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Abstract

We examine how product and pricing decisions of retail gasoline stations depend on local
market demographics and the degree of competitive intensity in the market. We are able to
shed light on the observed empirical phenomenon that proximate gasoline stations price very
similarly in some markets, but very differently in other markets. Our analysis of product
design and price competition between firms integrates two critical dimensions of heterogeneity
across consumers: Consumers differ in their locations and in their travel costs, as in models
of horizontal differentiation. They also differ in their relative preference or valuations for
product quality dimensions, in terms of the offered station services (such as pay-at-pump,
number of service bays or other added services), as in models of vertical differentiation. We
find that the degree of local competitive intensity and the dispersion in consumer incomes
are sufficient to explain variations in the product and pricing choices of competing firms.
Closely located retailers who face sufficient income dispersion across consumers in a local
market may differentiate on product design and pricing strategies. In contrast, retailers that
are farther apart from each other may adopt similar product design and pricing strategies if
the market is relatively homogeneous on income. Using empirical survey data on prices and
station characteristics gathered across 724 gasoline stations in the St. Louis metropolitan
area, and employing a multivariate logit model that predicts the joint probability of stations
within a local market differentiating on product design and pricing strategies as a function of
market demographics and local competitive intensity, we find strong support for the central
implications of the theory.

Keywords: Vertical Differentiation, Horizontal Differentiation, Product Competition, Price
Competition, Spatial Models, Multivariate Logit, Retail Gasoline Markets.
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1 Introduction

In many markets, firms compete not only on price, but also in the design of their products. This

paper examines the competitive product design and pricing decisions of firms in retail gasoline

markets. We study the following two questions: (1) How do market demographics drive product

and pricing decisions of competing gasoline stations? and (2) How does the degree of local

competition drive the product and pricing decisions of competing gasoline stations?

While gasoline stations sell a frequently purchased homogeneous product, their product de-

sign decision involves the offering of service characteristics such as number of pumping bays,

availability of pay-at-pump, car wash facility, attendant pumping (i.e., full service) etc. at the

retail location. The price of gasoline at a station is posted and easily observed by competing sta-

tions as well as by consumers in the neighborhood. Our interest in this study is to understand

how product design and pricing decisions at competing stations within a local retail market

respond to the local demographic characteristics (such as income), and the intensity of compe-

tition (such as the number of competing firms within the market). There exists some empirical

evidence showing that stations in close geographic proximity show significant price variation

(Png and Reitman 1994). However, there also exists empirical evidence in favor of modest price

variation among closely located firms (Slade 1992). We investigate why gasoline retailers en-

gage in similar pricing decisions in some cases, but not in others. In doing this, we also show

that the firms’ product design choices are simultaneously driven by the same demographic and

competitive factors and that also drive their pricing choices.

We present a model of market competition that explains product and pricing decisions as a

function of local market demographics and the proximity of retailers (that serves as a proxy for

local competitive intensity) in the market. We test the theory using empirical data on product

design and pricing choices of stations in various mutually exclusive, local markets. The paper

examines the interplay of product design and pricing choices of competing firms as it relates

to two distinct types of consumer heterogeneity characteristics: differences across consumers in

their locational preferences (horizontal heterogeneity) and differences across consumers in their

preferences for product quality (vertical heterogeneity). We highlight three general features

that affect competition in retail gasoline markets. First, consumers differ in their locations

and have costs of travel between retailers who are differentiated by their location, as in models
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of horizontal or locational differentiation (e.g., Hotelling 1929, D’Aspermont, Gabszewicz and

Thisse 1979). Second, consumers also differ in their relative preference or valuation for product

quality, as in models of vertical differentiation (e.g., Mussa and Rosen 1978, Shaked and Sutton

1982, Moorthy 1988). Third, we assume that there exists a positive relationship in retail markets

between the travel/time cost incurred by a consumer and the consumer’s valuation for service

quality. The correlation implies that more affluent consumers, who have higher opportunity

costs of time, incur a higher cost from travel, while also having a higher valuation for product

quality.

The analysis identifies the market conditions under which competing retailers would use

differentiated versus undifferentiated product and pricing strategies. Competing stations in

markets with a higher variation in income (for a given level of competitive intensity) will dif-

ferentiate more in their product design and pricing choices, while stations in local markets with

higher travel costs, and, therefore, lower competitive intensity (for a given level of local income

variation), will differentiate less in their product design and pricing choices. In other words, our

model reconciles the previous empirical findings about whether closely located stations will price

similarly or differently from each other. Our model predicts that among closely located stations,

similar strategies will be observed if they are in markets with little dispersion in incomes, while

different strategies will be observed in markets with high dispersion in incomes.

The empirical analysis uses survey data gathered from the retail gasoline market in the

Saint Louis metropolitan area. The dataset covers 724 gasoline stations, and includes station-

level cross-sectional information on price as well as station characteristics (such as number of

pumping bays, availability of pay-at-pump, car wash facility, attendant pumping, convenience

store, service station facility etc.). The geographic location of each station is coded in Cartesian

coordinates on a map of Saint Louis and also associated with the relevant census tract. The

dataset also includes demographic information about per-capita income, population and other

market characteristics. In the empirical analysis, we operationalize the product design decision

of a firm using two indicator variables, each tracking a different ancillary service that can be

available at the station. We define mutually exclusive census tracts as local markets, and treat

each market as the unit of observation in the empirical analysis. This results in 186 local markets

with two or more stations. For each market defined thus, we compute three outcome measures:
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(1) the standard deviation of two product design measures across all firms in the market, and

(2) the standard deviation of pricing choices across all firms in the market. We then compute

the following explanatory variables for each market: (1) standard deviation of the incomes in

the local market, and (2) number of firms in the local market divided by its geographic land area

to capture local competitive intensity. A multivariate logit model is estimated to explain the

joint probability of observing the three outcome variables (i.e., two product design outcomes,

plus one pricing outcome) in a local market as a function of the two explanatory variables,

after controlling for extraneous drivers of the three outcomes (as will be explained later). The

econometric model permits the three outcome variables to be correlated with each other. We

validate both of the key predictions of our theory in the empirical analysis, i.e., (1) competing

stations in local markets with a higher variation in income (for a given level of competitive

intensity) show a larger spread in their product design and pricing choices, and (2) stations in

local markets with higher competitive intensity (for a given level of local income variation) show

a larger spread in their product design and pricing choices.

1.1 Related Research

Much of the existing empirical literature has studied either the pricing or the product decisions

of firms in competitive markets. For example, Davis (2005) studies the effects of local market

structure on prices charged at movie theaters, by running a regression of each firm’s price on the

number of rival firms present in the market. Draganska and Jain (2006) study how competitive

firms should price multiple variants within their existing product lines which are taken to be

fixed. Slade (1986) estimates geographic boundaries for retail gasoline markets, using Granger

causality tests to estimate whether temporal price movements in one region of the US have

repercussions in another. Pinkse, Slade and Brett (2002) present an empirical technique to

discriminate between local and global price rivalry between retail gasoline firms using semi-

parametric methods to estimate the matrix of price reaction functions of firms. However, all

these papers above do not analyze the product choices that firms might make in response to

the market characteristics. Furthermore, none of these studies tests the equilibrium predictions

of firm competition at the market-level. Mazzeo (2002) estimates product choice decisions of

firms in the hotel industry, while Seim (2004) models local market entry decisions of video
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retailers. However, in these studies pricing decisions are not studied. Chan, Padmanabhan

and Seetharaman (2007) estimate an econometric model of location and pricing decisions of

gasoline stations in the Singapore market, but this paper is focused on the planner’s problem

rather than on the outcome of equilibrium competition between firms. To summarize, therefore,

an empirical test of simultaneous product design and pricing decisions of firms in response to

market competition (as in this paper) is missing in the literature.

Anderson, de Palma and Thisse (1996) provide a review of the analytical literature on product

and price competition between firms. However, there is little work on the joint consideration

of vertical and horizontal differentiation and its implication for firm strategies. The paper that

is closest to ours, in this regard, is one by Neven and Thisse (1990), which considers how the

location choices of firms are related to quality differentiation.1 Our paper, however, considers

the effect of the correlation between the location and quality preferences of the consumers on

the product and price choices of firms. Our empirical application pertains to retail gasoline

markets.

The remainder of the paper is organized as follows. Section 2 develops our theoretical

model and derives testable predictions. Section 3 presents the empirical analysis, and section 4

concludes.

2 Model of Product and Price Competition

Consider two gasoline retailers, indexed by j = 1, 2, who compete in a market by selling products

of quality level qj and price pj . While the price pj refers to the price of the basic good — gasoline

— at the gasoline station, the quality level qj refers to the quality of the available services such

as pay-at-pump, number of service bays etc. at the station (for example, a station with a

larger number of ancillary services can be thought of as a higher-quality station). The cost of

providing quality is assumed to be increasing and strictly convex in quality, with the functional

form c(qj) =
q2j
2 . Both firms are assumed to have a constant marginal cost of production, which

is set to zero without any loss of generality. The two firms are assumed to be at the two ends of

a line segment of unit length.

1Some other papers which model the joint consideration of vertical and horizontal differentiation are Rochet and
Stole (2002), Desai (2001) and Schmidt-Mohr and Villas-Boas (2007) in the context of product line competition,
and Iyer (1998) in the context of quality screening by a manufacturer of competing retailers in a market.
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We assume a market of unit size, whose consumers are uniformly distributed on the line

segment. The extent of horizontal heterogeneity in the market is captured by this uniform dis-

tribution of consumers on the line. Further, we assume that the consumers are of two types

(i = l, h) (of equal size) when it comes to their valuation (or preference) for product qual-

ity.2 Specifically, let θl and θh = υθl (υ ∈ (1,∞)) denote the valuations of the two segments.3

Therefore, the extent of vertical heterogeneity in the market is represented by the discrete distri-

bution of two consumer types (where υ is a measure of the spread of the discrete distribution).

We assume consumers’ locations to be independent of their valuations for product quality, i.e.,

consumers of both types (i = l, h) are uniformly distributed on the Hotelling line.

Consumers incur travel costs in traveling from their locations to either retailer. A consumer

of type θi is assumed to incur a travel cost of tθi per unit distance, where t ∈ [0,∞). For example,
consumer i, who is of type θi and at a distance of xji from retailer j, will incur a travel cost of

tθixji in traveling to retailer j. In this sense, θi simultaneously determines both the consumer’s

valuation for quality, as well as the consumer’s per-unit travel cost, therefore, implying that a

consumer with a higher valuation for quality will also have a higher per-unit travel cost. This can

be understood by thinking of θi as related to the consumer’s income. Higher-income consumers

are likely to have not only higher costs of time (and, hence, higher travel cost per unit of

distance), but also higher valuations for product quality, compared to lower-income consumers.4

The parameter t (which is common across consumers) can be understood as representing the

extent of locational differentiation between the two retailers. Specifically, larger values of t

imply higher locational differentiation and a lower competitive intensity than smaller values.

Each consumer’s maximum potential demand is assumed to be one unit of the product. We

assume that all consumers have a reservation value, r, for one unit of the product.

Given the above assumptions about firms and the market, the surplus — φ(θi, xji) — that

2The equal size assumption is made to simplify the analysis. Assuming unequal sizes does not change any of
the results presented in this section.

3While we assume two consumer types, the equilibrium results of the paper generalize to a continuum of
consumer types whose valuations θ are uniformly distributed. Also given the spatial model we consider two firms
and not multiple firms. But in alternative formulations using, for example, the representative consumer model
(Perloff and Salop 1985) we could consider multiple firms and we would expect the effect of greater number of
firms to be akin to lesser differentiation between the firms.

4Empirical evidence from retail markets provided by Hill and Juster (1985) supports this assertion that higher-
income consumers have higher time costs and quality valuations. An earlier study by Maurizi and Kelley (1978)
in retail gasoline markets finds an inverse relationship between income and search costs.
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consumer i — of type θi who is located at a distance xji ∈ [0, 1] from retailer j — gets from

buying at retailer j is given by,5

φ(θi, xji) = θi qj − tθi xji − pj ; j = 1, 2 (1)

where qj is non-negative. Each consumer is assumed to purchase the product that maximizes this

surplus function. However, if the surplus from both products are less than zero, the consumer

is assumed to purchase a competitive substitute.

We analyze the scenario where the entire market is served in equilibrium. Firms play a

two-stage game. In the first stage, the quality levels, qj , are simultaneously chosen by the two

retailers. In the second stage, the prices, pj , are chosen simultaneously by the two retailers,

conditional on their chosen levels of quality (from the first stage). This assumption about

two-stage decision making by firms is governed by the empirical reality that gasoline stations

cannot easily change their service offerings in the short run. Typically, gasoline stations are

built with a given set of station characteristics which are fixed, and pricing decisions are then

taken conditional on the range of services represented in the station. Since this is a multi-

stage game between firms, the equilibrium of the game should satisfy the sub-game perfection

criterion. The demand facing retailer j can be derived using the individual rationality and

incentive compatibility constraints, as shown in equations (2) and (3) below.

θlqj − t θlxjl − pj ≥ 0
θhqj − t θh xjh − pj ≥ 0

for j = 1 , 2
(2)

In the full market coverage scenario, given that xji is firm j’s demand with consumer type i,

then the corresponding demand of the competing firm is (1− xji). Consequently, the incentive
compatibility constraints are:

5This representation of consumer preferences is in the spirit of Mussa and Rosen (1978). Consider a quasi-
linear direct utility function U(X,α(Y (θi))qj) + X0, where X is one unit or none of the focal product, X0 is
a numeraire commodity which is measured in the same units as income, Y (θi) is consumer i’s income (which
is increasing in θi), qj is the quality level at retailer j, and α(Y (θi)) is an income-based scale on the product

( ∂α(Y (θi))
∂Y (θi)

> 0). Consumers choose their optimal bundle by maximizing utility subject to the budget constraint

pjX+X0 ≤ Y (θi)−τ(Y (θi))xji, where pj is the price paid per-unit of the product, τ(Y (θi)) is the travel cost such

that ∂τ(Y (θi))
∂Y (θi)

> 0 and xji is consumer i’s distance from retailer j. Assuming small income effects, the consumer’s

optimization problem will yield an indirect utility form which can be specialized to (1).
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θl qj − t θl xjl − pj ≥ θl qk − t θl (1− xjl) − pk
θh qj − t θh xjh − pj ≥ θh qk − t θh (1− xjh) − pk

for j 6= k ; j , k = 1 , 2
(3)

From these conditions we can find the marginal consumers who determine the demand for

each firm. For full market coverage the incentive compatibility constraints are the binding

constraints. Using these constraints to solve firm 1’s demand as x1i =
1
2 +

q1−q2
2t − p1−p2

2tθi
and for

firm 2 it will be x2i = (1−x2i). Let x̄jl and x̄jh represent the distance of the marginal consumer
of the low valuation type and high valuation type from firm j. This means that the demand for

firm j is
x̄jl+x̄jh

2 . The profit function of firm j is then,

πj = [
x̄jl
2

+
x̄jh
2
] pj −

q2j
2

(4)

We first solve for the pricing stage of the game to find the optimal price of each firm as a function

of the first stage qualities p∗j (q1 , q2). Then we substitute these prices into the profit functions

and solve for the optimal choice of the qualities.

2.1 Analysis and Testable Predictions

This section presents the implications of the model that can be subjected to empirical testing.

We derive the symmetric and the asymmetric equilibria of this two-stage game. Solving for the

first-order conditions with respect to prices chosen in the pricing sub-game, we get pj(qj , s3−j) =
2
3υθl

3t+qj−q3−j
υ+1 . Substituting these values into the objective function in (4), one gets the reduced-

form profit functions of the retailers πj(qj , q3−j) which can be used for the optimization with

respect to quality. The first-order conditions of these profit functions can be evaluated for the

best-response functions of each retailer for the other retailer’s quality strategy.

Rj(q3−j) = qj = 2υθl
3t− q3−j

9t(υ + 1)− 2υθl (5)

2.2 The Symmetric Equilibrium

Here we examine the conditions for a symmetric equilibrium, in which the two firms are undif-

ferentiated in their chosen quality and price strategies (the details of the analysis are provided

in the Appendix). To begin with note that the full market coverage scenario requires that t be
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not too large or t < 4υθl
3(5v+1) . We find that in markets represented by ts =

2υθl
9(υ+1) < t <

4υθl
3(5v+1) ,

the equilibrium is unique and symmetric. By solving the best response functions in (5) we get

the quality and price choices in this symmetric equilibrium to be q∗j =
2υθl
3(υ+1) and p

∗
j = 2t

υθl
(υ+1) .

Consider the condition t > ts, and observe that the right-hand side of the inequality, ts, increases

with υ. This means that the undifferentiated equilibrium is more likely in markets where the

spread in quality valuations across consumers (υ) is sufficiently low, relative to the locational

differentiation between the retailers (t). Because a consumer’s valuation of product quality can

be seen as being determined by the consumer’s income, a market with the undifferentiated equi-

librium is interpreted to be one where the income variation across consumers is sufficiently low

relative to the locational differentiation between the retailers. When retailers match price and

quality, they compete symmetrically for either consumer type θi (i = l, h). While this protects

their demand in each segment, the disadvantage is that the intensity of price competition is high

when the locational differentiation between retailers is low. When the locational differentiation

is high, however, the retailers are able withstand the effects of such price competition and the

symmetric equilibrium ends up supporting a high enough price. Furthermore, with small differ-

ences in quality valuations across consumers, there are no substantial benefits to the firms from

differentiating their price and quality strategies from each other, which sustains the symmetric

equilibrium.

The symmetric equilibrium quality and price are both increasing in υ. As expected, the

equilibrium price increases in the locational differentiation between the retailers (t), but the

equilibrium quality is independent of t.6 The equilibrium profits of the retailers are given by π∗j =
υθl[9t(υ+1)−2υθl]

9(υ+1)2
. As expected, the equilibrium profits go up with t. However, a greater spread

in the quality valuations (i.e., larger υ) decreases equilibrium profits if t < 4υθl
9(υ+1) . Given that

4υθl
3(5v+1) <

4υθl
9(υ+1) , this implies that the equilibrium profits are always decreasing in υ in the full

market coverage case. To understand this, note that when the retailers choose their quality levels

in the first stage, their decisions are governed more by the tastes of the high valuation consumers

(because these consumers value quality the most). As the spread in the quality valuations

increases, the retailers’ quality choices become more inclined towards taking advantage of the

high valuation segment and the equilibrium quality levels increase. Furthermore, the equilibrium

6Both price and quality are increasing in θl as well, because as θl increases, the average quality valuation in
the market goes up.
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quality is independent of t, and so even as the locational differentiation between the retailers

decreases, the chosen quality remains the same. However, as t decreases, the prices that the

retailers can charge goes down. In fact, if t is small enough, the equilibrium profits decreases in

υ. In this sense, for sufficiently small values of t, relative to υ, the intensity of competition under

the symmetric equilibrium increases revealing a force towards differentiation in firm strategies.

2.2.1 The Asymmetric Equilibrium

When the extent of locational differentiation between the retailers (t) becomes sufficiently low,

relative to the spread in quality valuations across consumers (υ), we have the possibility of an

asymmetric equilibrium. We derive an asymmetric equilibrium in which one firm (say, Firm

1) offers higher quality and price (and sells to the higher valuation segment), while the other

firm offers lower quality and price (and sells to the lower valuation segment). In this case, the

demand facing the two retailers can be derived using the following individual rationality and

incentive compatibility constraints.

θhq1 − tθh − p1 ≥ 0 (6)

θlq2 − tθl − p2 ≥ 0 (7)

θhq1 − tθh − p1 ≥ θhq2 − p2 (8)

θlq2 − tθl − p2 ≥ θlq1 − p1 (9)

We derive the equilibrium for the case in which equations (7) and (8) bind.7 From equation

(6), we have p2 = θlq2− tθl and p1 = p2+θh(q1− q2)− tθh. The profit functions of the two firms
are π1 =

p1
2 −

q21
2 and π2 =

p2
2 −

q22
2 . From this the quality levels can be derived to be q

∗
1 =

υθl
2 and

q∗2 =
θl
2 , and the price levels are p

∗
1 =

θ2l
2 [1 + υ(υ − 1)]− tθl(υ + 1) and p∗2 = θ2l

2 − tθl. From this

it can be noted that the price charged by the high quality, high price retailer (i.e., Retailer 1)

decreases in t and increases in υ, whereas the price charged by the low quality, low price retailer

(i.e., Retailer 2) decreases in t and is independent of υ. In the Appendix, we derive the existence

condition for the asymmetric equilibrium described above. It turns out that the equilibrium

profits of Firm 1 and Firm 2 are positive if t < (υ2−2υ+2)
4(υ+1) and t < 1

4 , respectively. Given that

7One can alternatively solve the complementary case in which the binding constraints are (6) and (9). The
insights from that case are analogous to those reported here.
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these profits are positive, the condition for the asymmetric equilibrium can be derived, as shown

in the Appendix, to be t < ta = min{ (υ−1)22(υ+1) ,
υ2−2υ−2
4(υ−3) }.8 In other words, the differentiated

equilibrium is likely in markets where the locational differentiation between the retailers (t) is

sufficiently low, relative to the spread in quality valuations across consumers (υ).

2.2.2 Qualitative Summary

Traditional models of spatial competition predict that ex-ante symmetric retailers will choose

symmetric strategies in equilibrium. Such a prediction does not necessarily follow in a market

with both horizontal and vertical heterogeneity across consumers. We find that (1) location

differentiation between retailers (t), and (2) spread in quality valuations across consumers (υ),

jointly determine whether retailers will differentiate themselves on quality and price or not.

Specifically, we show that if υ is sufficiently low relative to t, a symmetric equilibrium obtains,

whereas if t is sufficiently low relative to υ, an asymmetric equilibrium obtains. Said differently,

we find that ex-ante identical retailers located close to each other will engage in differentiated

quality and price strategies when the spread in quality valuations among consumers in the local

market is sufficiently large. This provides an explanation for why closely located gasoline stations

sometimes choose different prices and sometimes do not.

3 Empirical Analysis

In this section, we present an empirical test of the qualitative implication of the theory presented

in the previous section, that pertains to the inter-play of locational differentiation between

retailers and spread in quality valuations in the market in determining equilibrium quality and

pricing outcomes. For this purpose, we use survey data collected from the retail gasoline market

in the Greater Saint Louis metropolitan area. Even though the basic product, i.e., gasoline,

is a homogeneous product, retailers invest on different aspects of product design — which can

be interpreted as the empirical manifestation of quality that is represented in the theoretical

model9 — using a variety of ancillary services, for example, pay-at-pump (i.e., the option to

pay with a credit card at the pump), convenience store, car wash, service bay, full-service (i.e.,

8These conditions imply that for every υ as long as t is small enough, there is an unique asymmetric outcome.
And as long as t is large enough, there will be a unique symmetric outcome.

9From this point onwards, product design and product quality will be used inter-changeably.
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pumping of gasoline by an attendant), the number of pumping bays etc. To the extent that

competing gasoline stations can offer differing levels of such product design characteristics, they

can also end up charging different prices on the same basic product, i.e., gasoline. In this sense,

gasoline stations can differentiate from one another on both quality and price strategies, as in

the theory. The empirical analysis tests the following two implications of the theoretical model

(at the market-level).

1. For a given spread in quality valuations across consumers (υ), whether competing retailers

adopt differentiated (undifferentiated) quality and pricing strategies depends on whether

locational differentiation between retailers (t) is low (high).

2. For a given level of locational differentiation between retailers (t), whether competing

retailers adopt differentiated (undifferentiated) quality and pricing strategies depends on

whether the spread in quality valuations across consumers (υ) is high (low).

In order to undertake the empirical analysis, we need to first identify a suitable number

of local markets, and then create empirical proxies, at the market-level, for (1) the extent of

differentiation in quality strategies across retailers (∆qj), (2) the extent of differentiation in

pricing strategies across retailers (∆pj), (3) spread in quality valuations across consumers (υ),

(4) locational differentiation between retailers (t). Testing the two implications given above

would then involve a statistical test of whether ∆qj and ∆pj both jointly increase as (1) υ

increases (holding t constant), and (2) t decreases (holding υ constant).

Suppose we identify local markets for retail gasoline in geographic space (as will be made clear

later). In the theory we had indicated that θi is related to consumer income, and therefore an

empirical proxy for the spread in quality valuations, υ, is the income spread across consumers in

the local market. Both the standard deviation, and the coefficient of variation, of θi are increasing

in υ, which makes them good empirical proxies for υ. A good empirical proxy for t would be the

number of gasoline stations competing within the market on a per unit geographical area basis,

so that locational differentiation between retailers is likely to be lower as the number of retailers

per unit area is higher. Said differently, the local competitive intensity, which is inversely related

to t, increases with the number of retailers per unit area in the market. An empirical proxy

of ∆qj would be the variance of a composite measure of quality (suitably defined using the

12



station characteristics represented at stations, as will be explained later) across all retailers in

the market, while an empirical proxy of ∆pj would be the variance of price across all retailers

in the market.

3.1 Data Description

We employ survey data,10 collected during 1999, which covers 731 retail gasoline stations in five

counties — Franklin, Jefferson, St. Charles, St. Louis, St. Louis City — in St. Louis, Missouri.

The survey data contain information on retail prices and various service and local market charac-

teristics pertaining to the 731 gasoline stations. We also employ the 2000 U.S census records to

construct information on demographic characteristics of the local markets where these gasoline

stations operate (www.census.gov). Lastly, we collect information on the geometric land areas

of census tracts from the Missouri Census Data Center (www.mcdc2.missouri.edu).

The survey data include, for each gasoline station, the prices of three grades - 87, 89 and

93 octane levels - of gasoline along with station-specific service characteristics, i.e., brand name,

number of gasoline pumps, operating hours, presence of full-service, convenience store, pay-at-

pump facility, car wash, service bay, oil/lube service, and acceptability of credit cards. The

survey data also include information on the visibility of gasoline stations from one another,

specifically, the number of other gasoline stations that are visible from each station and also other

market characteristics such as the traffic flows on streets adjacent to the station and proximity

to freeways. The address of each station is also recorded in the survey data. Using the census

data, which contain demographic information - income, population, age distribution, home value,

education levels etc. - at the level of census tract,11 and by matching gasoline stations’ addresses

with their corresponding census tract on an area map, we construct a demographic profile for

each gasoline station’s local market. Six of the gasoline stations in our survey data are in census

tract groups for which demographic information is unavailable. Therefore, we exclude these

gasoline stations, which leaves us with 724 usable gasoline stations for our empirical analysis.

Using the information in the Missouri Census Data Center web site, we also construct the

geometric land areas of the census tracts in which the gasoline stations are located.

10The survey data was collected by a marketing research firm, New Image Marketing Limited, based in Fort
Myers, Florida.
11Each census tract has multiple — typically one or two, and sometimes three — block groups, and the census

tracks demographics at the level of block group within each census tract.
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3.2 Empirical Measures

The demographic profile of each gasoline station’s local market is characterized using two mea-

sures, both of which are computed using the income distribution of the appropriate census tract:

AV G measures the average income of the local market, SPREAD measures the standard de-

viation of the income of the local market. The price measure used in the analysis, PRICE, is

the observed (posted) price of self-service gasoline in dollars per gallon. Since 87-octane level is

the most commonly sold grade of gasoline in gasoline markets, and is available at all the gaso-

line stations in our dataset, we operationalize the price measure using the price of this grade

of gasoline. Table 1 reports the descriptive statistics on the demographic profiles and gasoline

prices at the 724 gasoline stations in our dataset.

V ariable Mean Std.Dev. Min. Max.

AVG $ 54,142 $ 21,793 $ 11,944 $ 177,668
SPREAD $ 37,914 $ 14,135 $ 6,211 $ 87,366
PRICE $ 0.96 $ 0.05 $ 0.86 $ 1.16

Table 1: Descriptive Statistics on Station-Level Demographics and Prices Based on 724 Gasoline
Stations.

It is clear from Table 1 that there is significant cross-station heterogeneity in terms of not

only the average income of the local market being served (AVG), but also the standard deviation

of income in the local market (SPREAD). For example, the standard deviations for AV G and

SPREAD are $21, 793 and $14, 135, respectively, which are 40% and 37% of their respective

averages of $54, 142 and $37, 914. Gasoline prices, however, are observed to show only a modest

amount of variation across the 724 stations, with a coefficient of variation of 0.05.

Measures of relevant station characteristics are as follows: NOZ is a discrete variable, whose

values range from 2 to 8, that captures the number of pumping nozzles at the gasoline station;

PAY is an indicator variable that takes the value 1 if the station has pay-at-pump facility and

0 otherwise; WASH is an indicator variable that takes the value 1 if the station has car wash

facility and 0 otherwise; CONV is an indicator variable that takes the value 1 if the station has

a convenience store and 0 otherwise; BAY is an indicator variable that takes the value 1 if the

station has a service bay and 0 otherwise; FULL is an indicator variable that takes the value

1 if the station has full-service pumps and 0 otherwise; BRAND is an indicator variable that
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takes the value 1 if the station is a brand-name station (Amoco, Shell or Exxon-Mobil) and 0

otherwise; and HOURS is an indicator variable that takes the value 1 if the station is open 24

hours day and 0 otherwise. Tables 2 and 3 report the observed frequencies of the values of these

indicator variables across the stations in our dataset.

V ariable 1 2 3 4 5 6 7 8 > 8

NOZ 3 69 125 314 44 126 8 32 3

Table 2: Descriptive Statistics on Station Characteristics Based on 724 Gasoline Stations.

V alue PAY WASH CONV BAY FULL BRAND HOURS

0 256 561 182 582 633 420 226
1 468 163 542 142 91 304 498

Table 3: Descriptive Statistics on Station Characteristics Based on 724 Gasoline Stations.

From Table 2, it is observed that a majority of gasoline stations (71%) have 4 pumps or

less, with 43% of all stations having exactly 4 pumps. From Table 3, it is observed that 65% of

all stations have pay-at-pump, 29% have car-wash, 75% have a convenience store, 20% have a

service bay, 13% have full-service, and 42% are brand-name stations.

Since the model deals with competition between gasoline stations within markets, we have

to operationalize our empirical measures, and create a dataset, at the level of local markets, and

not at the level of individual gasoline stations. For this purpose, we define local markets for

retail gasoline to be census tracts.12 There are 263 census tracts which collectively account for

the 724 stations in our data. However, 77 of these census tracts contain only one retail gasoline

station. Since these census tracts effectively represent local monopoly markets for retail gasoline,

they are excluded from the analysis (since our analysis pertains to competitive markets). This

results in our retaining a total of 647 gasoline stations from our original set of 724 stations (after

excluding the 77 local monopoly stations), that together represent 186 local markets. These

local markets are, by definition (since they are different census tracts), mutually exclusive, i.e.,
12We can alternatively operationalize local markets by observationally classifying stations into different mutually

exclusive markets by using a subjective, but consistent, heuristic. For example, in previous research, markets have
been defined based on stations that fall within a circle of half a mile or one mile radius. We use census tracts
on account of their objective definitions in the U.S. census. However, in an earlier version of this paper we had
constructed markets using a subjective heuristic that involved markets with a half mile radius and the qualitative
results are similar to what are reported here.
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different local markets do not share stations in common (as in Bresnahan and Reiss 1991), and

are collectively exhaustive of the St. Louis market. Among these 186 mutually exclusive local

markets, 72 have two gasoline stations, 44 have three stations, 35 have four stations, 15 have

five stations, 8 have six stations, 4 have seven stations, 4 have eight stations, and 4 have nine

stations or more.13

The demographic characteristics, specifically SPREAD, of each of these 186 local markets

are obtained directly from the 2000 US census. We construct a measure NUM , which captures

the number of gasoline stations within the local market. We then scale the variable NUM by

AREA, the geographic land area of the local market. The variable NUM/AREA represents

the density of stations in the local market. This would be a measure of locational differentiation

(or local competitive intensity) among stations within the market area, with a higher value of

NUM/AREA representing lower locational differentiation (and, therefore, higher local compet-

itive intensity) between stations in the local market. As an alternative to NUM/AREA, we also

construct a second measure of locational differentiation, V IS ∈ [0, 1], which captures the relative
visibility of stations within the local market. This is computed as follows: For each station i in

a local market m, we count the total number of stations that are visible from it, say, ni. We

also calculate the theoretical maximum number of stations that can be visible from it, say Ni,

and this will be equal to the total number of stations in the market, nm, minus one. VIS is then

computed as

nmP
i=1

ni

nmP
i=1

Ni

which becomes

nmP
i=1

ni

nm(nm−1) .
14 In Table 4, we report the descriptive statistics of

these demographic variables across the 186 local markets in our study. It is clear that SPREAD

shows a lot of variation across local markets, which suggests that markets range from being quite

homogeneous in terms of their income distributions to being very heterogeneous. NUM/AREA

13One question pertaining to the use of the census tract as a measure of local markets is whether stations within
a census tract compete more with each other than with stations in adjoining census tracts. Since this is more
likely to be a problem for stations at the periphery of census tracts, we conducted the following analysis: For
each census tract i, we calculated the centroid of the locations of stations within the tract. Denote this centroid
by C(i). We then calculated the average distance of stations within census tract i from C(i). Denote this average
distance by be d(i). We then identified the peripheral station of census tract i as the station which was farthest
from centroid C(i). Denote this peripheral station by P (i). Last, we calculated the distance of P (i) from the
centroid of the nearest census tract outside census tract i. Denote this distance by D(i). We found that for 156
out of 186 census tracts in our dataset, d(i) < D(i). We could reject the null hypothesis that a peripheral station
is just as likely to be correctly classified as it is to be wrongly classified, in terms of whether the station’s rightful
market is its own census tract or not, at the 0.01 level of significance.
14For example, suppose a local market has 3 stations. The theoretical maximum visibility is 3 ∗ 2 = 6.
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also shows a lot of variation across local markets which suggests significant differences across

local markets in terms of local competitive intensities among gasoline stations.

Next, we need the price and product quality differentiation measures at the level of local

markets. We construct these measures by computing the within-market standard deviations

of PRICE as well as the eight station characteristics measures, i.e., NOZ, PAY , WASH,

CONV , BAY , FULL, BRAND, and HOURS across all stations within each local market.

These yield, for each of the 186 local markets in our dataset, a price differentiation mea-

sure PRICEDIF , and eight different quality differentiation measures: NOZDIF , PAYDIF ,

WASHDIF , CONVDIF , BAYDIF , FULLDIF , BRANDDIF and HOURSDIF . In Ta-

ble 5, we report the descriptive statistics of these measures across the 186 local markets in our

study. We can see that the observed range of these measures across local markets is identical — 0

to 0.7071 — for eight of the nine quality differentiation measures, which is because of the binary

aspect of those eight service outcomes. For the remaining service outcome that takes multiple

ordinal values (NOZ), the corresponding differentiation measure (NOZDIF ) is observed to

range up to a larger value (1.1547) across local markets.

V ariable Mean Std.Dev. Min. Max.

SPREAD $38,607 $13,580 $17,003 $85,390
NUM/AREA 2.26/sq.mi. 2.26/sq.mi. 0.01/sq.mi. 13.7/sq.mi.

VIS 0.2331 0.3651 0 2

Table 4: Descriptive Statistics on Key Exogenous Variables Based on 186 Local Markets.

V ariable Mean Std.Dev. Min. Max.

PRICEDIF $ 0.023 $ 0.023 $ 0 $ 0.122
NOZDIF 1.1417 0.7891 0 1.1547
PAYDIF 0.3464 0.2886 0 0.7071

WASHDIF 0.2908 0.2911 0 0.7071
CONVDIF 0.2596 0.2888 0 0.7071
BAYDIF 0.2543 0.2861 0 0.7071
FULLDIF 0.1618 0.2538 0 0.7071
BRANDIF 0.4222 0.2686 0 0.7071
HOURSDIF 0.3179 0.2903 0 0.7071

Table 5: Descriptive Statistics on Endogenous Variables Based on 186 Local Markets.
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3.3 Econometric Model

The theoretical model involves two endogenous variables at the local market-level - price differ-

entiation and quality differentiation. The first variable is operationalized using the PRICEDIF

measure. The second variable can be operationalized using any or all of the eight different mea-

sures, NOZDIF , PAYDIF ,WASHDIF , CONVDIF , BAYDIF , FULLDIF , BRANDDIF

and HOURSDIF .

Recall that in the theory, these endogenous variables are functions of two factors: one,

locational differentiation between the competing retailers (t); two, the heterogeneity in quality

valuations across consumers (υ). In the econometric model, these two factors are operationalized

as follows: The locational differentiation between retailers (t) is represented by the explanatory

variable NUM/AREA, which measures the extent of locational proximity between stations

competing in a local market.15 To operationalize heterogeneity in quality valuations (υ), we use

the standard deviation of income of the local market (SPREAD) since the standard deviation

is increasing in υ. According to the predictions of the theory, if we ran an appropriate regression

of the price differentiation variable and the product quality differentiation variable(s) versus the

two explanatory variables (i.e., NUM/AREA and SPREAD), the coefficients of both variables

must be positive and significant in each regression.

We re-code the price differentiation variable as well as the product quality differentiation

variables as taking one of two discrete values - Low (= 0) or High (= 1) - depending on a cut-off

point that is determined as the median of the underlying continuous variables’ observed values

in our dataset. The coding procedure is reported in Table 6.

Having coded each endogenous variable as a binary, discrete outcome, we can use a multi-

variate logit model (Grizzle 1971, Niraj, Padmanabhan and Seetharaman 2008) - specifically,

an nonavariate logit model - to explain the price and quality differentiation outcomes jointly as

functions of the two covariates, NUM/AREA and SPREAD.16 The multivariate logit model

is specified at the level of a local market as shown below.

15An alternative measure of locational differentiation is V IS, which represents the effects of relative visibility
of these stations from each other.
16Note that the multivariate logit model is used to explain multiple correlated binary outcomes, as opposed to

the multinomial logit model that is used to explain single multinomial outcomes. Another model that applies
to correlated binary outcomes is the multivariate probit model (Ashford and Sowden 1970). However, unlike
the multivariate logit, it does not have a likelihood function with an analytical closed-form, which renders it
computationally unattractive.
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V ariable Low = 0 High = 1 #0s #1s

PRICEDIF $ ≤ 0.015 $ > 0.015 33 153
NOZDIF ≤ 1.1547 > 1.1547 32 154
PAYDIF ≤ 0.5 > 0.5 74 112

WASHDIF ≤ 0.3790 > 0.3790 90 96
CONVDIF = 0 > 0 100 86
BAYDIF = 0 > 0 101 85
FULLDIF = 0 > 0 130 56
BRANDIF ≤ 0.5284 > 0.5284 93 93
HOURSDIF ≤ 0.4551 > 0.4551 82 104

Table 6: Binary Coding of Endogenous Variables.

πt(I1t, I2t, ..., I9t) =
e

9P
c=1

(αc+Xctβc)Ict+
P
c<c0

γcc0IctIc0t

1P
I1t=0

.
1P

I9t=0
e

9P
k=1

(αk+Xktβk)Ikt+
P
k<k0

γkk0IktIk0t

, (10)

where πt(I1t, I2t, ..., I9t) is the joint probability associated with the nine endogenous discrete

variables Ic (c = 1. PRICE, 2. NOZDIF , 3. PAYDIF , 4. WASHDIF , 5. CONVDIF ,

6. BAYDIF , 7. FULLDIF , 8. BRANDDIF , 9. HOURSDIF ) in market t, where Ict

is an indicator variable that takes the value 1 if variable c takes the value High in market t

and 0 otherwise, αc is an intercept parameter associated with variable c (capturing the baseline

propensity of a local market to have high differentiation on dimension c),Xct is a two-dimensional

vector of covariates (i.e., NUM/AREA and SPREAD) corresponding to market t, βc is the

corresponding two-dimensional vector of slope parameters capturing the effects of NUM/AREA

and SPREAD on variable c, and γcc0 captures the covariance between endogenous variables Ict

and Ic0t. The appropriateness of the multivariate logit model over, say, nine independent binary

logit models to explain the observed price and quality differentiation outcomes arises on account

of these parameters γcc0 . They capture the correlations in the unobservables between the price

differentiation and quality differentiation measures at the market-level, and therefore yield a

system of simultaneous estimable equations as opposed to a system of independent estimable

equations. Our model would imply that the βc’s are positive.

In order to control for extraneous (i.e., outside the scope of our theory) drivers of observed

price and quality differentiation outcomes within local markets, we construct and include the
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following additional market-level variables (“controls”) as covariates within the vector Xct in

the multivariate logit model.

1. TRAFFICDIF : This is the standard deviation of the local traffic (TRAFFIC) condi-

tions across all gasoline stations within the local market. TRAFFIC is an ordinal variable

that takes the following 7 values: 1 if jam-packed (less than 15 miles per hour), 2 if very

congested (15-20 miles per hour), 3 if congested but moving (less than speed limit), 4 if

heavy but moving (near speed limit), 5 if moderate but moving (at speed limit), 6 if light

(better than speed limit), and 7 if sporadic. This variable is found to mostly take values of

3, 4 or 5 for gasoline stations in our dataset, with 27%, 36% and 24% of stations showing

values 3, 4 and 5, respectively.

2. FREEWAYMEAN : This is the average value of a station’s proximity to the freeway

(FREEWAY ) across all gasoline stations within the local market. It is possible that sta-

tions closer to a freeway may face more heterogeneous consumer populations. FREEWAY

is an indicator variable that takes the value 1 if the station is within 1 mile from a free-

way, and 0 otherwise. In our dataset, we find that 150 out of the 724 stations have

FREEWAY = 1.

3. GINIOPER and GINIBLDG: The first variable GINIOPER is a Gini index computed

across the operation types (OPER) of all gasoline stations within the local market. OPER

is a nominal variable that takes the value 1 for lessee-dealer, 2 for salary operation, 3 for

open dealer, and 4 for jobber/wholesaler. In our dataset, we find 145, 103, 148 and 328

stations, respectively, to take values 1, 2, 3 and 4 for OPER. Similarly, GINIBLDG is a

Gini index computed across the building ownership types (BLDG) of all gasoline stations

within the local market. BLDG is a nominal variable that takes the value 1 if a major oil

company owns the building, 2 if a non-major or regional oil company owns the building,

3 if a local distributor or oil company owns the building, 4 if the individual who runs the

operation owns the building, and 5 if a real-estate or a non-oil related company owns the

building. In our dataset, we find 187, 62, 228, 148 and 99 stations, respectively, to take
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values 1, 2, 3, 4 and 5 for BLDG.17

We include TRAFFICDIF , GINIOPER, and GINIBLDG as control variables in the

multivariate logit model using the rationale that the observed differentiation in pricing and

service outcomes in a local market could be, in part, because of observed differences in these

variables. TRAFFICDIF reflects the possibility that persistent differences in traffic conditions

would affect station demand and thereby lead to differences in behavior across the stations. The

two Gini index variables represent the fact that observed differences in station ownership types

and building ownership types could result in differences in station behavior. We also include

FREEWAYMEAN as a control variable to accommodate the possibility that observed price

and service differentiation outcomes could be systematically different in local markets that are

close to the freeway when compared to other markets. In Table 7, we report the descriptive

statistics of these measures across the 186 local markets in our study. We see that all of the

control variables show a good amount of variation across local markets.

V ariable Mean Std.Dev. Min. Max.

TRAFFICDIF 0.6352 0.5206 0 2.1213
FREEWAYMEAN 0.1968 0.1581 0 1

GINIOPER 0.4201 0.2186 0 0.75
GINIBLDG 0.4774 0.2070 0 0.8

Table 7: Descriptive Statistics on Exogenous Control Variables Based on 186 Local Markets.

While the multivariate logit model captures the interdependencies between the nine market-

level outcomes, it does entail the estimation of a large number of parameters, specifically, 36

γcc0 ’s. Because we have only 186 observations for estimation purposes, this presents an estima-

tion problem. One way around this problem is to reduce the dimensionality of the estimable

parameter space by reducing eight quality dimensions to a smaller number of quality dimen-

sions. For example, we can treat PRICEDIF and, in sequence, one of the eight service quality

differentiation measures, as two simultaneous outcomes in a bivariate (instead of a nonavari-

17The index GINIOPER for a local market is calculated as
4P

q=1

Pr(OPER = q)2, where Pr(OPER = q)

represents the fraction of stations within the market with OPER = q. Similarly, GINIBLDG is calculated as
5P

q=1

Pr(BLDG = q)2, where Pr(BLDG = q) represents the fraction of stations within the market withBLDG = q.
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ate) logit model. As an alternative approach, one could recognize that among the eight service

dimensions under analysis, some of the dimensions can directly be seen as a vertical quality

characteristic in the sense that consumers would always like more of this characteristic than less

at equal prices. We classify the five dimensions BRAND, HOURS, NOZ, PAY and FULL

— pertain more directly to quality.18 The remaining three dimensions — CONV , WASH and

BAY can be seen as dimensions which may not only add to consumer perception of station

quality but which in addition also qualify as complementary products for gasoline. Under such

a recognition, one could estimate a trivariate logit model, with PRICEDIF , ∗DIF (where

∗ = BRAND,HOURS,NOZ,PAY or FULL), and ∗ ∗DIF (where ∗∗ = CONV,WASH or

BAY ) as simultaneous outcomes in the model. We take this latter approach, allowing each

of the three outcomes of the multivariate logit model to be a function of NUM/AREA and

SPREAD. This approach involves the estimation of only 3 γcc0 ’s at a time. It also means that

we estimate a total of fifteen different trivariate logit models on our market-level data.

3.4 Estimation and Testing the Predictions

In order to estimate the parameters of the trivariate logit model, we maximize the following

sample likelihood function.

L =
186Y
m=1

1Y
i1=0

1Y
i2=0

1Y
i3=0

πmt(I1t = i1, I2t = i2, I3t = i3)
δmi1i2i3 , (11)

where δmi1i2i3 is an indicator variable that takes the value 1 if local marketm is characterized

by (I1t = i1, I2t = i2, I3t = i3) and the value 0 otherwise (note: I1t stands for PRICEDIF ,

I2t stands for ∗DIF , and I3t stands for ∗ ∗ DIF . The likelihood function is maximized using
gradient-based techniques to obtain estimates of model parameters. Our model’s predictions are

that the slope coefficients (i.e., three pairs of coefficients on NUM/AREA and SPREAD) in

the trivariate logit model must be positive and significant.

3.5 Empirical Results

Our main empirical analysis involves a trivariate logit model, where PRICEDIF , ∗DIF and

∗ ∗ DIF are simultaneously modeled as functions of NUM/AREA and SPREAD. However,

18Png and Reitman (1994) document the importance of the number of pumps as a quality differentiation
variable.
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we begin with a first-level analysis using a univariate logit model where each outcome among

PRICEDIF, BRANDDIF, HOURSDIF, NOZDIF, PAY DIF, FULLDIF, CONVDIF,

WASHDIF, andBAYDIF are sequentially modeled as functions ofNUM/AREA and SPREAD.

3.5.1 Univariate Logit Results

The results from estimating nine different univariate logit models are reported in Tables 8 and 9.

The coefficients of the key variables are reported in Table 8. In seven out of the nine cases, the

effect of SPREAD is found to be positive and significant (with the strongest effects, in terms of

the estimated magnitude of the coefficient, occurring for HOURSDIF and FULLDIF ), which

is consistent with the implications of the theory. For NOZDIF and PAYDIF , the effect of

SPREAD is found to be insignificant. Further, in seven out of the nine cases, the effect of

NUM/AREA is found to be positive and significant (with the strongest effects, in terms of the

estimated magnitudes of the coefficients, occurring for CONVDIF and FULLDIF ), which is

also consistent with the implications of our theory. For HOURSDIF and WASHDIF, the

effect of NUM/AREA is found to be insignificant. Overall, these results strongly support the

implications of our theory.

The coefficients of the control variables are reported in Table 9. We also find that three of

the control variables — TRAFFICDIF,GINIOPER and GINIBLDG — are found to have the

hypothesized positive effects on the outcome variables.

Outcome Intercept SPREAD/1000 NUM/AREA
PRICEDIF -3.0320 (0.8436) 0.0279 (0.0126) 0.0802 (0.0334)
BRANDDIF -0.9474 (0.7422) 0.0257 (0.0120) 0.0234 (0.0092)
HOURSDIF -2.5774 (0.8208) 0.0447 (0.0136) -0.0112 (0.0734)

NOZDIF -0.4409 (0.7537) -0.0116 (0.0116) 0.0057 (0.0027)
PAY DIF -0.5789 (0.7519) -0.0071 (0.0121) 0.0914 (0.0426)
FULLDIF -3.6756 (0.9480) 0.0356 (0.0129) 0.1726 (0.0759)
CONV DIF -2.7710 (0.8332) 0.0227 (0.0122) 0.2991 (0.0908)
WASHDIF -0.2804 (0.7449) 0.0114 (0.0019) -0.1182 (0.0738)
BAY DIF -3.2192 (0.8884) 0.0182 (0.0023) 0.1464 (0.0784)

Table 8: Univariate Logit Results - Coefficients of Key Variables ( Standard errors within paren-
theses ).
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Outcome TRAFFICDIF FREEWAYMEAN GINIOPER GINIBLDG
PRICEDIF 0.6906 (0.3131) 0.3372 (0.5284) 1.6889 (0.8463) 0.6254 (0.3268)
BRANDDIF 0.2450 (0.1236) -0.0623 (0.5626) -1.4985 (1.0834) 0.9007 (0.5366)
HOURSDIF 0.3172 (0.1208) -0.2778 (0.5238) 0.8204 (0.4114) 1.1824 (0.5867)

NOZDIF 0.2677 (0.1937) 0.0555 (0.5222) 0.7938 (0.3586) 0.7745 (0.3722)
PAY DIF 0.6371 (0.3025) -0.5198 (0.5142) 0.0959 (1.0769) 0.3936 (0.3927)
FULLDIF 0.1069 (0.0803) -0.3490 (0.5692) 1.0247 (0.6355) 1.5431 (0.7494)
CONVDIF -0.1243 (0.3094) 0.4350 (0.5472) 2.2532 (1.2191) -0.3259 (1.2716)
WASHDIF 0.3000 (0.1947) -0.7157 (0.5145) -0.1228 (1.3340) 1.1389 (0.5735)
BAYDIF 0.1721 (0.0854) 0.2025 (0.5431) 1.8459 (0.9812) 1.8980 (0.9089)

Table 9: Univariate Logit Results - Coefficients of Control Variables ( Standard errors within
parentheses ).

3.5.2 Trivariate Logit Results

The results from estimating fifteen different specifications of the trivariate logit model are re-

ported in Tables 10 - 14.19 As far as unobserved correlations among outcomes are concerned,

the following pair-wise correlations are found to be positive and significant: (1) PRICEDIF

and CONVDIF (Tables 10, 11, 12, 13, 14), (2) PRICEDIF and BAYDIF (Tables 10, 11, 12,

13), (3) HOURSDIF and WASHDIF (Table 11), (4) HOURSDIF and CONVDIF (Table

11), (5) HOURSDIF and BAYDIF (Table 11), (6) FULLDIF and CONVDIF (Table 14),

(7) PRICEDIF and FULLDIF (Table 14). The following pair-wise correlations are found to

be negative and significant: (1) BRANDDIF and CONVDIF (Table 10), and (2) PAYDIF

andWASHDIF (Table 13). This implies that at least some of the outcome variables are jointly

endogenous for reasons unobserved by the econometrician, and vindicates our employment of

the multivariate logit model (over independent univariate logit models).

In thirty eight out of the forty five cases represented in Tables 10-14, the effect of SPREAD

is found to be positive and significant, which is strongly consistent with the implications of our

theory. For NOZDIF and PAYDIF , the effect of SPREAD is found to be insignificant in all

cases. These findings are all consistent with those obtained using the univariate logit models

earlier (see Tables 8-9).

In thirty six out of the forty five cases represented in Tables 10-14, the effect of NUM/AREA

is found to be positive and significant, which is strongly consistent with the implications of

our theory. For HOURSDIF and WASHDIF , the effect of NUM/AREA is found to be

19Only the coefficients of the key variables are reported in Tables 10-14. The effects of control variables are
consistent with those reported for the univariate logits in Tables 8-9 and are reported in the Appendix.
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insignificant in all cases. These findings are all qualitatively similar to those obtained using the

univariate logit models earlier (see Tables 8-9).

Overall, the results from the trivariate logit models strongly support the implications of

our theoretical model. Also, three of the control variables — TRAFFICDIF,GINIOPER and

GINIBLDG — are found to have the hypothesized positive effects on the outcome variables,

and these results are also consistent with those obtained using the univariate logit models (see

Tables 8-9).20

Outcome Intercept SPREAD/1000 NUM/AREA
MODEL1

PRICEDIF -3.0801 (0.9064) 0.0234 (0.0114) 0.0152 (0.0091)
BRANDDIF -1.0635 (0.6474) 0.0307 (0.0026) 0.0746 (0.0036)
CONV DIF -2.5838 (0.8572) 0.0232 (0.0111) 0.3103 (0.0948)

γ12 0.0561 (0.3067)
γ13 1.0970 (0.3481)
γ23 -0.8531 (0.3402)

MODEL2
PRICEDIF -3.0111 (0.8736) 0.0287 (0.0128) 0.0820 (0.0338)
BRANDDIF -0.9594 (0.8592) 0.0267 (0.0119) 0.0253 (0.0073)
WASHDIF -0.2672 (0.8167) 0.0113 (0.0017) -0.1187 (0.0746)

γ12 -0.1427 (0.3195)
γ13 0.0341 (0.1729)
γ23 -0.0275 (0.2521)

MODEL3
PRICEDIF -2.9545 (0.8562) 0.0258 (0.0129) 0.0504 (0.0237)
BRANDDIF -0.9988 (0.7058) 0.0272 (0.0120) 0.0324 (0.0169)

BAY DIF -3.1116 (0.7647) 0.0139 (0.0030) 0.1366 (0.0606)
γ12 -0.0917 (0.3355)
γ13 1.0169 (0.3136)
γ23 -0.2269 (0.3257)

Table 10: Trivariate Logit Results - Coefficients of Key Variables ( Standard errors within
parentheses ).

In order to test the robustness of our empirical findings, we also estimate univariate and

trivariate logit models that employ an alternative operationalization of the locational differ-

entiation measure, i.e., V IS, which measures the average relative visibility of stations within

the local market from each other (as explained earlier). The results from using this alterna-

tive operationalization are consistent with those obtained using NUM/AREA, except that the

standard errors associated with the V IS coefficients are uniformly larger, which renders several

of the associated estimates to be statistically insignificant (although they are correctly signed).

Therefore, we choose to report the results obtained using NUM/AREA.21 We also estimate

20These results are reported in the Appendix.
21These results obtained using VIS are available from the authors.
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Outcome Intercept SPREAD/1000 NUM/AREA
MODEL4

PRICEDIF -3.0583 (0.8722) 0.0226 (0.0115) 0.0174 (0.0089)
HOURSDIF -2.5380 (0.8238) 0.0421 (0.0137) -0.0411 (0.0763)
CONVDIF -2.7115 (0.8583) 0.0129 (0.0011) 0.2997 (0.0934)

γ12 0.1330 (0.3364)
γ13 1.0716 (0.3478)
γ23 0.4584 (0.3445)

MODEL5
PRICEDIF -3.0230 (0.8628) 0.0256 (0.0121) 0.0811 (0.0346)
HOURSDIF -2.8746 (0.8592) 0.0425 (0.0139) 0.0022 (0.0017)
WASHDIF -0.2374 (0.8104) 0.0053 (0.0013) -0.1192 (0.0746)

γ12 0.2391 (0.3314)
γ13 -0.0003 (0.1973)
γ23 0.6389 (0.3191)

MODEL6
PRICEDIF -2.9786 (0.8533) 0.0257 (0.0136) 0.0489 (0.0222)
HOURSDIF -2.5331 (0.8482) 0.0434 (0.0141) -0.0569 (0.0750)

BAYDIF -3.3098 (0.9574) 0.0001 (0.0001) 0.1526 (0.0839)
γ12 -0.0664 (0.4512)
γ13 1.0418 (0.3716)
γ23 1.3582 (0.3684)

Table 11: Trivariate Logit Results - Coefficients of Key Variables ( Standard errors within
parentheses ).

linear regression models to explain the same price and service differentiation outcomes, and the

results from these models are qualitatively similar to those obtained using the univariate logit

models (these results are reported in the Appendix).
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Outcome Intercept SPREAD/1000 NUM/AREA
MODEL7

PRICEDIF -2.8831 (0.9199) 0.0225 (0.0113) 0.0166 (0.0086)
NOZDIF -0.5201 (0.7251) -0.0094 (0.0119) 0.0036 (0.0017)

CONVDIF -2.8002 (0.8649) 0.0175 (0.0026) 0.2951 (0.0931)
γ12 -0.5896 (0.3386)
γ13 1.1163 (0.3472)
γ23 0.2175 (0.3432)

MODEL8
PRICEDIF -2.8957 (0.8732) 0.0266 (0.0127) 0.0843 (0.0344)
NOZDIF -0.6671 (0.7655) -0.0094 (0.0119) 0.0242 (0.0069)

WASHDIF -0.3907 (0.7775) 0.0118 (0.0020) -0.1206 (0.0735)
γ12 -0.5423 (0.3253)
γ13 0.0745 (0.3190)
γ23 0.3060 (0.3180)

MODEL9
PRICEDIF -2.7989 (0.8224) 0.0240 (0.0120) 0.0512 (0.0206)
NOZDIF -0.5149 (1.1868) -0.0089 (0.0020) 0.0112 (0.0016)
BAYDIF -3.2267 (0.7246) 0.0128 (0.0013) 0.1344 (0.0804)

γ12 -0.5734 (0.3034)
γ13 1.0434 (0.3191)
γ23 0.1556 (0.3077)

Table 12: Trivariate Logit Results - Coefficients of Key Variables ( Standard errors within
parentheses ).

Outcome Intercept SPREAD/1000 NUM/AREA
MODEL10
PRICEDIF -2.8720 (0.9591) 0.0231 (0.0112) 0.0307 (0.0103)
PAY DIF -0.6749 (0.7712) -0.0046 (0.0124) 0.0864 (0.0360)

CONVDIF -2.8468 (0.8667) 0.0174 (0.0027) 0.2883 (0.0930)
γ12 -0.7323 (0.3503)
γ13 1.1431 (0.3494)
γ23 0.3507 (0.3476)

MODEL11
PRICEDIF -2.8236 (0.8959) 0.0276 (0.0128) 0.0941 (0.0456)
PAY DIF -0.3905 (0.7993) -0.0014 (0.0132) 0.0872 (0.0352)

WASHDIF -0.0312 (0.1862) 0.0110 (0.0095) -0.1041 (0.0733)
γ12 -0.6583 (0.3399)
γ13 -0.0729 (0.3054)
γ23 -0.7429 (0.3219)

MODEL12
PRICEDIF -2.8133 (0.8648) 0.0248 (0.0120) 0.0651 (0.0268)
PAY DIF -0.7092 (0.7619) -0.0030 (0.0125) 0.1093 (0.0544)
BAYDIF -3.1170 (0.9107) 0.0124 (0.0028) 0.1385 (0.0807)

γ12 -0.6126 (0.3447)
γ13 1.0017 (0.3371)
γ23 -0.1476 (0.3654)

Table 13: Trivariate Logit Results - Coefficients of Key Variables ( Standard errors within
parentheses ).
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Outcome Intercept SPREAD/1000 NUM/AREA
MODEL13
PRICEDIF -3.0008 (1.1126) 0.0215 (0.0113) 0.0091 (0.0023)
FULLDIF -3.9628 (1.0387) 0.0288 (0.0136) 0.0744 (0.0086)
CONV DIF -2.6255 (0.9257) 0.0066 (0.0044) 0.2683 (0.0996)

γ12 0.4760 (0.4094)
γ13 0.9189 (0.4001)
γ23 1.9451 (0.4171)

MODEL14
PRICEDIF -2.9373 (0.8304) 0.0227 (0.0108) 0.0516 (0.0255)
FULLDIF -3.7034 (0.9685) 0.0311 (0.0132) 0.1676 (0.0779)
WASHDIF -3.1544 (1.0081) -0.0029 (0.0148) 0.0755 (0.0410)

γ12 0.4205 (0.4129)
γ13 0.8404 (0.3749)
γ23 2.5170 (0.4598)

MODEL15
PRICEDIF -2.9376 (0.8508) 0.0231 (0.0112) 0.0405 (0.0162)
FULLDIF -3.9521 (1.0812) 0.0328 (0.0148) 0.1291 (0.0645)
BAY DIF -3.1544 (1.0081) -0.0029 (0.0148) 0.0755 (0.0310)

γ12 0.4205 (0.4129)
γ13 0.8404 (0.3749)
γ23 2.5170 (0.4598)

Table 14: Trivariate Logit Results - Coefficients of Key Variables ( Standard errors within
parentheses ).
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4 Conclusion

In many markets, firms compete both in their product design as well as in their price choices.

The literature on imperfect competition has examined the impact of horizontal differences among

consumers (as in models of spatial competition), as well as differences in consumer valuations

for product quality (as in models of vertical differentiation). A variety of retail markets are

characterized by the presence of consumer heterogeneity on both of these dimensions. Retail

gasoline markets present a nice empirical environment to examine the interaction between these

dimensions and their effect on the competitive product design and price choices of firms. In

markets where the locational (horizontal) differentiation between retailers is strong relative to

the diversity in consumers’ valuations for quality, retailers adopt similar strategies. In contrast,

markets with low locational differentiation and substantial vertical heterogeneity drive retailers

towards differentiated behavior.

Using data from the retail gasoline market in Saint Louis, we are able to show that the

degree of local competitive intensity and the dispersion in consumer incomes are sufficient to

explain the variations in the product and pricing choices of competing firms. We show that

the standard deviation of price in a market is positively related to the standard deviation of

per-capita income in that market. In addition, the standard deviation of important quality

characteristics of stations (such as brand name, full service, pay at pump etc.) in a market is

also positively related to the standard deviation of income. The empirical study also finds that

the standard deviation of price and service characteristics are higher for clustered gas stations

which face more direct competition from one another than for stations in less clustered markets.

Thus our study is able to establish how the product and pricing decisions of competitive firms

are jointly affected by some fundamental characteristics of local markets.
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5 Appendix

5.1 Symmetric Equilibrium

The second-order conditions
∂2πj(·)
∂q2j

< 0 imply that t > 2υθl
9(υ+1)) . In this range, the reduced-form

profit functions are strictly quasi-concave and continuous in qj . From Dasgupta and Maskin
(1986), the strict quasi-concavity and the continuity of the reduced-form profit functions are
sufficient for the existence of a pure-strategy equilibrium. Consider the range t > 2υθl

9(υ+1)) . Si-
multaneously solving the reaction functions results in the unique symmetric equilibrium reported
in the paper.

5.2 Asymmetric Equilibrium

Here we solve for the asymmetric equilibrium of the model, which involves one firm (say, Firm
1) offering higher quality and price and selling to the higher valuation segment, while the other
firm offers lower quality and price and sells to the lower valuation segment. Consider the
individual rationality and the incentive compatibility constraints for this asymmetric equilibrium
shown in equations (6)-(9). First, it can be noted that given that each firm is selling to one
complete segment of consumers, if the incentive compatibility constraint for a firm is binding,
then the individual rationality constraint for that firm should be slack. Similarly, if the individual
rationality constraint for a firm is binding, the incentive compatibility constraint for that firm
must be slack.

Consider now the case when equations (7) and (8) are the binding constraints, while equations
(6) and (9) are slack. From equation (7), we have p2 = θlq2− tθl and p1 = p2+ θh(q1− q2)− tθh.
The profit functions of the two firms are π1 =

p1
2 −

q21
2 and π2 =

p2
2 −

q22
2 , from which the

equilibrium quality choices are q∗1 =
θh
2 = υθl

2 and q∗2 =
θl
2 . Therefore, the equilibrium prices

are p∗1 =
θ2l
2 [1 + υ(υ − 1)] − tθl(υ + 1) and p∗2 = θ2l

2 − tθl. To identify the condition for the
existence of this equilibrium, we use the slack constraints. Specifically, from equation (9) we

have that t < θl
2
(υ−1)2
υ+1 . For the equilibrium quality and price levels, the inequality in equation

(6) is strictly satisfied. Also we require that the equilibrium prices be positive, which implies
that p∗2 > 0 which implies that t <

θl
2 .

We now have to check to ensure that there is no profitable deviation from the equilibrium
strategy for either firm. Let us first look at possible deviations for Firm 2 (the low quality, low
price firm), given that Firm 1 is at the equilibrium strategy. Consider a general deviation in
which Firm 2 serves 0 < y2d < 1 high type consumers closest to it, and some 0 < x2d < 1 low
type consumers. Then y2d is determined by θhq2d− p2d− tθhy2d− [θhq∗1 − p∗1 − tθh(1− y2d)] = 0
and x2d is given by θlq − p − tθlx2d = 0. The deviation profits are π2d = p2d(

y2d+x2d
2 ) − q22d

2 .
We solve first for the optimal p2d and then substitute it in the profits to then solve for the
optimal q2d. The second-order condition for a maximum with respect to q2d implies t >

9υ
8(1+2υ) ,

otherwise π2d will be at a minimum of zero. Comparing π2d to the equilibrium profits, it
can be shown that when t > 9υ

8(1+2υ) , the equilibrium profits are always higher and, therefore,
this deviation cannot be profitable. Next, consider a deviation in which Firm 2 abandons
the low type segment and competes only in the high type segment. Again, if 0 < y2d <
1, high type consumers along the line closest to it buy from Firm 2, then y2d is given by
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θhq2d − p2d − tθhy2d − [θhq∗1 − p∗1 − tθh(1− y2d)] = 0. The profit for Firm 2 is π2d =
p2dy2d
2 − q22d

2 .
The second-order condition for a maximum is t > υ

8 , and in this range the deviation profits
are greater than the equilibrium profits. But for t < υ

8 the equilibrium profits are greater than
the deviation profits. Finally, there can be a possible deviation in which Firm 2 sells to all the
consumers in the market and an analysis similar to that above shows that this deviation is also
not possible.

Next we check for possible deviations by Firm 1, i.e., the high quality firm (given that Firm
2 is adopting the equilibrium strategy). Consider a general deviation in which Firm 1 serves
0 < x1d < 1 low type consumers closest to it and some 0 < y1d < 1. Then x1d is determined by
θlq1d − tθlx1d − p1d − (θls∗2 − tθl(1− x1d)− p∗2) = 0 and y1d is given by θhq1d − tθhy1d − p1d = 0.
Calculations can show that the deviation profits for this case will be lower than the equilibrium
profits. Finally, we must check the possible deviation for Firm 1 in which it sells to the entire
market. We can show that this deviation is not profitable if t < υ2−2υ−2

4(υ−3) .

Next, for r = 0 and θl = 1 we need that t <
υ2−2υ+2
4(υ+1) for Firm 1’s equilibrium profit to be

positive, and t < 1
4 for Firm 2’s equilibrium profit to be positive. Collecting all the constraints

reported above and identifying the binding constraints we have that the asymmetric equilibrium

exists when t < min{ (υ−1)22(υ+1) ,
υ2−2υ−2
4(υ−3) , υ2−2υ+2

4(υ+1) , 1
4}.

The asymmetric equilibrium for the case when equations (6) and (9) are the binding con-
straints can be solved in a similar fashion.

5.3 Coefficients of Control Variables from the Trivariate Logit Model

Outcome TRAFFICDIF FREEWAYMEAN GINIOPER GINIBLDG
MODEL1

PRICEDIF 0.7643 (0.3253) 0.2439 (0.5364) 1.2534 (0.6142) 0.7199 (0.3012)
BRANDDIF 0.2201 (0.1035) 0.0131 (0.0690) -1.1586 (1.1162) 0.8677 (0.4607)
CONVDIF -0.2662 (0.3307) 0.3793 (0.5649) 1.7224 (0.8221) -0.3248 (1.3872)
MODEL2

PRICEDIF 0.6976 (0.3129) 0.3411 (0.5356) 1.6411 (0.6669) 0.6467 (0.2489)
BRANDDIF 0.2691 (0.1279) -0.0568 (0.6580) -1.4472 (1.0903) 0.9266 (0.5175)
WASHDIF 0.2966 (0.1945) -0.7188 (0.5313) -0.1458 (1.1818) 1.1409 (0.5571)
MODEL3

PRICEDIF 0.6960 (0.2998) 0.3086 (0.5438) 1.3150 (0.6701) 0.2794 (0.1174)
BRANDDIF 0.2680 (0.1323) -0.0474 (0.3049) -1.3785 (1.0543) 0.9921 (0.5179)

BAYDIF 0.0273 (0.0912) 0.1287 (0.4490) 1.4615 (0.7944) 1.8921 (0.9121)

Table 15: Trivariate Logit Results - Coefficients of Control Variables ( Standard errors within
parentheses ).
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Outcome TRAFFICDIF FREEWAYMEAN GINIOPER GINIBLDG
MODEL4

PRICEDIF 0.7575 (0.3251) 0.2540 (0.5509) 1.2215 (0.6850) 0.6953 (0.2593)
HOURSDIF 0.3142 (0.1111) -0.3345 (0.5263) 0.5592 (0.2568) 1.2059 (0.6076)
CONV DIF -0.3425 (0.3307) 0.4108 (0.5649) 1.9027 (0.8221) -0.6246 (1.3872)
MODEL5

PRICEDIF 0.6754 (0.3149) 0.3528 (0.5702) 1.6492 (0.6499) 0.5637 (0.2394)
HOURSDIF 0.2402 (0.1119) -0.1898 (0.5295) 0.7697 (0.4330) 1.0022 (0.5069)
WASHDIF 0.2611 (0.1980) -0.6928 (0.5281) -0.2451 (1.4812) 0.9932 (0.3618)
MODEL6

PRICEDIF 0.6941 (0.3302) 0.3050 (0.5435) 1.3498 (0.6042) 0.2681 (0.1603)
HOURSDIF 0.3059 (0.1504) -0.3582 (0.5788) 0.3379 (0.2374) 0.7755 (0.3435)

BAYDIF -0.0794 (0.4471) 0.2389 (0.6163) 1.4454 (0.7861) 1.5958 (0.8161)

Table 16: Trivariate Logit Results - Coefficients of Control Variables ( Standard errors within
parentheses ).

Outcome TRAFFICDIF FREEWAYMEAN GINIOPER GINIBLDG
MODEL7

PRICEDIF 0.8184 (0.3304) 0.2554 (0.5646) 1.3682 (0.6327) 0.8508 (0.3395)
NOZDIF 0.3685 (0.2032) 0.0780 (0.4913) 0.9262 (0.4677) 0.8736 (0.4599)

CONV DIF -0.3292 (0.3306) 0.3729 (0.5679) 1.9092 (0.8971) -0.5442 (1.3566)
MODEL8

PRICEDIF 0.7307 (0.3182) 0.3627 (0.5518) 1.8209 (0.6584) 0.7135 (0.2373)
NOZDIF 0.3332 (0.3026) 0.1478 (0.4895) 1.0230 (0.4805) 0.7735 (0.3374)

WASHDIF 0.2706 (0.1008) -0.7291 (0.5128) -0.2106 (0.8733) 1.0792 (0.5233)
MODEL9

PRICEDIF 0.7381 (0.2965) 0.3226 (0.5299) 1.4765 (0.6806) 0.3643 (0.1116)
NOZDIF 0.3538 (0.3012) 0.0913 (0.5671) 0.9596 (0.4029) 0.8054 (0.3774)
BAYDIF -0.0003 (0.3786) 0.1279 (0.2256) 1.5019 (0.7430) 1.8085 (0.8856)

Table 17: Trivariate Logit Results - Coefficients of Control Variables ( Standard errors within
parentheses ).

Outcome TRAFFICDIF FREEWAYMEAN GINIOPER GINIBLDG
MODEL10
PRICEDIF 0.8957 (0.3353) 0.1601 (0.6327) 1.2718 (0.6069) 0.8077 (0.3970)
PAY DIF 0.7762 (0.3162) -0.5148 (0.5227) 0.2065 (1.2250) 0.5127 (0.2856)

CONV DIF -0.3715 (0.3334) 0.4174 (0.5653) 1.9410 (0.8474) -0.5377 (1.2925)
MODEL11
PRICEDIF 0.8085 (0.3244) 0.2531 (0.5794) 1.7359 (0.7509) 0.7096 (0.3092)
PAY DIF 0.8257 (0.3207) -0.6286 (0.5263) 0.3227 (1.1305) 0.6956 (0.3334)

WASHDIF 0.4319 (0.3044) -0.8217 (0.4518) -0.0839 (1.1957) 1.2426 (0.6063)
MODEL12
PRICEDIF 0.7951 (0.3338) 0.2434 (0.5689) 1.3984 (0.6657) 0.3232 (0.1173)
PAY DIF 0.7500 (0.3122) -0.4819 (0.5185) 0.3862 (1.2359) 0.5248 (0.2637)
BAYDIF 0.0379 (0.4001) 0.1153 (0.5544) 1.5503 (0.7405) 1.8534 (0.9678)

Table 18: Trivariate Logit Results - Coefficients of Control Variables ( Standard errors within
parentheses ).
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Outcome TRAFFICDIF FREEWAYMEAN GINIOPER GINIBLDG
MODEL13
PRICEDIF 0.7584 (0.3300) 0.3027 (0.5635) 1.2424 (0.6134) 0.5988 (0.2542)
FULLDIF 0.1160 (0.4032) -0.6903 (0.6516) -0.0761 (1.6407) 1.8850 (0.9218)
CONV DIF -0.3474 (0.3536) 0.6340 (0.6462) 1.9754 (0.9597) -1.0756 (1.3333)
MODEL14
PRICEDIF 0.6942 (0.3163) 0.4159 (0.5399) 1.5745 (0.7635) 0.4261 (0.2299)
FULLDIF -0.0332 (0.3163) -0.4006 (0.5839) 0.7338 (0.4394) 1.4171 (0.7854)
WASHDIF 0.2958 (0.2881) -0.7049 (0.5130) -0.1568 (0.9773) 1.1027 (0.5773)
MODEL15
PRICEDIF 0.6924 (0.3197) 0.3533 (0.5415) 1.3488 (0.6015) 0.2220 (0.1795)
FULLDIF -0.0358 (0.3145) -0.6405 (0.6677) -0.0669 (0.6982) 0.6895 (0.2893)
BAYDIF 0.0289 (0.0573) 0.4248 (0.6428) 1.5493 (0.7848) 1.5699 (0.7980)

Table 19: Trivariate Logit Results - Coefficients of Control Variables ( Standard errors within
parentheses ).
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5.4 Results from the Linear Regression Model

Outcome Intercept SPREAD/1000 NUM/AREA
PRICEDIF -6.2645 (6.9604) 0.3038 (0.1235) 0.5688 (0.2378)
BRANDDIF 0.2226 (0.0937) 0.0024 (0.0010) 0.0047 (0.0010)
HOURSDIF -0.0060 (0.1017) 0.0059 (0.0016) -0.0041 (0.0093)

NOZDIF 1.0235 (0.2704) -0.0041 (0.0043) -0.0336 (0.0258)
PAY DIF 0.2849 (0.0977) -0.0010 (0.0015) 0.0021 (0.0009)
FULLDIF -0.1196 (0.0856) 0.0047 (0.0014) 0.0185 (0.0082)
CONV DIF -0.0260 (0.0963) 0.0030 (0.0015) 0.0341 (0.0092)
WASHDIF 0.2931 (0.1008) 0.0021 (0.0010) -0.0178 (0.0096)
BAY DIF -0.0630 (0.0971) 0.0026 (0.0012) 0.0145 (0.0072)

Table 20: Linear Regression Results - Coefficients of Key Variables ( Standard errors within
parentheses ).

Outcome TRAFFICDIF FREEWAYMEAN GINIOPER GINIBLDG
PRICEDIF 7.9675 (3.1689) 3.7470 (5.0122) 12.3002 (5.3738) 6.2644 (2.6624)
BRANDDIF -0.0029 (0.0379) -0.0107 (0.0649) -0.0349 (0.1369) 0.2547 (0.1245)
HOURSDIF 0.0524 (0.0293) -0.0463 (0.0679) 0.0624 (0.0330) 0.1768 (0.0807)

NOZDIF 0.1589 (0.1088) -0.2090 (0.1872) 0.3475 (0.1950) 0.5723 (0.2164)
PAY DIF 0.0764 (0.0393) -0.1318 (0.0676) 0.1259 (0.0431) 0.2073 (0.1008)
FULLDIF 0.0096 (0.0345) -0.0264 (0.0593) 0.1248 (0.0555) 0.0428 (0.0222)
CONVDIF -0.0285 (0.0385) 0.0791 (0.0664) 0.3306 (0.1401) -0.1914 (0.1476)
WASHDIF 0.0399 (0.0406) -0.1326 (0.0698) -0.0205 (0.1518) 0.0958 (0.0491)
BAYDIF 0.0163 (0.0188) 0.0310 (0.0671) 0.2816 (0.1410) 0.0658 (0.0493)

Table 21: Linear Regression Results - Coefficients of Control Variables ( Standard errors within
parentheses ).

36


