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Abstract: 

Technology changes the way securities are traded. Both liquidity suppliers and liquidity 
demanders use computer algorithms to improve and automate their trading. Liquidity demanders 
attempt to minimize the price impact of a large order by dividing their order into small parts and 
executing it over time across multiple markets. Liquidity demanders do this to disguise the 
magnitude of their trading interest to prevent other market participants from capitalizing on their 
future trading demands. Liquid suppliers condition their quotes -- buying and selling price 
schedules -- on all available information. Technology allows more information to be processed 
more quickly. This should improve the efficiency of prices and allow for liquidity to be supplied 
at lower costs. While humans create and parameterize the algorithms used to trade, the actual 
trading process involves fewer and fewer humans. 

 
Technological change has revolutionized the way financial assets are traded. Investors place orders via 

computer rather than speaking to a broker on the phone. Trading floors have largely been replaced by electronic 
trading platforms [13]. The nature of order execution has changed dramatically as well, as many market 
participants now employ algorithmic trading (AT), commonly defined as the use of computer algorithms to 
manage the trading process. Starting from near zero in the 1990s, by 2007 AT is responsible for roughly 1/3 of 
trading volume in the U.S and is expected to account for perhaps half of trading volume by 2010. The intense 
activity generated by algorithms threatens to overwhelm exchanges and market data providers, forcing significant 
upgrades to their infrastructures. 

Before algorithmic trading, a pension fund manager wanting to buy 100,000 shares of IBM might have hired 
a broker-dealer to search for a counterparty to execute the entire quantity at once in a block trade. Alternatively, 
that institutional investor might have hired a broker to quietly “work” the order (possibly on the floor of the New 
York Stock Exchange), using his judgment and discretion to buy a little bit here and there over the course of the 
trading day to keep from driving the IBM share price up too far (see [14] for evidence of large orders being 
broken up). As trading became more electronic, it became easier and cheaper to replicate the human trader with a 
computer program doing algorithmic trading. Now virtually every large broker-dealer offers a suite of algorithms 
to its institutional customers to help them execute orders in a single stock, in pairs of stocks, or in baskets of 
stocks. Algorithms typically determine the timing, price, and quantity of orders, dynamically monitoring market 
conditions across different securities and trading venues, reducing market impact by optimally (and possibly 
randomly) breaking large orders into smaller pieces, and closely tracking benchmarks such as the volume-
weighted average price (VWAP) over the execution interval. 

 
Algorithms for Executing Large Orders 

How to execute trades over a trading horizon involves complex dynamic optimization problems to determine 
order size, order frequency, and order type. Bertsimas and Lo [3] study optimal execution strategies in the 
presence of temporary price impacts. Conditional on the constraint of completing the entire transaction by a fixed 
date, orders are broken into pieces so as to minimize cost. Almgren and Chriss [1] extend this by considering the 
risk that arises from breaking up orders and slowly executing them. The basic Almgren and Chriss setup begins 
by assuming an initial holding of x0 = X units of a security that must by completely liquidated before time T. 
Dividing T into N intervals of length τ = T / N and defining the discrete times tk = k τ , for k = 0, … , N, they solve 
for the optimal holdings, xk, at each time tk. Equivalently this can be formulated as the series to trades to 
accomplish this liquidation with nk = xk - xk-1 being the number of units sold between times tk-1 and tk. Capturing 
the risk involved in the trading process (see [8] for the relationship between execution risk and investment risk) 
requires specifying a price process for the security: 
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for k = 0; … , N. Here σ  represents the volatility of the asset, the ξk are draws from independent random variables 
each with zero mean and unit variance, and the permanent price impact of the trade, g(v), is a function of the 
average rate of trading v = nk / τ during the interval tk-1 and tk. In addition there may be a temporary price impact 
function, h(v), which captures the temporary drop in average price per share caused by trading at average rate v 
during a time interval. Thus, the actual price per share received on sale k is 
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where h(v) does not impact the subsequent market price Sk. g(v) and h(v) can be chosen to reflect the trader’s 
beliefs about market dynamics and market microstructure. 

Combining these and summing across periods yields the proceeds of the liquidation: 
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with the first term being the initial market value, the middle term including both the volatility and the permanent 
price impacts, and the final term being the temporary price impacts. Calculating the expected cost of trading, C(x), 
as the difference between the initial value and the proceeds of the sales gives: 
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The variance of C(x) is: 
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Using this setup Almgren and Chriss calculate the mean-variance efficient frontier for trading/liquidation 
strategies. Furthermore, assuming the objective is to minimize the function C(x) – λ V(C(x)), they calculate the 
optimal strategies for various values of λ. As long as the parameters are fixed and known in advance, Almgren 
and Chriss show that the optimal trading strategy can be calculated in advance and does not need to be updated 
dynamically. The calculation of such strategies may still be complex depending on the functional form of the 
permanent and transitory price impact functions g(v) and h(v). Some typical impact functions include: power 
functions, weighted sums of linear and non-linear functions, and exponential decay functions (see eqf18/002 for 
detail about a specific functional form for the permanent and temporary impact functions). The significant 
computer power often required to find the optimum under complex price impact functions makes implementation 
via algorithms attractive.  

Numerous features have been added to the above model that significantly increase the complexity of the 
calculations and algorithms needed to find and implement the optimal trading strategies. Some of the most 
common enhancements include portfolio considerations and modeling the information that motivates the trade. 
Obizhaeva and Wang [18] optimize assuming that liquidity does not replenish immediately after it is taken but 
only gradually over time. Algorithms can be improved by modeling variation within and cross days to account for 
changing market conditions and predictable price movements [2]. Kissell and Malamut [15] discuss how trading 
should be sped up or slowed down conditional on beliefs about prices changes mean reverting or continuing. 
Many brokers build models with these considerations into their AT products that they sell to their clients. 

The above optimal execution approaches either abstract away from the market mechanism or assume liquidity 
is taken via market orders. Implementation strategies that allow for more passive trading strategies enable the 
algorithm/trader to choose the type and aggressiveness of each order/component of the larger transaction. Cohen 
et al. [6] and Harris [11] focus on the simplest choice: market order versus limit order. If a trader chooses a non-
marketable limit order, the aggressiveness of the order is determined by its limit price ([10] and [19]). How 
aggressively a limit order should be priced depends on how price affects the time to execution [17]. For assets that 
trade on multiple venues, determining where to send orders adds further complexity. 
 
Market Making Algorithms 

Many observers think of algorithms from the standpoint of institutional buy-side investor. But there are other 
important users of algorithms. Some hedge funds and broker-dealers supply liquidity using algorithms, competing 
with designated market-makers and other liquidity suppliers.  

Most models take the traditional view that one set of traders provides liquidity via quotes or limit orders and 
another set of traders initiates a trade to take that liquidity – for either informational or liquidity/hedging 



motivations. Liquidity supply involves posting firm commitments to trade. These standing orders provide free 
trading options to other traders. Using standard option pricing techniques Copeland and Galai [7] value the cost of 
the option granted by liquidity suppliers. The arrival of public information renders existing orders stale and can 
put the free trading option into the money. Biais et al. [4] provide a general theoretical framework for a liquidity 
supply price schedule qt(p) at time t: 
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where U(x) is the utility function, Ct is cash, It is the inventory of the security, vt is the expected fundamental 
value, and Ht is the information set available. The use of algorithms lowers the cost of calculating and managing 
this price schedule (quotes) in the presence of constant changes in the information set. Any time an announcement, 
trade, or quote change occurs in any security, a liquidity provider may want to revise their prices and quantities. 
Foucault, Roell, and Sandas [9] study the equilibrium level of effort that liquidity suppliers should expend in 
monitoring the market to avoid this picking off risk. Improvements in technology allow algorithms to 
inexpensively perform such monitoring. In this way AT may be a way to implement Black’s [5] idea of limit 
orders indexed to a market index.  

The widespread adoption of algorithms by traders supplying and demand liquidity has led some observers to 
liken the situation to an arms’ race [16]. While evidence points to algorithmic trading improving liquidity [12], 
the growing dominance of algorithms in trading makes their impact worthy of continued study. 
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