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Abstract

Firms face a fundamental precision-recall trade-off in choosing their tar-

geting strategies. They can choose to target a smaller set of consumers with

a high probability of conversion (precision) but miss out on many consumers

who might still be interested in their product. Conversely, firms can target a

larger set of consumers (recall), but this results in a greater probability that

their targeting is wasted on uninterested consumers. This trade-off is par-

ticularly relevant in contemporary targeting contexts when firms use machine

learning algorithms to predict the probability with which individual consumers

will be interested. We study this precision-recall trade-off under competition

between firms who strategically choose their algorithmic targeting policies. We

show that competing firms favor a targeting policy that has higher precision

but lower recall as compared to a monopoly. Firms target fewer consumers

when their algorithms are more correlated. They also strategically decrease

the precision of their targeting policies in order to reduce competition. If firms

endogenously choose their algorithmic correlation, then there is an equilibrium

incentive to decrease the correlation.

Keywords Precision-Recall Trade-off, Targeted Advertising, Machine Learn-

ing, Algorithms
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I Introduction

Targeting is fundamental to marketing strategy. One of the general challenges in

targeted marketing is reducing wastage: Firms must focus their marketing budget on

consumers who are most likely to be interested in their products, which requires them

to make predictions of consumer types based on observable characteristics and be-

havior. At the core the prediction of consumer types for targeting can be interpreted

as a classification problem - i.e., trying to predict whether a consumer is interested in

the product and the likelihood that she will make a purchase if targeted by the firms’

marketing activities. The traditional targeting examined in the literature typically

involves targeting based on simple binary prediction signals of the consumers’ inter-

est in the product. However, in the contemporary digital economy firms have rich

information on consumer characteristics, opinions, behaviors, and social interactions.

As part of their data analytics strategy, firms can increasingly use AI and machine

learning algorithms to produce individual-level predictions for targeting consumers.

In general, any algorithm, ranging from a simple Logit regression to a more

complex neural network, takes data on observed consumer characteristics and behav-

iors as input and produces a probability or likelihood of conversion that firms can

use for targeting consumers as the output. In other words, in most contexts involv-

ing algorithmic targeting, firms do not target based on binary signals as is typically

modeled in the literature. Instead, they face a distribution of probabilities for which

they need to decide whom to target. For every individual consumer, the algorithm

produces a probability with which the consumer will be interested in purchasing. For

example, Shi et al. (2022) describe how Alibaba decides which customers to target

with promotional messages based on the predicted likelihood of visits and purchases

(i.e., algorithmic scores), which are generated using machine learning algorithms using

high-dimensional consumer data. Our framework captures this aspect of the classifi-

cation problem and shows that it is important for characterizing the precision-recall
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trade-off in the competitive algorithmic targeting strategies of firms.

In reality, the classification of consumers by algorithms is always imperfect

because of data limitations, privacy concerns, or model selection constraints. Given

this, the firm faces a fundamental trade-off associated with classification problems

relevant to all machine learning models, namely the “precision-recall” trade-off. In

the context of targeting, precision is defined as the share of interested consumers

among all consumers targeted by the firm - i.e., it measures to what extent consumers

targeted are indeed interested in the product. On the other hand, recall is defined as

the share of interested consumers targeted out of all interested consumers.

Firms can either focus on a smaller set of consumers with high predicted prob-

abilities of conversion (precision) so that most targeted consumers indeed turn out to

be those who are interested and purchase the product, or they can target a larger set

of consumers so that most of the interested consumers are targeted (recall), but not

both. For the intermediate consumers who have moderate likelihoods, there will be

some consumers who are interested but whom the firm will miss out on targeting if it

prioritizes precision; whereas there will be others who are uninterested and on whom

the firm will waste its advertising budget if it prioritizes recall. In practice, there is

evidence that firms are well aware of this trade-off. For example, LinkedIn suggests

advertisers to “balance precision with volume” in their targeting policies1.

In this paper, we examine the precision-recall trade-off in competitive target-

ing. How should a firm choose its targeting policy, and what are the equilibrium

targeting policies of competing firms? In practice the algorithmic predictions of firms

might be correlated either because firms may use public data or similar data ana-

lytics tools. What is the impact of the correlation in the firms’ algorithms on their

precision and recall choices? The model considers competition between two firms

for a set of consumers. Consumers have a binary type: they are either interested in

1https://www.linkedin.com/business/marketing/blog/content-marketing/

what-is-b2b-marketing-definition-strategy-and-trends
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the product and will make a purchase if targeted, or are not interested and will not

make a purchase even if they are targeted. Firms do not know the type of consumers

and they rely on algorithms to make predictions. The algorithm takes as input the

available consumer and market information and generates as output a distribution of

probabilities that consumers are interested in purchasing. Firms then simultaneously

decide who to target based on the predictions. Each firm makes a profit for every

interested consumer that they end up targeting, and they also incur a cost for every

consumer targeted. If a consumer is targeted by both firms, the profit they generate

is lower than the monopoly profit when the consumer is targeted by only one firm.

Competing firms favor a targeting policy that has greater precision but lower

recall relative to a monopoly. In other words, firms strategically respond in equilib-

rium by concentrating their targeting efforts on consumers who have a higher likeli-

hood of conversion, resulting in higher precision of their targeting. For the competing

firms, given possible correlation in their predictions, the equilibrium expected profit

of a firm depends on the other firm’s targeting policy. We first show that there ex-

ists a unique mixed-strategy symmetric equilibrium. In this equilibrium, when firms’

algorithmic predictions have a high enough correlation, they will never target any

consumer for sure. Consumers with higher predicted probabilities of being interested

will be targeted with a higher probability. When the correlation is not that high,

both firms target consumers who they predict to have a sufficiently high likelihood

of being interested for sure, while mixing for consumers who have moderately high

conversion probabilities.

The correlation in the firms’ algorithms has a nuanced effect on the precision-

recall trade-off in targeting. The equilibrium targeting intensity - i.e., the overall

number of consumers targeted - decreases in the correlation of firms’ predictions

because a greater overlap in targeting reduces the expected profits. Thus, both firms

strategically target fewer consumers as their predictions become more correlated, and

this helps to soften competition.
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How does correlation change the precision and recall choices? We find that

as firms’ predictions converge, recall decreases as firms target fewer consumers. Sur-

prisingly, precision also decreases. In other words, firms on average target consumers

who are less likely to be interested. The total number of consumers being targeted

generally decreases with competition even if firms’ predictions are uncorrelated, im-

plying that competition may reduce consumer welfare by creating less information

value for consumers. As firms’ predictions become more correlated, the information

value further decreases.

We extend the model to allow for endogenous correlation of predictions. We

find firms have an incentive to invest in lowering the correlation of their predictions.

In another extension, we also consider asymmetric pure strategy equilibria, to show

that our main result on the precision-recall trade-off under competition continues to

hold.

I.A Related Research

We contribute to the classic research stream on the competitive effects of targeted

advertising (Chen et al., 2001; Chen and Iyer, 2002; Iyer et al., 2005; Bergemann

and Bonatti, 2011; Zhang and Katona, 2012; Johnson, 2013; Chen et al., 2017; Lauga

et al., 2018; Shin and Yu, 2021; Ke et al., 2022; Choi et al., 2023; Ning et al., 2023).

Contrary to the standard assumption in the literature that firms receive a binary

signal of the consumer’s type, our model directly represents the output of a machine

learning algorithm as a distribution of the probability of conversion across consumers.

By modeling the micro foundation of the signal structure from machine learning algo-

rithms we are able to study the precision-recall trade-off and describe how algorithmic

predictions affect targeting policies. There are also some recent papers that exam-

ine precision and recall in the context of marketing strategy choices: Berman et al.

(2023) examine a recommendation algorithm’s choice of precision and recall in de-

signing the optimal information structure to persuade consumers who are uncertain
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about product fit. Jerath and Ren (2021) consider the consumer’s attention alloca-

tion to favorable and unfavorable information which has precision recall type effects.

Overall the focus of these studies is the design of the information structure to influ-

ence consumers, whereas our paper examines the choice of precision and recall in the

design of firms’ competitive targeting strategies.

We also contribute to the growing literature on strategic interactions of al-

gorithms and machine learning models(Liang, 2019; Miklós-Thal and Tucker, 2019;

Salant and Cherry, 2020; Calvano et al., 2020; O’Connor and Wilson, 2021; Mon-

tiel Olea et al., 2022). Closely related to our work, Iyer and Ke (2023) consider the

model selection problem and the bias-variance trade-off in the context of targeting.

They find competition favors bias because it can help firms manage overlaps in tar-

geting, thereby softening competition. We focus on a different trade-off that is also

a general feature of machine learning models. The precision-recall trade-off is not

about model selection, but rather about firms’ decision rule given the prediction that

the model generates. In other words, Iyer and Ke (2023) studies how to pick an algo-

rithmic model, while we focus on the micro-foundations of how to deploy algorithmic

targeting - i.e., who and how to target given the model’s predictions. This is a feature

that would apply, in general, to the deployment of any machine learning model design

that the firm may end up choosing.

II Model

II.A Basic Setup

There is a market with up to two firms and a unit mass of consumers. Consumers

are of two types: interested or uninterested. Interested consumers, if targeted, will

make a purchase. Uninterested consumers, as well as interested consumers who are
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not targeted by the firm, will not make a purchase.2 The prior probability that a

consumer is interested is µ0. Firms are uncertain about the type of any individual

consumer. They rely on predictions from an information system to identify interested

consumers. In the context of contemporary big data environments, such a predictive

information system can be a machine learning algorithm that provides predictions

to identify interested consumers at the individual level. An algorithm, e.g., Logit

regression or a more complicated neural network, uses data on consumer and market

characteristics, and yields a prediction for each individual consumer, which is the like-

lihood with which the consumer is interested in the product. Accordingly, we assume

that the prediction for consumer i is the probability pi of that consumer i being inter-

ested. The distribution of the predictions f(p) is defined on the support [0, 1]. This

distribution characterizes the informativeness of the algorithm, which is determined

by the limits of the data and the sophistication of the algorithm. The distribution

is Bayesian consistent, i.e., the expected probability of a consumer being interested

is
∫
pf(p)dp = µ0, the prior probability. At one extreme, a perfect algorithm has a

bimodal distribution with two mass points at p = 0 and p = 1. In contrast, a fully

uninformative algorithm has a unimodal distribution with one mass point at p = µ0.

Firms produce competing products and they reach consumers through targeted

advertising. If an interested consumer is targeted by only one firm, they will generate

value v for the firm. If both firms target the same consumer, they will generate

an expected value w < v for each firm. The unit cost of targeting is c, which is

also assumed to be less than v, as otherwise no firm has an incentive to target any

consumer. The firm decides which consumers to target based on the predictions of

its algorithm. Specifically, consider a targeting policy of q(p) ∈ [0, 1], in which q(p)

is the share of probability-p consumers being targeted. Therefore, we allow firms to

use mixed strategies, which can be interpreted in the standard manner as different

2A standard interpretation of this assumption is advertising as information - that advertising

creates awareness of the existence of the product.
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advertising intensities (for example, across time or media channels).

This is a general framework that accommodates the standard models in the

targeting literature. For example, the Chen et al. (2001) model assumes that firms can

receive noisy binary signals about consumer types. Mapping this to our framework,

the signal structure represented by the targetability measure in Chen et al. (2001) is

a degenerate bimodal posterior distribution of consumer types (loyal and switcher).

As firms’ targetability increases, the two mass points of the bimodal distribution

shift away from the prior. The perfect targetability case corresponds to the bimodal

distribution at 0 and 1.3

II.B Predictions of Competing Firms

When both firms use algorithms to predict consumer types, their predictions may

be correlated. In practice, the algorithmic predictions of firms might be correlated

because firms may use the same public data in addition to their private company data

or because they use similar data analytics models and tools. Our analysis focuses on

the case where the two algorithms have identically distributed predictions but may

be positively correlated. This allows us to derive general results on how the degree

of correlations in predictions affects targeting policies.

Specifically, we assume that for any given consumer, if the prediction from firm

1 is p1, then with probability ρ, the prediction from firm 2 is also p1, and with prob-

ability 1 − ρ, the prediction is drawn from the distribution with probability density

function p1 · pf(p)/µ0 + (1− p1) · (1− p)f(p)/(1− µ0). In other words, for any given

consumer, the prediction of firm 2 agrees with firm 1 with probability ρ. Otherwise,

firm 2 will assign this consumer a probability according to a weighted average of two

3Note that what is labeled as the precision in Chen et al. (2001) is different from our definition as

in the classification and machine learning literature. In Chen et al. (2001) precision is not about a

firm’s targeting policy, but rather about the informativeness of the predictions (which is analogous

to the function f(p) in our framework) irrespective of the targeting policy.
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distributions. One can interpret pf(p)/µ0 as the distribution of predictions condi-

tional on the consumer being interested, and (1− p)f(p)/(1− µ0) as the distribution

of predictions conditional on the consumer being uninterested. When the consumer

is indeed interested, the prediction of firm 2 for that consumer follows distribution

pf(p)/µ0. When the consumer is indeed uninterested, the prediction of firm 2 for that

consumer follows distribution (1−p)f(p)/(1−µ0). The distribution of the prediction

shifts to the right tail of f(p) when the consumer is interested, and shifts to the left

tail of f(p) when the consumer is uninterested.

Alternatively, one can consider a simpler correlation structure. For example,

suppose firm 1’s prediction for a given consumer is p1. Then, with probability ρ, firm

2’s prediction is also p1, and with probability 1−ρ, firm two’s prediction is uniformly

drawn from f(p). Under this alternative setup, a firm’s prediction is completely

uncorrelated with the other firm’s with probability 1 − ρ. This might seem to be a

simpler correlation structure. However, this alternative correlation can have some less

than desirable and practically unappealing properties. To see this, suppose that the

firms’ algorithms are close to perfect in their prediction abilities (i.e., informativeness).

In such a case, it is possible that one firm has a prediction probability of 1 while the

other firm has 0 with a high likelihood (close to (1 − ρ)/2 when µ0 = 1/2). In

contrast, under the correlation structure that we adopt in our main model described

above, a firm’s prediction is still correlated with the other firm’s prediction (even

if they are not an exact match) with probability 1 − ρ. This implies the logical

and intuitively appealing outcome that the two firms’ predictions will almost always

be identical regardless of ρ when their algorithms are almost perfect. However, the

specific choice of the correlation structure does not affect our results. In the online

appendix, we show that all the main results in the paper hold under the alternative

simpler correlation structure.
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III Analysis

III.A Monopoly Benchmark

The monopoly firm’s targeting strategy will be to choose a threshold policy p
m

∈

(0, 1), such that it targets all consumers with p ≥ p
m
: q(p) = 1p≥p

m
. At the threshold

p
m
, the marginal revenue of targeting p

m
v equals the targeting cost c, thus p

m
= c/v.

This threshold policy is also consistent with industry practices. For example, Shi et al.

(2022) note that Alibaba targets consumers whose aggregated algorithmic scores,

which combine both benefits and costs of targeting, are above a threshold.

In monopoly, the precision of the optimal targeting policy is:∫ 1

p
m

pf(p)dp∫ 1

p
m

f(p)dp
=

∫ 1

p
m

pf(p)dp

am
(1)

The recall of the optimal targeting policy is:∫ 1

p
m

pf(p)dp∫ 1

0
pf(p)dp

=

∫ 1

p
m

pf(p)dp

µ0

(2)

Both the precision and recall depend on the firm’s targeting policy p
m

and

the informativeness of the algorithm, as characterized by the distribution of the pre-

dictions f(·). Notice that higher precision implies that the algorithm targets more

interested consumers rather than uninterested ones, while higher recall implies that

the algorithm targets more interested consumers out of the total interested pool.

Given the algorithm, the precision increases while the recall decreases in the tar-

geting threshold p
m
. By targeting only a small subset of consumers who are highly

likely to be interested, the firm generates a low false negative rate and achieves high

precision. However, the firm sacrifices recall because it does not target a larger set of

consumers who are likely to be interested. So, in this set, the firm generates a high

false negative rate, resulting in lower recall. At one extreme, as p
m

→ 1, Precision

→ 1, and Recall → 0. In contrast, the opposite applies when the targeting threshold

p
m
is low. As p

m
→ 0, Precision → µ0, and Recall → 1.
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To what extent the firm’s optimal targeting policy prioritizes precision vs.

recall depends on the profits and cost of targeting. If the targeting cost is high

relative to its benefit (high c/v), the monopoly only wants to target high-probability

consumers to save targeting costs (precision over recall). In contrast, if the targeting

cost is low relative to its benefit (low c/v), the monopoly does not want to miss out

on consumers who may be moderately likely to be interested (recall over precision).

Mapping From an Algorithm and Targeting Policy to Precision and Recall

The equations (1) and (2) give the formulas of precision and recall. Figure 1 illus-

trates the precision and recall for a given algorithm and a given targeting policy.

Consider a simple prediction algorithm - the logistic regression with one explana-

tory variable x (consumer characteristic), which is distributed normally with zero

mean and unit standard deviation among all consumers. Formally, the logit model is

P(x) = 1/[1 + e−(β0+β1x)] + ϵ, where ϵ is the unobserved shocks and follows a logistic

distribution. The firm will first estimate the model coefficients, β0 and β1, using

historical data. Suppose that the estimates are β̂0 = 1 and β̂1 = 1. Then, it can

predict the probability of interest for each potential consumer based on the individ-

ual characteristics x according to P̂(x) = 1/[1+ e−(β̂0+β̂1x)]. Consumers with different

characteristics will be predicted to have different likelihood of interest. By aggregat-

ing the individual-level predictions, the firm can obtain a distribution of probabilities

for its potential consumers, f(p).

In Figure 1a and 1b the monopoly targets all consumers whose probability of

interest is at least 85 percent (p
m

= 0.85). In both figures, there are f(p) mass of

probability p consumers, and the firm targets all of them if p ≥ 0.85. Among those

consumers, pf(p) mass of probability p consumers are interested and targeted by the

firm. The solid region measures the total number of interested consumers targeted by

the firm. The cross-hatched region in Figure 1a measures the total mass of consumers

targeted by the firm. The precision equals the area of the solid region divided by the
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area of the cross-hatched region. As we can see from the figure, the precision is high

in this case because the firm targets only high-probability consumers. The majority

of those consumers turn out to be interested. The cross-hatched region in Figure

1b measures the total mass of interested consumers. The recall equals the area of

the solid region divided by the area of the cross-hatched region. The recall is low in

this case because the firm misses out on many potential consumers by targeting very

selectively.

In contrast, the monopoly targets all consumers whose probability of interest

is at least 25 percent in Figure 1c and 1d (p
m

= 0.25). The precision and the

recall still equal the area of the solid region divided by the area of the cross-hatched

region in these two figures, respectively. By targeting a larger set of consumers,

the firm induces a lower precision and a higher recall. There are not many missing

opportunities because most interested consumers are targeted. However, the firm

also wastes more of its marketing budget on uninterested consumers due to extensive

mis-targeting.

Linking Precision-Recall and Hypothesis Testing

Precision-recall as a classification concept in machine learning is closely connected to

hypothesis testing. We use the monopoly case to illustrate it. Let the null hypothesis

be that a given consumer is not interested. The firm decides whether to reject the null

hypothesis based on the available information. If the firm rejects the null hypothesis,

it will target the consumer because the alternative hypothesis is that the consumer

is interested. False negatives in this context mean that the null hypothesis is wrong

(the consumer is in truth interested) but the firm fails to reject the null hypothesis

(therefore does not target the consumer). Under perfect recall, the firm targets all

interested consumers. So, there are no false negatives. In general, recall equals the

power of the test. False positives in this context mean that the null hypothesis is

correct (the consumer is not interested) but the firm rejects the null hypothesis (and
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(a) Precision = 0.904 when the firm

targets all consumers whose p ≥ 0.85.

f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)f(p)

pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)pf(p)

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00
p

P
ro

ba
bi

lit
y 

D
en

si
ty

(b) Recall = 0.300 when the firm tar-

gets all consumers whose p ≥ 0.85.
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(c) Precision = 0.706 when the firm

targets all consumers whose p ≥ 0.25.
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(d) Recall = 0.995 when the firm tar-

gets all consumers whose p ≥ 0.25.

Figure 1: Precision and Recall under different targeting policies.

therefore targets the consumer). Under perfect precision, the firm does not target

any uninterested consumers. So, there are no false positives. Unlike recall which is

equivalent to the complement of the type II error rate, precision is not identical to

any single statistical property in hypothesis testing, though it is related to the type

I error rate. The reason is that precision also depends on the prior probability that

a consumer is interested.
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III.B Competitive Algorithmic Targeting

In this section, we consider the case of the competing firms choosing their target-

ing policies qi(p) simultaneously. In the main analysis that follows, we derive the

implications of the symmetric equilibrium. Later on in section IV.B we analyze the

robustness of the main insights to the case of possible asymmetric equilibria.

We first note that there does not exist a symmetric pure strategy equilib-

rium for any positive ρ.4 We thus consider the symmetric mixed-strategy equilib-

rium. Suppose each firm targets probability p consumers with probability q(p). Let

p = inf{p : q(p) > 0}, i.e., the lowest probability consumer that firms target for

strictly positive probability. Denote the recall of the targeting policy given q(p) by R

and the aggregate targeting intensity given q(p) by a =
∫ 1

p
f(p)q(p)dp.

The expected payoff of a firm from targeting a probability p consumer is:

[ρq(p) + (1− ρ)R]pw + [1− ρq(p)− (1− ρ)R]pv − c

[ρq(p) + (1− ρ)R]p is the probability that a probability p-consumer is interested and

targeted by both firms, in which case the focal firm gets a payoff of w. There are

two such cases: i) when the predictions coincide and the other firm also targets this

consumer, which happens with probability pρq(p), or ii) when the two predictions

differ but the algorithm of the other firm assigns a sufficiently high probability (i.e.,

above the threshold p) and targets this consumer regardless, which happens with

probability p(1 − ρ)
∫ 1

0
q(p)pf(p)/µ0dp = p(1 − ρ)

∫ 1

p
q(p)pf(p)/µ0dp = p(1 − ρ)R.

Similarly, the consumer is interested and targeted by only one firm with probability

[1− ρq(p)− (1− ρ)R]p, which will result in a payoff of v.

4Suppose there is such an equilibrium. Consider p as the lowest probability for which firms target.

Clearly, p ≥ p
m
, the monopoly targeting threshold. We now have p{[ρ+ (1− ρ)R]w + [1− ρ− (1−

ρ)R]v} − c ≥ 0. By targeting probability p − ϵ consumer, the firm obtains an expected payoff of

(p − ϵ){[(1 − ρ)R]w + [1 − (1 − ρ)R]v} − c = p{[ρ + (1 − ρ)R]w + [1 − ρ − (1 − ρ)R]v} − c + ρ(v −

w)p − ϵ{[(1 − ρ)R]w + [1 − (1 − ρ)R]v} ≥ 0 + ρ(v − w)p
m

− ϵ > 0 for ϵ small enough. Therefore,

firms have an incentive to deviate.
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Assumption 1 0 ≤ w < c < v. A firm prefers to target an interested consumer by

itself, but does not prefer to target an interested consumer who is also targeted by the

competitor.

In equilibrium, there are two types of targeting strategies. Either the firm

never targets any consumer for sure, or it targets a set of consumers with the highest

prediction probabilities for sure, and the consumers with lower prediction probabilities

partially.

Lemma 1 In any symmetric equilibrium, either q(p) ∈ (0, 1),∀p ∈ (p, 1] or there

exists p ∈ (p, 1) such that q(p) = 1,∀p > p, and q(p) ∈ (0, 1),∀p ∈ (p, p).

For notational ease, we let p = 1 if the firm never targets any consumer for

sure. Under competition, the precision of the optimal targeting policy is:∫ 1

p
pq(p)f(p)dp∫ 1

p
q(p)f(p)dp

=

∫ 1

p
pq(p)f(p)dp

a
(3)

The recall of the optimal targeting policy is:∫ 1

p
pq(p)f(p)dp∫ 1

0
pf(p)dp

=

∫ 1

p
pq(p)f(p)dp

µ0

(4)

The firm is indifferent between targeting or not for p ∈ (p, p). The firm’s

expected profit for those consumers is 0, its payoff from not targeting.

[ρq(p) + (1− ρ)R]pw + [1− ρq(p)− (1− ρ)R]pv − c = 0

⇒ q(p) =
v − (1− ρ)(v − w)R− c/p

ρ(v − w)
, ∀p ∈ (p, p) (5)

q(p) = 0

⇒ p =
c

v − (1− ρ)(v − w)R
(6)

The firm strictly prefers targeting to not targeting for p > p. So, it targets

those high-probability consumers for sure and obtains a positive profit. If p = 1,
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then no consumers will be targeted by the firm for sure. To emphasize that p, a, and

R depend on ρ, we use the notation p(ρ), a(ρ), and R(ρ) when necessary to avoid

confusion. Assumption 1 implies that p(1) = c/v ∈ (0, 1). Lemma 2 establishes that

such an equilibrium exists.

Lemma 2 There exists a unique mixed-strategy symmetric equilibrium. The firm

targets some consumers with a positive probability in equilibrium. Furthermore, there

exists ρ̂ ∈ [0, v−c
v−w

] such that firms never target any consumer for sure if and only if

ρ ≥ ρ̂. Otherwise, the firm targets consumers with probabilities p ≥ p for sure and

mix for consumers with probabilities between p and p.

Figure 2 illustrates the targeting probability of the optimal targeting policy

for different correlations ρ. When the correlation is high, a firm never targets any

consumer for sure because the rival firm has a high likelihood of having the same

prediction for the consumer. In contrast, when the correlation is low, a firm targets

high-probability consumers for sure because the other firm has a high chance of having

a different prediction and not targeting that consumer. However, for lower-probability

consumers, the potential gain for a firm from targeting decreases. At the same time,

the probability of overlapping in targeting stays the same if firms were to target that

consumer for sure. Thus, when the predicted probability for a consumer is below

a threshold, the firms in equilibrium mix between targeting and not targeting that

consumer in order to soften the competition.

On the extensive margin (i.e., the lowest probability consumer being targeted),

firms become less selective as their predictions become more correlated. The intuition

is as follows. Consider marginal consumers whose probability of being targeted is

very low. When the predictions are highly correlated, both firms’ predictions are

largely aligned on the identity of the marginal consumers. Each firm will be more

confident that those marginal consumers will be targeted by the other firm with a low

probability. Thus, a firm becomes more inclined to target some of those consumers.
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Figure 2: Targeting probability of the Optimal Targeting Policy for c = .75, v =

1, w = .5, f ∼ U [0, 1].
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In contrast, a consumer with a predicted probability of one will be more likely to be

highly valued by the other firm as well when the predictions become more correlated.

Therefore, a firm becomes less inclined to target such a consumer. Therefore, the

targeting probability q(p) becomes flatter as the correlation increases.

We now proceed to establish one of the main results of this paper by comparing

the equilibrium targeting policies of the monopoly benchmark with the duopoly case

in the following proposition. It shows that compared with monopoly, firms lean

towards precision under competition.

Proposition 1 The duopoly’s optimal targeting policy has a higher precision and a

lower recall than the monopoly’s.

This proposition connects the precision-recall trade-off that is a fundamental

aspect of the deployment of machine-learning algorithms to the equilibrium incentives

of competitive firms. Relative to a monopoly, competition favors precision over recall

in algorithmic targeting. The intuition is that competition reduces the expected

profit from targeting due to overlaps in the set of targeted consumers of the rival firms.

Firms, therefore, strategically respond in equilibrium by concentrating their targeting

efforts on consumers who are predicted by their algorithms to have a high likelihood

of conversion, thereby leading to an increase in the precision of their targeting.

We now discuss the details of equilibrium and the implications of the important

comparative static predictions (the proofs are left in the Appendix). To begin with,

consider the effect of the correlation in the firms’ predictions on the equilibrium

profits: When the correlation is sufficiently high (ρ > ρ̂) then as shown in Lemma 2

the equilibrium targeting policy involves firms not targeting any consumers for sure.

This implies that the equilibrium profits are zero. Conversely, when the correlation is

lower, a set of high-probability consumers will be targeted for sure, and this implies

positive equilibrium profits. Further, in this case, lower values of ρ are associated

with increasing profits. Thus, firms will have the incentive to choose uncorrelated
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algorithms (ρ = 0) if it is costless. Note that in reality, the correlation between

the algorithms can be due to the extent to which the firms use the same public

data or because they use the targeting tools offered by a common data analytics

intermediary. This result, therefore, has an organizational strategy implication that

under competition, firms have greater incentives to develop their internal private data

systems and their data analytics capabilities. In section IV.A, we will consider the

implications of endogenizing ρ.

Next, as illustrated in Figure 3, we show that as ρ increases and the predictions

of the firm converge, firms end up targeting fewer consumers leading to a decrease

in the recall. As the predictions converge, the targeting of the firms is more likely to

coincide, reducing the returns from targeting. Interestingly, and somewhat counter

to expectation, we prove that under competition, as long as the level of correlation is

high enough (ρ > ρ̂), the precision also decreases as ρ increases. As the correlation

increases, the high-probability consumers become less attractive because both firms

increasingly identify these consumers as the more valuable high-probability consumers

and compete by setting higher targeting intensity. Conversely, the more moderate-

probability consumers become relatively more attractive because they are now less

likely to be targeted. With higher correlation, when a firm predicts a moderate

probability consumer, it can expect that the consumer is less likely to be predicted

as a high probability consumer by the rival, implying that the rival will have the

incentive to target moderate-probability consumers less aggressively. Overall, this

leads to q(p) becoming flatter, decreasing the precision.

As the Figure illustrates, firms continuously adjust the precision and recall of

their targeting policies as the correlation in their predictions changes. This feature

is driven by the fact that each firm has access to individual-level predictions and,

therefore, has a large targeting policy space to choose from. This contrasts with

the traditional targeting contexts wherein firms would only have a separate signal at

the level of a consumer segment and cannot further distinguish individual consumers
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within the segment. In such a case the precision and recall targeting policy of a

firm will be less flexible and would stay constant for an interval of the prediction

correlation.
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Figure 3: Comparative Statics with regard to ρ for c = .75, v = 1, w = .5, f ∼ U [0, 1].

III.B.1 Information Value to Consumers

Targeting provides information value to consumers if the firm’s targeting policy cor-

rectly targets interested consumers. Targeted consumers who find the product fits

their needs will buy and obtain a positive surplus. The total information value of a

targeting policy is proportional to
∫ 1

p
pq(p)f(p)dp. We find that a higher correlation

decreases the information value because fewer interested consumers end up being tar-

geted. Since
∫ 1

p
pq(p)f(p)dp is the recall multiplied by the prior probability, µ0, and

the prior probability does not depend on the targeting policy, the information value

of a targeting policy is proportional to its recall. The comparative statics of the in-

formation value of the optimal targeting policy is the same as the comparative statics

of the recall, which decreases in ρ. Thus an increase in the correlation decreases the

information value to consumers.
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IV Extensions

IV.A Endogenous Prediction Correlations

We now examine the implications when firms are able to endogenously choose the

correlations in their predictions. When firms rely on public data or common data

analytics providers, their targeting predictions are likely to be more correlated. Con-

versely, a firm may also invest in internal analytics organization and in acquiring

private consumer and market data, which may lead to a decrease in the prediction

correlations between the firms. For example, for a fixed size of the training sample

and thus the probability distribution f , a firm may use more private data as opposed

to publicly available data in order to differentiate their prediction models. In this

sense we can interpret the endogenous choice of algorithmic correlation as resulting

from the organizational strategy for data analytics by firms in competitive markets.

Consider the following model that endogenizes the prediction correlation ρ:

In the first period, both firms simultaneously make costly investments in lowering

ρ. This may represent each firm’s decision to invest in generating private data and

data analytics within the organization. Nevertheless, such investments will be a

public good since any firm’s investment will help determine the prediction correlation

between the firms. Specifically, the correlation ρ is decreasing in the investments of

both firms: ρ = ρ(I1, I2), in which I1, I2 are the first-period investment costs of firms

1 and 2. Denote the initial correlation as ρ0 := ρ(0, 0). In the second period, both

firms simultaneously choose the targeting policy exactly as in the main model. We

make the following assumptions on the investment technology.

Assumption 2 ρ(I1, I2) is smooth and strictly decreasing in Ij, j = 1, 2. ρ(I1, I2) >

0, ∀I1, I2 < v. Define ρ1(I1) = ρ0 − ρ(I1, 0), ρ2(I2) = ρ0 − ρ(0, I2), and Kj(∆ρ) =

ρ−1
j (∆ρ). K ′

j(0) = 0, j = 1, 2.

Note that ρj(Ij) measures how much correlation a firm can unilaterally reduce by
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investing Ij when the other firm incurs zero costs. It is important to recognize the

public production of the prediction correlation – i.e., any given firm’s investment

reduces the correlation in the predictions for both firms. Denote Kj(∆ρ) as the

inverse which measures how much cost a firm needs to incur to reduce the correlation

by ∆ρ when the other firm does not invest and incurs zero costs. The assumptions

K ′
j(0) = 0 and ρ(I1, I2) > 0, ∀ I1, I2 < v mean that it is easy to reduce the correlation

by a little bit, but very costly to reduce the correlation all the way to zero. In reality,

firms may easily reduce ρ a bit by investing in a little more private data. However,

it can be very difficult for firms to achieve zero correlation in their predictions in a

competitive market,

Proposition 2 Firms invest and earn a positive expected profit if ρ0 < ρ̂. They will

not invest and earn zero profits if ρ0 > ρ̂.

One may think that firms have a stronger incentive to invest in reducing the

correlation if the initial correlation is high because otherwise they will get zero profits

without the investment. It turns out to be the opposite. Firms will invest if the initial

correlation is already low enough, such that they will earn a positive profit without

investment. The low-cost assumption for small investment does not directly imply

that firms will invest because the benefit of a small investment may also be very low.

We prove that the benefit of investing a little bit is roughly linear in the investment

cost, which outweighs the investment cost. In contrast, as Figure 3 shows, the profit

is zero for an interval of ρ ∈ [ρ̂, 1]. So, a lower ρ will increase the profit (not taking

into account the investment costs) only if firms invest a lot such that ρ < ρ̂. In that

case, the investment cost may be so high that firms prefer not to invest.

The proposition provides a structure to consider the industry scenarios which

are likely to encourage investments by firms in private company data analytics. For

example, when there is already a well-entrenched public data system which is used by

the firms, the incentive to invest within the organization’s data analytics is attenuated.
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Indeed, given that profits with a high correlation are zero, this would precisely be the

situation in which such investments by a firm would have been beneficial. Therefore,

there is a suggestion in the model that there can be under-investment in private data

because the investment by a firm to soften competition through reduced correlation

is a public good.

IV.B Robustness: Pure Strategy Asymmetric Equilibria

In our main analysis, we focus on the symmetric mixed-strategy equilibrium - this

is because both firms are symmetric, and thus it has a natural interpretation. We

also note that there are also a multiplicity of asymmetric pure strategy equilibria. So

our objective in this section is to show the robustness and the generality of our main

result on the precision-recall choice under competition to the asymmetric equilibria

and highlight some common features.

Define p := inf{p ∈ [0, 1] : q1(p) > 0 or q2(p) > 0}, where qi(p) is firm i’s

targeting probability of a type p consumer. Then, one can see that at least one firm

targets at any p > p. In addition, pure strategy symmetric equilibrium does not exist.

If both firms target consumers whose probability is larger than or equal to p, then

each firm wants to deviate by targeting p − ϵ. Lastly, p ≥ p
m
. This is because a

monopoly does not target below p
m
, and the presence of competition makes targeting

at any probability less attractive.

Proposition 3 There exists an equilibrium in which one firm targets and acts like

a monopoly if ρ ≥ Rmw+(1−Rm)v−c
(1−Rm)(v−w)

. In any other pure strategy asymmetric equilibria,

there exists p0 ∈ (p, 1) such that exactly one firm targets consumers whose p ∈ (p, p0).

Either one or both firms target every consumer whose p > p0.

The recall of either firm is lower than the monopoly case. The precision of at

least one firm is higher than the monopoly case.

Figure 4 illustrates the equilibrium strategy. When the prediction correlation is
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(c) Overlapping at high-probability consumers

Figure 4: Pure Strategy Asymmetric Equilibria
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high (Figure 4a), it is possible that a firm acts like a monopoly and drives the opponent

out of the market. This is akin to a foreclosure equilibrium where the opponent

cannot operate with positive profits. Even if the opponent predicts a consumer to

have probability one, it anticipates that the rival that acts like a monopoly is highly

likely to target that consumer as well. The expected equilibrium payoff of targeting

is negative, and thus, it does not enter the market. Other than this special case, both

firms target some consumers. For consumers moderately interested, firms partition

their targeting region to soften competition. For really valuable consumers (high p),

either one (Figure 4b) or both firms (Figure 4c) target them. Whether one or both

firms target those consumers depends on the correlation of their prediction and the

overall targeting probability of each firm. There is at least one partitioned region

where only one firm targets consumers, and there can be more than one partitioned

region.

The main message that firms prioritize precision over recall under competition

still holds in all asymmetric equilibria. Except for the really valuable consumers, firms

do not simultaneously target consumers predicted to have the same probability, which

avoids overlaps in targeting the same consumer due to having the same predictions.5

Thus, firms reduce their recall and focus on precision instead.

V Discussion and Concluding Remarks

It is hard to overstate the importance of targeting in marketing strategy. While the

advances in data analytics allow firms to have unprecedented and at-scale targeting

abilities, algorithmic targeting predictions may nevertheless not be perfect. Thus,

firms invariably have to choose between precision - targeting a few consumers with

high probabilities of conversion, or recall - targeting a large set of consumers, many

5Notice that there are still overlaps in targeting even for moderately interested consumers because

firms may have different predictions for the same consumer.
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of whom may not convert. This trade-off is also a fundamental feature of all machine

learning classification algorithms.

This paper examines the precision-recall trade-off as part of the strategic de-

ployment of algorithmic targeting by firms. It introduces a micro-founded model to

study competitive targeting policies in the presence of the precision-recall trade-off.

We find that compared to a monopoly, the competition between firms lowers recall but

increases precision. However, as competing firms have more correlated predictions,

they tend to not only target fewer consumers as the return to targeting decreases

(lower recall) but also target less probable consumers (lower precision) in order to

avoid head-to-head competition. This may decrease consumer welfare through fewer

interested consumers ending up being targeted, as well as through more uninterested

consumers receiving targeting ads. Firms have an incentive to invest in decreasing

the correlations in their predictions, but such investments, being a public good, also

suffer from the free-rider problem.

The results have some important managerial and policy implications. Our

main result on the precision-recall trade-off provides prescriptions on how firms should

deploy their data analytics operations under competition. Furthermore, the equilib-

rium targeting policies under competition imply that firms will need to account for

how much the predictions differ across competing firms in designing their targeting

policies. Policy-wise, the results suggest that privacy regulations may have an unin-

tended side effect of preventing competing firms from using private data to differen-

tiate their predictions. This could have negative consequences both for the industry

and consumers because firms may strategically change their targeting policies using

less precision and recall.

There are several interesting issues that may be further explored in future

research. The analysis of the paper was conducted for a given prediction distribution

f(p). We now use the Beta distribution to illustrate the implications of different

prediction distributions f(p), with the parameters of v = 1, w = 0.5, c = 0.75. As
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the parameters of the Beta distribution α and β increase (while keeping the prior

constant), the distribution becomes less informative since the mass shifts towards

the center instead of 0 and 1. As a result, both precision and recall decrease in the

monopoly case (Table 1 Panel A). In the case of the duopoly, we numerically solve the

equilibrium targeting policies and again find similar patterns for any given correlation

ρ (Table 1 Panels B-D): as the prediction becomes more informative, both precision

and recall increase (and vice-versa).

We discuss the information value of targeting in section III.B.1. In addition

to this positive effect, targeting may also have a negative effect on consumer welfare.

Consumers may obtain a negative surplus (hassle costs) if they see information about

irrelevant products. Alternatively there could be privacy costs that arise from being

mis-targeted. Future studies that explicitly model the mis-targeting cost to consumers

will help us understand the aggregate impact of targeting on consumer welfare.

While we focus on targeted advertising, the framework can be potentially ap-

plied to other marketing decisions such as product design, promotion, and pricing.

For example, it would be interesting to study whether competition, as measured by

firms’ predictions, favors more distinct product designs. Another potential gener-

alization is to extend the model beyond the binary type assumption. Finally, our

precision-recall targeting framework can be used to study algorithmic discrimination

in targeting in markets where the protected characteristics (e.g., race or gender) of

consumers are salient and can be discriminated against.
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Table 1: Precision and Recall in the Beta Distribution f(p) Example

Panel A: Monopoly

alpha beta precision recall

0.3 0.45 0.918025 0.604371

0.4 0.60 0.902381 0.527402

0.5 0.75 0.889673 0.464304

Panel B: Duopoly, ρ = 0.3

alpha beta rho precision recall

0.3 0.45 0.3 0.965718 0.318260

0.4 0.60 0.3 0.956560 0.279639

0.5 0.75 0.3 0.946341 0.243850

Panel B: Duopoly, ρ = 0.5

alpha beta rho precision recall

0.3 0.45 0.5 0.957185 0.278751

0.4 0.60 0.5 0.947413 0.237471

0.5 0.75 0.5 0.937732 0.203032

Panel B: Duopoly, ρ = 0.7

alpha beta rho precision recall

0.3 0.45 0.7 0.950975 0.251179

0.4 0.60 0.7 0.941057 0.208947

0.5 0.75 0.7 0.931453 0.175061
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(a) Beta Distribution (α = 0.3, β = 0.45)

(b) Beta Distribution (α = 0.4, β = 0.6)

(c) Beta Distribution (α = 0.5, β = 0.75)

Figure 5: Illustration of Different Prediction Distribution f(p)
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Appendix

Proof of Lemma 1. The lemma is equivalent to the following two statements:

Claim 1: If firms target a type p1 consumer with a positive probability (q(p1) >

0), then they target any higher-type consumer with a positive probability (q(p) >

0, ∀p > p1).

Claim 2: If firms target a type p2 consumer for sure (q(p2) = 1), then they

target any higher-type consumer for sure (q(p) = 1, ∀p > p2).

Proof of Claim 1: If firms target a type p1 consumer with a positive probability,

then the expected payoff from targeting such a consumer is no less than the expected

payoff from not targeting: [ρq(p1)+(1−ρ)R]p1w+[1−ρq(p1)− (1−ρ)R]p1v− c ≥ 0.

Suppose they do not target a type p > p1 consumer at all, q(p) = 0. By deviating

and targeting a type p consumer for sure, the deviating firm can obtain an expected

payoff of [(1− ρ)R]pw+ [1− (1− ρ)R]pv− c > [ρq(p1)+ (1− ρ)R]p1w+ [1− ρq(p1)−

(1− ρ)R]p1v − c ≥ 0. So, firms will deviate. A contradiction.

Proof of Claim 2: If firms target a type p2 consumer for sure, then the expected

payoff from targeting such a consumer is no less than the expected payoff from not

targeting: [ρq(p2) + (1− ρ)R]p2w+ [1− ρq(p2)− (1− ρ)R]p2v − c ≥ 0. Suppose they

do not target a type p > p2 consumer for sure, q(p) < 1. By deviating and targeting

a type p consumer for sure, the deviating firm can obtain an expected payoff of [(1−

ρ)R]pw+[1−(1−ρ)R]pv−c > [ρq(p2)+(1−ρ)R]p2w+[1−ρq(p2)−(1−ρ)R]p2v−c ≥ 0.

So, firms will deviate. A contradiction.

Proof of Lemma 2.

Existence:

The theorem in Becker and Damianov (2006) states that any symmetric game

with a finite number of players, whose strategy space is compact and Hausdorff and

payoff function is continuous, has a symmetric Nash equilibrium in mixed strategies.

It is natural to define the (pure) strategy space of the firm as the standard topology on
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[0,1], which is compact and Hausdorff. Also, the firm’s payoff function is continuous.

Hence, there exists a symmetric Nash equilibrium in mixed strategies. One can see

that no firm targeting cannot be a Nash Equilibrium, and the equilibrium strategy

must be a cutoff strategy (target probability p consumers if and only if p is higher

than a cutoff value). So, there exists a mixed-strategy symmetric equilibrium.

Uniqueness:

1. Firms never target any consumer for sure (p = 1)

R =

∫ 1

p
pf(p)q(p)dp

µ0

=

∫ 1
c

v−(1−ρ)(v−w)R

pf(p)
ρ(v−w)

[−c/p+ v − (1− ρ)(v − w)R]dp

µ0

For any fixed ρ, define:

G(R) :=

∫ 1

c
v−(1−ρ)(v−w)R

pf(p)

ρ(v − w)
[−c/p+ v − (1− ρ)(v − w)R]dp− µ0R

Then, G(0) =

∫ 1

c
v

pf(p)

ρ(v − w)
[v − c/p]dp > 0

G′(R) =

∫ 1

c
v−(1−ρ)(v−w)R

−(1− ρ)
pf(p)

ρ
dp− µ0 < 0

So, there is a unique R∗ such that G(R∗) = 0 (we have previously shown the

existence part).

2. Firms target high-probability consumers for sure (p < 1)

[ρ+ (1− ρ)R]pw + [1− ρ− (1− ρ)R]pv − c = 0

⇒ p =
c

[ρ+ (1− ρ)R]w + [1− ρ− (1− ρ)R]v
(7)
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R = [

∫ 1

p

pf(p)dp+

∫ p

p

pf(p)q(p)dp]/µ0

= [

∫ 1

c
[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

pf(p)dp+

∫ c
[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

pf(p)q(p)dp]/µ0

For any fixing ρ, define:

H(R) :=

∫ 1

c
[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

pf(p)dp+

∫ c
[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

pf(p)q(p)dp− µ0R

Then, H(0) > 0.

H ′(R) =− dp

dR
pf(p) +

dp

dR
pf(p) · 1+∫ c

[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

−(1− ρ)(v − w)
f(p)

ρ(v − w)
dp−

dp

dR
pf(p) · 0− µ0

=−
∫ c

[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

(1− ρ)f(p)

ρ
dp− µ0 < 0

So, there is a unique R∗ such that H(R∗) = 0.

To show that there exists ρ̂ ∈ [0, v−c
v−w

] such that firms never target any con-

sumer for sure if and only if ρ ≥ ρ̂, we just need to show the following claim:

If firms never target any consumer for sure for ρ = ρs, then they also never

target any consumer for sure for any ρl > ρs.

Suppose not. When ρ = ρl, Lemma 1 implies that there exists pl and p
l
such

that firms target consumers with probabilities p ≥ pl for sure and mix for consumers

with probabilities between p
l
and pl. Thus, ql(p) = 1 > qs(p), ∀p ≥ pl. The proof

of the comparative statics results will show that q′l(p) < q′s(p), ∀p ∈ (p
s
, pl). So,

ql(p) > qs(p), ∀p ∈ [p
s
, 1] ⇒ Rl > Rs. A contradiction to the comparative statics

that the recall decreases in ρ, which will be shown in the proof of the comparative

statics results.

Proof of Proposition 1. The result of the recall is implied by the fact

that each duopolistic firm only targets a subset of the consumers that the monopoly
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targets. We now show that each duopolistic firm has a higher targeting precision than

the monopoly.

The precision of the monopoly’s optimal targeting policy is:∫ 1

p
m

pf(p)dp∫ 1

p
m

f(p)dp
=

∫ 1

p
m

p
f(p)∫ 1

p
m

f(p)dp
dp

Observe that
∫ 1

p
m

f(p)∫ 1
p
m

f(p)dp
dp = 1. Hence, fm(p) :=

f(p)∫ 1
p
m

f(p)dp
is a p.d.f. of a random

variable Xm ∈ [p
m
, 1]. The monopoly’s precision is the expectation of Xm.

The precision of the duopoly’s optimal targeting policy is:∫ 1

p
d

pq(p)f(p)dp∫ 1

p
d

q(p)f(p)dp
=

∫ 1

p
m

pq(p)f(p)dp∫ 1

p
m

q(p)f(p)dp
=

∫ 1

p
m

p
q(p)f(p)∫ 1

p
m

q(p)f(p)dp
dp

, where the first equality comes from the fact that p
d
≥ p

m
and q(p) = 0, ∀p ∈ [p

m
, p

d
).

Observe that
∫ 1

p
m

q(p)f(p)∫ 1
p
m

q(p)f(p)dp
dp = 1. Hence, fd(p) :=

q(p)f(p)∫ 1
p
m

q(p)f(p)dp
is a p.d.f. of

a random variable Xd ∈ [p
m
, 1]. The duopoly’s precision is the expectation of Xd.

We proceed by showing that Xd first-order stochastic dominates Xm. As a

result, the expectation of Xd is larger than the expectation of Xm, which concludes

the proof.

Lemma 3 Given two continuously distributed random variables Z1 and Z2 ∈ [z, z] ⊂

R, whose p.d.f. (c.d.f.) are f1 and f2 (F1 and F2), respectively. Z1 first-order stochas-

tic dominates Z2 if h(z) := f1(z)/f2(z) increases in z. The stochastic dominance is

strict if h(z) is not a constant.

Proof of Lemma 3. We have 1 =
∫ z

z
f1(z)dz =

∫ z

z
h(z)f2(z)dz.

If h(z) is a constant, h(z) = h0, then 1 =
∫ z

z
h(z)f2(z)dz = h0

∫ z

z
f2(z)dz =

h0 ⇒ f1(z) = f2(z), ∀z. So, Z1 first-order stochastic dominates Z2.

If h(z) is not a constant, then h(z) < h(z). Since h(z) increases in z, we have

h(z) = h(z)
∫ z

z
f2(z)dz <

∫ z

z
h(z)f2(z)dz = 1 < h(z)

∫ z

z
f2(z)dz = h(z). Therefore,

there exists ẑ1 ≤ ẑ2 ∈ (z, z) such that h(z) < 1 if z < ẑ1 and h(z) > 1 if z > ẑ2.
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For any z ∈ (z, z), we want to show that F1(z) ≤ F2(z).

Define H(z) := F2(z)−F1(z) =
∫ z

z
f2(z)dz−

∫ z

z
f1(z)dz =

∫ z

z
f2(z)[1−h(z)]dz.

One can see thatH(z) = H(z) = 0. H ′(z) = f2(z)[1−h(z)]


> 0, if z ∈ (z, ẑ1)

= 0, if z ∈ (ẑ1, ẑ2)

< 0, if z ∈ (ẑ2, z)

.

So, H(z) = F2(z) − F1(z) > 0,∀z ∈ (z, z). For any z ∈ [z, z], one can see that

F2(z) ≥ F1(z), with the inequality strict when z /∈ {z, z} ⇒ Z1 strictly first-order

stochastic dominates Z2.

Note that q(p) weakly increases in p according to our characterization of the

optimal targeting policy. Therefore, q(p)f(p)∫ 1
p q(p)f(p)dp

/ f(p)∫ 1
p f(p)dp

= q(p)

∫ 1
p f(p)dp∫ 1

p q(p)f(p)dp
weakly

increases in p. Lemma 3 then implies that Xd first-order stochastic dominates Xm. As

a result, the expectation of Xd is larger than the expectation of Xm, which concludes

the proof.

Proof of the comparative statics results.

1. Firms never target any consumer for sure (p = 1)

Comparative statics of R w.r.t. ρ:

In equilibrium, G(R) = 0. By the implicit function theorem, ∂R
∂ρ

= −
∂G
∂ρ
∂G
∂R

. We

have shown that ∂G
∂R

is negative.

∂G

∂ρ
=

∫ 1

c
v−(1−ρ)(v−w)R

pf(p)

v − w
[−c/p+ v − (1− ρ)(v − w)R](−1/ρ2) +

pf(p)R

ρ
dp

=

∫ 1

c
v−(1−ρ)(v−w)R

pf(p)

ρ2(v − w)
[c/p− v + (1− ρ)(v − w)R + ρR(v − w)]dp

∝
∫ 1

c
v−(1−ρ)(v−w)R

pf(p)Rdp−
∫ 1

c
v−(1−ρ)(v−w)R

pf(p)q(p)dp

=

∫ 1

c
v−(1−ρ)(v−w)R

pf(p)Rdp−Rµ0

=R[

∫ 1

c
v−(1−ρ)(v−w)R

pf(p)dp−
∫ 1

0

pf(p)dp] < 0.

37



Therefore, ∂R
∂ρ

< 0.

Comparative statics of p w.r.t. ρ:

We have shown that the recall R decreases in ρ. Therefore, v− (1− ρ)(v−w)R

increases. Equation (6) then implies that p decreases in ρ.

Comparative statics of the precision wrt ρ :

Suppose ρl > ρs > v−c
v−w

. The precision of the optimal targeting policy when

ρ = ρs is: ∫ 1

p
s

pqs(p)f(p)dp∫ 1

p
s

qs(p)f(p)dp
=

∫ 1

p
s

p
qs(p)f(p)∫ 1

p
s

qs(p)f(p)dp
dp

Observe that
∫ 1

p
s

qs(p)f(p)∫ 1
p
s
qs(p)f(p)dp

dp = 1. Hence, fs(p) :=
qs(p)f(p)∫ 1

p
s
qs(p)f(p)dp

is a p.d.f. of a

random variable Xs ∈ [p
s
, 1]. The precision is the expectation of Xs.

The precision of the optimal targeting policy when ρ = ρl is:∫ 1

p
l

pql(p)f(p)dp∫ 1

p
l

ql(p)f(p)dp
=

∫ p
s

p
l

pql(p)f(p)dp+
∫ 1

p
s

pql(p)f(p)dp∫ p
s

p
l

ql(p)f(p)dp+
∫ 1

p
s

ql(p)f(p)dp

<

∫ 1

p
s

pql(p)f(p)dp∫ 1

p
s

ql(p)f(p)dp

=

∫ 1

p
s

p
ql(p)f(p)∫ 1

p
s

ql(p)f(p)dp
dp

, where the inequality comes from the fact that
∫ p

s
p
l
pql(p)f(p)dp∫ p

s
p
l
ql(p)f(p)dp

< p
s
<

∫ 1
p
s
pql(p)f(p)dp∫ 1

p
s
ql(p)f(p)dp

.

Observe that
∫ 1

p
s

ql(p)f(p)∫ 1
p
s
ql(p)f(p)dp

dp = 1. Hence, fl(p) :=
ql(p)f(p)∫ 1

p
s
ql(p)f(p)dp

is a p.d.f. of a

random variable Xl ∈ [p
s
, 1]. The upper bound of the precision is the expecta-

tion of Xl.

We proceed by showing that Xs first-order stochastic dominates Xl. As a result,

the expectation of Xs is larger than the expectation of Xl, which concludes the

proof.
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In order to apply lemma 3 to obtain the final result, we need to show that

fs(p)/fl(p) =

qs(p)f(p)∫ 1
p
s
qs(p)f(p)dp

ql(p)f(p)∫ 1
p
s
ql(p)f(p)dp

= qs(p)
ql(p)

∫ 1
p
s
ql(p)f(p)dp∫ 1

p
s
qs(p)f(p)dp

increases in p. Since

∫ 1
p
s
ql(p)f(p)dp∫ 1

p
s
qs(p)f(p)dp

is a constant, we only need to show that qs(p)
ql(p)

strictly increases in p.

According to (5), q′s(p) = c
p2ρs(v−w)

> c
p2ρl(v−w)

= q′l(p),∀p ∈ (p
s
, 1). One can

see that
∫ 1

p
s

qs(p)pf(p)dp = Rsµ0 > Rlµ0 =
∫ 1

p
l

ql(p)pf(p)dp >
∫ 1

p
s

ql(p)pf(p)dp.

Since ql(ps) > ql(pl) = 0 = qs(ps), there must exist p̃ ∈ (p
s
, 1) such that

qs(p) > ql(p), if p ∈ (p̃, 1]

q̃ := qs(p̃) = ql(p̃)

qs(p) < ql(p), if p ∈ [p
s
, p̃)

.

Ξ(p) :=
qs(p)

ql(p)

(5)
=

q̃ + c
ρs(v−w)

(1
p̃
− 1

p
)

q̃ + c
ρl(v−w)

(1
p̃
− 1

p
)

⇒ Sgn(Ξ′(p)) =Sgn(
1

ρs
− 1

ρl
) > 0

Therefore, qs(p)
ql(p)

strictly increases in p. Lemma 3 then implies that Xs first-order

stochastic dominates Xl. As a result, the expectation of Xs is larger than the

expectation of Xl, which concludes the proof.

2. Firms target high-probability consumers for sure (p < 1)

In this case, the precision of the optimal targeting policy is:∫ p

p
pq(p)f(p)dp+

∫ 1

p
pf(p)dp∫ p

p
q(p)f(p)dp+

∫ 1

p
f(p)dp

=

∫ p

p
pq(p)f(p)dp+

∫ 1

p
pf(p)dp

a

The recall of the optimal targeting policy is:∫ p

p
pq(p)f(p)dp+

∫ 1

p
pf(p)dp∫ 1

0
pf(p)dp

=

∫ p

p
pq(p)f(p)dp+

∫ 1

p
pf(p)dp

µ0

Comparative statics of R w.r.t. ρ:
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In equilibrium, H(R) = 0. By the implicit function theorem, ∂R
∂ρ

= −
∂H
∂ρ
∂H
∂R

. We

have shown that ∂H
∂R

is negative.

∂H

∂ρ
=− dp

dρ
pf(p) +

dp

dρ
pf(p) · 1−

dp

dρ
pf(p) · 0+∫ c

[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

pf(p)

v − w
[−c/p+ v − (1− ρ)(v − w)R](−1/ρ2) +

pf(p)R

ρ
dp

=

∫ c
[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

pf(p)

ρ2(v − w)
[c/p− v + (1− ρ)(v − w)R + ρR(v − w)]dp

∝
∫ c

[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

pf(p)Rdp−
∫ c

[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

pf(p)q(p)dp

=

∫ c
[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

pf(p)Rdp−Rµ0

=R[

∫ c
[ρ+(1−ρ)R]w+[1−ρ−(1−ρ)R]v

c
v−(1−ρ)(v−w)R

pf(p)dp−
∫ 1

0

pf(p)dp] < 0.

Therefore, ∂R
∂ρ

< 0.

Comparative statics of p w.r.t. ρ:

We have shown that the overall targeting probability a decreases when ρ in-

creases. Therefore, v − (1 − ρ)(v − w)R increases. Equation (6) then implies

that p decreases in ρ.

Comparative statics of p w.r.t. ρ:

Consider any given ρl > ρs such that the corresponding pl and ps are lower than

1. Suppose pl ≤ ps. The recall corresponding to ρl is Rl = [
∫ 1

pl
pf(p)dp +∫ pl

p
l

ql(p)pf(p)dp]/µ0. The recall corresponding to ρs is Rs = [
∫ 1

ps
pf(p)dp +∫ ps

p
s

qs(p)pf(p)dp]/µ0. We first show that ql(p) > qs(p),∀p ∈ (p
s
, pl).

Observe that ql(pl) = 1 > qs(pl). For any p ∈ (p
s
, pl), we have

ql(p) = ql(pl) +
c

ρl(v − w)
(1/pl − 1/p) > qs(pl) +

c

ρs(v − w)
(1/pl − 1/p) = qs(pl).
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Hence,

Rlµ0 =

∫ 1

ps

pf(p)dp+

∫ ps

pl

pf(p)dp+

∫ pl

p
l

ql(p)pf(p)dp

>

∫ 1

ps

pf(p)dp+

∫ ps

pl

qs(p)pf(p)dp+

∫ pl

p
s

ql(p)pf(p)dp

>

∫ 1

ps

pf(p)dp+

∫ ps

pl

qs(p)pf(p)dp+

∫ pl

p
s

qs(p)pf(p)dp

=Rsµ0.

But we have shown that R decreases in ρ. A contradiction. Therefore, pl > ps.

Comparative statics of the profit w.r.t. ρ:

Denote the firm’s total profit by Π and the per-unit profit for probability p

consumer by π(p). Then, Π =
∫ 1

p
π(p)f(p)dp, where π(p) = p{[ρ+(1− ρ)R]w+

[1−ρ− (1−ρ)R]v}−c. One can see that π(p) is strictly increasing and linear in

p for p ∈ [p, 1]. Consider any given ρl > ρs such that the corresponding pl and

ps are lower than 1. We have shown that ps < pl. Therefore, πs(pl) > πs(ps) =

0 = πl(pl) ⇒ [ρs + (1 − ρs)as]w + [1 − ρs − (1 − ρs)as]v > [ρl + (1 − ρl)al]w +

[1− ρl − (1− ρl)al]v ⇒ πs(p) > πl(p), ∀p ∈ [pl, 1] ⇒ Πs > Πl.
6
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ONLINE APPENDIX

Extensions

Proof of Proposition 2. We first consider the case in which ρ0 > ρ̂. We have

shown that the profit is zero for any ρ ≥ ρ̂. Therefore, if firms invest in equilibrium,

it must be that ρ(I1, I2) < ρ̂. The investment cost may be higher than the benefit.

For example, suppose ρ(v, v) ≥ ρ̂. Then no firm will invest.

We then show that no firm investing is not an equilibrium if ρ0 < ρ̂. Suppose

no firm investing is an equilibrium. We want to show that either firm has an incentive

to deviate. Consider without loss of generality firm 1.

We first compute how much firm 1’s payoff in the second period increases as

ρ decreases.

Equation (8) implies that:

Q(ρ, p) := p{[ρ+ (1− ρ)R(ρ)]w + [1− ρ− (1− ρ)R(ρ)]v} − c = 0

By implicit function theorem,

∂p

∂ρ
= −∂Q/∂ρ

∂Q/∂p
=

p[1−R + (1− ρ)∂R
∂ρ
](v − w)

[ρ+ (1− ρ)R]w + [1− ρ− (1− ρ)R]v

We have shown in the proof of the comparative statics results that p strictly increases

in ρ for ρ < ρ̂. Therefore, p[1 − R + (1 − ρ)∂R
∂ρ
](v − w) > 0. Denote ∂p

∂ρ
|ρ=ρ0 by

D0 (D0 > 0). Consider an investment by firm 1 such that the correlation decreases

from ρ0 to ρ1 := ρ0−ϵ. Denote the p corresponding to ρ0 by p0 and the p corresponding

to ρ1 by p1. We use similar notations for π and Π.7

By Taylor expansion, p1 = p0 − D0ϵ + o(ϵ). Firm 1’s increase in profit (not

taking into account the investment cost) is:

Π1 − Π0 =

∫ 1

p1

π1(p)f(p)dp−
∫ 1

p0

π0(p)f(p)dp

7Both have been defined in the proof of the comparative statics results.
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>

∫ 1

p0

π1(p)f(p)dp−
∫ 1

p0

π0(p)f(p)dp

=

∫ 1

p0

[π1(p)− π0(p)]f(p)dp

=

∫ 1

p0

[
p− p1
p1

c− p− p0
p0

c]f(p)dp

=

∫ 1

p0

p
p0 − p1
p0p1

cf(p)dp

>

∫ 1

p0

p0
D0ϵ+ o(ϵ)

p0p1
cf(p)dp

=
D0ϵ+ o(ϵ)

p1
c

∫ 1

p0

f(p)dp

=
D0ϵ+ o(ϵ)

p1
c[1− F (p0)]

=
D0c[1− F (p0)]

p1
ϵ+ o(ϵ)

Thus, the profit increase is linear in the decrease of ρ, ϵ, if we ignore the higher-order

term o(ϵ).

We then compute firm 1’s investment cost in the first period. One can see that

Kj(0) = 0.

K1(ϵ) =K1(0) +K ′
1(0)ϵ+ o(ϵ)

=0 + 0 · ϵ+ o(ϵ)

=o(ϵ)

Therefore, Π1 − Π0 > K1(ϵ) for ϵ small enough. It shows that firm 1 will

deviate if no firm invests.

Proof of Proposition 3. In order for a firm acting as a monopoly to be an

equilibrium, the other firm must not want to target probability 1 consumer, which is
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equivalent to:

ρw + (1− ρ)[Rmw + (1−Rm)v]− c ≤ 0

⇔ ρ ≥ Rmw + (1−Rm)v − c

(1−Rm)(v − w)

The statement that in any other pure strategy asymmetric equilibria, there

exists p0 ∈ (p, 1) such that exactly one firm targets consumers whose p ∈ (p, p0), and

either one or both firms target every consumer whose p > p0 is equivalent to the

following two claims.

Claim 1: At least one firm targets consumers whose p ∈ (p, 1].

Claim 2: If both firms target a probability p′ consumer, then they also target

any consumer whose p > p′.

Proof of Claim 1: For any p ∈ (p, 1], there exists p̃ ∈ [p, p) such that q1(p̃) > 0

or q2(p̃) > 0. Assume without loss of generality that q1(p̃) > 0. Firm 1’s expected

payoff from targeting such a consumer is no less than the expected payoff from not

targeting: [ρ + (1 − ρ)R2]p̃w + [1 − ρ − (1 − ρ)R2]p̃v − c ≥ 0. Suppose neither

firm targets a type p > p̃ consumer. By deviating and targeting that consumer,

firm 1 can obtain an expected payoff of [(1 − ρ)R2]pw + [1 − (1 − ρ)R2]pv − c >

[ρ+(1− ρ)R2]p̃w+ [1− ρ− (1− ρ)R2]p̃v− c ≥ 0. So, it will deviate. A contradiction.

Proof of Claim 2: If both firms target a probability p′ consumer, then firm i’s

expected payoff from targeting such a consumer is no less than the expected payoff

from not targeting: [ρ+ (1− ρ)Rj]p
′w + [1− ρ− (1− ρ)Rj]p

′v − c ≥ 0, where j ̸= i.

Claim 1 says that at least one firm targets any consumer whose p > p′. Suppose

one of the firms does not target probability p consumer. Assume without loss of

generality that firm 1 does not target that consumer. By deviating and targeting that

consumer, it can obtain an expected payoff of [(1− ρ)R2]pw+ [1− (1− ρ)R2]pv− c >

[ρ + (1 − ρ)R2]p
′w + [1 − ρ − (1 − ρ)R2]p

′v − c ≥ 0. So, firm 1 will deviate. A

contradiction.

Lastly, we prove that the recall of either firm is lower than the monopoly case,
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and the precision of at least one firm is higher than the monopoly case.

The monopoly equilibrium is straightforward. Now let’s look at other equilibria

where both firms target some consumers (the case of Figure 4b and 4c). p ≥ p
m

implies that the recall of either firm is lower than the monopoly case.

The precision of firm i’s targeting policy is:∫ 1

p
pqi(p)f(p)dp∫ 1

p
qi(p)f(p)dp

=

∫ 1

p
pqi(p)f(p)dp

ai

We first consider the case where there is no overlap in firms’ targeting regions

(the case of Figure 4b). In that case, q1(p) + q2(p) = 1,∀p ∈ (p, 1]. Since both firms

target some consumers, one can see that p > p
m
. We have:

∫ 1

p
pq1(p)f(p)dp+

∫ 1

p
pq2(p)f(p)dp∫ 1

p
q1(p)f(p)dp+

∫ 1

p
q2(p)f(p)dp

=

∫ 1

p
pf(p)dp∫ 1

p
f(p)dp

=

∫ 1

p

p
f(p)∫ 1

p
f(p)dp

dp

=

∫ 1

p

p
f(p)∫ 1

p
f(p)dp

dp+

∫ p

p
m

p · 0 dp

The above formula is the expectation of a random variable X ∈ [p
m
, 1] with a p.d.f.

of 0 for p ∈ [p
m
, p] and a p.d.f. of f(p)∫ 1

p f(p)dp
for p ∈ (p, 1].

The precision of the monopoly’s targeting policy is:∫ 1

p
m

pf(p)dp∫ 1

p
m

f(p)dp
=

∫ 1

p
m

p
f(p)∫ 1

p
m

f(p)dp
dp

The above formula is the expectation of a random variable Y ∈ [p
m
, 1] with a p.d.f.

of f(p)∫ 1
p
m

f(p)dp
for p ∈ [p

m
, 1]. Lemma 3 implies that X strictly first-order stochastic

dominates Y. Therefore,

∫ 1
p pq1(p)f(p)dp+

∫ 1
p pq2(p)f(p)dp∫ 1

p q1(p)f(p)dp+
∫ 1
p q2(p)f(p)dp

>

∫ 1
p
m

pf(p)dp∫ 1
p
m

f(p)dp
.
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Now suppose

∫ 1
p pq1(p)f(p)dp∫ 1
p q1(p)f(p)dp

≤
∫ 1
p
m

pf(p)dp∫ 1
p
m

f(p)dp
and

∫ 1
p pq2(p)f(p)dp∫ 1
p q2(p)f(p)dp

≤
∫ 1
p
m

pf(p)dp∫ 1
p
m

f(p)dp
. We then

have:

∫ 1

p
pq1(p)f(p)dp+

∫ 1

p
pq2(p)f(p)dp∫ 1

p
q1(p)f(p)dp+

∫ 1

p
q2(p)f(p)dp

=

∫ 1

p
pq1(p)f(p)dp∫ 1

p
q1(p)f(p)dp+

∫ 1

p
q2(p)f(p)dp

+

∫ 1

p
pq2(p)f(p)dp∫ 1

p
q1(p)f(p)dp+

∫ 1

p
q2(p)f(p)dp

=

∫ 1

p
q1(p)f(p)dp∫ 1

p
q1(p)f(p)dp+

∫ 1

p
q2(p)f(p)dp

∫ 1

p
pq1(p)f(p)dp∫ 1

p
q1(p)f(p)dp

+

∫ 1

p
q2(p)f(p)dp∫ 1

p
q1(p)f(p)dp+

∫ 1

p
q2(p)f(p)dp

∫ 1

p
pq2(p)f(p)dp∫ 1

p
q2(p)f(p)dp

≤

∫ 1

p
q1(p)f(p)dp∫ 1

p
q1(p)f(p)dp+

∫ 1

p
q2(p)f(p)dp

∫ 1

p
m

pf(p)dp∫ 1

p
m

f(p)dp
+

∫ 1

p
q2(p)f(p)dp∫ 1

p
q1(p)f(p)dp+

∫ 1

p
q2(p)f(p)dp

∫ 1

p
m

pf(p)dp∫ 1

p
m

f(p)dp

=

∫ 1

p
m

pf(p)dp∫ 1

p
m

f(p)dp

A contradiction. So, the precision of at least one firm is higher than the monopoly

case.

We then consider the case where there is overlap in firms’ targeting regions

(the case of Figure 4c). In that case, q1(p)+q2(p) = 1,∀p ∈ (p, p0) and q1(p)+q2(p) =

2,∀p > p0.

The following lemma relates the overlapping case with the non-overlapping

case so that the previous argument applies.

Lemma 4 Suppose a, b, A,B > 0 and A/a < B/b, then A+2B
a+2b

> A+B
a+b

.
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Proof of Lemma 4.

A+ 2B

a+ 2b
=
A+B

a+ 2b
+

B

a+ 2b

=
a+ b

a+ 2b

A+B

a+ b
+

b

a+ 2b

B

b

<
a+ b

a+ 2b

B

b
+

b

a+ 2b

B

b

=
B

b

, where the last inequality holds because B
b
=

aB
b
+B

a+b
>

aA
a
+B

a+b
= A+B

a+b
.

Let A =
∫ p0
p

pf(p)dp,B =
∫ 1

p0
pf(p)dp, a =

∫ p0
p

f(p)dp, b =
∫ 1

p0
f(p)dp. Notice

that A/a < p0 < B/b. So, Lemma 4 implies that

A+ 2B

a+ 2b
>

A+B

a+ b

Notice that

∫ 1
p pq1(p)f(p)dp+

∫ 1
p pq2(p)f(p)dp∫ 1

p q1(p)f(p)dp+
∫ 1
p q2(p)f(p)dp

= A+2B
a+2b

in the overlapping case. We

have shown in the non-overlapping case that the RHS is larger than the precision

of the monopoly. So, in the overlapping case,

∫ 1
p pq1(p)f(p)dp+

∫ 1
p pq2(p)f(p)dp∫ 1

p q1(p)f(p)dp+
∫ 1
p q2(p)f(p)dp

is also larger

than the precision of the monopoly. By the same proof-by-contradiction argument as

before, one can see that the precision of at least one firm is higher than the monopoly

case.

Alternative Correlation Structure

We now consider an alternative correlation structure. Suppose firm one’s prediction

for a given consumer is p1. Then, with probability ρ, firm two’s prediction is also p1,

and with probability 1−ρ, firm two’s prediction is uniformly drawn from f(p). Under

this alternative correlation structure, the expected payoff of a firm from targeting a

probability p consumer is [ρq(p) + (1 − ρ)a]pw + [1 − ρq(p) − (1 − ρ)a]pv − c rather

than [ρq(p) + (1− ρ)R]pw + [1− ρq(p)− (1− ρ)R]pv − c.

All the main results in the paper hold under this alternative correlation struc-

ture. We present proof of those results below.
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Proof of Lemma 1. The proof is the same as the proof in the appendix,

except that one needs to replace R with a in the formulas.

Proof of Lemma 2.

Existence:

The proof is the same as the proof of Lemma 2 in the appendix.

Uniqueness:

1. Firms never target any consumer for sure (p = 1)

a =

∫ 1

p

f(p)q(p)dp

=

∫ 1

c
v−(1−ρ)(v−w)a

f(p)
−c/p+ (1− ρ)aw + [1− (1− ρ)a]v

ρ(v − w)
dp

=

∫ 1

c
v−(1−ρ)(v−w)a

f(p)

ρ(v − w)
[−c/p+ v − (1− ρ)(v − w)a]dp

For any fixed ρ, define:

G(a) :=

∫ 1

c
v−(1−ρ)(v−w)a

f(p)

ρ(v − w)
[−c/p+ v − (1− ρ)(v − w)a]dp− a

Then, G(0) =

∫ 1

c
v

f(p)

ρ(v − w)
[v − c/p]dp > 0

G′(a) =

∫ 1

c
v−(1−ρ)(v−w)a

−(1− ρ)(v − w)
f(p)

ρ(v − w)
dp−

c(− −(1− ρ)(v − w)

[v − (1− ρ)(v − w)a]2
)[v − (1− ρ)(v − w)a− c

c
v−(1−ρ)(v−w)a

]
f( c

v−(1−ρ)(v−w)a
)

ρ(v − w)

=− 1− ρ

ρ
[1− F (

c

v − (1− ρ)(v − w)a
)]− 1 < 0

Uniqueness then follows.

2. Firms target high-probability consumers for sure (p < 1)

[ρ+ (1− ρ)a(ρ)]pw + [1− ρ− (1− ρ)a(ρ)]pv − c = 0

⇒ p =
c

[ρ+ (1− ρ)a(ρ)]w + [1− ρ− (1− ρ)a(ρ)]v
(8)
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a =

∫ 1

p

f(p)dp+

∫ p

p

f(p)q(p)dp

= 1− F (p) +

∫ p

p

f(p)q(p)dp

For any fixing ρ, define:

H(a) :=1− F (p) +

∫ p

p

f(p)q(p)dp− a

Then, H(0) = 1− F (p) +

∫ p

c/v

f(p)q(p)dp > 0

H ′(a) =c
−(1− ρ)(v − w)

[v − (1− ρ)(v − w)a]2
q(

c

v − (1− ρ)(v − w)a
)f(

c

v − (1− ρ)(v − w)a
)+∫ p

c
v−(1−ρ)(v−w)a

−(1− ρ)(v − w)
f(p)

ρ(v − w)
dp− 1

=− (1− ρ)(v − w)[
cq( c

v−(1−ρ)(v−w)a
)f( c

v−(1−ρ)(v−w)a
)

[v − (1− ρ)(v − w)a]2
+

F (p)− F ( c
v−(1−ρ)(v−w)a

)

ρ(v − w)
]− 1

< 0

Uniqueness then follows.

To show that there exists ρ̂ ∈ [0, v−c
v−w

] such that firms never target any con-

sumer for sure if and only if ρ ≥ ρ̂, we just need to show the following claim:

If firms never target any consumer for sure for ρ = ρs, then they also never

target any consumer for sure for any ρl > ρs.

Suppose not. When ρ = ρl, Lemma 1 implies that there exists pl and p
l
such

that firms target consumers with probabilities p ≥ pl for sure and mix for consumers

with probabilities between p
l
and pl. Thus, ql(p) = 1 > qs(p), ∀p ≥ pl. The proof

of the comparative statics results will show that q′l(p) < q′s(p), ∀p ∈ (p
s
, pl). So,

ql(p) > qs(p), ∀p ∈ [p
s
, 1] ⇒ al > as. A contradiction to the comparative statics that

the overall targeting probability decreases in ρ, which will be shown in the proof of

the comparative statics results.
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Proof of Proposition 1. The same as the proof of Proposition 1 in the

appendix.

Proof of the comparative statics results.

1. Firms never target any consumer for sure (p = 1)

Comparative statics of a w.r.t. ρ:

In equilibrium, G(a) = 0. By the implicit function theorem, ∂a
∂ρ

= −
∂G
∂ρ
∂G
∂a

. We

have shown that ∂G
∂a

is negative.

∂G

∂ρ
=

∫ 1

c
v−(1−ρ)(v−w)a

f(p)

v − w
[−c/p+ v − (1− ρ)(v − w)a](−1/ρ2) +

f(p)a

ρ
dp

=

∫ 1

c
v−(1−ρ)(v−w)a

f(p)

ρ2(v − w)
[c/p− v + (1− ρ)(v − w)a+ ρa(v − w)]dp

∝
∫ 1

c
v−(1−ρ)(v−w)a

f(p)[−q(p) + a]dp

=a

∫ 1

c
v−(1−ρ)(v−w)a

f(p)dp−
∫ 1

c
v−(1−ρ)(v−w)a

f(p)q(p)dp

=a

∫ 1

c
v−(1−ρ)(v−w)a

f(p)dp− a

=− F (
c

v − (1− ρ)(v − w)a
)a < 0.

Therefore, ∂a
∂ρ

< 0.

Comparative statics of p w.r.t. ρ:

We have shown that the overall targeting probability a decreases when ρ in-

creases. Therefore, v − (1 − ρ)(v − w)a increases. Equation (6) then implies

that p decreases in ρ.

Comparative statics of the precision wrt ρ :

The same as the proof in the appendix except that we use
∫ 1

p
s

qs(p)f(p)dp = as >

al =
∫ 1

p
l

ql(p)f(p)dp >
∫ 1

p
s

ql(p)f(p)dp and ql(ps) > ql(pl) = 0 = qs(ps) to argue
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that there must exist p̃ ∈ (p
s
, 1) such that


qs(p) > ql(p), if p ∈ (p̃, 1]

q̃ := qs(p̃) = ql(p̃)

qs(p) < ql(p), if p ∈ [p
s
, p̃)

.

Proof of the Comparative statics of the recall wrt ρ :

Suppose ρ > v−c
v−w

. We have shown that

∫ 1
p
l
pql(p)f(p)dp

al
<

∫ 1
p
s
pqs(p)f(p)dp

as
. Since as >

al, we have

∫ 1
p
l
pql(p)f(p)dp

al
=

∫ 1
p
l
pql(p)f(p)dp

as
as
al

<

∫ 1
p
s
pqs(p)f(p)dp

as
⇒

∫ 1
p
l
pql(p)f(p)dp

as
<∫ 1

p
s
pqs(p)f(p)dp

as
⇒

∫ 1
p
l
pql(p)f(p)dp

µ0
<

∫ 1
p
s
pqs(p)f(p)dp

µ0
.

2. Firms target high-probability consumers for sure (p < 1)

Comparative statics of a w.r.t. ρ:

In equilibrium, H(a) = 0. By the implicit function theorem, ∂a
∂ρ

= −
∂H
∂ρ
∂H
∂a

. We

have shown that ∂H
∂a

is negative.

∂H

∂ρ
=− f(p)

∂p

∂ρ
+

∂p

∂ρ
q(p)f(p)−

c

[v − (1− ρ)(v − w)a]2
(v − w)aq(

c

v − (1− ρ)(v − w)a
)f(

c

v − (1− ρ)(v − w)a
)

=− c

[v − (1− ρ)(v − w)a]2
(v − w)aq(

c

v − (1− ρ)(v − w)a
)f(

c

v − (1− ρ)(v − w)a
)

<0

Therefore, ∂a
∂ρ

< 0.

Comparative statics of p w.r.t. ρ:

We have shown that the overall targeting probability a decreases when ρ in-

creases. Therefore, v − (1 − ρ)(v − w)a increases. Equation (6) then implies

that p decreases in ρ.

Comparative statics of p w.r.t. ρ:
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Consider any given ρl > ρs such that the corresponding pl and ps are lower

than 1. We prove by contradiction. suppose pl ≤ ps. The overall targeting

probability corresponding to ρl is al =
∫ 1

pl
f(p)dp+

∫ pl
p
l

ql(p)f(p)dp. The overall

targeting probability corresponding to ρs is as =
∫ 1

ps
f(p)dp +

∫ ps
p
s

qs(p)f(p)dp.

We first show that ql(p) > qs(p),∀p ∈ (p
s
, pl).

Observe that ql(pl) = 1 > qs(pl). For any p ∈ (p
s
, pl), we have

ql(p) =ql(pl) +
c

ρl(v − w)
(1/pl − 1/p)

>qs(pl) +
c

ρs(v − w)
(1/pl − 1/p) = qs(pl)

Hence,

al =

∫ 1

ps

f(p)dp+

∫ ps

pl

f(p)dp+

∫ pl

p
l

ql(p)f(p)dp

>

∫ 1

ps

f(p)dp+

∫ ps

pl

qs(p)f(p)dp+

∫ pl

p
s

ql(p)f(p)dp

>

∫ 1

ps

f(p)dp+

∫ ps

pl

qs(p)f(p)dp+

∫ pl

p
s

qs(p)f(p)dp = as

But we have shown that a decreases in ρ. A contradiction. Therefore, pl > ps.

Comparative statics of the profit w.r.t. ρ:

The same as the proof in the appendix, except that one needs to replace R with

a in the formulas.

Proof of Proposition 2. The same as the proof at the beginning of the

online appendix, except that one needs to replace R with a in the formulas.

Proof of Proposition 3. The threshold for a monopoly equilibrium to exist

is now ρ ≥ amw+(1−am)v−c
(1−am)(v−w)

rather than ρ ≥ Rmw+(1−Rm)v−c
(1−Rm)(v−w)

.

The proof is the same as the proof at the beginning of the online appendix,

except that one needs to replace R with a in the formulas.
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