First Is Best

Dana R. Carney1*, Mahzarin R. Banaji2

1 Management of Organizations, University of California, Berkeley, California, United States of America, 2 Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America

Abstract

We experience the world serially rather than simultaneously. A century of research on human and nonhuman animals has suggested that the first experience in a series of two or more is cognitively privileged. We report three experiments designed to test the effect of first position on implicit preference and choice using targets that range from individual humans and social groups to consumer goods. Experiment 1 demonstrated an implicit preference to buy goods from the first salesperson encountered and to join teams encountered first, even when the difference in encounter is mere seconds. In Experiment 2 the first of two consumer items presented in quick succession was more likely to be chosen. In Experiment 3 an alternative hypothesis that first position merely accentuates the valence of options was ruled out by demonstrating that first position enhances preference for the first even when it is evaluatively negative in meaning (a criminal). Together, these experiments demonstrate a “first is best” effect and we offer possible interpretations based on evolutionary mechanisms of this “bound” on rational behavior and suggest that automaticity of judgment may be a helpful principle in clarifying previous inconsistencies in the empirical record on the effects of order on preference and choice.

Introduction

You walk into a room and first meet Maxine, then Max.
In a grocery store, your eyes first notice Bosc pears, then Bartlett pears.
Your stockbroker first tells you about a new stock option Bentametrix, then Mentametrix.

In these examples, as in so much of life, information is experienced sequentially. What is the effect of an item’s position on preference for it? There is no reason, at least not a rational one, for preference to be guided by the order in which two items in a series are encountered. Max and Maxine are equally likely to be good people, until we know otherwise; Bartlett pears are no less good than Bosc, but depend on the recipe; and Mentametrix is just as likely to be a smart stock choice as the alternative—in the absence of other information.

It is inherent in the nature of experience, unfolding as it does in time, to encounter events sequentially [1]. Choices and preferences, if they are to maximize subjective expected utilities, ought to be based on rational dimensions of choice such as the quality and value of the object but not on the position in which the option was encountered. However, as the last half-century of research on judgment and decision making has shown, judgments and decisions made under uncertainty are boundedly rational [2-6].

The Power of Primacy

In humans and other animals, we know that primacy has power with undue emphasis placed on the first instance that is encountered. What is experienced first is remembered better [7–10], it drives attachment more strongly [11–13], creates stronger association with the self [14], influences impressions more decisively [15–18], and persuades more effectively [19–21].

Literally gravitating toward the first physical object encountered appears to be present in the earliest forms of attachment across species. For example, research on the imprinting process in baby chicks shows that the first object the newborn sees—whether it be another animal or inanimate object—is more likely to become the object of attachment [11]. In adult humans, we know that the first argument presented on even complex topics has greater persuasive appeal and is more likely to change minds [19].

Although first seems to exert influence in such moments, little is known about the choices that adult humans make of everyday people, objects, and events and the role of first position. In fact, in work with adult humans, results are sometimes mixed [19]. We propose that judgments that are relatively devoid of conscious awareness will consistently reveal an effect in which firsts are considered best because firsts are privileged for several—very basic—reasons that heuristic processes may rely on. In particular, it is possible that the evidence which does exist on psychological processes close to attachment and preference may show an even more robust effect if the method by which preferences are elicited can circumvent conscious awareness by reliance upon automatic rather than deliberative cognitive processes. Thus, the goal of the current report was to directly test whether firsts would be consistently preferred on automatic measures of preference and choice—when firsts may or may not be preferred on deliberative measures of preference and choice.

Citation: Carney DR, Banaji MR (2012) First Is Best. PLoS ONE 7(6): e35088. doi:10.1371/journal.pone.0035088

* E-mail: dcarney@berkeley.edu

Copyright: © 2012 Carney, Banaji. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Research was supported by Harvard’s Mind, Brain, and Behavior Initiative (D.R.C. and M.R.B.), and grants from the Third Millennium Foundation, the National Institutes of Mental Health and Mind Science Institute to M. R. Banaji. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.
Experiment 1

In Experiment 1 we tested the “first is best” hypothesis using three different pairs of stimuli: two male salespersons, two female salespersons, and two teams. Participants were given each of the items of a pair in sequence and then participants indicated their preference.

Method

Participants and procedure. One hundred twenty-three participants were presented with three different choice-pairs and then probed for preference after each pair. Participants were introduced to a pair of teams they may wish to join (the “Hadleys” and the “Rodsons”), a pair of male salespersons from whom they may purchase a car (“Jim” and “Jon”), and a pair of female salespersons from whom they may purchase a car (“Lisa” and “Lori”). Four photos of each individual (e.g., 4 different photos of “Lisa”) and 4 different team member names (e.g., 4 different members of the “Hadley” team) were shown for a total of 24 stimuli. Team-member names were balanced for word-length and letter-usage and faces were balanced within pair for attractiveness and emotional expression. Each option within a pair was presented sequentially for 30-seconds and participants were forced to maximally consider both options. Immediately after each choice-pair was presented, participants completed a measure which assessed automatic preference for each option (an Implicit Association Test, or IAT) [22]. Self-reported preference was also measured. Order of choice-pairs was randomized as was which option was presented first. All of this research (Experiments 1–3) was approved by the human subjects review board at Harvard University. Written and signed informed consent was obtained from participants in Experiments 1 and 3 and verbal consent was obtained from the field participants in Experiment 2.

Preference measures. The measure of automatic preference was an evaluative IAT for each choice-pair. In these tests, each category label—in this case, team names and salespersons—were paired with “Better” and “Worse.” For example, the IAT assessed the degree to which Lisa versus Lori (and also Jim vs. Jon and Hadleys vs. Rodsons) were spontaneously associated with positive and negative attributes, with order of first paired block (Lisa + Better; Lori + Worse) counterbalanced. The difference in average response latency to the paired blocks was divided by the pooled SD yielding an index of implicit preference for one person (or team) versus the other (the score is known as a D-score) [22]. In the IATs, the items for the salespersons were 4 photographs of each individual or team. The items for “Better” and “Worse” were roughly synonyms for the words (e.g., wonderful, best; horrible, worst).

Deliberative, self-reported preference was measured with: (a) a 7-point scale labeled “I strongly prefer Lisa to Lori,” “I strongly prefer Lori to Lisa”; (b) two “feeling thermometers” of Lisa and Lori preference from 0 (cold) – 100 (warm); the difference between the two thermometers was z-scored and averaged with the z-scored 7-point rating item (all option-pairs were rated on these self-reported items). Both self-report and implicit measures contained a midpoint of zero indicating no preference. Order of preference-mesures (implicit vs. explicit) was counterbalanced.

Results and Discussion

Repeated measures ANOVA across choice-pairs revealed a main effect of primacy on automatic preference. Automatic preference for first items presented was compared with automatic preference for second items presented (across choice-pairs: Hadleys & Rodsons, Jim & Jon, and Lisa & Lori). Regardless of the actual option, the one presented first compared to the one presented next was significantly more strongly associated with the concept “better” rather than “worse”, $F(1, 121) = 20.20, p < .001$; effect size $r = .38$ (Figure 1). There was no difference in self-reported preference for firsts versus seconds, $F(1, 121) = .08, p = .78$.

Experiment 2

The IAT is a very particular kind of test of automatic preference, and in Experiment 2 we introduced a different and more realistic measure of preference in the form of a direct choice of a consumer good. When choosing between two pieces of similarly packaged and flavored bubble gum, we either (a) imposed upon participants a time constraint that forced a spontaneous and immediate decision, or (b) allowed a deliberative choice with more time available. Consumer items varied in no way other than serial position; choice of gum was the dependent variable.

Method

Participants and procedure. Two-hundred seven participants were recruited from a train station in Boston, MA. Adults sitting alone were approached by an experimenter who was blind to the hypothesis. Participants were asked to participate in a study on consumer choice (<1% declined). For remuneration they were offered the small consumer item they chose. Two pieces of similar-looking bubble gum (1 piece of “Bubble Yum” and 1 piece of “Bubblicious,” equal in size and shape) were placed sequentially on a white clipboard. First placement of gum brand and side of clipboard (left vs. right) were counterbalanced. After rapid sequential placement of the two items, participants reached out and grabbed (and kept) their choice.

In the rapid decision task participants were instructed to make their selection fast “within one second or so” whereas in the deliberative decision task they were instructed to select “after you have thought about it.”

Results and Discussion

A $2 	imes 2 \chi^2$ tested the effect of order (first vs. second) on choice for each deliberation condition (automatic vs. controlled) separately. Consistent with results from Experiment 1, participants in the rapid decision task chose the chewing gum presented first (62%) significantly more often than the gum presented second (38%)
Participants were shown two criminals, one after the other (order of photos was counterbalanced across participants). Immediately upon seeing the faces of the criminals (named Jim and Jon), a measure of automatic preference assessed participants’ speed of associating Jim and Jon with “Worse for Parole” and “Better for Parole” using the same procedure as in Experiment 1. Self-reported preference was also measured.

Results and Discussion

Even when the stimuli were evaluatively negative (unprisoned criminals convicted of violent crimes) and the judgment called for was evaluatively negative (who should remain in prison?), participants automatically associated the first criminal with being more worthy of parole (rather than prison) compared to the second criminal. Regardless of which photo was presented first, it was the one presented first who was judged to be more worthy of parole, $F(1, 29) = 4.31, p < .05$; effect size $r = .36$ (Figure 3). Replicating Experiments 1 and 2, no effects were observed on self-reported preference. On the self-reported measure of preference the means were consistent with those of the implicit results: When Jim was seen first he was preferred for parole over Jon ($M = .25$) and when Jon was shown first he was preferred over Jim ($M = -.21$). However, this effect was not statistically significant: $F(1, 29) = 1.88, p > .18$.

General Discussion

In three experiments, with tests using options from five different social and consumer-item categories (female salespeople, male salespeople, teams, pieces of gum, and criminals), we obtained a consistent result that on a deep, automatic level of human cognition, firsts are consistently preferred and chosen. Despite the research demonstrating how firsts influence many aspects of human and animal cognition, the six published reports on adult humans testing the effect of order on preference have reported somewhat mixed results [4, 17, 23–26].

Mantonakis et al. attempted to explain the mixed results by advancing the idea that expertise moderates the effect of primacy on preference. They argued that expert knowledge and deliberation about options trump locally available heuristics such as order. While their account does explain their own and some others’ findings, it does not explain why Bruine de Bruin’s work [23, 24], Li and Epley [25], and Nisbett and Ross [4] sometimes found no effect of order and/or other times recency effects. The...
that whatever is set as the “gold standard” against which others are compared is itself strongly preferred [27,28]. Although order effects have not been shown to account for direction of comparison findings [27], the basic thrust of this and related work on similarity judgments [29,30] suggests that firsts may automatically be viewed as the gold standard against which others are to be compared.

Future research will involve further tests of the generality of this phenomenon in different samples and species because such tests are crucial to understanding the nature of this surprising and seemingly important effect. If some of the above speculations are correct, this effect should emerge in infants and young children, as well as in other primates and animals—regardless of whether deliberation was “allowed” or not. Likewise, tests are needed to unlink this primacy effect from other primacy producing results. For example, disambiguating this result from primacy effects in memory can be conducted by having later items in a series repeated more often (to enhance recency) and test whether even under such conditions a preference for first is retained (we thank Jonathan Schooler for this suggestion). Two of our tests (Experiments 1 and 3) were optimized to yield recency effects because when forced to maximally consider all options people tend to choose the most recent item; thus, Experiments 1 and 3 served as extremely conservative tests of our hypothesis (we thank an anonymous reviewer for pointing this out). However, additional tests utilizing paradigms more traditionally optimized to reveal recency (e.g., time delays between first and second options as is the case in persuasion research) should examine whether recency effects are an emergent property of only deliberative cognition—perhaps an indirect measure (such as those used in the three experiments presented here) would demonstrate primacy while self-report measures continue to reveal recency. In the meantime, decision theorists would do well to build in tests of “first is best” in research that will teach us about the impact, boundary conditions and mechanisms of the automatic preference for firsts observed here.

Acknowledgments
Thanks to Moshe Bar, Brian Lucas, Beth Mela (B. M.), Sarah Piccioli, Kevin Chan, Becca Dyer, Christopher Dial, and Katie Lancaster and members of the Bar and Banaji labs for assistance with and feedback about this research. Thanks to Dave Hamilton, Reid Hastie, Jim Sherman, and Danny Kahneman for comments.

Author Contributions
Conceived and designed the experiments: DRC MRB. Performed the experiments: DRC MRB. Analyzed the data: DRC MRB. Contributed reagents/materials/analysis tools: DRC MRB. Wrote the paper: DRC MRB.

References