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Polarization in Group Interactions

ABSTRACT

We study the phenomenon of strategic polarization in group interactions. Agents

with private preferences choose a public action (e.g., voice opinions), and the mean of their

actions represents the groups outcome. They face a trade-off between influencing the group

outcome and truth-telling. In equilibrium, agents strategically shade their actions towards

the extreme leading to polarization. The group outcome is also more extreme than the mean

preference. Compared to a simultaneous actions game, randomized or exogenous sequential

actions lowers polarization when agents’ preferences are relatively similar. Endogenizing

the order of moves always increases polarization, though it is also welfare enhancing.



I Introduction

Society consists of many formal and informal decision-making groups that shape its social,

political, and cultural landscape. These might include community groups, senate commit-

tees, juries, political action committees, education boards, faculty bodies, and discussion

forums. Socio-political opinions of individuals are often subject to influence by others in

their social group, and in turn individuals’ actions may be designed to influence the behavior

of others.

A natural premise of group deliberations going back to Rawls (1971) is that allowing

for discussions among members can result in the exchange of differing views thereby pro-

moting greater alignment of opinions. Nevertheless it is common for individuals to enter

a group interaction and become more divergent in their opinions. Indeed, a body of ex-

perimental evidence in social psychology shows that instead of enabling greater alignment,

deliberations often lead groups to become more polarized (Isenberg, 1986). As an actual

example, after the Newtown shooting in December 2012 citizens in various community and

local groups across the country came together to deliberate and exchange opinions on vari-

ous aspects of gun ownership (Kaufman, 2013). And in a number of instances these group

deliberations exacerbated the divide in the opinions of the participants.

This paper examines the phenomenon of polarization of the actions of agents who

interact on political, social and even moral issues: i.e., when members of a group take

actions (e.g., voice opinions) that are more extreme in the direction of their pre-deliberation

preferences. This characterization of polarization of the observed actions of individuals in

group interactions is consistent with the idea of polarization of decisions described in the

existing literature (Sunstein, 2002). Consider the following examples of group deliberations

which illustrate relevant aspects of the phenomenon:

• In 2015, the state of Texas passed the campus carry law, formally known as Senate Bill

11 (SB 11) (Aguilar, 2016). Following this, the University of Texas assembled a nineteen

member working group to discuss how to implement this law into practice. The working

group members with disparate views deliberated on implementation dimensions such as

where to allow guns on campus, age limits, and the manner in which guns may be carried
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on campus. The deliberations led to some unexpected outcomes such as the conclusion

that the committee would not recommend for a ban on guns in the classroom (Campus

Carry Policy, 2015).1

• In 2005, the Kansas education board discussed and approved changes to the way evo-

lution is taught in public schools. The board required science textbooks to mention

intelligent design and qualify that evolution is simply a theory and not a proven fact

(Slevin, 2005; Kansas State Education Board, 2006).

These examples highlight some themes which are focus of our analysis: First, they

represent contexts in which agents have deeply held preferences about social, political, or

moral issues. Many socio-cultural debates that dominate our public policy discussions also

fall under this category – the abortion debate, how much immigration to allow, should there

be separation of church, and state and the size of government. In these cases, individuals

participating in a group deliberation may find themselves facing a natural trade-off: While

an individual would find it costly to deviate from her deeply held preference, she may still

want to move the overall group outcome towards her preference.

Second, the action is not necessarily binary; rather it is a choice of the extent or

magnitude of an implementable outcome. In the campus carry example, the group’s choice

on what to recommend was not a simple “should guns be allowed on campus or not?.”

Rather it was a nuanced decision on where it would be allowed (classrooms), not allowed

(child-care units), and allowed with discretion (single-user offices), where it can be stored

(in-person or locked vehicle), who is it allowed for (over 21 years, with license). Finally, the

group outcomes after deliberations may end up looking more extreme than one would expect

a priori. Even gun rights advocates may balk at the idea of allowing guns in classrooms,

and many religiously inclined individuals may not advocate teaching intelligent design in

science classes. In both the examples above, there were members who believed the group’s

eventual stance to be unduly extreme (Campus Carry Policy, 2015; Slevin, 2005). This

pattern of polarized group outcomes is not uncommon. A cursory reading of current news

would also suggest that many socio-political issues show evidence of polarization despite

1See Huitlin (2015) and Armed Campuses (2016) for comprehensive discussions of campus carry laws across

different states and the recent developments in this area.
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the presence of moderating influences (Cohn, 2014).

We develop a theory of strategic polarization of group outcomes and the analysis

has two related objectives: First we connect the emergence of polarized decision outcomes

to strategic motives of individuals in group interactions. When deliberations within a

heterogenous group are about deeply held political, social or religious convictions, then

individuals can display a natural motivation to move the ultimate group outcome in the

direction of their preference. But while taking actions to influence the group outcome, an

individual might also incur costs of deviating from her preference. The model connects

this trade-off between the desire for group influence and truth-telling to polarization at the

individual and the group level, i.e., where individuals take actions that are more extreme

than their true preferences and the aggregate group outcome is more extreme than the mean

of the group’s true preferences.

Second we consider how the timing of actions of the agents affects polarization. In

group deliberations members may voice opinions simultaneously without observing each

other’s opinions. Alternatively, they may voice their opinions sequentially in which case

those who speak/act later will be able to observe the opinions of those who spoke before.2

We ask how the timing of actions affects the degree of polarization. Would the degree of

polarization of expressed opinions be greater when members speak simultaneously or in

sequence? If individuals were to speak sequentially who has the greater incentive to speak

first, those who are more extreme or those who are more moderate?

We develop a model of group interactions where agents have heterogeneous pref-

erences over an issue. The basic analysis considers a group of two agents. Each agent’s

utility function has two components: First, an agent incurs disutility if she chooses an ac-

tion (voices an opinion) that is different from her true preference. This is represented as a

convex cost which is increasing in the extent of the misalignment between her action and

2An example is the deliberations within the Federal Open Market Committee which sets the short term

federal funds rates (Lopez-Moctezuma, 2016). Members of the committee with heterogenous preferences

(due to differing views on inflation, unemployment, or output growth) express their preferred policy position

on the target rate sequentially and in an order that varies across meetings. The committee chairperson

then summarizes these positions into an overall group directive.
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her true preference. This can be seen as a reputational (or even a psychological) cost of

misreporting her true preference. Second, an agent cares about the distance of the group’s

outcome to her true preference. This represents the group influence motive – individuals

would like to move the group’s outcome towards their true preference. The game consists of

each agent privately observing her true preference and choosing a publicly observable action

(opinion). The mean of their public actions represents the group’s outcome. Within this

structure we investigate how the strategic behavior of the agents and the timing of actions

(simultaneous vs. sequential) affect the degree of polarization.

In the simultaneous game agents indulge in strategic shading represented by the

distance between their true preferences and their observed actions. Shading towards the

extreme or polarization occurs at both individual and group levels. Further, agents with

extreme preferences shade more than moderates, because they anticipate that the group

outcome is likely to be farther away from their preference. Thus while all groups tend

towards extremity, groups whose average preferences are more extreme tend to shade even

more. Importantly, an agent’s incentive to shade in the simultaneous game is not a function

of the polarization of the true preferences, i.e, the extent of shading is independent of the

preference distribution. In other words, the model is designed to show that the polarization

of observed actions does not necessarily stem from polarization of preferences, but rather

from the strategic motivations of the agents.

The analysis of the timing of actions and the comparison of the simultaneous and

sequential choice games establishes some of the important results of the paper. With se-

quential actions polarization occurs whenever the agent who moves later is relatively more

extreme compared to the first agent, whereas moderation occurs if the agent who moves

later has less extreme preferences. The second agent’s motivation looms larger on the joint

outcome because she can condition her action on the observed action of the first agent and

pull the outcome closer to her preference. Related to this, the analysis also highlights the

rationale for why agents have the incentive to wait to react to the actions of others rather

than to move first and get the benefit of setting the agenda. By moving later an agent can

observe earlier actions and compensate for them accordingly. This comes with the bene-

fit that if the previous action was not too extreme, then the second agent need not incur
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the cost of exaggerating her actions. In contrast, if an agent were to move first, then in

anticipation of the second period, she would have to become more extreme which reduces

her utility. Given group influence motive, waiting to react to the actions of others is more

attractive than attempting to set the agenda. The comparison of the different timings shows

that if the preferences of the agents are relatively similar then the mean outcome is more

moderate in the sequential actions game, whereas if the agents have dissimilar preferences

it is the simultaneous actions game that results in more moderate group outcomes.

We also endogenize the timing of actions by allowing each agent to participate in a

first-price sealed bid auction for the right to determine the sequence in which the agents

will choose actions (i.e., the speaking order). Agents with more extreme preferences bid

more for the right to determine the speaking order, and upon winning all agents regardless

of their preferences prefer to wait. More importantly, because the more extreme agents

bid more, the group outcome in the endogenous sequential game is always polarized. But

the extent of polarization can be higher or lower as compared to the simultaneous game:

when the players preferences are relatively similar endogenizing the speaking order leads to

less polarization as compared to the case when the agents take simultaneous actions. The

implication is that when the players are similarly inclined, allowing for endogenous timing

helps to reduce group polarization.

II Related Research

A stream of research in social psychology starting from Lord et al. (1979) shows that

groups of individuals who hold differing opinions about social or political issues use available

information in a biased manner, by incorporating confirming evidence more readily than

disconfirming evidence. This it is argued may make individuals to move further apart in

their beliefs after viewing the same evidence.3 Consistent with these experimental findings

Rabin and Schrag (1999) propose a model of confirmatory bias where agents ignore signals

3Similar effects have been argued for through experiments in various contexts ranging from social class

stereotyping (Darley and Gross, 1983), opinions on the nuclear deterrence (Plous, 1991), and the evaluation

of the state of the economy (Kinder and Mebane, 1983)
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which do not confirm with their initial impression, and update in the direction of their

current beliefs generating polarization.

Several recent papers have provided different economic explanations for belief po-

larization. Dixit and Weibull (2007) analyze model of Bayesian updating by agents with

heterogeneous normally distributed priors about a true (policy) state and a common noise.

In this set-up while the mean beliefs of the group may diverge after observing the common

signal, the individual beliefs are not farther apart according to stochastic dominance and

so individual level polarization does not occur under Bayesian updating. Nevertheless, po-

larization of individual beliefs is shown to occur by Baliga et al. (2013) due to ambiguity

aversion of individuals who observe the common signal. A paper by Acemoglu et al. (2009)

considers a Bayesian learning problem for agents with different priors who are uncertain

about the conditional distribution of signals and show that even a tiny amount of signal

uncertainty can lead to significant disagreement in asymptotic beliefs.4 Finally, Benoit and

Dubra (2016) consider a model in which there is a main issue on which agents update their

beliefs, but also private information on an unrelated ancillary issue which affects the in-

terpretation of additional information. Polarization may arise even from rational Bayesian

updating due the way different agents select themselves in interpreting the additional in-

formation. In contrast to this literature our analysis is about the polarization of observed

actions which arises from the strategic incentives of agents in group interactions. Further,

the trade-off between the incentive to influence the group outcome and truth-telling can

be seen as a general rationalization of observed polarization which is independent of the

different contexts that motivate the studies in psychology.

There is a substantial literature on the measurement of polarization and its linkage

to social and political conflicts. An important paper by Esteban and Ray (1994) provides

an axiomatic characterization of polarization as a measure of within group homogeneity of

individuals on some variable (such as income or wealth) but across group heterogeneity.

The idea is that the polarization measure is more closely linked to conflict in society than

4Other papers in this area include Kondor (2012) who shows that belief polarization can be generated when

agents see different private signals that are correlated with a common public signal. A similar idea is present

in Andreoni and Mylovanov (2012).
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common measures of diversity such as inequality or fractionalization.5 The subsequent

empirical work on conflict has investigated its relationship to ethnic and social diversity

and shows that ethnolinguistic fractionalization does not have a significant effect on the

probability of civil wars; see for e.g., Fearon and Laitin (2003). However, Montalvo and

Reynal-Querol (2005) go on to show that polarization has a significant link to conflict

and the incidence of wars. Obviously the focus of our analysis is not the measurement of

polarization, but rather on how polarization of actions arises in strategic interactions of

agents who care about group influence and truth-telling.

Polarization has also been analyzed in the large literature on political and electoral

competition and much of it is concerned with how voter preference distributions affect

candidate behavior. While the classic Hotelling-Downs framework shows the logic for why

candidates may converge to the median voter preferences, subsequent research has examined

rationales for the prevalence of policy divergence in observed electoral competitions. For

example, Alesina (1988) shows that if candidates care not only about being elected, but

also about which policy is ultimately implemented, they may announce convergent platforms

before elections and then implement their preferred platform ex-post. Roemer (1994) shows

that uncertainty about voter preferences can lead candidates to diverge, while Glaeser et al.

(2005) show that political parties may strategically choose more extreme platforms to target

their core market that is more influenced by the candidate’s information. Kamada and

Kojima (2014) consider a Hotelling-Downs setup in which voters have convex preferences

and show that this can lead candidate policies to diverge in equilibrium. While these papers

analyze a game between strategic candidates dealing with voters, we consider a game where

agents are themselves voters but who can take strategic actions to influence other agents.6

5It may be noted that the Esteban and Ray (1994) polarization measure is consistent with the identification-

alienation framework: i.e., individuals care about identification with others of similar income, and are

alienated from those who are dissimilar; see Duclos et al. (2004).
6Polarization has also been studied in the context of firms’ incentives to slant media. Mullainathan and

Shleifer (2005) show that media firms slant news when consumers have a taste for seeing their beliefs

confirmed while Gentzkow and Shapiro (2010) provide a reputation based rationale for media bias even

with Bayesian consumers.
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III Model Preliminaries

We first present the basic model of group interactions, where the mean of actions of the

agents is seen as the group outcome. Consider a group of two agents i and j, where each

agent’s preference (denoted as xi and xj) is independently drawn from a distribution g(x),

which is symmetric around zero and with support over the real line R. The cumulative

density of the distribution is given by G(x) =
∫ x
−∞ g(t)dt and G(∞) = 1.7

Agent i’s true preference or type xi is her private information and in the introductory

examples this would represent the agent’s true conviction on religious or political issues

such as gun rights, or the nature of science education in schools, or the size of government.

Both agents simultaneously choose a publicly observable action, {ai, aj} ∈ R. As already

indicated before, in a group deliberation an agent’s action can be interpreted as her voiced

preference or opinion. After both agents have spoken, assume that a neutral third-party

implements the mean of their voiced preferences or actions as the group outcome.

The utility of agent i is given by the following convex loss function:

u(xi, ai, aj) = −r(xi − ai)2 − (1− r)(xi − ā)2 (1)

where ā =
ai+aj

2 , and r ∈ (0, 1) represents the relative weights that the agents places on the

different components of their utility. Agents obtain dis-utility from two sources. First, their

utility is decreasing in the distance between their action and their preference, i.e., they prefer

to voice opinions close to their true preference. This could stem from a disinclination to

misreport their preferences or from potential reputational concerns. Second, their utility is

decreasing in the distance between the group outcome (ā) and their true preference. In other

words, agents’ have a taste for influencing the group’s outcome. In the case of the University

of Texas working group on the campus carry issue, the chairman of the committee would

have to produce a recommendation for the University administrators which is a summary

of the average group opinions. Therefore, in the deliberations members of the committee

would have the incentive to take actions that would sway the recommendations towards their

preference on the issue. A greater value of r represents issues for which agents have stronger

7In the analysis, to illustrate some of the results we use as an example preferences that are independently

drawn from U [−1, 1] (and actions {ai, aj} ∈ R).
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relative preference for voicing opinions that are consistent with their true preferences.

We consider a game in which nature first draws the preferences xi and xj for the

agents based on which they choose their publicly observable actions. The actions ai and aj

may be chosen simultaneously in which case each agent’s choice is contingent only on the

private information about her preference. Alternatively, the agents may move sequentially

in which case the agent who moves second will be able to choose her actions contingent

upon her private information as well as the observed actions of the first mover.

IV Analysis

Before we begin the analysis it is useful to derive two benchmark cases – i) the first-best

socially optimal solution, and ii) the perfect information case. In the first case, a social

planner chooses actions to maximize the joint surplus of the two agents:

W (xi, xj , ai, aj) =
∑
k=i,j

−r(xk − ak)2 − (1− r)(xk − ā)2 (2)

The welfare maximizing choices are a∗i = xi and a∗j = xj . The socially optimal action for

both agents is truth-telling and the joint decision shows no distortion from the preferences.

Suppose now that the agents have perfect information on each other’s types and move

simultaneously. Denoting the agents’ equilibrium actions as {api , a
p
j}, we can derive: api =

3r+1
4r xi − 1−r

4r xj and apj = 3r+1
4r xj − 1−r

4r xi. While both agents deviate from truth-telling by

reporting a weighting of their own preference and the other agent’s preference, the mean

action, āp =
xi+xj

2 , perfectly reflects the mean preferences of the group. Thus, with perfect

information too the group’s joint decision is not distorted.

A Simultaneous Actions

Consider the game in which agents choose their actions without observing the other agent’s

type and actions. We proceed to derive the Bayesian Nash equilibrium of this game and

focus without loss of generality on agent i. Let âj denote the equilibrium action of j. Because

j’s preference (xj) is her private information at the time of choosing the action, i’s expected

utility from choosing ai as EU(xi, ai) =
∫
R u(xi,ai,âj)g(xj)dxj∫

R g(xj)dxj
. By differentiating EU(xi, ai)
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and setting it equal to zero at i’s equilibrium action ai = âi gives us:

∂EU(xi, ai)

∂ai

∣∣∣∣
ai=âi

= 2r(xi − âi)−
(1− r)

2

[
−(2xi − âi) +

1

2

∫
R
âjg(xj)dxj

]
= 0 (3)

In obtaining the above first order condition, we can set
dâj
dai

= 0 because in a simultaneous

equilibrium, any change in the action of agent i has no impact on the equilibrium action of

agent j. Simplifying equation (3) gives us âi as:

âi =
2(1 + r)

1 + 3r
xi −

(1− r)
2(1 + 3r)

∫
R
âjg(xj)dxj (4)

Integrating i’s equilibrium action âi over the entire range of xi gives us:∫
R
âig(xi)dxi =

2(1 + r)

1 + 3r

∫
R
xig(xi)dxi −

(1− r)
2(1 + 3r)

∫
R
âjg(xj)dxj

∫
R
g(xi)dxi (5)

Because
∫
R âig(xi)dxi =

∫
R âjg(xj)dxj , and because E(x) = 0 for a symmetric distribution,

we can uniquely identify
∫
R âjg(xj)jdxj = 0. We thus have âi = 2(1+r)

1+3r xi. These results are

summarized below in the proposition below: 1.

Proposition 1 In the simultaneous actions game, there exists a unique Bayesian Nash

equilibrium, where an agent i with preference xi chooses action âi = 2(1+r)
1+3r xi.

An implication of the Proposition is that agents’ actions are more extreme than

their true preferences (the multiplier µ(r) = 2(1+r)
1+3r > 1, for all r < 1). Moreover, this

shift to extremity is in the direction of their original preference: i.e., those with positive

xi always move right, while those with negative xi always move towards the left. When

picking the optimal action, agent i’s calculation of the expected action of the other agent

will be E(âj) = 0. Consider the trade-off faced by the agent if she chooses to report her true

preference and choose ai = xi: Given this choice she expects the mean of the actions to be

Ei[ā] = xi/2 and the distance between her preference and the mean to be Ei[xi− ā] = xi/2.

We know that i’s utility is decreasing both in the distance between her type and the mean

action and in the distance between her type and her action. By reporting ai = xi the agent

does not incur any cost from misreporting, and her expected loss is purely the cost of the

joint outcome being misaligned with her preference, EU(xi, xi) = −1−r
4 x2i − µ(r)2

4 E(x2),

where E(x2) =
∫
R x

2
jg(xj)dxj . If instead, she exaggerates her opinion by ε in the direction
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away from zero, she successfully moves the mean closer to her own preference xi. However

in doing so, she also incurs an extra cost from lying, which is increasing with ε. Overall,

her expected utility is EU(xi, xi + ε) = −rε2 − 1−r
4 (xi − ε)2 − µ(r)2

4 E(x2). For small values

of ε, EU(xi, xi + ε) > EU(xi, xi) and the converse is true for ε large enough. Hence,

in equilibrium, i picks the optimal value of ai that minimizes the loss from the distance

between the group’s outcome and their own preference, but one that does not inflate the

cost of exaggerating.8

Next, recall that group polarization is defined as the tendency of the joint out-

come to move towards a more extreme point in the direction indicated by the members’

original preferences. The equilibrium derived above satisfies this definition. The mean pre-

deliberation preference of the group is x̄ =
xi+xj

2 while the mean post-deliberation outcome

is ā =
âi+âj

2 = 1+r
1+3r (xi + xj). If x̄ > 0, then ā > x̄; else if x̄ < 0, then ā < x̄. Hence, if

the preferences of the two agents in the group is initially predisposed towards the right, the

joint outcome is even more rightwards. Alternatively, if the group is predisposed towards

the left, then its joint outcome is even more leftwards.

To investigate the comparative statics, consider the extent to which an agent i shades

her opinion in equilibrium defined as si = |âi−xi| = 1−r
1+3r |xi|. We can see that dsi

dr ≤ 0 and as

would be expected agents shade their actions less if the cost associated with lying is higher.

Second, dsi
d|xi| > 0 suggests that agents near the extremes shade more than moderates, who

are closer to the center. It also implies that the overall group shift is proportional to the

initial tendency of the group. The mean shift of a group is given by s̄ = |ā − x̄| = 1−r
1+3r |x̄|

and so the shift exhibited by an extreme group of agents is higher than that exhibited by a

relatively moderate group. While all groups tend towards the extremes in their decisions,

this effect is exacerbated in extreme groups.

8We have not explicitly included abstention as part of the players’ strategy set. Abstention can be seen as

equivalent to not voicing any opinion. The analysis above would hold if we assume that not voicing any

opinion implies an action that is consistent with true preferences. When agent i abstains, her actions are

aligned with her true preferences and so her utility from the first term to −r(xi − ai)
2 = 0. However, by

abstaining, she has no effect on the group’s final outcome and ā = aj . So the utility from abstaining is

−(1 − r)(xi − aj)
2 which is strictly lower than the utility of voicing her true preferences (and obtaining

−(1− r)
(
xi − xi+aj

2

)2

.) Thus abstaining is always a dominated choice.
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An interesting point is that the extent of shading, si, is independent of the distribu-

tion g(x) as long as it is symmetric. Agents’ shade the same amount irrespective of whether

they are drawn from a uniform distribution or from a more polarized preference distribu-

tions where the masses are near the extrema. This suggests that polarization in this model

does not stem from preference polarization. Rather it is a strategic choice made by agents

in order to influence the group decisions.

Asymmetric Type Distribution: If we consider any general asymmetric distribution g(x),

then we can derive: ai = 2(1+r)
1+3r xi − 1−r

1+3rE(x). The effect of the asymmetry of the type

distribution is intuitive. Suppose xi > 0 and agent i has right leaning preferences, but that

the distribution of the agent types is skewed in the opposite direction, i.e., E(x) < 0. In

this case, agent i will have the incentive to be more extreme than in the symmetric case

and to shade her action even more to the right. In contrast, if the distribution is skewed in

the same direction as the agent’s preference, this leads to moderation.

A.1 Group Size Effects

We now consider interactions between m > 2 agents to investigate the role of the group

size. Recall that the preferences of the agents are private information and are independently

drawn and all agents simultaneously choose their public action {am,i, am,j , ...} ∈ R, with

agent i’s action denoted as am,i. Agent i’s utility is given by u(xi, am,i, am,−i) = −r(xi −
am,i)

2 − (1 − r) (xi − ām)2, where am,−i denotes the actions of all agents except i and

ām = 1
m

∑m
i=1 am,i.

In the Bayesian Nash equilibrium of this game agent i chooses action âm,i = rm2+(1−r)m
rm2+(1−r) xi.

This shows the robustness of the equilibrium of the two-agent group. Agent i’s strategy is

linear in her type xi with the multiplier µm(r) = rm2+(1−r)m
rm2+(1−r) . The extent of shading by

agent i is sm,i = |âm,i − xi| = (1−r)(m−1)
rm2+(1−r) |xi| and so as in the basic model, for all m, r,

agents near the extreme shade their opinions more than those near the center. The extent

of shading is also increasing in r, and independent of g(·).
The m-agent case provides an additional insight – it shows that the level of shading

si is increasing in m up to 1√
r

+ 1, but decreasing after that (see Appendix). In other
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words, after a certain point, as the number of players increases, agents tend to shade less.

As m→∞, shading goes to zero, i.e., players report the truth. Agents exaggerate in order

to pull the mean (ā) closer to their preference. But when the number of agents in the

group becomes large, the marginal impact of any one agent’s action on the group mean

outcome becomes negligible. Hence, in very large groups, the incentive to exaggerate is low.

This indicates a plausible solution to the polarization problem – a social planner wishing

to reduce polarization of actions may do so by picking larger deliberation groups. However,

while group size can be a potential remedy, it may also have practical limits. For example,

involving large groups in decision-making is likely to be costly to implement in many cases

and may simply be infeasible in others (such as in juries and political committees). There-

fore, later in the paper we will analyze the role of timing of the actions and ask whether

sequential choices may be a potential solution to the polarization problem.

A.2 Sub-group Interactions

In many socio-political situations deliberations occur between sub-groups, where each sub-

group consists of many agents having the same preferences over an issue, but different from

that of the other sub-group. Political deliberations in the U.S., e.g., in the Senate, occur

between multi-agent Democratic and Republican sub-groups. On issues such as abortion

rights, gun control, and taxation, conservatives groups have different preferences than lib-

erals, but citizens within each sub-group have similar preferences.

Consider an extension of the basic model with a population of m > 2 agents that are

divided into two subgroups 1 and 2 of sizes n1 and n2 so that n1 + n2 = m. The sub-group

sizes are common knowledge. The preferences x1 and x2 of the sub-groups are independently

drawn from g(x). All agents within a sub-group know their individual preferences (and that

of the others within their sub-group), but they do not observe the preferences of the other

sub-group. We can write the expected utility of an individual agent i from sub-group 1 and
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agent j from sub-group 2 as:

EU i1 = −r(x1 − ai1)2 − (1− r)

x1 − 1

m

ai1 +

n1∑
k1=1(6=i)

ak11 +

n2∑
k2=1

∫
R
ak22 g(x2)dx2

2

(6a)

EU j2 = −r(x2 − aj2)2 − (1− r)

x2 − 1

m

aj2 +

n2∑
k2=1(6=i)

ak22 +

n1∑
k1=1

∫
R
ak11 g(x1)dx1

2

(6b)

In the Appendix we present the solution for the symmetric (for agents within a sub-

group) Bayesian Nash equilibrium and show that the equilibrium actions are âi(xi,m, ni) =

xi
m(mr+(1−r))
m2r+(1−r)ni

and âj(xj ,m, nj) = xj
m(mr+(1−r))
m2r+(1−r)nj

. The main results of the two-agent model

continue to hold: the sub-group’s action is linear in its preferences and sub-groups near the

extremes shade more.

The main point of this analysis is to understand the role of the sub-group size on

actions. Specifically, for a given population size m, how would a sub-group’s size affect

actions. It can be seen that for a given m, ∂âi∂ni
and

∂âj
∂nj

are both negative. The implication

is that smaller sub-groups can become even more extreme. This result can be seen as being

consistent with the role of the Tea party movement in U.S. politics which was associated

with pulling the Republican party more to right and with adopting increasingly conservative

economic and social positions. For example, the Tea party members in the senate adopted

increasingly conservative positions on environment, trade, budget, and immigration (Todd

et al., 2014). This has happened even as the percentage of tea party supporters reported

by polls diminished from 30% at the beginning of 2011 to 17% in October 2015 (Gallup,

2015).

B Sequential Actions

We now consider the case in which players may voice their opinions in sequence. Indeed in

many legal or political institutions members typically take turns to speak. As described in

the introduction in the Federal Open Market Committee (FOMC) meetings the members of
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the committee express their preferred policy position sequentially. The committee Chairman

summarizes these positions into an overall group directive. Similarly, in juries and legislative

bodies the order of speaking is often pre-determined by the institutional rules. Accordingly,

we consider a two-period model in which one of the agents is randomly picked to speak

in the first period and the other follows in the second period. We refer to this model as

the “exogenous” sequential choice model where the order of agent actions is exogenously

determined and is uncorrelated to the agents’ preferences. The speaking order can be

interpreted as being either determined by institutional rules or by a third-party. Then in

a subsequent section we will consider the case when the agents bid to endogenously choose

the speaking order.

B.1 Equilibrium in the Sequential Game

Let axt,i denote agent i’s action in period t, in this exogenous sequential actions game.

Without loss of generality, suppose that agent i speaks in the first period and j in the

second period. We solve for the Perfect Bayesian equilibrium (PBE) for this game, and

derive the equilibrium actions of both players starting with the second player. A PBE

consists of strategy profile (and associated beliefs) for the two agents that specify their

optimal actions given their beliefs and the strategies of the other agent. Further, the beliefs

of each agent are consistent with the strategy profile and are determined by Bayes rule

where possible. In this game, the first agent i’s strategy ax1,i(xi, âx2,j) is a function of her

type xi and her (consistent) beliefs about the optimal actions of j in period 2, whereas the

second agent j’s strategy ax2,j(xj , ax1,i) is a function of her type and the action of player i

that she observes.

Period 2 – The utility of the second player j when she chooses action ax2,j in response to the

first player’s observed action ax1,i is u (xj , ax2,j , ax1,i) = −r(xj − ax2,j)2− (1− r) (xj − āx)2

where āx =
ax1,i+ax2,j

2 . The optimal choice of agent j given the first period choice of i can

be derived as âx2,j = 2(1+r)
1+3r xj −

(1−r)
1+3r ax1,i.

Period 1 – We can now solve for i’s first period choice. While i doesn’t know the second

player’s type, her belief will be that j will choose an optimal action âx2,j in response to

her action. So her expected utility from choosing action ax1,i is obtained by taking the

15



expectation of u (xi, ax1,i, âx2,j) over the full range of xj which gives us:

EUx1 (xi, ax1,i) = −r (xi − ax1,i)2−(1−r)
[(

xi −
2r

1 + 3r
ax1,i

)2

+

(
1 + r

1 + 3r

)2 ∫
R
x2jg(xj)dxj

]
(7)

Taking the F.O.C of equation (7) and following a similar analysis to that in section

A gives us the equilibrium action of i as âx1,i = (1+3r)(3+r)
(1+3r)2+4r(1−r)xi. Therefore, the first player

i has a unique optimal response that is both linear in her type xi and is symmetric around

zero.

B.2 Characterizing the Group Outcome

Having derived the individual equilibrium actions, we now proceed to characterize the

mean equilibrium outcome. For a given xi and xj , the mean equilibrium outcome is

āx =
âx1,i+âx2,j

2 = 2r(3+r)
(1+3r)2+4r(1−r)xi + 1+r

1+3rxj . Before stating the results, we define the

following relationships:

• Polarization: |āx| > |x̄| and āxx̄ > 0. Polarization is said to have occurred if the mean

of equilibrium actions (āx) is more extreme (farther away from zero) than the mean

of preferences x̄, and this shift is in the direction of the group’s initial tendency x̄.

• Reverse Polarization: |āx| > |x̄| and āxx̄ ≤ 0. Reverse Polarization is the case where

the mean equilibrium outcome (āx) is more extreme than the mean of preferences x̄,

and the shift is in the direction opposite to the group’s initial tendency x̄.

• Moderation: |āx| ≤ |x̄|. Moderation refers to the case where the mean of the equilib-

rium actions (āx) lies closer to zero than the mean of preferences (x̄).

The following proposition summarizes the equilibrium extent of shading as measured

by the relationship between the mean actions and preferences:

Proposition 2 Let k1(r) = (1+3r)(1−r)
(1+3r)2+4r(1−r) , k2(r) =

(1+3r)[(1+3r)2+16r]
[(1+3r)2+4r(1−r)][2(1+r)+(1+3r)]

, and

k3(r) = (1+3r)3+8r(1−r)(1+r)
2(1+r)[(1+3r)2+4r(1−r)] , and without loss of generality, let xi ≥ 0. Comparison of

the mean equilibrium outcome (āx) with the mean of preferences (x̄):

• Polarization occurs if xj > k1(r)xi or xj < −xi.
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Figure 1: Regions of polarization, reverse polarization, and moderation in an exogenous

sequential choice game; shown for {xi, xj} drawn from U [1, 1].

• Reverse Polarization occurs if −xi ≤ xj < −k2(r)xi.

• Moderation occurs if −k2(r)xi ≤ xj ≤ −k1(r)xi
Proof: See Appendix �

The effect of sequential actions on group polarization is summarized in Figure 1.

Polarization occurs whenever the second player’s preference is relatively extreme or compa-

rable to that of the first player i.e., xj > k1(r)xi or xj < −k2(r)xi. In a sequential game,

the second player can condition her action on that of the first player and is therefore always

able to pull the mean outcome āx close to her own preference. When j is extreme, she pulls

the mean outcome to the extreme too, thereby leading to polarization. Note that within

this region when −xi ≤ xj ≤ −k2(r)xi, the polarization is reverse in the sense that it is in

the direction opposite to that implied by x̄. This happens when xi and xj lie on opposite

sides of zero, and |xi| is slightly greater than |xj |. In other words, while the agents have

preferences that are on opposite side of the issue, the first mover’s preference is only slightly

more intense. This implies that the mean group preference x̄ lies on the same side of zero as

the first mover i. However, in the second period, agent j’s optimal action is able to ensure
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that the mean action āx is closer to her than to i, i.e., lies on the same side of zero as her

own preference xj – opposite to that of xi and x̄. Therefore, in this region, the group’s

mean action or outcome can be seen as being polarized but in the reverse direction.

In contrast, when the second mover j’s preference is closer to zero compared to i,

then she can choose her second period action so as to bring the group’s outcome closer to

her preference. This provides a moderating influence, and the overall outcome is closer to

zero than the mean preferences. Thus both polarization and moderation are possible in

this exogenous sequential game with the actual outcome depending upon on the relative

preferences of both players and leans in the direction of the second player. So if the second

player is relatively extreme, the outcome is also extreme; however if she is moderate, the

outcome is moderate too.

B.3 Comparing Simultaneous and Sequential Games

We compare the simultaneous and sequential action games to understand how the extent

of group polarization is affected by the timing of actions.

Proposition 3 Let {âi, âj} and {âx1,i, âx2,j} denote the equilibrium actions of i and j in

the simultaneous choice and exogenous sequential choice games, respectively. Without loss

of generality, let xj > 0. Then:

a) âx2,j ≥ âj if xi ≤ 0 and âx2,j < âj if xi > 0.

b) |âx1,i| ≥ |âi| and
d|âx1,i|

dr < 0

Proof: See Appendix �

Consider first the action of the second player j in the sequential game âx2,j =

2(1+r)
1+3r xj −

(1−r)
1+3r âx1,i. Part (a) of the Proposition shows that if the players lie on oppo-

site sides of zero, then j becomes more extreme in the sequential actions game as compared

to the simultaneous game. In contrast, when the two players preferences on the same side

of zero, then in the second period j is less extreme, in response to i’s action. That is, when

the first player i chooses an action close to j’s own preference, then she is more moderate

in comparison to the simultaneous case. This is because exaggeration in the simultaneous
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case is driven by the anticipation of the other players’ opinion. But in the sequential case

player j already observes an action that shows that player i is not from the opposite camp

and so the incentive to exaggerate decreases.

In contrast, the first player i’s action in the sequential game is always more extreme

than that in the simultaneous case (i.e., |âx1,i| ≥ |âi|) because i knows that the second

player j can compensate for her action in either direction. This is not an issue when j’s

preferences are similar to her own. But if the preferences happen to be very different, then

by virtue of speaking second, j can nullify the effect of i’s actions. Because this effect does

not exist in the simultaneous game, i’s action in the sequential game is more extreme.

Next, we compare the equilibrium outcomes in the two game formats.

1 0.5 0 0.5 1
1

0.5

0

0.5

1

xi

xj

āxx̄ > 0

&

&

0 ≥ āxx̄

|ā| ≥ |āx|

|āx| > |ā|

|āx| > |ā|

Figure 2: Comparison of mean outcome in the exogenous sequential game with that in the

simultaneous game; shown for {xi, xj} drawn from U [1, 1].

Proposition 4 Comparison of the mean equilibrium outcome in the exogenous sequential

game āx with that from the simultaneous game (ā):

• |āx| > |ā| and āxx̄ > 0 if xj < −xi, i.e., the mean outcome in the exogenous sequential

game is more extreme than that in the simultaneous game, in the direction of the initial

tendency x̄.
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• |āx| > |ā| and āxx̄ ≤ 0 if −xi ≤ xj < −k3(r)xi, i.e., the mean outcome in the exoge-

nous sequential game is more extreme than that in the simultaneous game, but in the

“opposite” direction of the initial tendency x̄.

• |āx| ≤ |ā| if xj ≥ −k3(r)xi, i.e., the mean outcome in the exogenous sequential game is

moderate compared to the mean outcome in the simultaneous game,

Proof: see Appendix �

If i and j are relatively similar, then the mean outcome is more moderate in the

sequential game (i.e., |āx| < |ā|). On the other hand, if i and j lie on opposite sides of zero

(are relatively different) and j is relatively extreme, then the mean outcome in the sequential

game is more extreme (see Figure 2). Overall, the propositions above reveal the insight

that sequential actions may make agents more polarized than in the simultaneous case if

they have divergent preferences. But if the individuals have relatively similar preferences,

sequential actions has the potential to lead to less polarization of actions. These results

highlight how the timing of the game may be exploited to combat polarization. For example,

a social planner with an objective to reduce polarization can do so by assigning speaking

orders if she expects players to be similar. However, if she expects them to be dissimilar,

she may instead opt for a simultaneous choice format.

B.4 Value of the Speaking Order

We now analyze the relative value of the speaking order for the players by comparing the

ex-ante expected utilities from speaking in the first and second periods. Agent i’s a priori

expected utility from speaking first and choosing action ax,i is given by equation (7). In

equilibrium, i optimally chooses action âx1,i. Substituting this into equation (7) gives us:

EUx1 (xi, âx1,i) = − (1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r)x
2
i −

(1− r)(1 + r)2

(1 + 3r)2

∫
R
x2g(x)dx (8)

Similarly, we can calculate i’s a priori expected utility from speaking second as follows:

EUx2 (xi, âx2,i) =

∫
R u (xi, âx2,i, âx1,j) g(xj)dxj∫

R g(xj)dxj

= −r(1− r)
1 + 3r

x2i −
r(1− r)(1 + 3r)(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
∫
R
x2g(x)dx (9)
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Figure 3: Players’ expected utilities in an exogenous sequential choice game. Shown for

{xi, xj} drawn from U [1, 1].

The following proposition compares the equilibrium expected utilities of speaking in the

first and second periods, for a player i of type xi.

Proposition 5 Let Dx(xi) = EUx1 (xi, âx1,i)−EUx2 (xi, âx2,i) denote the difference between

the equilibrium expected utilities of agent i from speaking in the first and second periods.

a) Dx(xi) ≤ 0 ⇒ for any agent i, the expected utility from speaking in the second period is

greater than or equal to that from speaking in the first period.

b) dDx(xi)
d|xi| ≤ 0 ⇒ the difference in expected utilities of speaking in the first and second

periods is increasing in |xi|.
Proof: See Appendix �

The proposition highlights an important trade-off in incentives: Moving first allows

an agent to “set the agenda” by committing to an observable action, whereas moving second

allows the agent the flexibility to optimally adjust to the first period actions. The analysis

indicates a rationale for why agents would wait to react to the actions of other agents,

rather than to act first and set the group’s agenda. The general point is that, irrespective

of the type of the agent, the social influence motive makes the value of flexibility that comes

from speaking second to be higher than the commitment value of speaking first and setting

the agenda. A player who speaks second observes the first player’s action and has the
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opportunity, if needed, to compensate for it. This works to the second player’s advantage

irrespective of whether or not the first player’s action was close to or not from her preference.

If the first player chose an action very different from the second player’s preference, then

she can compensate by picking a more extreme action in the opposite direction. But if the

first player were to choose an action which is already close to her own preference, then the

second player can also choose an action close to her preference and thereby not incur the

cost of exaggerating.

Because the second player can can adjust her action based on the observed actions

of the first player, the first player in anticipation of this behavior has the incentive to be

more extreme, which in turn reduces her utility even more. Thus when agents care about

influencing the overall group outcome towards their true preference, they prefer if given

the choice to wait and delay their actions. The benefit of speaking second is higher for

players who are more extreme – moderates have less to lose from speaking first. In general,

moderates suffer less from decisions which are away from the middle. However, a player

whose preference is more extreme on the right suffers a lot if the final outcome is more

extreme to the left (and vice-versa). In sum, the analysis suggests that there are inherent

advantages to waiting, especially for agents with more extreme preferences.

C Endogenous Sequential Actions: Bidding to Speak

As described above the trade-off faced between truth-telling and group influence leads to a

preference among agents to wait and speak in the second period and further such a strategy

is more beneficial for players with extreme preferences. The natural question is what would

happen in a group where the speaking order is endogenous. Given that speaking second is

the dominant choice, there would exist a market for the order of speaking which may be

characterized by allowing agents to endogenously bid for the right to determine the speaking

order. In reality such an endogenous choice game implies the idea that group members may

be willing to take costly actions to determine whether they are able to speak in the most

favorable position.

Consider then an extension to the game where in a prior period 1 both agents par-

ticipate in a first-price sealed bid auction for the opportunity to decide the speaking order.
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A neutral organizer/auctioneer receives agents’ bids and announces the winner: if bi > bj ,

then i is the winner and in the event of a tie the winner is randomly chosen. The organizer

announces the winner (but not the bid amounts) and so each player’s beliefs will be based

on inferences about the other’s type depending upon who won the auction. In period 2,

the winner chooses the preferred speaking order. In period 3 the players act based on the

speaking-order determined by the winner. Players’ have the same utility as in equation (1),

except now the winner of the auction (say i) also pays her bid bi to the organizer in period

1 for the right to choose the speaking order.

We derive the symmetric equilibrium bidding strategies of this game where the equi-

librium bidding functions β(x) are symmetric around zero. Unlike in the standard auction

models where the bidder valuations are exogenously specified, the challenge in deriving the

equilibrium strategies in this model stems from the fact that a bidder’s valuation for the

speaking order is endogenous to the outcome of the auction itself.

Proposition 6 In the game where the agents participate in a first-price sealed-bid auction

to decide on the right to determine the speaking order, there exists a unique symmetric PBE

in which, agent i

• has a bidding strategy β(xi) = f(r)
∫ xi
0 x2g(x)dx∫ xi
0 g(x)dx

, where f(r) > 0 ∀ r > 0 and chooses

to speak second if she wins the auction.

• If agent i speaks first, then she chooses ân1,i = (1+3r)(3+r)
(1+3r)2+4r(1−r)xi, whereas if she speaks

second, she chooses ân2,i = 2(1+r)
1+3r xi −

(1−r)
1+3r an1,j.

Proof: See Appendix �

Note that the equilibrium actions of the agents in this endogenous game end up being

the same as that in the exogenous sequential game. Clearly, the agent who moves second

faces the same game as the agent in the exogenous sequential game because she always

chooses her response an2,i in response to the first player’s action an1,j . The incentives facing

the first player is more subtle. If she is speaking first; this could either be because she won

the auction and chose to go first, or because she lost and was asked to go first by the other

player (the former case turns out to be off the equilibrium path). Regardless, i does not
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know j’s type because j has not yet spoken. Therefore, i’s actions will depend on her beliefs

about j’s type which will be based on the observed outcome of the auction and j’s choice

of speaking order (if j had the opportunity to decide it).

In a symmetric PBE, the region, say, W to which i can expect j to belong to is

symmetric around zero, irrespective of the exact scenario under which i is speaking first.

Hence, i’s expected utility from speaking first is obtained by taking the expectation of

u (xi, an1,i, ân2,j) over xj ∈ W , i.e., EUn1 (xi, an1,i) =
∫
W u(xi,an1,i,ân2,j)g(xj)dxj∫

W g(xj)dxj
. This can be

simplified by substituting for ân2,i:

EUn1 (xi, an1,i) = − r(xi − an1,i)2 − (1− r)
[(

xi −
2r

1 + 3r
an1,i

)2

+

(
1 + r

1 + 3r

)2
∫
W x2jg(xj)dxj∫
W g(xj)dxj

]

− 2
1 + r

1 + 3r

(
xi −

2r

1 + 3r
an1,i

) ∫
W xjg(xj)dxj∫
W g(xj)dxj

(10)

The last term vanishes becauseW is symmetric around zero. By setting
dEUn1(xi,an1,i)

dan1,i

∣∣∣
an1,i=ân1,i

=

0, we can solve for ân1,i = (1+3r)(3+r)
(1+3r)2+4r(1−r)xi which turns out to be the same as in the exoge-

nous sequential case.

Players’ equilibrium beliefs are that upon losing, they will forfeit the right to decide

the speaking order, and the right to move second. Given this, the equilibrium bidding strat-

egy can be specified. In deriving the equilibrium bidding strategy, note that a players’ value

from winning the auction is endogenous, unlike a traditional first-price sealed-bid auction,

where players’ valuations are exogenously given. The approach to deriving the equilibrium

is to show that equilibrium bidding strategies are increasing strictly monotonically in |xi|.
The equilibrium bidding strategy is derived in the Appendix to be β(xi) = f(r)

∫ xi
0 x2g(x)dx∫ xi
0 g(x)dx

and it is monotonically increasing in |xi|. Thus agents with more extreme preferences have

higher value for choosing the speaking order and will accordingly bid higher. The multiplier,

f(r), of the equilibrium bidding function is monotonically decreasing in r, i.e., as players’

need to pull the final outcome (ān) closer to own preference increases (as r decreases), their

bid increases. At r = 0, the bidding strategy simplifies to β(xi)|r=0 = 2
∫ xi
0 x2g(x)dx∫ xi
0 g(x)dx

, which

is the highest, whereas at r = 1, the bidding strategy devolves to β(xi)|r=1 = 0.

Consider now the mean equilibrium outcome of the endogenous sequential actions

game. For a given xi and xj suppose |xi| < |xj |, without loss of generality. Then j
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wins the auction and chooses to speak second, and the mean equilibrium outcome will be

ān =
ân1,i+ân2,j

2 = 2r(3+r)
(1+3r)2+4r(1−r)xi+

1+r
1+3rxj ∀ |xi| < |xj |. Proposition 7 compares the mean

outcome, ān, with the mean of the preferences x̄ and the mean outcome in the simultaneous

choice game ā.

Proposition 7 In the equilibrium of the endogenous sequential actions game polarization

always occurs (|ān| > |x̄| and ānx̄ > 0). Comparison of the extent of polarization across the

different games yields:

• If xi · xj < 0, then |ān| > |ā|.

• If xi · xj > 0, then |ān| ≤ |ā|

Allowing the agents to compete for the right to speak always leads to the polarization

of actions. When the speaking order is endogenous, the agent who wins the right to speak

always prefers to wait. Further, it is the agents with more extreme preferences who have

the incentive to bid more for the right to determine the speaking order. This leads to the

important point that if agents were to bid for the right to speak then the actions of the

agents and the group outcome is always polarized. Unlike in the exogenous sequential game

where moderation is a possibility, allowing agents to choose the speaking order always leads

to polarization.

It is also useful to compare the outcome of the endogenous sequential actions game

with that of the simultaneous game. If the two players lie on opposite sides of zero, then

endogenous sequential actions produces more polarization than the simultaneous actions

game. On the other hand, if both players lie on the same side of zero, then the outcome

is less polarized than that in the simultaneous game. The basic mechanism at play is that

the second player in the sequential actions game can condition her action to that of the

first player and accordingly pull the group outcome closer to her own preference. Recall

that the first player’s action in the sequential case is always more extreme than in the

simultaneous case because of a compensation effect: i.e., she knows that the second player

can observe and compensate for her action. In the endogenous sequential actions game, it

is the more extreme player who ends up winning the right to be the second player. Given
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this, the player who loses the auction and speaks first can infer that the other player has

more extreme preferences. This inference induces her to be even more extreme. When the

two players’ preferences are on opposite sides of zero then not only does the second player

have the incentive to be more extreme (after observing the first player’s actions) in order to

pull the joint outcome towards her preference, but the inference effect also induces the first

player to be more extreme. Consequently, the group becomes more polarized than in the

simultaneous actions game. In contrast, when the players’ preferences are on the same side

of zero, the second player’s knowledge of first’s actions implies that she does not need to

shade and take too extreme actions. The implication is that when the players are similarly

inclined, endogenizing the speaking order can help to reduce polarization.

D Welfare Comparisons

We start with the social planner’s problem to understand how a benevolent principal would

design the group interaction. The welfare in the two player system for any xi and xj is

given by equation (2). Note that any pecuniary transfers (such as bids) are canceled out

since they remain within the system and hence have no impact on the total welfare. In

discussion forums, the speaking formats (or the timing game-forms) are design decisions

and are often chosen before the agents’ preferences are drawn. Therefore we can consider

the expected welfare for a given game-form across the distribution of player types as a

relevant measure for making welfare comparisons, i.e., EW =

∫
xi

∫
xj
W (xi,xj)g(xi)g(xj)dxidxj∫

xi

∫
xj
g(xi)g(xj)dxidxj

.

Denote the expected welfare for the first-best case to be EWFB, the simultaneous case by

EWs, the exogenous sequential by EWx and the endogenous sequential by EWn.

Figure 4 shows the relationship between expected welfare functions as a function of

r for the case of U [−1, 1]. It can be seen that EWn > EWx > EWs. Within the sequen-

tial action formats allowing agents to endogenously bid for the speaking order increases

expected welfare as compared to the exogenous assignment of speaking order across the

agents. The market clearing for the speaking order through the first-price auction mech-

anism improves efficiency. Further, it can be seen that the expected welfare under the

sequential game (irrespective of whether it is exogenous or endogenous) is higher than that

for the simultaneous game. It is interesting that even though the endogenous sequential
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Figure 4: Expected social welfare for the four game forms. Shown for an uniform distribution

from −1 to 1.

choice game produces higher polarization, it also increases the welfare by allowing those

with more extreme preferences to obtain the outcomes they desire.

V Conclusion

There are many formal and informal forums in society that facilitate group interactions

between citizens and shape their views on important and often contentious issues like gun

control, the size of government, climate change, and abortion rights. One might expect such

deliberations to help in the exchange of information and better coordination. However, one

only need to look the current socio-political landscape in the U.S. to observe that deliber-

ations on issues such as gun control, if anything, lead to more polarization. Understanding

the mechanisms that make opinions more polarized is important, because they can create

conflict and impede effective policy making.

We develop a theory that links the polarization of actions to a basic trade-off faced by

agents between influencing others in a deliberation and representing their true preferences.

When agents take actions with the objective to have group influence, deliberations can lead

to polarization. Further, it is the more extreme agents who end up becoming more polarized

in their actions. We analyze the role of simultaneous versus sequential timing of the actions
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of agents. With sequential actions polarization occurs whenever the agent who moves later

is more extreme compared to the first agent. With sequential actions we also highlight

the tradeoff between the commitment value of moving first versus the value of flexibility

to optimally adjust to the first period actions that comes from moving later. The group

influence incentive makes flexibility valuable and induces agents to wait.

The comparison of the different timings shows that if the preferences of the agents

are dissimilar, then the sequential actions game produces less polarization as compared to

simultaneous actions, whereas if the agents have similar preferences it is the simultaneous

actions game that leads to less polarization. When the timing of sequential actions is

endogenous and agents bid for the right to choose the order of actions, agents with more

extreme preferences bid more, and the winning agents regardless of their preferences prefer

to wait. We also examine the effect of the interaction group size and show that larger

groups will show less polarization. Further, when the interactions are between sub-groups

each with agents who have similar preferences, smaller sub-groups have the incentive to

become even more extreme.

In many contexts there might be principals who are be interested in influencing the

extent of polarization to satisfy their private objectives. Such a principal could be a firm in-

terested in managing consumer opinions on social media or convenors of government/public

institutions (such as juries, regulatory and legislative bodies) who are interested in the func-

tioning of these institutions. Our paper considered one general mechanism which affects the

extent of polarization, namely the timing of actions of the agents. But the role of incentives

designed by interested principals to manage the degree of group polarization seems to be a

rich area for analysis.

One might also consider connecting our setup to research that has examined why

senders exaggerate messages compared to their private information in cheap talk games.9

9For example, Kartik et al. (2007) show that senders might use inflated communication in the presence of

credulous receivers. Chakraborty and Harbaugh (2007) show the possibility for exaggeration of messages

when a sender has multidimensional comparative information. There are also models with multiple senders;

e.g., Krishna and Morgan (2001), Chen (2011), and Rausser et al. (2015) in which senders exaggerate in

order to counter the actions of other senders.
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It might be interesting to understand whether there is a role for costless pre-play commu-

nication to affect the polarization of actions within the model presented in this paper.
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VI APPENDIX

Equilibrium of the m-Player Game

To derive the Bayesian Nash equilibrium for a m-player simultaneous game, we can write the utility
of a player i as:

u(xi, am,i, am,−i) = −r(xi − am,i)2 − (1− r)
(
xi −

am,i
m
−
∑m−1
j=1 am,j

m

)2

(A.1)

To obtain i’s expected utility for any am,i in equilibrium, we can take the expectation of equation
(A.1) over all the other m− 1 agents’ equilibrium actions:

EUm (xi, am,i) =

∫
R ...

∫
R
∫
R (u(xi, am,i, âm,−i)) g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1∫

R ...
∫
R
∫
R g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1

(A.2)

Substituting for u(xi, am,i, am,−i) from equation (A.1) and simplifying, we have:

EUm (xi, am,i) = −r(xi − am,i)2 (A.3)

+
2(1− r)
m

(
xi −

am,i
m

) ∫R ... ∫R ∫R (∑m−1
j=1 am,j

)
g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1∫

R ...
∫
R
∫
R g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1

− (1− r)

(xi − am,i
m

)2
+

∫
R ...

∫
R
∫
R

(∑m−1
j=1 am,j

)2
g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1

m2
∫
R ...

∫
R
∫
R g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1


We know that

∫
R g(x)dx = 1. Also, from i’s perspective, all the other agents’ types are i.i.d from

the distribution g(x). So we can simplify equation (A.3) to:

EUm (xi, am,i) = − r(xi − am,i)2 + 2(1− r)m− 1

m

(
xi −

am,i
m

)∫
R
am,jg(xj)dxj (A.4)

− (1− r)

(xi − am,i
m

)2
+

∫
R
...

∫
R

∫
R

m−1∑
j=1

am,j

2

g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1


Taking the F.O.C of Equation (A.4) w.r.t am,i at âm,i gives us:

dEUm (xi, am,i)

dam,i

∣∣∣∣
am,i=âm,i

= 2r(xi−âm,i)−
(1− r)(m− 1)

m2

∫
R
âm,jg(xj)dxj+

1− r
m

(
xi −

âm,i
m

)
= 0

(A.5)
This gives us âm,i as:

âm,i =

[
rm2 + (1− r)m

]
xi − (1− r)(m− 1)

∫
R âm,jg(xj)dxj

rm2 + (1− r) (A.6)

Integrating âm,i w.r.t xi, we have:∫
R
âm,ig(xi)dxi =

[
rm2 + (1− r)m

] ∫
R xig(xi)dxi − (1− r)(m− 1)

∫
R âm,jg(xj)dxj

∫
R g(xi)dxi

rm2 + (1− r)
(A.7)
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Since
∫
R g(xi)dxi = 1 and

∫
R âm,ig(xi)dxi =

∫
R âm,jg(xj)dxj = E(am) this simplifies to E(am) =

E(x). Since E(x) = 0 in a symmetric distribution, we have:

âm,i =
rm2 + (1− r)m
rm2 + (1− r) xi (A.8)

We now derive the comparative statics regarding the extent of shading sm,i.

i)
dsm,i

dr = (m − 1)−(1−r)(m
2−1)−[rm2+(1−r)]

[rm2+(1−r)]2 |xi|. This simplifies to
dsm,i

dr = − (m−1)m2

[rm2+(1−r)]2 |xi|. We

know that m,m− 1 > 0, because by definition m ≥ 2. Also, it is clear that [rm2 + (1− r)]2 > 0 and

that |xi| ≥ 0. It therefore follows that
dsm,i

dr ≥ 0.

ii)
dsm,i

d|xi| = (1−r)(m−1)
rm2+(1−r) . Since 0 < r < 1 and m ≥ 2, this value is always positive. So

dsm,i

d|xi| > 0.

iii)
dsm,i

dm = (1− r) 1−r(m−1)2

[rm2+(1−r)]2 . If m < 1√
r

+ 1, then 1− r(m− 1)2 > 0; so in this range
dsm,i

dm > 0.

Else if m > 1√
r

+ 1, then 1− r(m− 1)2 < 0; so in this range
dsm,i

dm < 0.

Equilibrium for Sub-group Interactions

The expected utility of agent i from sub-group 1 and agent j in sub-group 2 are given in Equations

(6). The first-order condition for agent i is
dEUi

1

dai1
= 0 which can be calculated to be:

r(x1 − ai1) +
1− r
m

x1 −
ai1 +

n1∑
k1=1(6=i)

ak11 +

n2∑
k2=1

∫
R

ak22 dx2

m

 = 0 (A.9)

As we are looking for a symmetric in actions with sub-group equilibrium, we can set ai1 =
ak1 = â1, and ak2 = â2, and simplify (A.9) to:

x1(r +
1− r
m

)− â1(r +
n1(1− r)

m2
)− (1− r)n2

m2

∫
R
â2g(x2)dx2 = 0 (A.10)

Thus the equilibrium action â1 for agents from sub-group 1 is:

â1 = x1

(
m(mr + (1− r))
m2r + n1(1− r)

)
− (1− r)n2
m2r + n1(1− r)

∫
R
â2g(x2)dx2 (A.11)

Integrating the equilibrium action over the entire distribution of x1 we can get:∫
R
â1g(x1)dx1 = E(x1)

(
m(mr + (1− r))
m2r + n1(1− r)

)
− (1− r)n2
m2r + n1(1− r)

∫
R
â2g(x2)dx2 (A.12)

By noting that E(x1) = 0 for a symmetric distribution, we have that
∫
R â1g(x1)dx1 =∫

R â2g(x2)dx2. Therefore the equilibrium â1 is â1 = x1

(
m(mr+(1−r))
m2r+n1(1−r)

)
. Using similar analysis for

sub-group 2 we can also derive â2 = x2

(
m(mr+(1−r))
m2r+n2(1−r)

)
.

Equilibrium of the Exogenous Sequential Game

Let i and j be the first and second players, respectively. The second player j’s equilibrium action
has already been derived in the main text (see section B.1), and is equal to:

âx2,j =
2(1 + r)

1 + 3r
xj −

(1− r)
1 + 3r

ax1,i (A.13)
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So we now derive the first player’s optimal action âx1,i. In equilibrium, i’s utility from choosing
action ax1,i is given by:

u (xi, ax1,i, âx2,j) = −r(xi − ax1,i)2 − (1− r) (xi − āx)
2

(A.14)

where āx =
ax1,i+âx2,j

2 . We know that when i chooses ax1,i, in response, j chooses âx2,j = 2(1+r)
1+3r xj−

(1−r)
1+3r ax1,i. This in turn gives us āx as:

āx =
(1 + r)xj + 2rax1,i

1 + 3r
(A.15)

Substituting this value of āx into Equation (A.14), we have:

u (xi, ax1,i, âx2,j) = −r(xi − ax1,i)2 − (1− r)
[(

xi −
2r

1 + 3r
ax1,i

)2

+

(
1 + r

1 + 3r
xj

)2
]

+ 2(1− r)
[(
xi −

2r

1 + 3r
ax1,i

)(
1 + r

1 + 3r
xj

)]
(A.16)

Hence, the expected utility of agent i in from choosing action ax1,i in period 1 is:

EUx1 (xi, ax1,i) =

∫
R u (xi, ax1,i, âx2,j) g(xj)dxj∫

R g(xj)dxj
(A.17)

We can simplify the above as follows:

EUx1 (xi, ax1,i) = − r(xi − ax1,i)2 + 2(1− r)
(
xi −

2r

1 + 3r
ax1,i

)(
1 + r

1 + 3r

)∫
R
xjg(xj)dxj

− (1− r)
[(

xi −
2r

1 + 3r
ax1,i

)2

+

(
1 + r

1 + 3r

)2 ∫
R
x2jg(xj)dxj

]
(A.18)

Computing the integrals in Equation (A.18), we have:

EUx1 (xi, ax1,i) = −r (xi − ax1,i)2 − (1− r)
[(

xi −
2r

1 + 3r
ax1,i

)2

+

(
1 + r

1 + 3r

)2 ∫
R
x2jg(xj)dxj

]
(A.19)

Solving the first-order condition for agent i’s action gives us the equilibrium choice âx1,i:

âx1,i =
(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi (A.20)

Thus, given xi and xj , there exists a unique exogenous sequential choice equilibrium, where âx1,i =
(1+3r)(3+r)

(1+3r)2+4r(1−r)xi and âx2,j =
2(1+r)xj−(1−r)ax1,i

1+3r .

Proof of Proposition 2

Recall that the mean of the equilibrium outcome for the exogenous sequential game can be expressed
as:

āx =
âx1,i + âx2,j

2
=

2rax1,i + (1 + r)xj
1 + 3r

=
2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi +
1 + r

1 + 3r
xj (A.21)

Next we show that 0 < k1(r), k2(r), k3(r) < 1.
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• k1(r) < 1 if (1+3r)(1−r)
(1+3r)2+4r(1−r) < 1⇒ (1+3r)(1−r) < (1+3r)2+4r(1−r)⇒−4r(1+3r) < 4r(1−r),

which is always true if 0 < r < 1. Hence k1(r) < 1.

• k2(r) < 1 if
(1+3r)[(1+3r)2+16r]

[(1+3r)2+4r(1−r)][2(1+r)+(1+3r)] < 1, ⇒ 4r(1 + 3r)(3 + r) < 2(1 + 3r)2(1 + r) + 4r(1−
r)(1 + r) ⇒ −(1 + 3r)(1− r)2 < 4r(1− r)(1 + r), which is always true since 0 < r < 1.

• k3(r) < 1 if (1+3r)3+8r(1−r)(1+r)
2(1+r)[(1+3r)2+4r(1−r)] < 1 ⇒ (1 + 3r)3 < 2(1 + r)(1 + 3r)2, ⇒ r < 1, which we know

is always true.

Further, k1(r), k2(r), k3(r) > 0 since all the terms in their numerators and denominators are positive.
Thus 0 < k1(r), k2(r), k3(r) < 1. Next, we present the proofs of Proposition 3a and 3b.
a) First, we compare āx with x̄. Without loss of generality, let xi ≥ 0.

• Polarization – |āx| > |x̄| and āxx̄ > 0.

• First, consider the case where xj > k1(r)xi. In this case, āxx̄ > 0 because both āx > 0 and
x̄ > 0. The condition |āx| > |x̄| therefore simplifies to āx > x̄. This can be expressed as:

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi +
1 + r

1 + 3r
xj >

1 + r

1 + 3r
xi +

1 + r

1 + 3r
xj

⇒ xj >
(1 + 3r)(1− r)

(1 + 3r)2 + 4r(1− r)xi (A.22)

where the multiplier of xi is k1(r) = (1+3r)(1−r)
(1+3r)2+4r(1−r) . By definition,(A.22) is satisfied.

• Second, consider the case where −xi < xj ≤ k1(r)xi. Here, x̄ > 0. So the condition |āx| > |x̄|
simplifies to āx < x̄. From the previous case, we know that āx > x̄ if and only if xj > k1(r)xi.
This is not possible here since by definition xj ≤ k1(r)xi.

• Third, consider the case where xj = −xi. Here x̄ = 0. So, we cannot have āxx̄ > 0.

• Fourth, consider the case where xj < −xi. Here, x̄ < 0. Since we require āxx̄ to be greater
than zero, it follows that āx < 0. So the condition |āx| > |x̄| simplifies to āx < x̄ ⇒
xj < k1(r)xi, which is always true since by definition xj < −xi.

Hence, polarization occurs in the first and third cases, i.e., when xj > k1(r)xi or when xj < −xi.
• Reverse Polarization – |āx| > |x̄| and āxx̄ ≤ 0.

• First, consider the case where xj > −k2(r)xi. Here both āx > 0 and x̄ > 0 since k2(r) < 1.
So it cannot be that āxx̄ ≤ 0. Therefore, this case is ruled out.

• Second, consider the case where −xi ≤ xj < −k2(r)xi. Here x̄ ≥ 0. So the condition
|āx| ≥ |x̄| simplifies to āx ≤ −x̄. This can be expressed as:

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi +
1 + r

1 + 3r
xj < −

1 + r

1 + 3r
xi −

1 + r

1 + 3r
xj

⇒ xj <
(1 + 3r)

[
(1 + 3r)2 + 16r

]
[(1 + 3r)2 + 4r(1− r)] [2(1 + r) + (1 + 3r)]

xi (A.23)

where the multiplier of xi is labeled k2(r) =
(1+3r)[(1+3r)2+16r]

[(1+3r)2+4r(1−r)][2(1+r)+(1+3r)] . Since by definition

xj < −k2(r)xi, condition (A.23) is always satisfied.

• Third, consider the case where xj < −xi. Here x̄ < 0. So the condition |āx| ≥ |x̄| simplifies
to āx ≥ x̄, which we know is the same as xj ≥ k1(r)xi > 0. However, this is not possible
since by definition xj < −xi.

Hence, Reverse Polarization only occurs when −xi ≤ xj < −k2(r)xi.

• Moderation – |āx| ≤ |x̄|.
• First, consider the case where xj < −xi. Here, x̄ ≤ 0. So the condition |āx| ≤ |x̄| simplifies

to −x̄ ≤ āx ≤ x̄. If −x̄ ≤ āx, it then follows that xj ≥ k2(r)xi ≥ 0, which is impossible since
by definition xj < −xi.
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• Second, consider the case where −xi ≤ xj < −k2(r)xi. Here, x̄ ≥ 0. So the condition
|āx| ≤ |x̄| simplifies to −x̄ ≤ āx ≤ x̄. We know that this condition can be expressed as
−k2(r)xi ≤ xj ≤ k1(r)xi. This is not possible, since by definition xj < −k2(r)xi.

• Third, consider the case where −k2(r)xi ≤ xj ≤ k1(r)xi. Here, x̄ > 0. So the condition
|āx| ≤ |x̄| simplifies to x̄ ≤ āx ≤ −x̄. This in turn can be expressed as −k2(r)xi ≤ xj ≤
k1(r)xi, which we know is true by definition.

• Fourth, consider the case where xj > k1(r)xi. Here, x̄ > 0. So the condition |āx| ≤ |x̄|
simplifies to x̄ ≤ āx ≤ −x̄. This in turn can be expressed as −k2(r)xi ≤ xj ≤ k1(r)xi, which
cannot be true, since by definition xj > k1(r)xi.

Hence, Moderation occurs only when −k2(r)xi ≤ xj ≤ k1(r)xi.

Proof of Proposition 3

Required to show that, for xj > 0, âx2,j ≥ âj if xi ≤ 0, and âx2,j < âj if xi > 0.
i) xi ≤ 0

âx2,j − âj can be simplified to âx2,j − âj = − (1−r)
1+3r âx1,i. We know that âx1,i = µx(r)xi ≤ 0 because

µx(r) > 0, xi ≤ 0. It therefore follows that − (1−r)
1+3r âx1,i ≥ 0 ⇒ âx2,j ≥ âj .

ii) xi > 0

As before âx2,j − âj = − (1−r)
1+3r âx1,i. However, here âx1,i = µx(r)xi > 0 because µx(r), xi > 0. Hence

it follows that âx2,j − âj < 0 ⇒ âx2,j < âj .

b) The derivative of âx1,i w.r.t r can be calculated and simplified to
dâx1,i
dr = − 4(5r2+6r+5)

[(1+3r)2+4r(1−r)]2xi.

Since r > 0, it follows that
dâx1,i
dr < 0

c) To show that |âx1,i| ≥ |âi|, we need to show that µx(r) ≥ µ(r).

µx(r)− µ(r) =
(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r) −
2(1 + r)

1 + 3r

=
(1− r)3

(1 + 3r)[(1 + 3r)2 + 4r(1− r)] > 0 if r > 0 (A.24)

Therefore, µx(r) ≥ µ(r) ⇒ |âx1,i| ≥ |âi|. �

Proof of Proposition 4

We now compare āx with ā. Without loss of generality, let xi ≥ 0.

• |āx| > |ā| and āxx̄ > 0.

• First, consider the case where xj ≥ −xi. Here, x̄ ≥ 0. So the condition |āx| > |ā| simplifies

to āx > ā ⇒ 2r(3+r)
(1+3r)2+4r(1−r)xi >

1+r
1+3rxi, which is impossible since 0 < r < 1 and xi ≥ 0.

• Second, consider the case where −xj < xi. Here x̄ < 0. So the condition |āx| > |ā| simplifies

to āx < ā ⇒, 2r(3+r)
(1+3r)2+4r(1−r)xi <

1+r
1+3rxi, which is always true for 0 < r < 1, xi ≥ 0.

Hence, for −xj < xi, the mean outcome in the exogenous sequential game is more polarized than
that in the simultaneous game, and this polarization is in the same direction as x̄.

• |āx| > |ā| and āxx̄ ≤ 0.

• First, consider the case where xj < −xi. Then ā, x̄ < 0. So for āxx̄ ≤ 0 to be true, we require
āx ≤ 0, which is not possible since āx < x̄ < 0.

• Second, consider the case where −xi ≤ xj < −k3(r)xi. Here, x̄ ≥ 0 and the condition
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|āx| > |ā| simplifies to āx > −ā. This can be expressed as:

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi < −
1 + r

1 + 3r
xi

⇒ xj <
(1 + 3r)3 + 8r(1− r)(1 + r)

2(1 + r) [(1 + 3r)2 + 4r(1− r)]xi (A.25)

where the multiplier of xi is labeled k3(r) = (1+3r)3+8r(1−r)(1+r)
2(1+r)[(1+3r)2+4r(1−r)]xi. Since by definition,

xj < k3(r)xi, condition (A.25) is always satisfied.

• Third, consider the case where xj ≥ k3(r)xi. Then, x̄ ≥ 0 and the |āx| > |ā| simplifies to
āx < −ā. However, from the second case, we know that this condition can only be satisfied
when xj < k3(r)xi, which cannot hold here, since by definition xj ≥ k3(r)xi.

Hence, for −xi ≤ xj < −k3(r)xi, the mean outcome in the exogenous sequential game is more
extreme than that in the simultaneous game, but in the direction opposite to that indicated by
the mean preference x̄.

• |āx| ≤ |ā|.
• First, consider the case where xj ≥ −k3(r)xi. Here, āx, x̄, ā ≥ 0. So the condition |āx| ≤ |ā|

simplifies to āx ≤ ā ⇒, 2r(3+r)
(1+3r)2+4r(1−r)xi ≤ 1+r

1+3rxi, which is always true for 0 < r < 1,
xi ≥ 0.

• Second, consider the case where −xi ≤ xj < k3(r)xi. Here also x̄, ā ≥ 0. So the condition
|āx| ≤ |ā| simplifies to −ā ≤ āx ≤ ā. From the case before, we know that āx ≤ ā for xi ≥ 0.
However, to ensure that −ā ≤ āx, we need xj ≥ k3(r)xi, which cannot be true since by
definition −xi ≤ xj < k3(r)xi.

• Third, consider the case where xj < −xi. Here, x̄, ā < 0. So the condition |āx| ≤ |ā| simplifies
to ā ≤ āx ≤ −ā. The condition āx ≥ ā reduces to xj ≥ −k3(r)xi, which we know is not
possible since xj < −xi and 0 < k3(r) < 1.

Hence, for xj ≥ −k3(r)xi, the mean outcome in the exogenous sequential game is less extreme
(moderate) compared to that in the simultaneous game.

Proof of Proposition 5

The expected utility of the first player i in equilibrium is given by (7). Substituting for âx1,i gives
us:

EUx1 (xi, âx1,i) = − r

(
xi −

(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi
)2

− (1− r)
[(

xi −
2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi
)2

+
(1 + r)2

3(1 + 3r)2

∫
R
x2jg(xj)dxj

]
(A.26)

This in turn simplifies to:

EUx1 (xi, âx1,i) = − (1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r)x
2
i −

(1− r)(1 + r)2

(1 + 3r)2

∫
R
x2jg(xj)dxj (A.27)

Next, consider the a priori expected utility of player j, in equilibrium. It is obtained
by integrating the utility of the second player over the range of xi. That is, EUx2 (xj , âx2,j) =
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∫
R u (xj , âx2,j , âx1,i) g(xi)dxi. Substituting for âx2,j as 2(1+r)

1+3r xj −
(1−r)
1+3r ax1,i, we have:

EUx2 (xj , âx2,j) = − r

∫
R

(
xj −

2(1 + r)

1 + 3r
xj −

1− r
1 + 3r

âx1,i

)2

g(xi)dxi

− (1− r)
∫
R

(
xj −

1 + r

1 + 3r
xj −

2r

1 + 3r
âx1,i

)2

g(xi)dxi (A.28)

Substituting for âx1,i and integrating, we have:

EUx2 (xj , âx2,j) = −r(1− r)
1 + 3r

x2i −
r(1− r)(1 + 3r)(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
∫
R
x2g(x)dx (A.29)

Next, we compare the difference in the expected utilities for a specific player i, where
Dx(xi) = EUx1 (xi, âx1,i) − EUx2 (xi, âx2,i). We can show that Dx(xi) ≤ 0 for all i if the following
two conditions are satisfied:

r(1− r)(1 + 3r)(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
> − (1− r)(1 + r)2

(1 + 3r)2
(A.30)

and

−r(1− r)
1 + 3r

≥ − (1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r) (A.31)

First, consider the inequality (A.30), which can be simplified to:

(1 + r)2
[
(1 + 3r)2 + 4r(1− r)

]2
> r(3 + r)2(1 + 3r)3 (A.32)

This in turn simplifies to:

(1 + 3r)3
[
(1 + r)2(1 + 3r)− r(3 + r)2

]
+ (1 + r)2

[
16r2(1− r)2 + 8r(1− r)(1 + 3r)2

]
> 0

⇒ 16r2(1 + r)2(1− r)2 + (1 + 3r)2(1− r)
[
2r(1 + r)2 + (1 + 3r)(1− r)

]
> 0 (A.33)

Since both the terms in the R.H.S of inequality (A.33) are non-negative, the inequality is always
true. Therefore, (A.30) is always true. Next, consider the inequality (A.31), which can be expressed
as:

(1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r)x
2
i ≥

r(1− r)
1 + 3r

x2i (A.34)

This is true if:

(1− r)
[
(1 + r)2(1 + 3r)− r[(1 + 3r)2 + 4r(1− r)]

]
x2i ≥ 0

⇒ (1− r)2
[
2r2 + 5r + 1

]
x2i ≥ 0 (A.35)

We know that x2i ≥ 0 and that both (1− r)2 and 2r2 + 5r+ 1 are positive for 0 < r < 1. Hence this
inequality is always true too. Further, since both (A.30) and (A.31) are always true, it follows that
EUx2 (xi, âx2,i) > EUx1 (xi, âx1,i).
b) Now we prove the second part of the Proposition. Let xi > 0, then:

dDx(xi)

dxi
= 2xi(1− r)

[
r

1 + 3r
− (1 + r)2

(1 + 3r)2 + 4r(1− r)

]
(A.36)

Since we have already shown that (A.31) is true, we know that (1− r)
[

r
1+3r −

(1+r)2

(1+3r)2+4r(1−r)

]
> 0.

It therefore follows that 2xi(1− r)
[

r
1+3r −

(1+r)2

(1+3r)2+4r(1−r)

]
≤ 0. Hence, dDx(xi)

dxi
≤ 0. Similar proof

applies for xi < 0. �
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Proof of Proposition 6

The solutions for the optimal actions for periods 3 and 4 are analogous to that in the exogenous
sequential choice game and are outlined in the main text. Below, we derive the players’ optimal
action for the first two periods.

Period 2 – A player who has lost the auction makes no decisions in period 2. So we only consider
the actions of a player who won the auction in period 1. Suppose player j bids according to the
symmetric bidding function β(·), then player i belief upon winning is that player j must belong to
a some symmetric region W for her to have won the auction. In that case, i’s expected utility from
speaking first is:

EUn1 (xi, an1,i) = − r(xi − an1,i)2 − (1− r)
[(

xi −
2r

1 + 3r
an1,i

)2

+

(
1 + r

1 + 3r

)2
∫
W
x2jg(xj)dxj∫

W
g(xj)dxj

]

− 2
1 + r

1 + 3r

(
xi −

2r

1 + 3r
an1,i

) ∫
W
xjg(xj)dxj∫

W
g(xj)dxj

(A.37)

The last term vanishes because W is symmetric around zero. So:

EUn1 (xi, an1,i) = −r(xi − an1,i)2 − (1− r)
[(

xi −
2r

1 + 3r
an1,i

)2

+

(
1 + r

1 + 3r

)2
∫
W
x2jg(xj)dxj∫

W
g(xj)dxj

]

= − (1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r)x
2
i −

(1− r)(1 + r)2

(1 + 3r)2

∫
W
x2jg(xj)dxj∫

W
g(xj)dxj

(A.38)

Similarly, simplifying i’s expected utility from speaking second gives us:

EUn2 (xi, an2,i) = −r(1− r)
(1 + 3r)

[
x2i +

(
(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)

)2 ∫
W

g(xj)x
2
jdxj

]
(A.39)

i prefers to speak second if:
EUn2 (xi, an2,i) > EUn1 (xi, an1,i) (A.40)

LetA(r) = (1−r)(1+r)2
(1+3r)2+4r(1−r) , B(r) = (1−r)(1+r)2

(1+3r)2 , C(r) = r(1−r)
(1+3r) , andD(r) = r(1−r)

(1+3r)

(
(1+3r)(3+r)

(1+3r)2+4r(1−r)

)2
.

It is trivial to show that the multiplier of x2i in EUn2 (xi, an2,i) is always greater than that in
EUn1 (xi, an1,i) ⇒ A(r) > C(r). Similarly, we can show that the multiplier of

∫
W
x2jg(xj)dxj in

EUn2 (xi, an2,i) is also greater than that in EUn1 (xi, an1,i) ⇒ B(r) > D(r). Therefore, in a sym-
metric bidding equilibrium, for all xis, the expected value from speaking second is higher than that
from speaking first. Therefore, upon winning the auction, all types will choose to speak second.

Period 1 At the beginning of period 1, before placing her bid, player i knows that if she wins, she
will choose to go second and if player j wins, she will go first. Hence, her expected utility from
choosing a bid bi and then choosing the optimal action in the subsequent periods is

EU(xi, bi) =

∫
Li
u(xi, ân1,i, ân2,j)g(xj)dxj +

∫
Wi

[u(xi, ân1,j , ân2,i)− bi] g(xj)dxj∫
R g(xj)dxj

(A.41)

where j ∈Wi for i to win the auction and j ∈ Li for her to lose the auction, if she chooses a bid bi.

39



This simplifies to:

2EU(xi, bi) = − A(r)x2i

∫
Li

g(xj)dxj −B(r)

∫
Li

x2jg(xj)dxj

− C(r)x2i

∫
Wi

g(xj)dxj −D(r)

∫
Wi

x2jg(xj)dxj −
∫
Wi

big(xj)dxj

= − 2x2i + [A(r)− C(r)]x2i

∫
Wi

g(xj)dxj + [B(r)−D(r)]

∫
Wi

x2jg(xj)dxj −
∫
Wi

big(xj)dxj(A.42)

Now consider any two types x′ and x′′ and a bidding function β(·). In equilibrium, x′ can
do no better by playing x′′’s strategy β(x′′) over her own strategy β(x′) and vice-versa. That is:

EU(x′, β(x′)) ≥ EU(x′, β(x′′)) (A.43)

EU(x′′, β(x′′)) ≥ EU(x′, β(x′′)) (A.44)

Substituting the simplified expressions for the expected utilities into the above inequalities and
adding them up gives us:

[A(r)− C(r)] (x′2 − x′′2)

(∫
W1

g(xj)dxj −
∫
W2

g(xj)dxj

)
≥ 0 (A.45)

We know that A(r) − C(r) > 0. So if x′2 > x′′2, then for the above inequality to hold, we require
that

∫
W1

g(xj)dxj −
∫
W2

g(xj)dxj ≥ 0 ⇒ the region over which a player wins upon bidding β(x′) is

greater than that over which she wins when she bids β(x′′). In other words, the equilibrium bidding
strategies are monotonically increasing in |x|. Further, following the technique as that outlined
in Fudenberg and Tirole (1991) p. 217, we can show strict monotonicity, i.e., if |x′| > |x′′|, then
β(x′) > β(x′′).

Now that we have shown that the bidding strategies are monotonically increasing in |x|, for
the specific bid bi by player i (when the other player uses the bidding function β(·)), we re-write
Equation (A.42) as:

EU(xi, bi) = −2x2i+2[A(r)−C(r)]x2i

∫ β−1(bi)

0

g(x)dx+2[B(r)−D(r)]

∫ β−1(bi)

0

x2g(x)dx−2

∫ β−1(bi)

0

big(x)dx

(A.46)
Further, we specify the following expression for the derivatives:

d
[∫ β−1(bi)

0
F (x)

]
dbi

dx = F (V )
dV

dbi
(A.47)

where V = β−1(bi). To obtain the equilibrium bidding function, we can calculate the F.O.C of

Equation (A.46) as dEU(xi,bi)
dbi

∣∣∣
bi=b̂i

= 0. This simplifies to:

[A(r)− C(r)]x2i
g(β−1(b̂i))

β′(β−1(b̂i))
+ [B(r)−D(r)]

g(β−1(b̂i))
[
β−1(b̂i)

]2
β′(β−1(b̂i))

−
[
b̂i
g(β−1(b̂i))

β′(β−1(b̂i))
+

∫ β−1(b̂i)

0

g(x)dx]

]
= 0

In equilibrium b̂i = β(xi) and so β−1(b̂i) = xi. So the above equation simplifies to:

[A(r)− C(r) +B(r)−D(r)]x2i g(β−1(b̂i)) =
d
[
β(xi)

∫ xi

0
g(x)dx

]
dxi

(A.48)
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Integrating this from 0 to xi, we have:

β̂ = β(xi) = [A(r)− C(r) +B(r)−D(r)]

[∫ xi

0
x2g(x)dx∫ xi

0
g(x)dx

]
(A.49)

Since A(r)−C(r) > 0 and B(r)−D(r) > 0, the multiplier of
[ ∫ xi

0 x2g(x)dx∫ xi
0 g(x)dx

]
is positive which recovers

the assumption that the bidding function is symmetric around zero. �
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For Online Publication: Welfare Comparisons

Welfare Under First-Best Planner’s Choice

The social planner’s choice involve agents choosing their true preferences as their actions, i.e., ai = xi
and aj = xj , and ā =

xi+xj

2 . Then:

WFB(xi, xj , ai, aj) = WFB(xi, xj)

= −r(xi − ai)2 − (1− r)(xi − ā)2 − r(xj − aj)2 − (1− r)(xj − ā)2

= −(1− r) (xi − xj)2
2

(A.50)

Then the expected welfare is given by:

EWP =

∫
R
∫
RW1(xi, xj)g(xi)g(xj)dxidxj∫

R
∫
R g(xi)g(xj)dxidxj

= − (1− r)
2
∫
R
∫
R g(xi)g(xj)dxidxj

[∫
R

∫
R

(x2i + x2j − 2xixj)g(xi)g(xj)dxidxj

]
We know that

∫
R
∫
R g(xi)g(xj)dxidxj = 1 and

∫
R
∫
R xixjg(xi)g(xj)dxidxj = 0 because g(·) is a

symmetric distribution. Therefore, EW1 simplifes to:

EWFB =
−(1− r)

2

∫
R

∫
R

[
x2i + x2j

]
g(xi)g(xj)dxjdxj

= −(1− r)
∫
R
x2g(x)dx (A.51)

Welfare in the Simultaneous Game

In the simultaneous game, the actions are ai = 2(1+r)
1+3r xi, aj = 2(1+r)

1+3r xj , and the mean action is

ā = (1+r)
1+3r (xi + xj). Substituting this in the welfare function we can obtain:

Ws(xi, xj , ai, aj) = Ws(xi, xj)

= −r(1− r)
2

(1 + 3r)2
(x2i + x2j )−

1− r
(1 + 3r)2

[2rxi − (1 + r)xj ]
2

− 1− r
(1 + 3r)2

[2rxj − (1 + r)xi]
2

(A.52)

= −r(1− r)
2

(1 + 3r)2
(x2i + x2j )

− 1− r
(1 + 3r)2

[
4r2(x2i + x2j ) + (1 + r)2(x2i + x2j )− 8r(1 + r)xixj

]
The expected welfare is then given by:

EWs =

∫
R
∫
RWs(xi, xj)g(xi)g(xj)dxidxj∫

R
∫
R g(xi)g(xj)dxidxj

As before,
∫
R
∫
R g(xi)g(xj)dxidxj = 1 and

∫
R
∫
R xixjg(xi)g(xj)dxidxj = 0. So:

EWs = − 2(1− r)
(1 + 3r)2

[r(1− r) + 4r2 + (1 + r)2]

∫
R
x2g(x)dx (A.53)
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Welfare in the Exogenous Sequential Choice Game

Without loss of generality, assume that i speaks first and j speaks second. Then, we have the

actions of the two agents as ai = (1+3r)(3+r)
(1+3r)2+4r(1−r)xi, aj = 2(1+r)

1+3r xj − 1−r
1+3rai, and the mean action as

ā = 2r(3+r)
(1+3r)2+4r(1−r)xi + 1+r

1+3rxj . Using these, we can further derive the following expressions:

xi − ai = − 2(1− r)(1 + r)

(1 + 3r)2 + 4r(1− r)xi

xj − aj = − 1− r
1 + 3r

[
xj −

(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]

xi − ā =
(1 + 3r)(1 + r)

(1 + 3r)2 + 4r(1− r)xi −
1 + r

1 + 3r
xj

xj − ā =
2r

1 + 3r
xj −

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi

Substituting the above terms in the welfare equation, we have:

Wx(xi, xj , ai, aj) = Wx(xi, xj)

= − 4r(1− r)2(1 + r)2

((1 + 3r)2 + 4r(1− r))2x
2
i − (1− r)

[
(1 + 3r)(1 + r)

(1 + 3r)2 + 4r(1− r)xi −
1 + r

1 + 3r
xj

]2
−r(1− r)

2

(1 + 3r)2

[
xj −

(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]2

−(1− r)
[

2r

1 + 3r
xj −

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]

(A.54)

As before, the expected welfare is given by:

EWx =

∫
R
∫
RW3(xi, xj)g(xi)g(xj)dxidxj∫

R
∫
R g(xi)g(xj)dxidxj

As before, this implies that the integrals of the xixj terms are canceled out. Further, and
∫
R
∫
R g(xi)g(xj)dxidxj =

1.

EWx = − 4r(1− r)2(1 + r)2

[(1 + 3r)2 + 4r(1− r)]2
∫
R

∫
R
x2i g(xi)g(xj)dxidxj

− r(1− r)2
(1 + 3r)2

∫
R

∫
R

[
x2j +

(1 + 3r)2(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
x2i

]
g(xi)g(xj)dxidxj

− (1− r)
∫
R

∫
R

[
(1 + 3r)2(1 + r)2 + 4r2(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
x2i +

(1 + r)2 + 4r2

(1 + 3r)2
x2j

]
g(xi)g(xj)dxidxj

This simplifies to:

EWx = − (1− r)
[
(1 + r)2 + 4r2 + r(1− r)

]
3(1 + 3r)2

∫
R
x2g(x)dx

−
[

(1− r)
[
4r(1− r)(1 + r)2 + 4r2(3 + r)2 + (1 + 3r)2(1 + r)2 + r(1− r)(3 + r)2

]
3 [(1 + 3r)2 + 4r(1− r)]2

]∫
R
x2g(x)dx(A.55)
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Welfare in the Endogenous Sequential Choice Game

As before, assume that i speaks first and j speaks second. Recall that the players’ actions here are
the same as that in the exogenous sequential choice game. However, we know that |xi| < |xj |. So
while the welfare equation remains the same, the integrations regions are different. Thus, we have:

Wn(xi, xj , ai, aj) = Wn(xi, xj)

= − 4r(1− r)2(1 + r)2

((1 + 3r)2 + 4r(1− r))2x
2
i − (1− r)

[
(1 + 3r)(1 + r)

(1 + 3r)2 + 4r(1− r)xi −
1 + r

1 + 3r
xj

]2
−r(1− r)

2

(1 + 3r)2

[
xj −

(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]2

−(1− r)
[

2r

1 + 3r
xj −

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]

(A.56)

and the expected welfare is:

EWn =

∫∫
R1∪R2

W4(xi, xj)g(xi)g(xj)dxidxj∫∫
R1∪R2

g(xi)g(xj)dxidxj
(A.57)

where the two regions R1 and R2 are defined as follows:

R1 ≡ xi ∈ [0,∞] , xj ∈ [xi,∞] ∪ [−∞,−xi]
R2 ≡ xi ∈ [−∞, 0] , xj ∈ [−xi,∞] ∪ [−∞, xi]

As before, we can show that the integral of the xixj terms over R1 ∪R2 is zero. So we now consider
the integrals of the x2j and x2i terms. Since inference on j’s type is conditional on i, we first integrate
over j’s type. Because of the symmetry of the distrbution, it is easy to show that:∫∫

R1∪R2

x2i g(xi)g(xj)dxidxj = 4

∫ ∞
0

x2g(x)(1−G(x))dx (A.58)

∫∫
R1∪R2

g(xi)g(xj)dxidxj = 4

∫ ∞
0

g(x)(1−G(x))dx (A.59)

Substituting these expressions back in the expected welfare function, we have:

EWn =

(
− (1− r)

[
(1 + r)2 + 4r2 + r(1− r)

]
(1 + 3r)2

− (1− r)
[
4r(1− r)(1 + r)2 + 4r2(3 + r)2 + (1 + 3r)2(1 + r)2 + r(1− r)(3 + r)2

]
3 [(1 + 3r)2 + 4r(1− r)]2

)

·
(∫∞

0
x2g(x)(1−G(x))dx∫∞

0
x2g(x)(1−G(x))dx

)
(A.60)
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