by moving flights more closely to competitors’.
Because we cannot directly measure profitability, to capture this effect, we include
RELFARE, a measure of the average fare on the route relative to the average fare

31,32on all other routes in the U.S. of similar distance. Because a high price /cost
margin may strengthen the ‘‘attraction’’ and the ‘‘repulsion’’ forces, we cannot
make a sign prediction.

All of the variables that we have discussed, other than COMP, are hypothesized
to have a different effect as the level of competition on a route changes. A carrier
with a monopoly on a route, for instance, will respond to demand- and supply-side
conditions without worrying about losing passengers to competitors or increasing

33price competition. We address this issue by assuming a log–log relationship.

LDIFF 5 b 1 b LCOMP 1 b HUB 1 b LTRVTIME 1 b LTOUR0 1 2 3 4

1 b SLOT 1 b LLOADFAC 1 b LRELFARE 1 e. (3)5 6 7

One econometric difficulty is that the degree of differentiation may affect the
relative fare or the load factor. As the degree of differentiation declines, price
competition increases, driving the fare down. We control for the effect of DIFF on
RELFARE using instrumental variables. The instruments used in addition to the
included exogenous variables are the share of flights served by non-majors on the

34route and carrier dummies indicating those carriers that serve the route.
Scheduling convenience may also affect the number of passengers who fly nonstop

31 To be precise, we calculate the average fare for all routes in every 50-mile category (e.g., 200–249
miles, 250–299 miles, etc.) and compare the average fare on a route to the average for routes in its
category.

32 RELFARE is almost certainly endogenous, as discussed below.
33 The primary results are robust to linear and log–linear functional forms.
34 2The first stage fits well, with R s over 0.55.



S. Borenstein, J. Netz / Int. J. Ind. Organ. 17 (1999) 611 –640 629

on the route relative to capacity. Specification tests, however, do not reject the
35hypothesis that LOADFAC is exogenous. Because two-stage least squares results

are substantially noisier, but not substantially different, we report results with
LOADFAC treated as exogenous.

Recognition of the possible effect of location competition on entry also raises an
issue due to the nonrandom nature of each sample. We have taken the factors that
determine the number of flights on a route to be irrelevant to analysis of the degree
of departure-time differentiation of those flights. It is possible, however, that the
number of flights on a route, which dictates whether or not a route is in a given
sample, is determined in part by variables that are effectively part of the residual in
Eq. (3). Even if the right-hand-side variables would be orthogonal to the residual
in a ‘‘complete’’ sample, they could be correlated with the residuals in this
nonrandom sample, which would lead to inconsistent coefficient estimates. This
concern is common in labor economics studies that use nonrandom population
samples. In our case, the resulting truncation is incidental, rather than direct,
because the dependent variable in our study is not the basis for sampling.

The truncation problem in this instance is somewhat more complicated than in a
typical labor supply study, for instance. In this case, the basis for selection is that
the number of flights be exactly equal to the selection criterion, no greater and no
less. Furthermore, we do not have a sample of included and excluded observations
that would allow us to estimate Heckman’s (1977) selection equation and then

ˆinclude the resulting l as a right-hand-side variable in Eq. (3).
Instead, we consider the bias that might result from estimating (3) ignoring the

sample selection issue. The most apparent source for selection bias is that COMP,
which appears in (3), might also appear in the selection equation. In particular, for
a given route demand, routes with more competition may have lower prices and
more flights. Thus, one indication of possible bias would be a correlation across
the observations in the sample between COMP and other variables that would be
in a selection equation. The correlation one might then expect to find within an
n-flight sample is lower demand on routes that have greater competition. In each
of the samples, however, COMP is not significantly correlated with the total
number of passengers on the route or with exogenous measures of market demand
such as the size of the endpoint populations. In fact, COMP tends to show a weak
positive correlation with market size. Therefore we conclude that the potential
sample selection issue does not bias our results.

35 The specification tests were carried out first using measures of endpoint populations as identifying
instruments, and then also using the ratio of endpoint populations to capacity on the route. Taking route
capacity as exogenous is questionable, but it is not much different from our sample structure that takes
number of flights on the route as exogenous. In the first case, exogeneity could not be rejected in any of
the regressions at the 10% level. In the second case, exogeneity could be rejected at 10% for one of the
four regressions.
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A final econometric issue is possible correlation between the residuals of
different observations. An observation in these datasets includes all nonstop flights
from airport A to airport B. If the same number of daily flights take place from
airport B to A, then that will be a separate observation in the same dataset.
Between one-third and one-half of all observations in each dataset are on routes on
which there are two included observations, one in each direction. In the 3-flight
and 4-flight datasets, there is significant positive correlation between the residuals
on routes from which two observations are drawn. On the other two, the
correlation is positive, but not significant at the 10% level. We estimate the
regressions using the Huber correction to estimates of standard errors when there
is group correlation among the residuals, as implemented in the Stata statistical

36package.

6. Results

As indicated in Table 1, we effectively have four different data sets, those with
three, four, five, and six daily flights in the same direction on a route. Descriptive
statistics for each sample are shown in Table 3. The samples appear to be
relatively similar in terms of means, and the null hypotheses of equal means and
equal standard deviations across samples are not rejected for HUB and RELFARE
for all samples, and for TRVTIME, TOUR, and SLOT, with the exception of the
6-flight sample. The null hypotheses that the means of DIFF, COMP, and
LOADFAC are equal are rejected. Thus, it is not surprising that pooling of the data
sets is rejected even when separate intercept terms are permitted for each category.
Therefore, we present results from each of the four datasets separately.

The basic conclusions from Table 1 hold up in the regression results shown in
Table 4. In all regressions, the coefficient estimates for LCOMP are negative and

36 The limited range of the differentiation index also presents a potential econometric problem,
implying that the assumption of a normally distributed error term may not be tenable. Of course, the
index is an ad hoc measure and a monotonic transformation of the index may be an equally reliable
measure of differentiation. Recognizing this, we have estimated the equation with a logistically
transformed index as well as the index presented in Eq. (2):

DIFF
]]]TDIFF 5 lnS D (4)
1 2 DIFF

The result is an index with infinite range. The constant marginal effect of the right-hand side variables
on TDIFF implies that as DIFF approaches either limit, the right-hand side variables have less and less
impact on DIFF. The results, however, are not substantially affected by this transformation. Because
interpretation of the coefficients is complicated by the transformation, we present the results using the
untransformed differentiation index.
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Table 3
Descriptive statistics

Variable Mean Std. dev. Minimum Maximum

3-flight markets—236 observations
DIFF 0.850 0.136 0.114 0.995
COMP 1.234 0.486 1.000 3.000
HUB 0.492 – 0.000 1.000
TRVTIME 1.372 0.960 20.550 8.283
TOUR 0.011 0.010 0.003 0.070
SLOT 0.140 – 0.000 1.000
LOADFAC 0.544 0.142 0.201 1.000
RELFARE 1.183 0.331 0.513 2.160

4-flight sample—222 observations
DIFF 0.829 0.101 0.406 0.986
COMP 1.483 0.573 1.000 4.000
HUB 0.532 – 0.000 1.000
TRVTIME 1.400 0.936 20.433 7.733
TOUR 0.011 0.010 0.003 0.070
SLOT 0.153 – 0.000 1.000
LOADFAC 0.567 0.140 0.227 1.000
RELFARE 1.216 0.423 0.516 2.942

5-flight sample—166 observations
DIFF 0.868 0.061 0.640 0.983
COMP 1.561 0.525 1.000 3.571
HUB 0.536 – 0.000 1.000
TRVTIME 1.442 0.956 20.483 5.650
TOUR 0.010 0.008 0.003 0.039
SLOT 0.187 – 0.000 1.000
LOADFAC 0.539 0.145 0.112 1.000
RELFARE 1.222 0.422 0.442 2.204

6-flight sample—152 observations
DIFF 0.842 0.061 0.620 0.952
COMP 1.916 0.550 1.000 3.560
HUB 0.533 – 0.000 1.000
TRVTIME 1.591 1.246 20.017 8.050
TOUR 0.014 0.012 0.003 0.070
SLOT 0.217 – 0.000 1.000
LOADFAC 0.570 0.127 0.149 1.000
RELFARE 1.132 0.405 0.490 2.942

statistically significant. For a given number of flights, product differentiation
declines as competition increases. The coefficient estimate for the 3-flight sample
indicates that, for a route with other variables at their sample means, going from a
3–0 market structure to a 2–1 market structure, which increases COMP from 1 to
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Table 4
IV estimation of log–log specification dependent variable: LDIFF

Flight sample: 3-flight 4-flight 5-flight 6-flight

CONSTANT 20.159 20.052 20.054 20.149***
(0.171) (0.086) (0.046) (0.051)

LCOMP 20.450*** 20.206*** 20.117*** 20.075***
(0.120) (0.034) (0.019) (0.027)

HUB 20.028 20.036 20.017** 20.021*
(0.058) (0.033) (0.011) (0.013)

SLOT 20.143* 20.071** 20.014 20.018
(0.078) (0.045) (0.014) (0.018)

LLOADFAC 20.094 20.068* 0.001 0.005
(0.060) (0.040) (0.014) (0.029)

LTVTIME 20.075** 20.017* 0.002 0.006
(0.038) (0.010) (0.006) (0.010)

LTOUR 20.010 0.020 0.006 20.008
(0.029) (0.017) (0.009) (0.010)

LRELFARE 20.091 0.063 20.021 0.012
(0.103) (0.054) (0.019) (0.029)

Observations 231 220 170 153
2R 0.40 0.30 0.26 0.07

***Significant at 1%. **Significant at 5%. *Significant at 10%.

37,381.8, causes the index to fall from 0.856 to 0.657. The former index corresponds
to one flight at 8 am, one at noon, and one at 5:05 pm, while the latter would
imply moving the third flight up to 2:30 pm if the first two remained at 8 am and
noon. Moving from a 3–0 market to a 1–1–1 market structure causes the index to
fall to 0.522, corresponding to 8 am, noon, and 12:09 pm flights.

While that conclusion might be interpreted as support for a Hotelling-like
incentive to strategically locate brands near competitors’, other interpretations are
also possible. One might argue, for instance, that the observed effect results from
the network integration problem that each carrier must solve. A single airline
schedules its flights on a given route so that they make the most valuable or
profitable links with the airline’s other flights. This is likely to involve scheduling
departure times so that the flights arrive or depart a hub airport at the same times
as the carrier’s other flights. It also involves scheduling equipment so that an
aircraft is properly positioned to be used for a sequence of profitable flights. In
comparison, even if two carriers on a route were not strategically positioning their
flights to gain a larger share of traffic on the route, the fact that their other flights

37 Continuous variables are evaluated at their means. For this example, we assume that this is a route
that includes a slot-constrained airport (SLOT51) and does not include a hub (HUB50).

38 Note that the change is quite large, 80% in this case, so the change in the log value is not a close
approximation to the percentage change.
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on other routes are not coordinated across airlines is likely to lead to more
crowding of the airlines’ flights on the observed route. Thus, while more
competition is correlated with less product differentiation, it may not follow that
competition causes a strategic attraction tendency between brands. Indeed, the
results on the other variables suggest that may not be the case.

For example, two of the independent variables—HUB and SLOT—indicate the
ease with which an airline can schedule its flights. The coefficients on these
variables are all negative and half are statistically significant. When a route
includes a hub or a slot-constrained airport, the airlines have less flexibility in
scheduling. The negative coefficient indicates that, given the constraint, flights are
scheduled with less differentiation than without the constraint. That is, firms would
prefer more differentiation.

The estimated impact of LOADFAC is less robust, but its negative estimated
coefficient for the 3- and 4-flight samples also can be interpreted as implying a sort

39of competitive ‘‘repulsion’’ rather than ‘‘attraction’’ among carriers. When load
factors are high, we argued that firms have less desire to engage in strategic
scheduling, of either the attraction or the repulsion type. The negative coefficient
estimates indicate that this decline in strategic scheduling is associated with a
decline in product differentiation, implying that strategic scheduling causes

40increased product differentiation.
The impact of travel time (TRVTIME) is generally negative as predicted. The

longer the travel time, the more airlines are constrained by passengers’ MPDTs.
Routes with longer flights as measured by travel time tend to exhibit less product
differentiation, probably due to the increased difficulty of scheduling arrival and
departure times that are both at times that travelers consider reasonable.

The results on LTOUR and LRELFARE are not robust; the coefficients on both
variables alternate in sign, and neither is significant. The results on LTOUR may
be due to the conflicting incentives tourist passengers offer airlines. We argued that
the preferred departure times of tourists are more spread out over the day, which,
ceteris paribus, would lead to more differentiation. However, the schedule delay
cost to tourists is low, reducing the incentive to respond to these passengers and
allowing the airline to continue to respond to the demands of business travelers.
Also, business travelers are a source of considerably more profit than are tourists,
so unless a route is primarily tourists, it may well pay for an airline to cater to
business travelers, despite losing tourist passengers. The results on LRELFARE
may similarly be due to the conflicting incentives arising from high price /cost

39 The estimated (positive) coefficients in the 5- and 6-flight sample are not close to conventional
significance levels.

40 A referee points out an alternative interpretation: routes with higher LOADFAC may be those with
more distinct demand peaks not captured by our demand variables, which would also be associated
with less departure-time differentiation for reasons not related to strategic scheduling.
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margins. While a high margin increases the attraction force, since there is more to
be gained by stealing customers, it also strengthens the repulsion force, because
there is more to lose from increasing price competition. It may be that, on average,

41these two forces offset each other.
Overall, one might interpret our results as suggesting that airlines are inclined to

schedule flights such that they are farther away from competitors, rather than
succumbing to an incentive for minimal differentiation. The variables that measure
constraints on scheduling indicate that constraints lead to less differentiation.

While these results are provocative, a possibly cleaner test of the basic Hotelling
conjecture is available using data from the regulated period in the airline industry.
In that era, the threat of price competition was absent, since fares were set by
regulators. In such a situation, airlines can schedule their flights closer together
without a fear of increased price competition.

7. Differentiation with exogenous prices: The airline regulation era

To gain some insight into the effect of price competition on the tendency of
firms to differentiate their product, we also have gathered data for 1975, a period
in which airlines were subject to fare and entry regulation. Because data on airlines
and departure times must be gathered by hand from the Official Airline Guide, we
only have data for three- and four-flight routes. During this period of regulation,
fares were set exogenously by the Civil Aeronautics Board, based on the distance
of the flight. In 1986, while an airline had an incentive to schedule its flight close
to competitors’ in order to steal customers, the downside to such a strategy was an
increase in price competition due to reduced product differentiation. In 1975, this

42offsetting effect was considerably muted.
The variables for the 1975 analysis are calculated in much the same manner as

described previously. The most notable change is the substitution of FARE for
RELFARE. Recall that RELFARE is included as a proxy for the price /cost margin.
Since the CAB set airfares using a distance-based formula, virtually all routes of
the same distance had the same fare, and a relative fare measure such as we used
for the 1986 data would not be useful in controlling for cost. However, it is widely
recognized that longer routes with higher fares also had higher price /cost margins.
That is, the marginal price per mile in the CAB fare formula was greater than the

41 It is also worth noting that TOUR and RELFARE are significantly negatively correlated, which
could account for the large standard errors on their parameter estimates. However, TOUR and
RELFARE are also jointly insignificant.

42 Firms were still able to compete on service quality and other factors, including flight frequency. In
fact, service-quality competition led to much lower load factors and greater excess capacity on routes
prior to deregulation. Thus, the sample of routes with a given number of flights could be quite different
in 1975 than in 1986. For example, the 4-flight routes in 1975 have fewer total passengers.
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actual marginal cost of flying a longer route. We therefore use FARE to control for
the effect of profitability on differentiation, since higher fares are generally
associated with higher price /cost margins. The 1975 data also differ from the 1986
approach in that the route structure under regulation was a point-to-point system,

43rather than a hub-and-spoke system. Thus, there is no hub variable in this sample.
Finally, only four airports were slot-constrained in 1975: Chicago O’Hare, New
York’s Kennedy and LaGuardia airports, and Washington National. The means and
standard deviations for all variables are very similar across the two time periods,
as can be seen by comparing Tables 3 and 5.

We begin by examining the same descriptive statistics as before. An examina-
tion of the average differentiation index across various market structures, as
presented in Table 6, reveals the same pattern as in the deregulation-era data. What
does differ is the correlation between the degree of product differentiation and the
Herfindahl index. Surprisingly, the two variables are correlated at a much lower

44level during the regulated period. Absent the threat of price competition,

Table 5
Descriptive statistics

Variable Mean Std. dev. Minimum Maximum

3-flight markets—267 observations
DIFF 0.847 0.116 0.462 0.998
COMP 1.202 0.408 1.000 3.003
TRVTIME 1.284 1.168 20.367 8.000
TOUR 0.014 0.017 0.002 0.070
SLOT 0.090 – 0.000 1.000
LOADFAC 0.523 0.138 0.142 0.839
FARE* 68.62 44.20 26.45 260.18

4-flight sample-150 observations
DIFF 0.844 0.090 0.556 0.978
COMP 1.232 0.384 1.000 2.667
TRVTIME 1.334 1.398 20.367 8.100
TOUR 0.011 0.013 0.002 0.070
SLOT 0.173 – 0.000 1.000
LOADFAC 0.519 0.134 0.062 0.838
FARE* 63.62 40.28 23.92 219.47

*Real 1986 dollars.

43 The tourist variable is also slightly changed from 1986. For about a quarter of the sample, we do
not have data on ticket originations by city, which is necessary to compute a weighted average of the
tourist variable for each city. For these routes we use the simple average across the two cities.

44 A large proportion of this difference is driven by the 1–1–1 observations in the deregulated era,
which exhibit an exceedingly low degree of differentiation. When these ten observations are omitted,
the correlation between the differentiation index and the Herfindahl index drops from 0.520 to 0.389.
Nonetheless, the correlation is lower in the regulated era.
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Table 6
1Average differentiation index by sample and market structure

3-flight markets—267 observations (DIFF /HERF correlation: 0.280)
Mkt Struc 3–0 2–1 1–1–1 All
Obs 207 55 5 267
Avg DIFF‡ 0.865* 0.786 0.789 0.847
SE of Avg (0.007) (0.020) (0.007) (0.007)

4-flight markets-150 observations (DIFF /HERF correlation: 0.328)
Mkt Struc 4–0 3–1 2–2 2–1–1 All
Obs 105 29 14 2 150
Avg DIFF‡ 0.862* 0.811 0.773 0.829 0.844
SE of Avg (0.007) (0.018) (0.030) (0.121) (0.007)
1The market structure indicates the number of flights by each carrier, e.g., 4–2 means one carrier
schedules four flights and one carrier schedules two flights.
*Indicates the mean is significantly different than that of the neighbor to the right at the 5% level.
‡The mean value of the differentiation index is significantly different than 1 at the 5% level, for all
market structures, except 2–1–1.

concentration appears to have a weaker, not a stronger, (negative) association with
departure time differentiation. The comparison of BTWNRATIO across market
structures in Table 7 gives similar results as under the deregulated period,
indicating that the degree of differentiation between flights of different carriers is
less than the average degree of differentiation for all flights.

Table 8, using 1975 data, parallels the regressions reported in Table 4 for 1986
data, with the changes noted above. Results with the regulation-era data indicate
that competition exerted a negative influence on the degree of product differentia-
tion. However, the magnitude of the effect is considerably smaller than estimated

Table 7
1Average BTWNRATIO , by sample and market structure

3-flight markets
Mkt Struc 2–1
Obs 55
Avg BTWNRATIO† 0.916
S.E. of Avg (0.014)

4-flight markets
Mkt Struc 3–1 2–2 2–1–1
Obs 29 14 2
Avg BTWNRATIO† 0.606* 0.712 0.948
S.E. of Avg (0.030) (0.033) (0.076)
1BTWNRATIO is the average time distance of flights scheduled by different carriers relative to the
average time distance between all flight pairs on a route.
†The mean BTWNRATIO is significantly less than 1 at the 5% level for all market structures except
2–1–1.
*Indicates the mean is significantly different than that of the neighbor to the right at the 5% level.
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Table 8
IV estimation of log–log specification dependent variable: LDIFF

Flight sample: 3-flights 4-flights

CONSTANT 0.180 0.341*
(0.159) (0.177)

LCOMP 20.133*** 20.074*
(0.045) (0.044)

SLOT 20.039 0.011
(0.032) (0.026)

LLOADFAC 0.078** 0.056*
(0.039) (0.034)

LTRVTIME 0.022* 20.001
(0.012) (0.013)

LTOUR 20.012 0.006
(0.013) (0.013)

LFARE 20.077*** 20.101***
(0.028) (0.034)

Observations 223 127
2R 0.11 0.19

***Significant at 1%. **Significant at 5%. *Significant at 10%.

in 1986. As before, we examine the impact of changing from a 3–0 to 2–1 to
1–1–1 market structure on the degree of differentiation, assuming that the other
variables are at their sample means. A movement from 3–0 to 2–1 decreases the
differentiation index from 0.822 to 0.761. If two flights are scheduled at 8 am and
noon, then the former implies that the third flight is scheduled at 4:21 pm, and the
latter at 3:32 pm. A movement to a 1–1–1 market structure decreases the index to
0.711, which corresponds to the third flight moving to 2:18 pm. These changes are
substantially smaller than implied by the results using deregulation-era data.

Recall that three variables measure how tightly constrained an airline is in
strategically scheduling a flight—HUB, SLOT, and TRVTIME. HUB is irrelevant in
the regulated time period; SLOT is insignificant; and, when significant, TRVTIME
is positive. In the deregulated era, all three variables were generally negative and
often significant, indicating that airlines preferred to differentiate their flights more
when faced with competition, but could not due to scheduling constraints. In
contrast, carriers do not appear to be affected by constraints in the regulated
period; when competition changes, regulated carriers have more freedom to adjust
schedules strategically, and respond by reducing differentiation. In other words,
the appearance that competition reduced differentiation by a larger amount in the
deregulated period may be an artifact of structural changes in network considera-
tions (a move from a point-to-point system to a hub-and-spoke system).

It is also possible that airlines adjust to the absence of price competition by
competing in quality dimensions: scheduling flights more responsively to passen-
gers’ preferred departure times. When airlines can adjust their prices, a passenger
who deviates from her preferred departure time may be compensated with a lower
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fare. When price is set by a regulator, this compensation is unavailable. The
variables that we include to control for the distribution of preferred departure
times, TRVTIME and TOUR, do not appear to add much explanatory power. In
essence, the airline may be more worried about losing passengers at the
‘‘endpoints’’ of the day when they cannot adjust price.

The primary determinants of differentiation, apart from COMP, appear to be
FARE, which, as explained above, indicates the profitability per passenger, and the
load factor. Consistent with our earlier discussion of the airline’s tradeoff between
attracting passengers and integrating the flight into its system, the fare appears to
have a significantly negative impact on the degree of product differentiation. There
was greater differentiation on routes with low price /cost margins, where airlines
had less to gain by trying to steal customers from competitors. The coefficient on
the load factor is significantly positive, indicating that routes with higher load
factors exhibit more product differentiation. This too is consistent with expecta-
tions: if flights are relatively full, there is no point to trying to steal customers from
competitors.

8. Conclusions and interpretations

Simple descriptive statistics show that on a route with a given number of daily
flights, departure times are less differentiated if the route is served by competing
airlines than if it is served by a single firm. In our econometric analysis we have
attempted to control for the other factors that might affect departure-time
crowding, and have found a negative relationship between competition and
product differentiation that is significant, both statistically and in terms of the size
of this effect. While these results might be interpreted as indication of a
competitive tendency towards reduced product differentiation, as conjectured by
Hotelling and others, we argue that this conclusion is difficult to square with the
other estimated effects on differentiation.

Some of the other coefficient estimates could be interpreted as implying that
carriers respond to increased logistical flexibility in scheduling by increasing their
differentiation from competing brands. Furthermore, high capacity utilization,
which decreases the incentives for strategic scheduling, is (weakly) associated with
less product differentiation, also implying that strategic scheduling increases
differentiation.

When prices are fixed, most models of differentiation predict that there will be a
stronger tendency for firms to crowd their brands towards competitors’. While our
results from the era of regulated prices show that an increase in competition is
significantly associated with less product differentiation, the raw statistical
correlation and econometrically estimated causal relationship is weaker in the
regulated fixed-price era (1975) than in the unregulated period (1986). At the same
time, however, the indicators we found in the 1986 sample that airlines respond to
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greater scheduling flexibility by increasing differentiation are not evident in the
1975 sample. In the 1975 samples, a decrease of scheduling constraints does not
appear to affect the degree of departure time crowding. Furthermore, low load
factors, which seem likely to increase the incentive to schedule strategically are
significantly associated with less differentiation in departure times. Overall, it
appears that the predictions of location models with exogenous prices are
supported by the results from the 1975 data.
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