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COMPETITIVE ALGORITHMIC TARGETING AND MODEL SELECTION

ABSTRACT

We consider competition between firms that design and use algorithms to target con-
sumers. Firms first choose the design of a supervised learning algorithm in terms of
the complexity of the model or the number of variables to accommodate. Each firm
then appoints a data analyst to estimate demand for multiple consumer segments by
running the chosen design of the algorithm. Based on the estimates, each firm devises
a targeting policy to maximize estimated profit. The firms face the general trade-off
between bias and variance in model selection. We show that competition may induce
firms to choose algorithms with more bias leading to simpler (less flexible) algorith-
mic choice. This implies that complex (more flexible) algorithms such as deep learning
that show greater variance in the estimates are more valuable to firms with greater
monopoly power.

Keywords: targeting, algorithmic competition, model flexibility, algorithmic bias, data analyt-
ics, model selection, supervised learning



1 Introduction

The digital economy has made available unparalleled amounts of consumer data
to firms. Over the past decade firms are increasingly delegating the tasks of reaching
and targeting consumers to machine learning algorithms which use large amounts of
data on consumer characteristics and behavior. One of the defining characteristics of
big data environments is the rich and high dimensional information on consumer char-
acteristics, attitudes, opinions and behaviors. Often the number of variables and as-
pects of consumer behavior that is present can be comparable to the size of the dataset.

Consequently, in designing targeting algorithms firms have to not only be con-
cerned about predictive accuracy, but also about selecting the most relevant variables
to include in the model. Specifically, big data environments might confront the firms
with the classic over-fitting problem in statistical learning: The algorithm may use a
large number of available consumer predictor variables and more complex functions
to map the data onto targeting predictions, but this increases the variance of the esti-
mated predictions. Alternatively, the algorithm can be regularized wherein the more
complex functions can be penalized leading to the selection of only the most relevant
variables. This would reduce the variance of the estimated predictions but then may
introduce bias in the estimates. This paper considers the optimal algorithmic design by
firms in competitive markets which trades-off model selection, namely, the selection of
the most relevant predictor variables and the predictive accuracy of consumer target-
ing. In other words, firms face a bias-variance trade-off in algorithmic design. Under
competition the success of a firm’s algorithmic technology depends not only on its pre-
dictive ability and its strategic choice of variables, but also on the choices made by its
competitors.

In the model, we represent the algorithmic design problem of model selection and
predictive accuracy using the running example of a basic model like the LASSO which
adds a cost function to the standard regression analysis and penalizes non-zero pre-
dictor variable coefficients. Thus the procedure accommodates both model selection
(selecting which variables will enter the prediction algorithm) as well as the estimation
of the selected variables’ coefficients.

We consider a market in which firms compete by targeting consumers who are
heterogeneous in some characteristic. Firms observe consumer characteristics (in their
data) but are uncertain about the profitability of different consumer types. They have
access to data which they use to estimate the profit. Given the specialized expertise
needed to deploy predictive algorithms, firms delegate the task of implementing them
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to a data analyst. However, the firm makes the strategic design choices on the com-
plexity of the algorithms and the number of dimensions of consumer behavior that
the algorithm should consider. To capture this we construct a two stage simultaneous
move game. In the first stage prior to getting the data each firm chooses the tuning
or regularization parameter for the algorithm. This is the design choice of algorithmic
complexity. In the second stage each firm is endowed with a private dataset which is
available to its data analyst to run the predictive algorithm to generate the profit esti-
mates. Based on these estimates the firms choose their targeting strategy to maximize
profits.

We first analyze the monopoly benchmark and show that it is optimal for the firm
to choose zero penalization. In other words, a monopoly firm prefers a more complex
or flexible algorithmic design which admits more variance but has lower bias. This
enables the firm to achieve greater market coverage in the sense that it allows it to
target the more profitable consumer segment with greater likelihood. Then, we proceed
to analyze the competitive market and find that it can be an equilibrium for both firms
to choose positive penalization which introduces bias while reducing variance. Positive
penalization leads to shrinkage of the estimated model involving the selection of fewer
predictor variables. In other words, competition favors simpler models for targeting
in equilibrium. Under competition the firms have two incentives: i) to correctly target
the more profitable segment and ii) avoid competition and the overlap in targeting.
Allowing for bias helps to soften competition by reducing the equilibrium overlap in
targeting. Overall, the suggestion of our analysis is that more flexible and complex
algorithms such as deep learning are likely to be of higher value and be used by firms
with greater monopoly power.

2 Related Research

Our paper is broadly related to the emerging research literature which examines
strategic interactions and incentives with algorithms. One strand of research tackles
the problem of algorithmic design for a principal when faced with strategic agents who
can manipulate the information that is provided to the algorithm. For example, Eliaz
and Spiegler (2019) examines a statistical algorithm faced with an agent who strategi-
cally self-reports her personal data and highlights the role of model selection and the
incentive-compatibility issues in truthful reporting that it creates for the agent. In a sim-
ilar vein, Björkegren et al. (2020) considers individuals who may observe the rules of the
machine learning algorithms and strategically manipulate their behavior to get desired
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outcomes. The paper derives an equilibrium estimator that is robust to manipulation
given the costs of manipulating different behaviors. Our paper examines the model se-
lection problem in a competitive market where firms choose the equilibrium design of
their consumer targeting algorithms. Thus here the extent to which firms choose more
or less flexible algorithms and the associated bias-variance trade-off is governed by the
equilibrium consumer targeting incentives of competing firms.

There is a stream of research on competitive interactions between multiple algo-
rithms. Salant and Cherry (2020) consider statistical inference in games, where each
player obtains a small random sample of other players’ actions, uses statistical inference
to estimate their actions, and chooses an optimal action based on the estimate. Liang
(2020) considers games of incomplete information in which the players have data and
use algorithms to derive their beliefs. Olea et al. (2019) study a game between agents
competing to predict a common variable, and where agents obtain the same data but
differ in the algorithms they utilize for prediction. In all these papers, the algorithms
under consideration are fixed exogenously. Here, in contrast, we focus on the strategic
choice of algorithms in competitive environments.

There is also recent research on algorithmic pricing in repeated oligopoly to un-
derstand whether algorithms can consistently learn to charge supra-competitive prices.
For example, Calvano et al. (2020) examine firms endowed with Q-learning algorithms
in repeated interactions to show that they can robustly learn to cooperate with commu-
nicating with each other. Lastly, we contribute to the traditional literature on competi-
tive targeting strategies (e.g., Shaffer and Zhang 1995; Chen et al. 2001; Iyer et al. 2005;
Bergemann and Bonatti 2011) by introducing the algorithmic design and decisions on
model selection to the consumer targeting strategies of firms.1

3 Model Setup

Consider a market consisting of consumers who are heterogeneous in a character-
istic x ∈ {1, 0}. A fraction ϕ of consumers have x = 1 and the remaining 1− ϕ fraction
have x = 0, where ϕ ∈ (0, 1). For example, xi may represent consumer i’s demograph-
ics (1 for men and 0 for women), or past consumer behaviors (1 for those who have
visited some website and 0 otherwise), etc. This case of a single characteristic offers the
simplest setup for the development of the idea.

There are two firms competing for consumers in the market, indexed by j = 1, 2.

1Algorithmic targeting has also been the focus of several recent empirical studies (e.g., Hitsch and
Misra 2018; Simester et al. 2020; Rafieian and Yoganarasimhan 2021).
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Firms can observe each consumer i’s characteristic xi and decide which type(s) of con-
sumers to target. Each firm has the ability to reach and target θ ∈ (0, 1) fraction of the
consumer population in the market. Targeting can therefore be also interpreted as a
form of costly informative advertising that informs consumers of the existence of the
product (Butters 1977). If consumer i is only targeted by firm j, the consumer will only
buy from the firm, and the firm earns a monopolistic profit of πj(xi); on the other hand,
if the consumer is targeted by both firms, she will randomly choose a firm to make a
purchase, and thus firm j’s expected profit is πj(xi)/2. Lastly, if a consumer is not tar-
geted by either of the two firms, she will not make a purchase from the two firms. To
focus the exposition on the effects of algorithmic targeting, we have abstracted away
the firms’ decisions on prices.2

Given that x is binary, it is without loss of generality to write down πj(x) as the
following linear function,

πj(x) = αj + βjx.

Firm j does not know αj , βj a priori. We assume a common prior for αj , βj , which
follow differentiable distribution functions A and B respectively. A is supported in
[α, α], and B is a symmetric distribution around zero, supported in [−β, β]. α1, β1,
α2 and β2 are independently distributed. The firm is interested in estimating αj and
βj given the available data. It delegates the task of estimation and prediction to a data
analytics department which is equipped with the technology of running prediction and
model selection algorithms. Specifically, assume that the analyst uses the technology of
running Lasso regressions and that a complete contract between the firm and the data
analyst is not possible. Rather, the firm can only specify the tuning parameter of the
Lasso regression. Given the tuning parameter specified by the firm, the analyst runs
the Lasso regression on the data to generate an estimate of αj and βj .

It is assumed that each firm j and its data analyst have a private access to a data-
set with two observations. The l-th observation contains a pair of (xl, ylj) for l = 0, 1,
where, x0 = 0, x1 = 1 and

ylj = πj(x
l) + εlj = αj + βjx

l + εlj .

The error term, εlj is i.i.d. across j and l and follows a differentiable distribution function

2If price discrimination based on targeting outcomes is allowed, we may endogenize prices in a triv-
ial way. If a consumer is targeted by only one firm, the firm sets the monopoly price and still earns a
monopoly profit; on the other hand, if a consumer is targeted by two firms, they engage in a Bertrand
competition, which drives the price to be the marginal cost and each firm’s profit to be zero. This setting
will generate qualitatively the same result as in the model without explicit consideration of prices.
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G, which is symmetric around zero and supported in [−ε, ε]. Further define ∆εj ≡
ε1j−ε0j , which follows distribution function G̃, where G̃(e) = Pr(ε1j−ε0j ≤ e) =

∫ ε
−εG(e′+

e)dG(e′). We make the following assumption.

Assumption 1. G̃′ is single-peaked; that is, G̃′(e) weakly decreases (increases) with e for e > 0

(e < 0).

Note that the data-set that each firm uses for targeting is assumed to be exogenous
and independent of the ensuing market competition. One interpretation of this setup is
that either the two firms are new to the market, or that they have recently adopted the
data analytics technology, such that before a full-blown implementation, each of them
has experimented/test-marketed the technology in some sub-markets such as different
geographic regions or sales channels that do not overlap. This would generate a “mo-
nopolistic" private data-set for each firm. In Section 6, we will describe an alternative
setting in which the data-set results from market competition, and argue that it would
nevertheless generate results that are qualitatively similar to that in the main model.

Based on the data, the analyst runs a Lasso regression, which is represented by the
following minimization problem:

(
α̂j(λj), β̂j(λj)

)
= argmin

(aj ,bj)

1∑
l=0

(
ylj − aj − bjx

l
)2

+ λj |bj |, (1)

where λj ≥ 0 is the tuning parameter specified by firm j that measures the degree
of penalization on β̂j(λj). The choice of λj indicates the model selection decision of
the firm: At the one extreme when λj = 0, this corresponds to the case of a standard
ordinary least square (OLS) regression and in this setup this is equivalent to the firm
deciding on the maximum model flexibility and choosing all the available predictor
variables. This will imply estimated parameters which are unbiased but which will
have maximum variance. In contrast, when λj is large and the penalization is large,
then the model would shrink and have lower flexibility with fewer admitted predictors.
In this case the variance of the estimated parameters would be lowered but at the cost
of introducing bias.

From the corresponding first- and second-order optimality conditions, we can
solve the data analyst’s estimation problem in equation (1):

α̂j(λj) =
1

2

(
y1j + y0j − β̂j(λj)

)
, (2)
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β̂j(λj) =

{
max{y1j − y0j − λj , 0}, if y1j − y0j ≥ 0,

min{y1j − y0j + λj , 0}, otherwise.
. (3)

The expression of α̂j(λj) in equation (2) is the same as the standard OLS estimator,
because there is no penalization on α̂j(λj). It is assumed that α is large enough so that
the realization of α̂j(λj) is always positive for any λj ≥ 0. Formally,

Assumption 2. α > β/2 + ε.

This guarantees that firm j always prefers to target as many consumers as possible
in the market. That is, the constraint of a total number of θ consumers to target will
always be binding so that the firm’s targeting decision boils down to which type(s) of
consumers to target. To understand the expression of β̂j(λj) intuitively, notice that if
λj = 0, we have β̂j(λ) = y1j − y0j , which is the OLS estimator. When 0 < λj < |y1j − y0j |,
then β̂j(λj) will have the same sign with y1j − y0j but is penalized toward zero. Finally,
if λj ≥ |y1j − y0j |, the penalization is so severe that β̂j(λj) = 0.

We consider a simultaneous-move game between the two firms in two periods.
First, each firm j chooses the tuning parameter λj , which remains private for the entire
game. Second, each firm j is endowed with a private data-set (xl, ylj) for l = 0, 1, based
on which, firm j’s analyst generates the estimates α̂j(λj) and β̂j(λj) by running a Lasso
regression. Lastly, each firm devises the targeting strategy to maximize the estimated
profit. Figure 1 summarizes the timeline of the game. Before we proceed to analyze the
game, we elaborate on the rationale and interpretation of our modeling choices.

Each firm chooses the
tuning parameter.

Each firm is endowed with a private
dataset with two observations.

Each firm delegates an analyst to estimate profit
function by running a Lasso regression.

Each firm devises the targeting strategy
to maximize estimated profit.

𝑡𝑖𝑚𝑒

Figure 1: Timeline of the competitive algorithmic targeting game.

First, the reader may wonder that the simple setup above with a data set of just
two observations and a binary characteristic (x ∈ (1, 0)) is a far cry from the big data
situations confronting firms. Machine learning models are typically high dimensional
and complex involving numerous dimensions available in big data. Nevertheless, as
also previously argued by Eliaz and Spiegler (2019) the setup is designed to handle
the crucial aspects of the “over-fitting" problem encountered in algorithmic decision
making by firms, namely, that the potential number of explanatory variables may be
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large and comparable to the sample size. So unless there is a method for model selection
and shrinkage of the number of explanatory variables there is a risk of over-fitting.
For example, an unpenalized regression estimator may perfectly fit the data-set but
would have high variance and poor predictive performance compared to an estimator
with shrinkage. However, a model with shrinkage may be subject to the introduction
of bias in the estimated coefficients. The model with the Lasso regression with the
endogenous choice of the tuning parameter λj helps to capture the essence of the trade-
offs underlying the over-fitting problem, and in doing so, it endogenizes the model
selection to the equilibrium incentives of the firms.

Second, the firms choose the tuning parameters before getting the data. This may
also be seen as consistent with the statistical learning literature which prescribes that
the tuning parameter should not be determined based on the training data per se in
order to avoid over-fitting. Third, while we use the Lasso regression as a specific es-
timation procedure, our results are more general in the sense that λj determines the
general trade-off between bias and variance in any supervised learning method, where
higher values of λj is associated with lower the variance but higher bias. Therefore,
firm j’s choice of λj can be interpreted as choosing between different statistical learn-
ing models that differ in bias-variance trade-off. Thus the problem can be viewed as
the strategic choice of the bias-variance trade-off in algorithmic design of the firm’s
targeted advertising strategy.

 
 

Variance 
Bi

as
 

Figure 2: Tradeoff between flexibility and interpretability and tradeoff between bias
and variance across different statistical learning methods (excerpted from James et al.
(2013) page 25 and adapted).
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Furthermore, different statistical models differ in their flexibility and their degree
of interpretability, as shown by Figure 2. Typically, those with higher flexibility (and
lower interpretability) have lower bias but higher variance. Here we will focus on the
comparison between Lasso and OLS, where OLS has higher flexibility and lower bias,
while Lasso with some level of regularization has lower flexibility and higher bias and
may be more easily interpretable when compared to OLS. Therefore, the choice of λj

may also represent the relative complexity versus interpretability of the algorithm. Also
by this understanding, the Lasso regression does not necessarily need to represent a
“machine-learning” algorithm while OLS a traditional algorithm. In fact, in practice,
a firm may decide whether to adopt a very flexible machine-learning algorithm like
neural networks compared with a less flexible benchmark algorithm, in which case, the
neural networks will correspond to OLS in our framework.

Finally, it has been assumed that the firms do not have the analytical capability
themselves and rely on data analysts for the estimation procedure; moreover complete
contracts are not available between a firm and its analyst. This assumption maps onto
common practices in companies where managers rely on analysis by data analytics
groups to make strategic decisions. This has two important implications:

1. In the last stage of the game, instead of performing a Bayesian update based on
the data to calculate the posterior belief of αj and βj , each firm relies on the data
analyst to run the Lasso regression on the data to get point estimates of α̂j(λj)

and β̂j(λj); correspondingly, instead of maximizing the expected profit based on
the posterior belief, each firm makes the targeting decision by maximizing the
“estimated profit” based on the estimate, α̂j(λj) and β̂j(λj). The standard ra-
tional economic model for this problem would involve fully Bayesian decision
making with common priors for all agents. However, as argued below the reality
of data based algorithmic decision making in firms does not reconcile with the
standard approach as machine learning algorithms like Lasso which are based
on the minimization as in (1) are non-bayesian procedures. By separating the es-
timation problems from the decision-maker (firms), and delegating it to agents
(analysts), we are able to rationalize the reality of data-driven decision making
in firms. Methodologically this feature of our framework is a representation of
algorithmic decision making in firms.3

3In an alternative setting in absence of the data analysts, we can assign a Laplace prior distribution to
each firm j’s prior belief of βj , with the probability density function f(βj) = λj/2 · exp(−λj |βj |). Then,
based on the data (xl, yl

j) for l = 0, 1 and assuming εlj follows a standard normal distribution, firm j forms
a posterior belief of αj and βj by Bayes’ rule, which can be shown to be equivalent to running the Lasso
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2. Because it is the data analyst instead of the firm that performs the estimation
procedure, this implies the minimization of mean squared error instead of profit
maximization as the objective in estimating the parameters in the second stage.
This makes our results directly comparable with the standard statistical learning
literature. This is also consistent with the industry practice due to several consid-
erations. First, minimization of mean squared error is available and used by com-
panies in standard ready-to-use statistical packages while profit maximization re-
quires customization, which could be costly for the firms. Second, information
pertaining to the profit function may be scattered in silos within the organization
so that even if the data analyst in charge of the estimation task wants to use profit
maximization as the objective, she may fail to gather all relevant information.

We begin with the analysis of the monopoly setting with only one firm in the mar-
ket as the benchmark, and then proceed to study the main model with competition.

4 Monopoly Benchmark

Given only one firm, we will drop the subscript j. We solve the game by backward
induction. Suppose the firm decides to target k ∈ [0, ϕ] consumers with x = 1 and
θ − k ∈ [0, 1− ϕ] consumers with x = 0, which imply that

max{0, θ + ϕ− 1} ≤ k ≤ min{θ, ϕ}.

Given α̂(λ) and β̂(λ), we have the estimated profit from a targeted consumer to be
π̂(x) = α̂(λ) + β̂(λ)x. The firm chooses k to maximize the estimated profit. If β̂(λ) > 0,
it is optimal for the firm to target as many consumers with x = 1 as possible, so we have
the firm’s optimal choice of k as k∗ = min{θ, ϕ}. Similarly, if β̂(λ) < 0, it is optimal for
to target as many consumers with x = 0 as possible, and thus, k∗ = max{0, θ + ϕ− 1}.
Lastly, if β̂(λ) = 0, the firm is indifferent between the two types of consumers, and it is
assumed that it will target k ∈ [0, θ] consumers with x = 1.

A priori, before obtaining the dataset, the firm chooses λ to maximize the expected

regression in equation (1) (Tibshirani 1996). However, there are two caveats to this Bayesian approach.
First, the tuning parameter λj is not firm j’s choice but rather, a model primitive that is exogenously
given. The endogenous firm choice of λj would be equivalent the firm choosing its prior distribution.
Second, the point estimates generated by the Lasso regression, α̂(λj) and β̂(λj) in equations (2) and (3)
are mode instead of mean of the posterior belief of αj and βj (Hastie et al. 2009). However, to calculate
expected profit, we will be mostly concerned with the posterior mean instead of the mode. Due to these
two caveats, we do not adopt the Bayesian approach for Lasso regressions.
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profit from all consumers:

Π(λ) =E[θα+ k∗β]

=θE[α] + min{θ, ϕ}Pr(β̂(λ) > 0)E[β|β̂(λ) > 0]

+ max{θ − (1− ϕ), 0}Pr(β̂(λ) < 0)E[β|β̂(λ) < 0]

+ kPr(β̂(λ) = 0)E[β|β̂(λ) = 0]

=θE[α] + min{θ, ϕ}Pr(β +∆ε > λ)E[β|β +∆ε > λ]

+ max{θ − (1− ϕ), 0}Pr(β +∆ε < −λ)E[β|β +∆ε < −λ]

=θE[α] + min{θ, ϕ}
∫ 2ε

−2ε
dG̃(e)

∫ β

λ−e
bdB(b)

+ max{θ − (1− ϕ), 0}
∫ 2ε

−2ε
dG̃(e)

∫ −λ−e

−β
bdB(b)

=θE[α] + min{θ, 1− θ, ϕ, 1− ϕ}
∫ 2ε

−2ε
dG̃(e)

∫ β

λ−e
bdB(b).

To get the third equation above, notice that β̂(λ) > 0 ⇔ β + ∆ε > λ, β̂(λ) < 0 ⇔
β + ∆ε < −λ, and β̂(λ) = 0 ⇔ |β + ∆ε| ≤ λ, which, combining with the fact that B
and G̃ are symmetric distributions around zero, further implies that E[β|β̂(λ) = 0] =

E[β||β +∆ε| ≤ λ] = 0. Therefore, the choice of k has no impact on firm profit and thus
the tie-breaking rule has no bite on the result. To get the last equation, we have again
utilized the symmetry of G̃ and B.

Given G̃′ is single-peaked, one can show that Π(λ) decreases with λ, so we have
the following proposition.

Proposition 1. Under monopoly, the firm chooses the tuning parameter λM = 0.

Proof.

Π′(λ) = −min{θ, 1− θ, ϕ, 1− ϕ}
∫ 2ε

−2ε
(λ− e)B′(λ− e)G̃′(e)de.

If λ ≥ 2ε, obviously, Π′(λ) ≤ 0. Otherwise, if λ < 2ε, we have

Π′(λ) ∝ −
(∫ 2λ−2ε

−2ε
+

∫ λ

2λ−2ε
+

∫ 2ε

λ

)
(λ− e)B′(λ− e)G̃′(e)de

= −
∫ 2λ−2ε

−2ε
(λ− e)B′(λ− e)G̃′(e)de− θ

∫ 2ε−λ

0
zB′(z)

(
G̃′(λ− z)− G̃′(λ+ z)

)
dz

≤ 0,
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where, to get the second equality above, we have changed the variable e = λ − z for
the second integral from 2λ− 2ε to λ, and e = λ+ z for the third integral from λ to 2ε;
moreover, we have utilized B′(z) = B′(−z). To get the last inequality, notice that given
G̃′ being single-peaked and symmetric around zero, we have G̃′(λ− z) ≥ G̃′(λ+ z) for
any z ≥ 0 and λ ≥ 0. To summarize, we have shown that Π′(λ) ≤ 0, so the optimal λ
should be λM = 0.

Proposition 1 implies that a monopoly firm in this setup prefers the OLS regres-
sion to a Lasso. The intuition is that the OLS estimator is unbiased and thus enables
the firm to target the more profitable segment correctly in expectation. The qualitative
implication is that a monopolist optimally prefers a more flexible or complex algorith-
mic design which accommodates all the variables (in our case one) and which may risk
over-fitting the data. In other words, the monopoly prefers low algorithmic bias but this
would come at the expense of increased variance. This result serves as benchmark and
motivates our analysis below of the competitive incentives for algorithmic targeting.

5 Competitive Targeting

Now we analyze the main model with competition between two firms and solve
for the equilibrium by backward induction.

5.1 Targeting Decision

Given firm j’s choice of the tuning parameter as λj and its private data-set, the
firm’s analyst’s estimates, α̂(λj) and β̂(λj) are given by equation (3). Suppose firm j

decides to target kj consumers with x = 1 and θ− kj consumers with x = 0 for j = 1, 2.
Similarly, we have max{0, θ + ϕ− 1} ≤ kj ≤ min{θ, ϕ}.

Firm j does not observe the rival’s choice of the tuning parameter nor its dataset.
Denote firm j’s expectation of the other firm’s choice of the tuning parameter as λ∗

−j .
Furthermore, from firm j’s perspective, the other firm’s equilibrium choice of k∗−j de-
pends on the realization of its private dataset and thus is a random variable, which is
denoted as k̃∗−j . Let’s calculate firm j’s estimated profit:

Πj(kj , k̃
∗
−j) =kj

(
k̃∗−j

ϕ
· 1
2
+ 1−

k̃∗−j

ϕ

)(
α̂j(λj) + β̂j(λj)

)
+ (θ − kj)

(
θ − k̃∗−j

1− ϕ
· 1
2
+ 1−

θ − k̃∗−j

1− ϕ

)
α̂j(λj)
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=θ

(
1−

θ − k̃∗−j

2(1− ϕ)

)
α̂j(λj)

+ kj

(
ϕθ − k̃∗−j

2ϕ(1− ϕ)
α̂j(λj) +

(
1−

k̃∗−j

2ϕ

)
β̂j(λj)

)
. (4)

To understand the first equation above, notice that firm j targets kj consumers with
x = 1, each of whom is also targeted by the other firm −j with probability k̃∗−j/ϕ. If

this happens, firm j gets an estimated profit of
(
α̂j(λj) + β̂j(λj)

)
/2; otherwise, with

probability 1− k̃∗−j/ϕ, this consumer is not targeted by firm −j, and firm j’s estimated

profit is
(
α̂j(λj) + β̂j(λj)

)
. Similarly, we can perform the same calculation to get firm

j’s estimated profit from θ − kj consumers with x = 0.
Firm j chooses kj ∈ [max{0, θ + ϕ− 1},min{θ, ϕ}] to maximize the expected esti-

mated profit, E
[
Πj(kj , k̃

∗
−j)
]
= Πj(kj ,E[k̃

∗
−j ]), where we have utilized the observation

that Πj(kj , k̃
∗
−j) is linear in k̃∗−j .

4 Furthermore, notice that Πj(kj ,E[k̃
∗
−j ]) is linear in kj

with

∂Πj(kj ,E[k̃
∗
−j ])

∂kj
=

ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
α̂j(λj)︸ ︷︷ ︸

to avoid competition

+

(
1−

E[k̃∗−j ]

2ϕ

)
β̂j(λj)︸ ︷︷ ︸

to target the more
profitable segment

≡ ηj(λj). (5)

Consider the expression for ∂kjΠj(kj ,E[k̃
∗
−j ]) in equation (5): The second term plays

a similar role as the counterpart under the monopoly benchmark – the firm wants to
target consumers with x = 1 when β̂j(λj) > 0, and x = 0 when β̂j(λj) < 0. The first
term introduces incentives for the two firms to coordinate so as to avoid competition.
Particularly, firm j wants to target consumers with x = 1 when E[k̃∗−j ]/θ < ϕ, that is,
when the other firm would target proportionally more consumers with x = 0; similarly,
firm j wants to target consumers with x = 0 when E[k̃∗−j ]/θ > ϕ, that is, when the other
firm would target proportionally more consumers with x = 1.

Πj(kj ,E[k̃
∗
−j ]) being linear in kj immediately implies that the firm’s optimal tar-

geting decision takes corner solutions. Specifically, if ηj(λj) > 0, firm j should set
k∗j = min{θ, ϕ} to target as many consumers with x = 1 as possible; if ηj(λj) < 0,
the firm should set k∗j = max{0, θ + ϕ − 1} to target as many consumers with x = 0

as possible. Lastly, from an ex-ante perspective before the realization of firm j’s pri-

4Notice that as α1, β1, α2 and β2 are independently distributed, firm j’s private dataset provides no
information on α−j and β−j . Therefore, E[k̃∗

−j |firm j’s dataset] = E[k̃∗
−j ].
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vate data-set, α̂j(λj) follows a continuous distribution and thus as long as E[k̃∗−j ] ̸= ϕθ,
ηj(λj) = 0 is a knife-edge case that happens with zero probability; consequently, the
tie-breaking rule for which consumer to target at ηj(λj) = 0 has no consequence. On
the other hand, if E[k̃∗−j ] = ϕθ, we have ηj(λj) = 0 ⇔ β̂j(λj) = 0, at which, we have
shown for the monopoly case above, the tie-breaking rule has no consequence either.

5.2 Model Selection

Let’s first introduce the following notation. From firm, j’s perspective, the proba-
bility that the other firm −j will set k̃∗−j = min{θ, ϕ} is:

p−j ≡Pr
(
k̃∗−j = min{θ, ϕ}

)
=Pr

(
ϕθ − E[k̃∗j ]

2ϕ(1− ϕ)
α̂−j(λ

∗
−j) +

(
1−

E[k̃∗j ]

2ϕ

)
β̂−j(λ

∗
−j) > 0

)

=Pr

(
ϕθ − (max{0, θ + ϕ− 1}+ pj min{θ, 1− θ, ϕ, 1− ϕ})

2ϕ(1− ϕ)
α̂−j(λ

∗
−j)

+

(
1− max{0, θ + ϕ− 1}+ pj min{θ, 1− θ, ϕ, 1− ϕ}

2ϕ

)
β̂−j(λ

∗
−j) > 0

)
, (6)

where, to get the last equality in (6), we have utilized that

E[k̃∗j ] = pj min{θ, ϕ}+ (1− pj)max{0, θ + ϕ− 1}

= max{0, θ + ϕ− 1}+ pj min{θ, 1− θ, ϕ, 1− ϕ},

which is firm j’s expectation of firm −j’s expectation of firm j’s equilibrium choice of
k∗j , and thus E[k̃∗j ] depends on λ∗

j (via pj) instead of λj . By combining equation (6) for
j = 1, 2, we should be able to solve p1 and p2, which depend on λ∗

1 and λ∗
2 (but not on

λ1 or λ2).
Next, we determine λ∗

j by calculating firm j’s expected profit before obtaining the
private data-set, which takes the same form as the firm’s estimated profit Πj(k

∗
j , k̃

∗
−j) in

equation (4) except that we need to replace α̂j(λj) and β̂j(λj) by αj and βj respectively
and then take expectation.

Πj(λj) ≡ E

[
θ

(
1−

θ − k̃∗−j

2(1− ϕ)

)
αj + k∗j

(
ϕθ − k̃∗−j

2ϕ(1− ϕ)
αj +

(
1−

k̃∗−j

2ϕ

)
βj

)]
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= θ

(
1−

θ − E[k̃∗−j ]

2(1− ϕ)

)
E[αj ]

+ min{θ, ϕ}Pr (ηj(λj) > 0)E

[
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
αj +

(
1−

E[k̃∗−j ]

2ϕ

)
βj

∣∣∣∣ηj(λj) > 0

]

+max{0, θ + ϕ− 1}Pr (ηj(λj) < 0)E

[
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
αj +

(
1−

E[k̃∗−j ]

2ϕ

)
βj

∣∣∣∣ηj(λj) < 0

]
.

(7)

In the calculation, we have utilized the independence between αj , βj and k̃∗−j . Πj(λj)

depends on λj via ηj(λj) and depends on λ∗
−j via k̃∗−j . That is, at the model selection

stage, firm j has an expectation of firm −j’s choice of the tuning parameter, λ∗
−j , which

will influence firm −j’s targeting decision and thus in turn influences firm j’s expected
profit. In expectation, each firm’s choice should be consistent with the other firm’s
expectation:

λ∗
j = argmax

λj

Πj(λj), for j = 1, 2. (8)

To summarize, the equilibrium will be pinned down by the two sets of equations (6)
and (8), where we have four equations to determine four variables: p1, p2, λ∗

1 and λ∗
2.

The main result of this paper is the following proposition.

Proposition 2. If a pure-strategy equilibrium exists, ϕ ̸= 1/2, θ ̸= 1/2, and ε is sufficiently
high, then, we must have λ∗

j > 0 for at least one of j = 1, 2.

Proposition 2 does not provide an explicit condition on when a pure-strategy equi-
librium exists, which would require additional assumptions on distribution functions,
A, B and G. Nevertheless, notice that if pure-strategy equilibria do not exist, Nash’s
celebrated theorem immediately implies that there must exist a mixed-strategy equi-
librium, where trivially, we must have Pr(λ∗

j > 0) > 0 for at least one of j = 1, 2

(otherwise, we have λ∗
j = 0 for j = 1, 2, which is not a mixed-strategy equilibrium).

Therefore, even if a pure-strategy equilibrium does not exist, we will end up with a
result that is qualitatively similar in spirit with Proposition 2. Let’s prove Proposition
2 next. Without loss of generality it is assumed that ϕ ∈ (0, 1/2). The other case with
ϕ ∈ (1/2, 1) can be obtained by symmetry.

Proof. Let’s first argue that given any λ∗
1 and λ∗

2, there must exist a solution of (p1, p2)
to equation (6) for j = 1, 2. In fact, the right-hand side of equation (6) for j = 1, 2 is
a continuous map on a convex compact set [0, 1]2 to itself, and by Brouwer fixed-point
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theorem, a fixed point must exist. Next, we calculate Πj(λj) in equation (7). There are
three cases to consider.

(i) E[k̃∗−j ] < ϕθ, given which, there are two observations. First, β̂j(λj) ≥ 0 implies
ηj(λj) > 0 by the definition of ηj(λj) in equation (5) and α̂j(λj) > 0 implied by Assump-
tion 2. Second, β̂j(λj) < 0 implies that β̂j(λj) = βj+∆εj+λj and α̂j(λj) = αj+ε0j−λj/2

by equations (2) and (3), based on which, we have

ηj(λj) < 0 ⇔ αj < −Cλj + F (βj , ε
0
j , ε

1
j ), where

C ≡ 2ϕ(1− ϕ)∣∣∣ϕθ − E[k̃∗−j ]
∣∣∣
(
1−

E[k̃∗−j ]

2ϕ
−

ϕθ − E[k̃∗−j ]

4ϕ(1− ϕ)

)
,

F (βj , ε
0
j , ε

1
j ) ≡

(1− ϕ)(2ϕ− E[k̃∗−j ])

ϕθ − E[k̃∗−j ]

(
βj + ε1j − ε0j

)
+ ε0j .

C is well defined given E[k̃∗−j ] ̸= ϕθ. It is easy to show that

C > 0 ⇔ 1−
E[k̃∗−j ]

2ϕ
−

ϕθ − E[k̃∗−j ]

4ϕ(1− ϕ)
> 0 ⇔ (1− 2ϕ) + (1− θ) + E[k̃∗−j ] > 0,

which always holds regardless of the comparison between E[k̃∗−j ] and ϕθ.
Putting the two observations above together, we have

Pr (ηj(λj) < 0)E [αj |ηj(λj) < 0]

= Pr
(
ηj(λj) < 0 and β̂j(λj) < 0

)
E
[
αj

∣∣ηj(λj) < 0 and β̂j(λj) < 0
]

+ Pr
(
ηj(λj) < 0 and β̂j(λj) ≥ 0

)
E
[
αj

∣∣ηj(λj) < 0 and β̂j(λj) ≥ 0
]

= Pr
(
αj < −Cλj + F (βj , ε

0
j , ε

1
j )
)
E
[
αj

∣∣αj < −Cλj + F (βj , ε
0
j , ε

1
j )
]

=

∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α
αjdA(αj)dB(βj)dG(ε0j )dG(ε1j ),

where to get the first equality above, we have used the definition of conditional proba-
bilities and the law of total probability. Moreover, we have argued Pr (ηj(λj) = 0) = 0

above, which implies that,

Pr (ηj(λj) > 0)E[αj |ηj(λj) > 0] = E[αj ]− Pr (ηj(λj) < 0)E[αj |ηj(λj) < 0].

Similarly, we can write down the expressions for Pr(ηj(λj) > 0)E[βj |ηj(λj) > 0] and

15



Pr(ηj(λj) < 0)E[βj |ηj(λj) < 0]. By substituting these back to Πj(λj) in equation (7), we
find:

Πj(λj) =θ

(
1−

θ − E[k̃∗−j ]

2(1− ϕ)

)
E[αj ] + min{θ, ϕ}

(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
E[αj ] +

(
1−

E[k̃∗−j ]

2ϕ

)
E[βj ]

)

−min{θ, 1− θ, ϕ, 1− ϕ}
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)

×
∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α
αjdA(αj)dB(βj)dG(ε0j )dG(ε1j )

−min{θ, 1− θ, ϕ, 1− ϕ}

(
1−

E[k̃∗−j ]

2ϕ

)

×
∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α
βjdA(αj)dB(βj)dG(ε0j )dG(ε1j ).

Let’s compute the derivative of Πj(λj) at λj = 0:

Π′
j(0) =min{θ, 1− θ, ϕ, 1− ϕ}C

×
∫∫∫

α≤F (βj ,ε0j ,ε
1
j )≤α

(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
F (βj , ε

0
j , ε

1
j ) +

(
1−

E[k̃∗−j ]

2ϕ

)
βj

)
×A′(F (βj , ε

0
j , ε

1
j ))dB(βj)dG(ε0j )dG(ε1j )

≥min{θ, 1− θ, ϕ, 1− ϕ}C

(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
α−

(
1−

E[k̃∗−j ]

2ϕ

)
β

)

×
∫∫∫

α≤F (βj ,ε0j ,ε
1
j )≤α

A′(F (βj , ε
0
j , ε

1
j ))dB(βj)dG(ε0j )dG(ε1j ).

When ε is sufficiently large, Assumption 2 implies that α is sufficiently large so that

ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
α−

(
1−

E[k̃∗−j ]

2ϕ

)
β > 0;

moreover, F (βj , ε
0
j , ε

1
j ) by definition is symmetrically distributed around zero and when

ε is sufficiently large, Pr(α ≤ F (βj , ε
0
j , ε

1
j ) ≤ α) > 0. Therefore, we have Π′

j(0) > 0,
which implies that λ∗

j > 0.
(ii) E[k̃∗−j ] > ϕθ, given which, there are similarly two observations. First, β̂j(λj) ≤

0 implies ηj(λj) < 0. Second, β̂j(λj) > 0 implies that β̂j(λj) = βj + ∆εj − λj and
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α̂j(λj) = αj + ε0j + λj/2 by equations (2) and (3), based on which, we have

ηj(λj) > 0 ⇔ αj < −Cλj + F (βj , ε
0
j , ε

1
j ),

the same as that in case (i). Putting the two observations together, we have that

Pr (ηj(λj) > 0)E [αj |ηj(λj) > 0]

= Pr
(
−Cλj + F (βj , ε

0
j , ε

1
j )
)
E
[
αj

∣∣− Cλj + F (βj , ε
0
j , ε

1
j )
]

=

∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α
αjdA(αj)dB(βj)dG(ε0j )dG(ε1j ),

Pr (ηj(λj) < 0)E[αj |ηj(λj) < 0] = E[αj ]− Pr (ηj(λj) > 0)E[αj |ηj(λj) > 0].

Similarly, we can write down Πj(λj):

Πj(λj) =θ

(
1−

θ − E[k̃∗−j ]

2(1− ϕ)

)
E[αj ] + min{θ, ϕ}

(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
E[αj ] +

(
1−

E[k̃∗−j ]

2ϕ

)
E[βj ]

)

−min{θ, 1− θ, ϕ, 1− ϕ}
E[k̃∗−j ]− ϕθ

2ϕ(1− ϕ)

×
∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α
αjdA(αj)dB(βj)dG(ε0j )dG(ε1j )

+ min{θ, 1− θ, ϕ, 1− ϕ}

(
1−

E[k̃∗−j ]

2ϕ

)

×
∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α
βjdA(αj)dB(βj)dG(ε0j )dG(ε1j ).

Similarly, we can compute:

Π′
j(0) =min{θ, 1− θ, ϕ, 1− ϕ}C

×
∫∫∫

α≤F (βj ,ε0j ,ε
1
j )≤α

(
E[k̃∗−j ]− ϕθ

2ϕ(1− ϕ)
F (βj , ε

0
j , ε

1
j )−

(
1−

E[k̃∗−j ]

2ϕ

)
βj

)
×A′(F (βj , ε

0
j , ε

1
j ))dB(βj)dG(ε0j )dG(ε1j )

≥min{θ, 1− θ, ϕ, 1− ϕ}C

(
E[k̃∗−j ]− ϕθ

2ϕ(1− ϕ)
α−

(
1−

E[k̃∗−j ]

2ϕ

)
β

)

×
∫∫∫

α≤F (βj ,ε0j ,ε
1
j )≤α

A′(F (βj , ε
0
j , ε

1
j ))dB(βj)dG(ε0j )dG(ε1j ).
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The same argument as in Case (ii) shows that when ε is sufficiently large, λ∗
j > 0.

(iii) E[k̃∗−j ] = ϕθ. If λ∗
j > 0, we have proved the proposition; otherwise, suppose

λ∗
j = 0. We have pj = Pr(β̂j(λ

∗
j ) > 0) = Pr (βj +∆εj > 0) = 1/2. Correspondingly,

E[k̃∗j ] =
1

2
(min{θ, ϕ}+max{0, θ + ϕ− 1}) ̸= θϕ.

In fact, for 0 < ϕ < 1/2, E[k̃∗j ] = θϕ if and only if θ = 0, 1/2, 1, which we have excluded
by assumption. Therefore, it must be that E[k̃∗j ] < θϕ or E[k̃∗j ] > θϕ. In either case, we
can repeat the proof above with j and −j switched to conclude that λ∗

−j > 0.

In contrast to Proposition 1, Proposition 2 shows that competition drives at least
one firm to choose positive penalization. In other words, competition favors a simpler
algorithmic design that reduces variance but at the cost of introducing bias. We provide
below the economic intuition for this result.

Because the two consumer segments are of different sizes (by the assumption that
ϕ ̸= 1/2), the one which is smaller will be ex-ante more competitive because when
both firms target this segment, there will be higher expected overlap of the targeted
consumers. Compared with the OLS estimator which induces a firm to concentrate
targeting in one consumer segment (the one with higher estimated profitability), the
penalization in the Lasso regression tends to induce the firm to target consumers across
the two segments more evenly. When θ = 1/2, the OLS and the Lasso will generate
the same targeting outcome, because it amounts to the same 50% targeting probability
on every consumer regardless of whether the firm targets the two consumer segments
evenly or targets all the consumers evenly. Therefore, as long as θ ̸= 1/2, the penal-
ization in the Lasso regression will reduce a firm’s concentration of targeting on one
particular consumer segment, which in turn reduces the expected overlap between the
two firms’ targeted consumers and thus softens competition. This can also be seen
from equation (5), where a higher λj penalizes β̂j(λj) towards zero and consequently,
the competition avoidance incentive as captured by (ϕθ − E[k̃∗−j ])/(2ϕ(1 − ϕ)) has a
relatively bigger impact on ηj(λj) which determines firm j’s targeting decision.

In fact, the competition avoidance incentive for firm j is present whenever E[k̃∗−j ] ̸=
ϕθ—that is, when the competitor does not target all consumers equally. This provides
firm j the strategic incentive to introduce bias to reduce the overlap in the targeting. In
fact, as shown in the proof of Proposition 2 above, as long as E[k̃∗−j ] ̸= ϕθ, firm j will
choose λ∗

j > 0 in equilibrium to lessen competition.
Lastly, we also require ε to be sufficiently high. With enough noise in the data, the
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risk of over-fitting becomes consequential. Moreover, a higher ε also implies a higher
α by Assumption 2, which translates into a higher incentive to avoid competition by
equation (5). Both considerations make a positive penalization in the Lasso regression
and the equilibrium choice of algorithmic bias more desirable.

Given our symmetric setup, it is natural to consider the symmetric equilibrium
with λ∗

1 = λ∗
2 = λ∗. The corollary below is obvious from Proposition 2.

Corollary 1. If a symmetric pure-strategy equilibrium exists, ϕ ̸= 1/2, θ ̸= 1/2 and ε is
sufficiently high, then, we must have λ∗ > 0.

6 Summary and Discussion

In this paper, we examine how competitive firms employ algorithms to estimate
demand and based on the estimates, make strategic consumer targeting decisions to
maximize expected profit. Algorithmic design essentially implies different model selec-
tion strategies, which involve different bias and variance trade-offs under the general
framework of supervised learning. This bias-variance trade-off also implies the extent
of model flexibility that the firm would like to optimally use for targeting. From this
perspective, our paper studies firms’ competitive model selection for algorithmic tar-
geting and explores how competition moderates individual firms’ bias-variance trade-
off choices through the degree of complexity of the algorithm that is adopted. The
central finding is that targeting under competition favors simpler models that reduce
variance but which introduce bias. There is therefore the suggestion that more flexible
algorithms like deep learning are more likely to be valuable for firms with monopoly
power.

We focus on a specific decision of the firms—targeting. Thanks to large advertis-
ing platforms such as Facebook or Google, there is an ongoing trend of advertising tar-
geting decisions being automated by algorithms for real-time advertising deployment
based on rich customer behavior data on browsing, purchase, sharing, observed social
connections, etc. Targeting is therefore a natural context to study algorithmic competi-
tion and our model and payoff function is designed to represent the classic competitive
targeting problem. Within this context, our result that competition favors algorithmic
bias holds for quite general distributional assumptions about the prior beliefs. As next
steps it would be interesting to explore a general class of oligopoly games with strategic
firm decisions such as pricing, advertising or product design. The implications may de-
pend on whether the firms’ decisions are strategic substitutes or complements (Bulow
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et al. 1985).
Endogenous Data: We conclude by describing a setup which allows the targeting data-set
to be generated from market competition. In the model of the paper we have assumed
that each firm is endowed with an exogenous data-set. To allow for the data-sets to be
endogenously generated from market interaction we will require the firms to compete
in the targeting decisions at least twice, where the first-time competition generates the
data, which is then utilized by the firms to devise their subsequent targeting strategies.
Specifically, suppose that the game analyzed in the paper is modified through the fol-
lowing timeline. At time 0, the two firms simultaneously choose the tuning parameters.
At time 1 where the first period begins, each firm decides on the consumers to target,
who upon being targeted, decide whether to make a purchase. Each firm observes a
noisy signal of the profit from each consumer who made a purchase. That is, we inter-
pret πj(x) in the main model as firm j’s average profit from an x-type consumer, and the
firm’s profit from an individual x-type consumer who made a purchase is πj(x) plus
some idiosyncratic error (analogous to ylj in the main model). Based on the data, as
before each firm delegates an analyst to estimate profit by running a Lasso regression.
Based on the estimates, each firm devises the targeting strategy to maximize estimated
profit in the second period.

In this modified game, each firm makes targeting decisions in the first period based
on its prior belief. Given that βj is distributed symmetrically around zero, it is optimal
for each firm to target randomly. Notice that if a consumer is targeted by both firms,
she makes a random choice between the two. This implies that observation of a tar-
geted consumer’s purchase decision does not give the firm any extra information for
estimating the consumer profitability. Consequently, each firm first period actions re-
sult in a data-set of “πj(xi) plus some idiosyncratic errors”, where i is the consumer
index that spans across all consumers who made a purchase from firm j in the first
period. Even though this data-set is generated from the first period market interaction,
it is qualitatively similar to that in the main model and could be equivalently seen as
being generated from a monopoly market. Moreover, the firms’ choice in tuning pa-
rameters at time 0 has no impact on their profits in the first period, so when choosing
λj , each firm j faces the same decision problem as in the main model. To summarize,
this extended two-period model that allows for the data-sets to be endogenous to the
first period interaction is almost identical to our main model with exogenous data-sets,
except that for each data-set, the number and types of consumers observed can be dif-
ferent. But this would not qualitatively alter the main result pertaining to the effect of
competition on model selection.
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