Quiet bubbles

Harrison Hong, David Sraer
Princeton University, United States
NBER, United States
CEPR, United States

ABSTRACT
Motivated by the recent subprime mortgage crisis, we explore whether speculative bubble models of equity based on investor disagreement and short-sales constraints can also provide an explanation for the overvaluation of debt contracts. We find that this is unlikely. Equity bubbles are loud: price and volume go together as investors speculate on capital gains from reselling to more optimistic investors. But this resale option is limited for debt since its upside payoff is bounded. Debt bubbles then require an optimism bias among investors. But greater optimism leads to less speculative trading as investors view the debt as safe and having limited upside. Debt bubbles are hence quiet—high price comes with low volume. We find the predicted price–volume relationship of credits over the 2003–2007 credit boom.

1. Introduction
Speculative bubble models, featuring investor disagreement and short-sales constraints a la Harrison and Kreps (1978), have been used to explain various equity overpricing episodes. The short-sales constraint imparts an upward bias in prices when there is sufficient disagreement among investors (Miller, 1977; Chen, Hong and Stein, 2002). Investors then anticipate the option to resell at a higher price to someone with a higher valuation due to binding short-sales constraints (Scheinkman and Xiong, 2003).1 The potential for disagreement tomorrow alone, as opposed to having to assume that all investors are optimistic today, is enough to get prices to be high today since price embeds this speculative resale option.

A hallmark of these models is that they can rationalize anecdotes of classic equity bubbles as being loud—high prices are accompanied by large trading volume as investors purchase in anticipation of capital gains (see Hong and Stein, 2007 for a review of this evidence). For example, in the South Sea Bubble of 1720, transactions in the Bank of England stock, one of the three bubble stocks, were three times larger than in the prior three years (Carlos, Neal and...
Wandcsneider, 2006). Stock share turnover during the years before the Crash of 1929 in the United States were abnormally high by historical standards. In the dot-com bubble years of the late 1990s, Internet stocks accounted for nearly 20% of the trading volume in the stock market (Ofek and Richardson, 2003). The elevated trading volume, and in some of these instances elevated price volatility, associated with these episodes no doubt prompted the classic economists from Adam Smith to John Maynard Keynes to emphasize the role of speculation on anticipated capital gains in bubbles.

Motivated by the recent subprime mortgage crisis, we explore whether such speculative dynamics can also provide an explanation for the overvaluation of debt contracts. After all, there is compelling evidence that investment-grade or highly rated credit securities, especially in housing mortgage-backed securities, were severely overpriced (see Coval, Jurek and Stafford, 2009) in the same way Internet stocks were a decade earlier. There is also evidence that short-sales constraints are at least as binding in debt markets as in equity ones. These models only require that some (not all) investors be short-sales constrained. Yet, many mutual funds or insurance companies are required by charter to be long-only: that is, they must simply own investment-grade debt or stocks and are prohibited by charter from shorting or trading derivatives (such as credit default swaps (CDS)) (Almazan, Brown, Carlson and Chapman, 2004; Koski and Pontiff, 1999). Moreover, Asquith, Au, Covert and Pathak (2013) point out that the rise of credit default swaps (CDS) did not influence the cost of shorting in corporate debt as CDSs were not a substitute for shorting these credits. And in the case of the mortgage collateralized debt obligations (CDO), short-sales constraints on these CDOs were binding until the onset of the financial crisis (see Lewis, 2010).

As a result, one might conclude that speculative credit bubbles would come as naturally in this setting as equity bubbles. But this is far from the case. To see why, we consider the pricing of a debt security within the disagreement and short-sales constraints framework. Investors disagree over the underlying asset value. In the context of the subprime mortgage CDOs, the underlying asset values are real estate prices. For corporate credits, the underlying asset values are the assets of the companies. Whereas equity payoffs are linear in the investor beliefs regarding underlying asset value, debt upside payoffs are capped at some constant and hence are concave in the investor beliefs about fundamental.

But because debt upside payoffs are bounded in contrast to equity, the valuation of debt is less sensitive to disagreement about underlying asset value. This then limits the speculative resale option of credits. As a result, a debt bubble has to be smaller than an equity bubble if there is only this speculative disagreement motive at work. The safer is the debt claim, the more bounded is the upside, the less sensitive its valuation is to disagreement and therefore, the lower the resale option and the smaller is the bubble.

In other words, speculative resale alone is not enough to get a credit bubble, particularly for safe credits like AAA CDOs. Of course, we are not claiming that there cannot be bubbles or overvaluation in debt caused by other mechanisms. Indeed, there is evidence from Greenwood and Hanson (2011) and Baker, Greenwood and Wurgler (2003) that credit cycles in the US over the past 80 years, including the 1980s junk bond wave and the recent credit boom of 2003–2007, are associated with debt bubbles. Optimists told stories of how home prices had been too depressed historically and would keep rising (see Lereah, 2005) or rationalized the risk of the subprime mortgage CDOs by pointing to the fact that national home prices had never fallen since the Great Depression. Optimism over a lack of correlation among regional home prices also seem to have played a role in the credit rating agencies’ models (Coval, Jurek and Stafford, 2009).

To get debt overpricing, we allow for investor optimism in the disagreement framework. As investor optimism rises holding fixed fundamental value, debt prices naturally and unsurprisingly rise above fundamental value and a debt bubble emerges. But what is more interesting is that this optimism channel for debt bubbles makes them quieter in the process. When investors become more optimistic about the underlying fundamental of the economy, they view debt as being more risk-free with less upside and hence having a smaller resale option. Hence, there is less trading of debt when there is greater investor optimism. In other words, debt bubbles are inherently quiet whereas equity bubbles are intrinsically loud.

We then provide some evidence for this prediction regarding the relationship between credit price and volume over the recent credit boom of 2003–2007 by looking at investment-grade US corporates. There was, of course, huge issuance of credits of all types during the

2 A significant portion of the $28 trillion of mutual fund money is in this long-only format. The short-sales constraints come not from the cost of shorting but institutional restrictions to shorting. There is evidence pointing to the impact of these institutional restrictions on overpricing in equity (Chen, Hong and Stein, 2002). These institutional restrictions to shorting are very bit as relevant for bonds as they are for stocks.

3 Earlier work on heterogeneous beliefs and bond pricing such as in Xiong and Yan (2010) assume that investors have disagreement about bond prices or interest rates and they do not model the nature of the concavity of debt payoffs as a function of underlying asset value disagreement.

4 Here, we are implicitly comparing a debt claim with an equity claim that does not have limited liability, so that the only difference between the two claims is the upside of the payoff function. If one compares the debt claim with the complementary equity claim (i.e., with limited liability), then our results hold provided that the fundamental of the economy is good enough or that there is enough optimism among investors. Intuitively, when this is the case, the equity claim is mostly linear in the relevant range while the debt claim has upside bounded payoffs in the relevant range. The formal analysis of equity with limited liability is in Section 2.5.

5 We provide a formal characterization that allows the ranking of two assets in terms of their disagreement sensitivity in Section 2.

6 There is no comprehensive trading data on the investment-grade mortgage CDOs. But mortgage credits trade in a similar fashion to US corporates according to anecdotes we gathered from traders at Guggenheim Partners who trade both types of securities. Institutional investors such as insurance companies value them for their high credit rating and steady coupons in the same way that they value US corporate bonds. So we focus on the trading of investment-grade US corporates over the recent credit cycle to test our model.
credit boom of 2003–2007. Our focus, however, is on whether the trading of these credits went up during the 2003–2007 period.

One might ask why we need to concern ourselves with turnover in credits. Is not the excess of one trillion dollars of issuance of highly-rated mortgage-backed credits during 2003 to 2007 enough to indicate that there was a credit bubble? By analogy to the stock market, there was also a historic level of equity issuance during the 1995–2000 dot-com period (Ofek and Richardson, 2003). But a neoclassical and fully rational Q-theory of asset prices would also predict high levels of stock issuance coinciding with high levels of stock prices due to a technology shock. In other words, high levels of issuance of credits and high prices for credits could emanate from a number of neoclassical rational pricing reasons. In contrast, high levels of turnover are more symptomatic of speculative trading and overpricing.

Fig. 1, borrowed from Hong and Stein (2007), plots the monthly share turnover of Internet stocks and the cumulative returns to owning these stocks and those of the non-Internet analogs. The strong correlation of Internet stock share turnover and valuations can be seen in Fig. 1. In Fig. 2, we plot the monthly Bank of America/Merrill Lynch US Corporate 7–10 Year Option-Adjusted Spread and trading activity measures (number of trades and dollar trading volume) of these US corporates by insurance companies. The trading data are obtained from Schedule D provided by the National Association of Insurance Commissioners (NAIC). This figure is the analog to Fig. 1 for dot-com stocks. The lack of a positive correlation between price and trading activity in credits in contrast to equity is apparent in Fig. 2(A) and (B). It is also easy to see that trading activity fell over 2003–2007 when spreads also fell (i.e., when bond prices rose), consistent with the prediction of our model. We make this point more formally below.

Finally, we want to acknowledge that the quietness of the credit bubble did not mean that the excesses of the credit boom were not widely heard in other markets. Notably, there was indeed speculation in housing markets. Homes, especially ones bought with cheap leverage, have equity-like payoffs. And consistent with our model, the housing bubble was loud in that there was speculation in the form of flipping of homes and buying in anticipation of capital gains. Our only point is that the bubble in credits, whose payoffs depended on these home values, was quiet.

Our paper proceeds as follows. The model, its main results, and some extensions are discussed in Section 2. We discuss empirical evidence in Section 3. We conclude in Section 4 by drawing out the implications of our work for policy and future research. In the Appendix, we collect the main proofs and the remainder of the proofs are in an online Appendix.

2. Model

2.1. Set-up

Our model has three dates $t=0, 1, and 2$. There are two assets in the economy. A risk-free asset offers a risk-free rate each period. A risky debt contract with a face value of D has the following payoff at time 2 given by

$$m_2 = \min(D, G_2),$$

(1)

where

$$G_2 = G + \epsilon_2$$

(2)

and G is a known constant and ϵ_2 is a random variable drawn from a standard normal distribution $\Phi(\cdot)$. We think of G as the underlying asset value which determines the payoff of the risky debt or the fundamental of this economy. There is an initial supply Q of this risky asset.

There are two groups of agents in the economy: group A and group B with a fraction 1/2 each in the population. Both groups share the same belief at date 0 about the value of the fundamental. More specifically, both types of agents believe at $t=0$ that the underlying asset process is

$$\tilde{V}_2 = G + b + \epsilon_2,$$

(3)

where b is the agents’ optimism bias. When $b=0$, investor expectations are equal to the actual mean of the fundamental G and there is no aggregate bias. The larger is b, the greater the investor optimism.

![Fig. 1. Monthly share turnover of Internet stocks. This figure is taken from Hong and Stein (2007). It plots the average monthly share turnover of Internet stocks and non-Internet stocks from 1997 to 2002. The underlying data is from the Center for Research in Security Prices (CRSP) database.](image-url)
At \(t = 1 \), agents’ beliefs change stochastically: agents in group A believe the asset process is in fact
\[
\tilde{V}_2 = G + b + \eta^A + \epsilon_2,
\]
while agents in group B believe it is
\[
\tilde{V}_2 = G + b + \eta^B + \epsilon_2,
\]
where \(\eta^A \) and \(\eta^B \) are drawn from a normal standard distribution with mean 0 and standard deviation 1. These revisions of beliefs are the main shocks that determine the price of the asset and its turnover at \(t = 1 \).

The expected payoff of an agent with belief \(G + b + \eta \) regarding the mean of \(\tilde{V}_2 \) for this standard debt claim is given by
\[
\pi(\eta) = E[\tilde{V}_2|\eta] = \int_{-\infty}^{D-G-b-\eta}(G+b+\eta+\epsilon_2)\phi(\epsilon_2)\,d\epsilon_2 + D(1-\Phi(D-G-b-\eta)).
\]

If the fundamental shock \(\epsilon \) is sufficiently low such that the value of the asset underlying the credit is below its face value \((G+b+\eta+\epsilon < D) \), then the firm defaults on its contract and investors become residual claimant (they receive \(G+b+\eta+\epsilon \)). If the fundamental shock \(\epsilon \) is sufficiently good such that the value of the fundamental is above the face value of debt \((G+b+\eta+\epsilon \geq D) \), then investors are entitled to a fixed payment \(D \). Our analysis below applies more generally to any (weakly) concave expected payoff function, which would include equity as well as standard debt claims. Note also that the unlimited liability assumption—the fact that debtholders may receive negative payoff—is not necessary for most of our analysis, but it allows us to compare our results with the rest of the literature. Fig. 3 illustrates the relationship between the belief about the underlying asset value and the belief about the expected payoff of an equity claim (top panel) and a credit claim (bottom panel). This figure assumes that \(b \) is equal to 0 and considers the case of an optimist agent with belief \(G+\eta \) and a pessimist agent with belief \(G-\eta \).

Agents are risk-neutral and can borrow from a perfectly competitive credit market.\(^7\) The discount rate is normalized to zero without loss of generality. Finally, the last ingredient of this model is that our risk-neutral investors

\(^7\) This can be viewed as the limiting case of the following model with borrowing constraints. Agents are endowed with zero liquid wealth but large illiquid wealth \(W \) (which becomes liquid and is perfectly pledgeable at date 2). Credit markets are imperfectly competitive so that banks charge a positive interest rate, which we call \(1/\mu - 1 \), so that \(\mu \) is the inverse of the gross rate charged by banks. \(\mu \) is increasing with the efficiency of the credit market. We consider here the case where \(\mu = 1 \). The derivation of the model with \(\mu < 1 \) is available from the authors upon request. Results are qualitatively similar.
face quadratic trading costs given by

$$c(\Delta n_t) = \frac{(n_t - n_{t-1})^2}{2\gamma},$$

where n_t is the shares held by an agent at time t. The parameter γ captures the severity of the trading costs—the higher is γ the lower the trading costs. These trading costs allow us to obtain a well-defined equilibrium in this risk-neutral setting. Note that $n_{t-1} = 0$ for all agents, i.e., agents are not endowed with any risky asset. Investors are also short-sales constrained. This set-up is similar to the constant absolute risk aversion (CARA)-Gaussian platform in Hong, Scheinkman and Xiong (2006) except that we consider non linear payoff functions over disagreement about underlying asset value.

2.2. Date-1 equilibrium

Let P_1 be the price of the asset at $t=1$. At $t=1$, consider an investor with belief $G+b+\eta$ and date-0 holding n_0. Her optimization problem is given by

$$J(n_0, \eta, P_1) = \max_{\eta} \left\{ n_1 \pi(\eta) - \left((n_1-n_0)P_1 + \frac{(n_1-n_0)^2}{2\gamma} \right) \right\},$$

where the constraint is the short-sales constraint.

Call $n^*_1(\eta)$ the solution to the previous program. If $n^*_1(\eta) - n_0$ is positive, an agent borrows $(n^*_1(\eta) - n_0)P_1 + (n^*_1(\eta) - n_0)^2/2\gamma$ to buy additional shares $n^*_1(\eta) - n_0$. If $n^*_1(\eta) - n_0$ is negative, the agent makes some profit on the sales but still has to pay the trading cost on the shares sold $(n_0 - n^*_1(\eta))$. This is because the trading cost is symmetric (buying and selling costs are similar) and only affects the number of shares one purchases or sells, and not the entire position (i.e. n_1-n_0 vs. n_1). In Eq. (8), $J(n_0, \eta, P_1)$ is the value function of an agent with belief $G+b+\eta$, initial holding n_0, and facing a price P_1. Clearly, $J(n_0, \eta, P_1)$ is driven in part by the possibility of the resale of the asset bought at $t=0$ at a price P_1.

Our first theorem simply describes the date-1 equilibrium. At date 1, three cases arise, depending on the relative beliefs of agents in groups A and B. If agents in group A are much more optimistic than agents in group B ($\pi(\eta^A) - \pi(\eta^B) > 2Q/\gamma$), then the short-sales constraints bind for agents in group B. Only agents A are long and the price reflects the asset valuation of agents A ($\pi(\eta^A)$) minus a discount that arises from the effective supply of agents B who are reselling their date-0 holdings to agents A.

Symmetrically, if agents in group B are much more optimistic than agents in group A ($\pi(\eta^B) - \pi(\eta^A) > 2Q/\gamma$), then the short-sales constraints bind for agents in group A. Only agents B are long and the price reflects the valuation of agents B for the asset ($\pi(\eta^B)$) minus a discount that arises from the effective supply of agents A who are reselling their date-0 holdings to agents B.

Finally, the last case arises when the beliefs of both groups are close (i.e, $|\pi(\eta^A) - \pi(\eta^B)| < 2Q/\gamma$). In this case, both agents are long at date 1 and the date-1 equilibrium price is simply an average of both groups’ beliefs ($\pi(\eta^A) + \pi(\eta^B))/2$).

Theorem 1 (Date-1 equilibrium).

At date 1, three cases arise.

1. If $\pi(\eta^A) - \pi(\eta^B) > 2Q/\gamma$, only agents in group A are long (i.e., the short-sales constraint is binding). The date-1 price is then

 $$P_1 = \frac{\pi(\eta^A) - Q}{\gamma}.$$

2. If $\pi(\eta^B) - \pi(\eta^A) > 2Q/\gamma$, only agents in group B are long (i.e., the short-sales constraint is binding). The date-1 price is then

 $$P_1 = \frac{\pi(\eta^B) - Q}{\gamma}.$$

3. If $|\pi(\eta^A) - \pi(\eta^B)| \leq 2Q/\gamma$, both agents are long. The date-1 price is then:

 $$P_1 = \frac{\pi(\eta^A) + \pi(\eta^B)}{2}.$$

Proof. See Appendix A.

Since our model is symmetric at date 0, the equilibrium holdings at date 0 are symmetric and both groups of agents hold a quantity Q of the shares at date 0. The characterization of the date-1 equilibrium in Theorem 1 uses these date-0 equilibrium holdings. Note however that we provide in the proof of Theorem 1 in Appendix A a general characterization of this date-1 equilibrium which holds for any date-0 holdings.
2.3. Date-0 equilibrium

We now turn to the equilibrium structure at date 0. Let \(P_0 \) be the price of the asset at \(t=0 \). Then at \(t=0 \), agents of group \(i \in \{A, B\} \) have the following optimization program:

\[
\max_{n_0} \left\{ -\left(n_0 P_0 + \frac{n_0^2}{2\gamma} \right) + E_n[J(n_0, \eta, P_1)] \right\},
\]

(9)

where the constraint is the short-sales constraint and the expectation is taken over the belief shocks \((\eta^A, \eta^B)\).

The next theorem describes the date-0 equilibrium. In this symmetric setting, it is particularly simple. Both groups of agents are long and hold initial supply \(Q \). The date-0 demand is driven by the anticipation of the date-1 equilibrium. When agents consider a large belief shock, they anticipate they will end up short-sales constrained.

\[\text{Theorem 2 (Date-0 equilibrium). At date-0, each group owns } Q \text{ shares. The date-0 price is given by}\]

\[
P_0 = \int_{-\infty}^{\infty} \pi(y) \phi(y) \, dy - \frac{Q}{\gamma}.
\]

(10)

Proof. See Appendix B.

2.4. Comparative statics

Now that we have solved for the dynamic equilibrium of this model, we are interested in how mispricing and share turnover depend on the following parameters: the structure of the credit claim \((D)\) and the bias of the agents’ prior \((b)\).

We will relate the predictions derived from these comparative statics to the stylized facts gathered in Section 2.

To be more specific, we first define the bubble or mispricing, which we take to be \(P_0 \), the equilibrium price, minus \(P_0^\text{opt} \), the price of the asset in the absence of short-sales constraints and with no aggregate bias \((b=0)\). This benchmark or unconstrained price can be written as\(^9\)

\[
P_0^\text{opt} = \int_{-\infty}^{\infty} \pi(\eta) \phi(\eta) \, d\eta - \frac{Q}{\gamma}.
\]

(11)

Now define \(\tilde{P}_0 \) as the date-0 price when there are no short-sales constraints but the aggregate bias is \(b \). This price is given by

\[
\tilde{P}_0 = \int_{-\infty}^{\infty} \pi(\eta) \phi(\eta) \, d\eta - \frac{Q}{\gamma}.
\]

(12)

The date-0 price can then be decomposed in the following way:

\[
P_0 = \tilde{P}_0 + \int_{-\infty}^{\infty} \left(\int_{-\infty}^{x(y) - 2Q/\gamma} (\pi(y) - \pi(x) - \frac{2Q}{\gamma}) \phi(x) \, dx \right) \phi(y) \, dy.
\]

(13)

Then we can decompose the bubble into the following two terms:

\[
\text{bubble} = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{x(y) - 2Q/\gamma} (\pi(y) - \pi(x) - \frac{2Q}{\gamma}) \phi(x) \, dx \right) \phi(y) \, dy
\]

\[
+ \frac{P_0^\text{opt} - \tilde{P}_0}{\text{optimism}}.
\]

(14)

In this simple model, the bubble emerges from two sources: (1) there is a resale option due to binding short-sales constraints in the future and (2) agents are optimistic about the asset payoff and thus drive its price up.

The second quantity we are interested in is expected share turnover. It is simply defined as the expectation of the number of shares exchanged at date 1. Formally

\[
\mathbb{T} = E_{\eta^A, \eta^B}[(I_n^A - n_0^A)]).
\]

(15)

Share turnover can be expressed in our setting as

\[
\mathbb{T} = \int_{-\infty}^{\infty} \left(Q \phi(x(y)) + (1 - \phi(x(y))) \right) + \frac{\pi(y)}{2} \left(\pi(y) - \pi(x(y)) \right) dx \phi(x) \, dy.
\]

where \(x(y) \) is the interim belief shock of agents in group A, then when agents in group B have an interim belief shock \(x(y) \) (respectively, above \(\pi(y) \)) agents in group B (respectively, agents in group A) are short-sales constrained. Conditional on one group of agent being short-sales constrained, share turnover is maximum and equal to \(Q \). When neither group is short-sales constrained, turnover is just proportional to the difference in valuation between the optimistic and the pessimistic group.

The following proposition shows how these two quantities depend on \(D \).

Proposition 1. A decrease in \(D \) (the riskiness of debt) leads to a decrease in (1) mispricing and (2) share turnover.

Proof. See Online Appendix.

Proposition 1 offers a rationale for why debt bubbles are smaller and quieter than equity ones. The main intuition is that because the credit payoff is bounded by \(D \), it is insensitive to beliefs on the distribution of payoffs above \(D \).

\(^9\) First, if there is no bias \(b \), then the belief of an agent with belief shock \(\eta \) will be \(\eta - b \). Thus, this agent will expect a payoff \(\eta - b \). Moreover, when there is no short-sales constraint, the formula for the price is similar to Eq. (10), except that the short-sales constraint region shrinks to zero.

\(^{10}\) In an earlier version of our paper, Hong and Sraer (2012), we also characterize the comparative statics of the model in terms of price volatility. It is easily shown that in our model, price volatility decreases with \(D \), increases with \(G \), and decreases with \(b \).
Thus, when \(D \) is low, there is very little scope for disagreement—the credit is almost risk-free and its expected payoff is close to its face value, and is in particular almost independent of the belief about the fundamental value. Short-sales constraints are thus not likely to bind (as short-sales constraints at date 1 arise from large differences in belief about the expected payoff). As a result, the resale option is low (i.e., the asset will most likely trade at its “fair” value at date 1) and mispricing is low. At the same time, since there is little scope for disagreement among agents at date 1, expected turnover is low. This mechanism builds on the analysis in Hong, Scheinkman and Xiong (2006) which relies on risk-averse investors and a positive supply of the security so that there are regions in which both groups of investors are long.

Conversely, as \(D \) increases, agents’ belief matters more for their valuation of the credit, both because of the recovery value conditional on default and because of the default threshold. In the extreme, when \(D \) grows to infinity, the credit becomes like an equity, beliefs become relevant for the entire payoff distribution of the asset and the scope for disagreement is maximum. This leads to higher expected turnover and at the same time to more binding short-sales constraints at date 1.

Note, however, that this comparative static on turnover relies on the assumption that trading costs are exogenous to the characteristics of the asset being traded: in our model, the short-sales constraint and the trading costs are homogeneous across asset classes. In a model with endogenous transaction costs, riskier assets would be more costly to trade or short, leading to a direct reduction in trading volume relative to safer assets. Whether the extra-trading volume created by speculation on riskier assets dominates the reduction in trading volume from endogenous trading costs is ultimately a quantitative question, which we leave open for future research. The remainder of the analysis focuses on the case where short-selling costs are independent of \(D, G, \) or \(b \).

A simple conclusion emerges from our analysis. For riskless debt, that is, \(D \) small, there is little scope for a bubble in credit to emanate from the resale option component. So it is very difficult for the speculative resale dynamics, which can easily drive equity bubbles, to create bubbles in safe credit. Perhaps such a mechanism can work for risky or junk bonds. But the bonds that were mispriced during the credit boom of 2003–2007 were investment-grade and in some cases AAA-rated.

For such safe credits, any bubble or mispricing has to emanate from the optimism component due to \(b \)—the optimism bias of investors. Indeed, as we discussed in the Introduction, there is compelling evidence for this explanation. Of course, when the aggregate bias increases (i.e., \(b \) increases), mispricing increases in our model. So a first take-away from our analysis is that the credit bubble could emanate from the excess optimism of the average investor (or that of the marginal investors trading the asset) but not from speculative resale among investors.

We can dig a bit deeper and ask what would happen to share turnover in our model as we increase \(b \). In other words, high prices are only one symptom of asset price bubbles. In equity, high trading volume is another. We can see if credit and equity bubbles differ in these other dimensions as we increase \(b \). That is, is there an auxiliary prediction associated with the higher prices coming from optimism?

It turns out that turnover also decrease as we increase \(b \). We prove this in the following proposition.

Proposition 2. Assume that \(D < \infty \). An increase in aggregate optimism (i.e., \(b \)) leads to (1) higher mispricing and (2) lower share turnover.

Proof. See Online Appendix.

When investors become more optimistic about the underlying fundamental of the economy, they view debt as being more risk-free with less upside and hence having a smaller resale option. Hence, there is less trading of debt when there is greater investor optimism. In our model, provided that the payoff function is strictly concave (or equivalently, that \(D < \infty \)), an increase in average optimism makes the bubble bigger and quieter at the same time. This can be contrasted with the case of a straight equity claim, where turnover would be left unaffected by variations in the average optimism—even in the case of binding short-sales constraints. This is because differences in opinion about an asset with a linear payoff are invariant to a translation in initial beliefs. Thus, while an increase in optimism would obviously inflate the price of an equity, it would not change its share turnover. In other words, debt bubbles are inherently quiet whereas equity bubbles are intrinsically loud.

2.5. Equity with limited liability

Our analysis so far has implicitly compared a credit claim (finite \(D \)) with an unlevered equity claim (\(D = \infty \)) on the same underlying asset. It is fairly direct to extend our results to the case where we compare the levered equity claim that complements the credit claim in the asset value space. Formally, we define the expected payoff function for the levered equity claim under fundamental \(G \), aggregate optimism \(b \), belief shock \(\eta \), and principal on the debt claim \(D \) as

\[
\pi^L(\eta) = \int_{D-G-b-\eta}^{\infty} (G+b+\eta+c-D) \, d\Phi(c).
\]

The expected payoff of the debt claim is similar to our previous analysis and is easily defined by \(\pi^D(\eta) = G+b+\eta-\pi^L(\eta) \).

The following proposition compares the loudness of these two tranches:

Proposition 3. There exists \(G \) such that if the fundamental is high enough (\(G \geq G \)), the equity tranche has greater mispricing and share turnover than the debt tranche. Similarly, provided that aggregate optimism is high enough (\(b \geq b \)) or that the principal on the loan is small enough \(D \leq D \), the equity tranche has greater mispricing and share turnover than the debt tranche.

Proof. See Online Appendix.
Intuitively, when G increases, the debt tranche becomes less-disagreement sensitive while the equity tranche becomes more disagreement-sensitive. As a consequence, the relative mispricing of equity vs. debt increases, as well as the relative turnover. One purpose of this proposition is to show that provided that b is large, i.e., provided that the bubble is large enough, our results that credit bubbles are quieter than equity bubbles is robust to the consideration of shareholders’ limited liability.

2.6. Characterizing disagreement sensitivity

In this section, we move away from the simple debt/equity dichotomy we have emphasized up to now. Our objective is to provide a characterization of the payoffs of various assets that allows us to rank them according to their disagreement sensitivity. We consider the following problem. Take two derivatives on the same underlying fundamental, with payoff functions $\pi_1(x)$ and $\pi_2(x)$. To get rid of level effects, we make the assumption that π_1 and π_2 are in their expected fundamental value, i.e.,

$$\int_0^\infty \pi_1(x)\phi(x)\,dx = \int_0^\infty \pi_2(x)\phi(x)\,dx.$$

The next proposition proposes a sufficient condition under which π_1 will lead to a larger and louder bubble than π_2 for any distribution of the belief shocks (θ_1, θ_2):

Proposition 4. Assume that for all $x \in \mathbb{R}$, $\pi_1(x) \geq \pi_2(x)$ and that the inequality holds strictly on a non-empty set. Then asset 1 has a strictly larger date-0 price and a strictly larger expected turnover than asset 2.

Proof. See Appendix C.

Intuitively, the payoff function with the largest slope will be such that differences in beliefs lead to larger differences in valuation for the asset. It will thus have the largest probability that short-sales constraints are binding and hence will have the largest price and largest expected turnover. Note that because of the constant expected value assumption, the condition in Proposition 4 is similar to a single crossing condition.\(^{12}\)

Finally, note that to derive a necessary condition to rank the two assets, one needs to make assumptions on the probability density function of the belief shocks (θ_1, θ_2). In particular, if the condition has to hold for any distribution of the belief shocks, then the condition in Proposition 4 is also a necessary condition.

2.7. Interim payoffs and dispersed priors

As we showed in Proposition 2, an increase in aggregate optimism leads to both larger and quieter credit bubbles. In this section, we highlight another mechanism that makes credit bubbles both larger and quieter while still holding aggregate optimism fixed. In order to do so, we add two additional ingredients to our initial model. First, we introduce heterogeneous priors as in Miller (1977). Group A agents start at date 0 with prior $G+b+\sigma$ and group B agents start with prior $G+b-\sigma$. Second, we introduce an interim payoff $\pi(G+\epsilon)$ that agents receive at date 1 from holding the asset at date 0. As a consequence, agents now hold the asset both for the utility they directly derive from it (consumption) and for the perspective of being able to resell it to more optimistic agents in the future (speculation). More precisely, the $t=1$ interim cash-flow $\pi(G+\epsilon)$ occurs before the two groups of agents draw their date-1 beliefs. We also assume that the proceeds from this interim cash-flow, as well as the payment of the date-0 and date-1 transaction costs, all occur on the terminal date.\(^{13}\) In the next proposition, we show that, provided dispersion is large enough, an increase in the initial dispersion of belief, σ, leads to an increase in prices and simultaneously to a decrease in share turnover. Thus, quiet bubbles emerge when there is sufficient heterogeneity among investors about the fundamental.

Proposition 5. Provided the costs of trading are large enough, initial supply is low enough, there is $\sigma > 0$ so that for $\sigma \geq \pi$, only group A agents are long at date 0. For $\sigma \geq \pi$, an increase in σ leads to (1) an increase in mispricing and (2) a decrease in trading volume.

Proof. See Online Appendix.

The intuition for this result is the following. The condition on trading costs/initial supply allows the optimists to have enough buying power to lead to binding short-sales constraints at date 0. In the benchmark setting, low trading costs/lower supply were associated with a louder credit bubble. But it turns out that when there are dispersed priors, they can lead to large but quiet mispricings. To see why, first consider the effect of dispersed priors on mispricing. Mispricing increases with dispersion for two reasons. First, group A agents’ valuation for the interim payoff increases. This is the familiar effect in Miller (1977) in which the part of price regarding the interim payoff reflects the valuations of the optimists as short-sales constraints bind when disagreement increases. Second, as dispersion increases, so does the valuation of the marginal buyers (or the optimists) at date 1, which leads to an increase in the resale option and hence of the date-0 price. As dispersion increases, the optimist agents own more and more shares until they hold all the supply at date 0 (which happens for $\sigma > \pi$).\(^{14}\) As σ increases, the probability that group B agents become the optimistic group at date 1 also becomes smaller. As a consequence, an increase in dispersion leads to an

\(^{12}\) Note that in our debt set-up, an increase in D was increasing both the disagreement sensitivity of the debt and its expected payoff. In this sense, the exercise we consider in this section is more precise in that we only consider variations in the slope of the payoff function for a constant expected value.

\(^{13}\) This assumption is made purely for tractability reasons so we do not have to keep track of the interim wealth of the investors.

\(^{14}\) Note that this occurs despite the fact that both types share the same valuation for the date-1 resale option—this is entirely driven by the interim payoff: in a pure resale option setting (i.e., without the interim payoff), all agents would end up long at date 0 as, in the margin, there would be no disagreement about the value of the resale option.
increase in the probability of the states of nature where turnover is zero or equivalently, where optimist agents hold all the shares at dates 0 and 1. So overall expected turnover decreases and the bubble becomes quieter.

In this section, we provide evidence on the inverse relationship between the price and trading volume of credits over the recent credit cycle from 1998–2009. Our credit spread data are obtained from the St. Louis Federal Reserve Bank. We use the monthly Bank of America/Merrill Lynch US Corporate 7–10 Year Option-Adjusted Spread (OAS). The Bank of America/Merrill Lynch OASs are the calculated spreads between a computed OAS index of all bonds in a given rating category and a spot Treasury curve. The US Corporate 7–10 Year OAS is a subset of the Bank of America Merrill Lynch US Corporate Master OAS, BAMLCAOAC0M. This subset includes all securities with a remaining term to maturity of greater than or equal to seven years.

Our data source for bond trading volume is Schedule D provided by NAIC. Schedule D covers all the insurance companies in the US, including life and property insurance, and provides year-end holding and every trading record for bonds, stocks, mutual funds, private equity, and short-term investments for each insurer. The sample includes 1,097 life insurance companies and 2,616 property ones or 3,713 insurers in total. For the graphs here, we keep only corporate bond trades. We calculate two measures of bond trading activity. The first is number of trades by these insurance companies. The second is the dollar trading volume. These data are also monthly series. The latter data are comprehensive when it comes to the trades of insurance companies, which are the major owners of US corporates.

We plot in Fig. 2(a) the monthly time series of the credit spread and the number of trades. Notice that the credit spreads are falling from the end of 2002 to the middle of 2007, when the financial crisis begins. It can also be easily seen that the number of trades is falling as the credit spreads are falling or prices are rising, consistent with our model. Notice moreover that from 1998 to 2002, credit spreads are rising and so is trading activity. We plot in Fig. 2(b) the monthly series of the credit spread and the bond trading volume. We get a similar picture.

In Table 1, we conduct a regression of the bond spreads on either the log of the number of trades or of log trading volume. For the whole period, the coefficient is 0.1 but is statistically insignificant. We then break down the regression into subperiods of 1998–2001 before the credit boom, the 2002–2007S1 years (S1 is the first semester) of the credit boom, up to the start of the financial crisis in mid-2007, and the period of the financial crisis from 2007S2 to 2009. It is easy to see that there is a very strong correlation between spreads and log number of trades during the period of the credit boom. The coefficient of interest is 0.99, which attracts a t-statistic of 4. One standard deviation of our left-hand side variable, credit spreads, is 1.06. One standard deviation of our right-hand side variable, log number of trades, is 0.323. So for the 2002–2007S1 period, a one standard deviation increase in number of trades (in logs) is associated with a 30% of a standard deviation increase in spreads, which is an economically meaningful fraction. The same holds true when we use dollar trading volume. The coefficient of interest is 0.73 with a t-statistic of 3. One standard deviation of log dollar trading volume is 0.283. So the economic significance is smaller compared to log number of trades but still sizable. Notice that the same results hold for the 1998–2001 period.

The only period where the results are not significant is the 2007S2–2009 period of the financial crisis when credit spreads jumped but trading volume actually fell. Much of this is due to liquidity issues in credit markets. This liquidity dry-up has been prominently covered in other research. The interesting juxtaposition is that in 2002–2007 when there were no liquidity issues and the credit boom was taking place, trading in credits actually fell.

4. Conclusion

Our analysis drawing out the distinction that credit bubbles are quiet in contrast to equity bubbles adds to, or more accurately amplifies, a laundry list of potential rationales for the financial crisis, such as agency problems in banking.

Table 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>\log(number of trades)</td>
<td>0.1</td>
<td>0.5***</td>
<td>0.99***</td>
<td>0.73***</td>
</tr>
<tr>
<td>\log(volume of trades)</td>
<td>(0.41)</td>
<td>(3.3)</td>
<td>(4)</td>
<td>(1.6)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.74</td>
<td>2.6</td>
<td>-3.2**</td>
<td>-8**</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.49)</td>
<td>(-2.2)</td>
<td>(-2.6)</td>
</tr>
<tr>
<td>Observations</td>
<td>144</td>
<td>144</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>R^2</td>
<td>0.00074</td>
<td>0.00001</td>
<td>0.14</td>
<td>0.13</td>
</tr>
</tbody>
</table>

This table reports the contemporaneous relationship between bond spreads and volume measured either as the log of number of trades during the month or the log of dollars transacted during the month. Bond spreads are from the Bank of America/Merrill Lynch US Corporate 7–10 Year Option-Adjusted Spread (OAS), available monthly from 1998 to 2009. S1 and S2 means first and second semester. Robust t-stats are in parentheses. *, **, and *** means statistically different from zero at 10%, 5% and 1% level of significance.
incentive problems of rating agencies, excess surplus of savings from China, and a lack of price transparency in the mortgage credits until it was too late. The fact that credit bubbles are quiet might mean that it was difficult for banks and regulators to see or detect the mispricing in debt markets since the usual speculative excesses associated with equity bubbles were not present during that episode. It is interesting to ask whether this quietness might have contributed to why the crash of the credit bubble had more severe consequences than for the crash of the dot-com bubble. Our analysis also suggests the potential usefulness of a taxonomy of bubbles. Here, we offer a first attempt at a taxonomy of bubbles that distinguishes between low equity bubbles and quiet credit bubbles. Future work elaborating on this taxonomy and providing other historical evidence would be very valuable.

Appendix A. Proof of Theorem 1

Let \((\eta^A, \eta^B) \) be the agents’ beliefs at date 1. Agents in group \(i \) are solving the following problem:

\[
\max_{n_i} \left\{ n_i \pi(\eta^i) - \left((n_i - n_0) P_1 + \frac{(n_i - n_0)^2}{2} \right) \right\}.
\]

Consider first the case where both agents are long. Then, the date-1 holdings are given by the first-order condition (FOC) of the unconstrained problem and yield

\[
\eta^A = n^A_0 + \gamma (\eta^A - P_1) \quad \text{and} \quad \eta^B = n^B_0 + \gamma (\eta^B - P_1).
\]

The date-1 market-clearing condition \(n^A_0 + n^B_0 = 2Q \) combined with the date-0 market-clearing condition \(n^A_0 + n^B_0 = 2Q \) gives

\[
P_1 = \frac{\pi(\eta^A) + \pi(\eta^B)}{2},
\]

and

\[
n^A_1 - n^A_0 = \frac{\pi(\eta^A) - \pi(\eta^B)}{2} \quad \text{and} \quad n^B_1 - n^B_0 = \frac{\pi(\eta^B) - \pi(\eta^A)}{2}.
\]

This can be an equilibrium provided that these date-1 holdings are indeed positive:

\[
2n^A_0 > \frac{\pi(\eta^A)}{\gamma} \quad \text{and} \quad 2n^B_0 > \frac{\pi(\eta^B)}{\gamma}.
\]

Since the equilibrium is symmetric at date 0, agents in both groups will hold \(Q \) shares of the asset, so that in equilibrium, the previous conditions can be rewritten as

\[
2Q > \frac{2\pi(\eta^A)}{\gamma} \quad \text{and} \quad 2Q > \frac{2\pi(\eta^B)}{\gamma}.
\]

If this last condition is not verified, two cases may happen. Either agents in group \(B \) are short-sales constrained \(n^B_0 = 0 \) and \(n^A_0 = 2Q \). In this case, the date-1 market-clearing condition imposes that

\[
P_1 = \frac{\pi(\eta^B)}{\gamma} - \frac{2n^B_0}{\gamma}.
\]

This can be an equilibrium if and only if group \(B \) agents’ F.O.C. leads to a strictly negative holding or

\[
\pi(\eta^A) - \pi(\eta^B) > \frac{2n^B_0}{\gamma}.
\]

Since at the date-0 equilibrium, \(n^B_0 = Q - n^A_0 \), the previous two conditions can be rewritten as

\[
P_1 = \frac{\pi(\eta^A) - \frac{Q}{\gamma} \pi(\eta^B)}{\gamma} \quad \text{and} \quad \pi(\eta^A) - \pi(\eta^B) > \frac{2Q}{\gamma}.
\]

The last case is when the agents in group \(A \) are short-sales constrained \((n^A_0 = 0 \) and \(n^B_0 = 2Q \). In this case, the date-1 market-clearing condition imposes that

\[
P_1 = \frac{2Q - n^B_0}{\gamma}.
\]

This can be an equilibrium if and only if group \(A \) agents’ F.O.C. leads to a strictly negative holding or

\[
\pi(\eta^B) - \pi(\eta^A) > \frac{2n^A_0}{\gamma}.
\]

Since at the date-0 equilibrium, \(n^B_0 = Q - n^A_0 \), the previous two conditions can be rewritten as

\[
P_1 = \frac{\pi(\eta^B) - \frac{Q}{\gamma} \pi(\eta^A)}{\gamma} \quad \text{and} \quad \pi(\eta^B) - \pi(\eta^A) > \frac{2Q}{\gamma}.
\]

Appendix B. Proof of Theorem 2

At date 0, group \(A \)’s program can be written as

\[
\max_{n_0} \left\{ \int_{-\infty}^{\infty} \phi(x) dx + \int_{x=\pi(x)-2Q/\gamma}^{\infty} \left(n_0 \pi(x) - \frac{n_0^2}{2} \right) \phi(x) dx \right\}
\]

\[
\times \left(n_0^2 (\pi(x) - n_0) - (n_0^2 \pi(x) - n_0^2) P_1(x, y) - \frac{(n_0^2 - n_0)^2}{2}\right) \phi(x) dx \right]
\]

\[
\times \phi(y) dy - \left(n_0 P_0 + \frac{n_0^2}{2}\right).
\]

Let \(G + b + x \) be the date-1 belief of group \(A \) agents and \(G + b + y \) be the date-1 belief of group \(B \) agents. The first integral corresponds to the case where group \(A \) agents are short-sales constrained. This happens when \(\pi(x) < \pi(y) \) and \(\pi(x) - 2Q/\gamma \leq x \leq \pi(y) - 2Q/\gamma \). In this case, group \(A \) agents resell their date-0 holdings for a price \(P_1 = \pi(y) - \pi(x) - 2Q/\gamma \) and pay the trading cost \(n_0^2/2\gamma \). The second integral corresponds to the case where group \(A \) agents are not short-sales constrained and their date-1 holding is given by the interior solution to the F.O.C., \(n^*_A(x) \). The corresponding payoff is the expected payoff from the date-1 holding with date-1 belief, i.e., \(n^*_A(x) \pi(x) \) plus the potential gains (respectively, cost) of selling (respectively, buying) some shares \((n_0 - n^*_A(x)) P_1(x, y) \) minus the trading costs \((n_0^2 - n_0^2)/2\gamma \) of adjusting the date-1 holding.

Note that the bounds defining the two integrals depend on the aggregate holding of group \(A \), but group \(A \) agents have no impact individually on this aggregate holding \(n_0^2 \). Thus, they maximize only over \(n_0 \) in the previous expression and take \(n^*_A \) as given. Similarly, agents consider \(P_1(x, y) \) as given (i.e., they do not take into account the dependence of \(P_1 \) on the aggregate holdings \(n^*_A(n_0^2) \).)

To derive the F.O.C. of group \(A \) agents’ program, use the envelope theorem to derive the second integral with respect to \(n_0 \). For this integral, the envelope theorem applies as \(n^*_A(x) \) is determined according to the date-1
interior FOC. We thus have:

\[
\theta \left(\frac{n_2^1(x)\pi(x) + (n_0 - n_2^1)P_1(x,y) - \left(n_2^1 - n_0 \right) ^2}{2} \right) = p_1(x,y) + \frac{n_2^1(x) - n_0}{Y} = \pi(x).
\]

Thus, the overall FOC writes

\[
\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \left(\pi(y) - \frac{Q}{Y} \right) \phi(y) \, dx + \int_{-\infty}^{\infty} \pi(x) \phi(x) \, dx \right] \phi(y) \, dy
\]

\[-\left(p_0 + \frac{n_0}{Y} \right) = 0.
\]

The model is symmetric. Hence, it has to be that

\[
r_0^1 = n_0^1 = Q.
\]

Substituting in the previous FOC gives the date-0 equilibrium price:

\[
P_0 = \int_{-\infty}^{\infty} \left[\pi(y) - \frac{2Q}{Y} \right] \phi(y) \, dy
\]

\[
x \phi(y) \, dy - \frac{Q}{Y}
\]

Appendix C. Proof of Proposition 4

Consider the function \(\Delta(x) = \pi_1(x) - \pi_2(x) \). Thanks to our assumption on \(\pi_1 \) and \(\pi_2 \), \(\Delta \) is increasing over \(R \). We thus have

\[
\forall y \leq x, \quad \Delta(y) \geq \Delta(x) \iff \pi_1(y) - \pi_1(x) - \frac{Q}{2Y} \geq \pi_2(y) - \pi_2(x) - \frac{Q}{2Y}.
\]

Moreover

\[
\pi_1^{-1} \left(\pi_1(y) - \frac{2Q}{Y} \right) \geq \pi_2^{-1} \left(\pi_2(y) - \frac{2Q}{Y} \right)
\]

\[
\iff \pi_1(y) - \pi_1 \left[\pi_2^{-1} \left(\pi_2(y) - \frac{2Q}{Y} \right) \right] \geq \frac{2Q}{Y}.
\]

But because \(\pi_2 \) is increasing, we know that \(y \geq \pi_2^{-1}(\pi_2(y) - 2Q/Y) \). Moreover, because \(\Delta \) is increasing, we know that: \(\Delta(y) \geq \Delta(\pi_2^{-1}(\pi_2(y) - 2Q/Y)) \). This implies

\[
\pi_1(y) - \pi_2(y) \geq \pi_1 \left[\pi_2^{-1} \left(\pi_2(y) - \frac{2Q}{Y} \right) \right] - \pi_2(y) + \frac{2Q}{Y}
\]

\[
\iff \pi_1(y) - \pi_1 \left[\pi_2^{-1} \left(\pi_2(y) - \frac{2Q}{Y} \right) \right] \geq \frac{2Q}{Y}.
\]

Thus, this proves that \(P_0(\pi_1) \geq P_0(\pi_2) \). This is because (1) short-sales constraints are binding more often under \(\pi_1 \) than under \(\pi_2 \) and (2) when short-sales constraints are binding, the difference between the actual price and the no-short-sales constraint price (which is proportional to the difference in beliefs between the two groups) is larger under \(\pi_1 \) than under \(\pi_2 \). Note that the inequality will be strict as soon as the derivative of \(\pi_1 \) is strictly greater than the derivative of \(\pi_2 \) on a non-empty set of \(R \).

Similarly, it is direct to show that turnover will be greater under \(\pi_1 \) than under \(\pi_2 \). For instance, short-sales constraints bind more often with \(\pi_1 \) and turnover is then maximum and equal to \(Q \). Moreover, when short-sales constraints do not bind, turnover is proportional to the difference in belief between the optimistic and the pessimistic groups and we know that this difference will be larger under \(\pi_1 \) than under \(\pi_2 \).

Appendix D. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jfineco.2013.07.002.

References

