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Internet Appendix 1

Notes on the Limited-Attention Model

Two gain economic intuition into the limited-attention framework, we begin with a two-period,

two investor-type example.

Two-Period Example: 1/2 Investors are Attentive and 1/2 are Partially-Attentive

In this example, half of the investors are most attentive (frequent) investors and half are partially

attentive. The most attentive individuals maximize their own final utility function of wealth and we

assume CARA exponential utility function U(W ) = −e−φiW . Here, φi is investor i’s risk aversion

parameter.16 Let Wi,t denote the wealth of investor i on date t, Bi,t denote the amount of risk-free

asset he holds, and Ki,t denote the amount of the risky asset he holds. Investor i’s, expected final

utility is E[−e−φiWti+2 ] with:

Eti [Wi,ti+2] = r2Wi,ti + rKi,tiEti [(Sti+1 +Xti+1 − rSti ]) +
φ2

φi
Z2

0σ
2
x

V arti [Wi,ti+2] = r2K2
i,tiσ

2
x +

φ2

φ2
i

Z2
0σ

2
x

Therefore, solve the F.O.C with respect to Ki,ti , we have

Ki,ti =
Eti [Sti+1 +Xti+2]− rSti

rφiσ2
x

At time ti, the absolute risk aversion coefficient is actually rφi in stead of φi. At this time period,

there are other investors whose absolute risk aversion coefficient are φi. In aggregate, the harmonic

mean of the absolute risk-aversion coefficients is the same, which is φ. Therefore, the total demand at

time t is

Kt =
Et[St+1 +Xt+1]− rSt

φσ2
x

Therefore, if there is no shock on aggregate demand and supply, i.e., the aggregate equilibrium asset

holdings is Z0, then the price St+1 = St = · · · = S0. Hence, in the benchmark case, the equilibrium

price is S0,benchmark = Z0φσ2
x

1−r .

The other half of the investors are partially-attentive. These investors also maximize their own

16This model is close to Grossman and Miller (1988), with the exception that the earlier work assumes r = 1 and asset
values are realized on the final date.
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final utility function and we assume they have CARA exponential utility functions. A given partially-

attentive investor lives 2 periods and s/he can only trade once in his/her lifetime. In this example,

1/2 of the partially-attentive investors only trade at odd periods and the other half only trade at even

periods.

Suppose the risk aversion coefficient is φj for partially-attentive investor j. Assume investor j

arrives at the market on date tj , and denote Wj,t the wealth of investor j on date t, Bj,t the amount

of risk-free asset s/he holds, and Dj,t the amount of the risky asset s/he holds. The price of the asset

on date t is denoted St. The wealth of the investor j is:

Wj,tj = Dj,tjStj +Bj,tj

Wj,tj+1 = Dj,tj (Stj+1 +Xtj+1) + rBj,tj

Wj,tj+2 = Dj,tj (Stj+2 +Xtj+2 + rXtj+1) + r2Bj,tj

= r2Wj,tj + (Dj,tj (Stj+2 +Xtj+2 + rXtj+1 − r2Stj )))

The maximization problem for a partially-attentive investor j is:

MaxDj,tjEtj [−e
−Wtj+2 ]

where

Etj [Wtj+2] = r2Wj,tj + (Dtj (Etj [Stj+2 +Xtj+2 + rXtj+1]− r2Stj ))) (IA.1)

V artj+1[Wtj+2] = D2
j,tjσ

2
x(1 + r2) (IA.2)

Therefore, solving the F.O.C with respect to Dj,tj , we have:

Dj,tj =
Etj [Stj+2 +Xtj+2 + rXtj+1]− r2Stj

φjσ2
x(1 + r2)

(IA.3)

Since the risky asset’s total supply is constant, in the stationary state the price St is also con-

stant,i.e., St = S0, ∀ t. Therefore, the aggregate demand of limited attention investors is Dt =

(1−r2)S0

φσ2
x(1+r2)

. Since mass 1
2 of the investors have limited attention, the market clear condition at time t
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is:
1

2
Kt +

1

2
Dt = Z0

Substitute the solutions of Kt and Dt into the market clearing condition, we have

1

2

(1− r)S0

φσ2
x

+
1

2

(1− r2)S0

φσ2
x(1 + r2)

= Z0

If φ = 1, then we get the equilibrium price S0 = Z0σ2
x

1−r
2(1+r2)

(1+r2)+1+r
. The price, S0, is lower than it would

be if all investors were fully attentive.

Summary of the Two-Period Example

From the example presented above, we find that:

1. The demand functions have the same form at one period before the final period. However, the

absolute risk aversion is changing (so is the demand) from period to period for each investor

individually. Investors are able to adjust their asset holdings at each period. Aggregately,

the demand function is unchanged. Each period, there exists not only the transfer from ’old’

investors to ’new-born’ investors, but also the trade between ’mid-age’ investors and ’new-born’

investors.

2. In the case with infrequent investors in the market, they require higher return because they are

not able to adjust their asset holdings in the intermediary period. Therefore, the equilibrium

price with infrequent investors in the market is lower than the benchmark price where all the

investors are frequent investors.

Demand Functions in a General Model

We solve for a stationary solution to the model described in Section 2. The date t demands of the

“least-attentive,” “partially-attentive,” and “most-attentive” individuals are denoted D1,t, D2,t, and

D3,t. The demands of the institutions and market makers are K1,t and K2,t respectively. Below, Et(·)

and Vt(·) denote the conditional mean and variance. St is the equilibrium price of the risky asset,

while Rt+k1 and Rt+k2 are described in Section 2.

In the general model, Nt is the exogenous endowment exposure to the risk which can be hedged
by trading the risky asset. Since the payoff of Nt is perfectly related to the payoff of the risky asset,
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the demand function in the general model is the mean-variance demand excluding the endowment
exposure, which is:

Least-Attentive* D1,t = q11

k1

(
Et(Rt+k1

)−rk1St

φVt(Rt+k1
) + q2

q1
Nt

)
≡ a1(c) · Yt + q11q2

q1k1
Nt

Partially-Attentive* D2,t = q12

k2

(
Et(Rt+k2

)−rk2St

φVt(Rt+k2
) + q2

q1
Nt

)
≡ a2(c) · Yt + q12q2

q1k1
Nt

Most-Attentive* D3,t = q13

(
Et(St+1+Xt+1)−rSt

φVt(St+1+Xt+1)
+ q2

q1
Nt

)
≡ b1(c) · Yt + q13q2

q1
Nt

Institutions K1,t = q2

(
Et(St+1+Xt+1)−rSt

φVt(St+1+Xt+1)
−Nt

)
≡ b2(c) · Yt − q2Nt

Market Makers K2,t = (1− q1 − q2)Et(St+1+Xt+1)−rSt

φVt(St+1+Xt+1)
≡ b3(c) · Yt

* Indicates a subtype of individual investor.

(IA.4)

where Et and Vt denote conditional mean and variance respectively, St denote the equilibrium price

at time t and Rt+k = St+k +
∑k

i=1 r
k−iXt+i for k = k1, k2.

Denote Ht = [D1,t−1, D1,t−2, · · · , D1,t−k1+1] the vector of quantities held by the least-attentive
investors who are not trading at date t. Denote Gt = [D2,t−1, D2,t−2, · · · , D2,t−k2+1] the vector of

quantities held by the partially-attentive investors not trading at date t. Let Yt = [Nt, Xt, Ht, Gt]
T

be the state vector. We hypothesize that the equilibrium price of the risky asset takes the form:
St = cT · Yt. The dynamics of the state vector Yt are specified as the followings:

Nt+1 = Nt + ∆Nt+1

Xt+1 = xt+1

Ht+1,1 = D1,t = a1(c) · Yt + q11q2
q1k1

Nt
Ht+1,i = Ht,i−1, for i ∈ [1, k1 − 1]

Gt+1,1 = D2,t = a2(c) · Yt + q12q2
q1k2

Nt
Gt+1,i = Gt,i−1, for i ∈ [1, k2 − 1]

(IA.5)

or equivalently,

Yt+1 = A(c)Yt +Bεt+1, (IA.6)

where A(c) =



1 0 0 0 · · · 0 0 · · · 0 0
0 0 0 0 · · · 0 0 · · · 0 0

—– ã1(c) —–
0 0 1 · · · 0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 0 0 · · · 1 0 0 · · · 0 0

—– ã2(c) —–
0 0 · · · 0 0 0 1 · · · 0 0

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · 0 0 0 0 · · · 1 0


(k1+k2)×(k1+k2)

,

and B =



σ2
∆N 0

0 σ2
x

0 0

.

.

.

.

.

.
0 0


(k1+k2)×2

,
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Above, ã1(c) = a1(c) + [ q11q2
q1k1

, 0, · · · , 0], ã2(c) = a2(c) + [ q12q2
q1k2

, 0, · · · , 0] and εt is a 2-by-1 vector

of i.i.d. standard normal random variables. Market clearing dictates that the sum of the current

aggregate excess demands of each investor type equals the available supply:

D1,t +D2,t +D3,t +K1,t +K2,t = −D1,t−1 − · · · −D1,t−k1+1 −D2,t−1 − · · · −D2,t−k2+1

= −1 · [Ht, Gt]
T

Equivalently,

a1(c) · Yt +
q11q2

q1k1
Nt + a2(c) · Yt +

q12q2

q1k2
Nt

+ b1(c) · Yt +
q13q2

q1
Nt + b2(c) · Yt − q2Nt + b3(c) · Yt = −1 · [Ht, Gt]

T (IA.7)

or

(a1(c) + a2(c) + b1(c) + b2(c) + b3(c)) · Yt =

(
q2 −

q13q2
q1
− q11q2
q1k1

− q12q2
q1k2

)
Nt − 1 · [Ht, Gt]

T

= [q2 −
q13q2
q1
− q11q2
q1k1

− q12q2
q1k2

, 0,−1] · Yt

≡ g · Yt (IA.8)

i.e.

a1(c) + a2(c) + b1(c) + b2(c) + b3(c) = g (IA.9)

Therefore, we can find a solution vector c such that Eq.IA.9 is satisfied.
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Internet Appendix 2

Notes on the Calibration Exercise

In our model, the stock price of a company that reinvests its dividends can be written as the sum of

three terms. The first term is the sum of all dividends paid since t=0 with each dividend compounding

from the time it was paid until date t. The compounding rate is the company’s required rate of return

r. The second component is the present value of all future dividends which is zero in our model. The

third term is the transitory component (St) which may be greater than, less than, or equal to zero in

our model. We can define Mt to be the sum of the first two terms so that: Mt ≡
∑t

k=0 r
t−kXk. In the

previous expression, Xk is the dividend from time k. The company’s stock price can now be written

as:

Pt = Mt + St

Mt = rMt−1 +Xt

With some algebra, we can then write the company’s stock return as:

Pt+1

Pt
=

Mt+1 + St+1

Mt + St
= 1 +

(r − 1)Mt

Pt
+
Xt+1

Pt
+
St+1 − St

Pt

With a first-order Taylor approximation we have:

ln

(
Pt+1

Pt

)
≈ (r − 1)Mt

Pt
+
Xt+1

Pt
+
St+1 − St

Pt

In our empirical data, pi,t is the natural log of stock i’s mid-quote price at the end of date t.

For a given parameter combination, the model is solved numerically to create moving average

(MA) representations of prices and quantities. Correlations are generated from the impulse response

functions (IRFs) following an endowment shock at t=0. For a given parameter combination, we can

also generate “data” from our model. These data can be used to check the correlations and produce the

figures shown in the main text. Throughout our paper, we produce results at four frequencies (daily,

weekly, biweekly, and monthly) as well as three time shifts (one period lagged, contemporaneous, and

one period lead).
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Internet Appendix 3

Unit Root Tests

Our model implies that market makers’ inventory positions should mean revert while individuals’

trading is not mean reverting. We test these predictions with a unit root test, which is also needed

to verify stationarity of the trading variables that enter the state-space (statistical) model. The

augmented Dickey-Fuller test is performed on a stock-by-stock basis using the regressions below. Note

that while MMi,t and ∆Indvi,t are variables found throughout this paper, ∆MMi,t and Indvi,t are

used only for the unit root tests. All variables are defined explicitly in Appendix A.

∆MMi,t = α+ βMMi,t−1 + φ1∆MMi,t−1 + . . .+ φ4∆MMi,t−4 + εi,t

∆Indvi,t = α+ βIndvi,t−1 + φ1∆Indvi,t−1 + . . .+ φ4∆Indvi,t−4 + εi,t

The table on the following page presents the results of the augmented Dickey-Fuller tests. The table

reports the cross-sectional mean of the β coefficients and the mean of the associated “t-statistics”. The

table also reports the p-value of a meta test statistic that counts the number of significant t−values

under (over) the 10% (90%) critical value if the cross-sectional mean is negative (positive).17 This

meta test statistic is binomially distributed under null where the probability of “success” equals the

significance level of the augmented Dickey-Fuller test performed for each stock. We use a 10% critical

value.

We reject the existence of unit roots in the market makers’ inventory positions at all conventional

levels. 862 of the 1,019 stocks reject the null. Our results indicate that NYSE market makers behave

in a manner consistent with theoretical models of market making. After building a position, market

makers quickly unwind their trades and mean-revert inventories towards target levels.18

We fail to reject the existence of unit roots in the individual inventory positions. Cross-sectionally,

we fail to reject for 968 of the 1,019 stocks at the 10%-level. Note that using the 10% threshold

represents a weaker-than-normal test that still results in the vast majority of stocks failing to reject.

Our results indicate that individuals do not seem to mean revert their holdings.

17The 10% critical value of an augmented Dickey-Fuller test is -2.57—see Cheung and Lai (1995).
18For related examples, see Ho and Stoll (1981), Hasbrouck (1993), Madhavan and Smidt (1993), and Grossman and

Miller (1988).
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NYSE market makers’ inventory levels are stationary, while the levels for individuals are not

stationary. These results provide support for using the level of NYSE market makers’ inventories

(MMi,t) and the change in levels, or net trades, of individuals’ holdings (∆Indvi,t) throughout the

paper.
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Augmented Dickey-Fuller Tests

This table presents results of augmented Dickey-Fuller tests using daily, weekly, biweekly, and monthly data respec-

tively starting from January 1999 to December 2005. We report the cross-sectional mean of the β coefficient. Below the

coefficients, and in parentheses, we report the cross-sectional means of the associated t-statistics. We consider variables

from market makers and individuals:

∆MMi,t = α+ βMMi,t−1 + φ1∆MMi,t−1 + . . .+ φ4∆MMi,t−4 + εi,t

∆Indvi,t = α+ βIndvi,t−1 + φ1∆Indvi,t−1 + . . .+ φ4∆Indvi,t−4 + εi,t

The p-values, reported in square brackets, are based on a test statistic that counts the number of significant aug-

mented Dickey-Fuller test statistics across all stock-estimates in the bin. The test statistic is binomial distributed under

the null (we use the 0.10 or 0.90 critical values from the DF-test). The number of observations is given in Appendix A.3.

Market Makers Individuals

Daily β-Avg -0.303 -0.000

T-Avg (-10.95) (-0.57)

P-value [0.00] [1.00]

Weekly β-Avg -0.510 -0.004

T-Avg (-6.25) (-0.89)

P-value [0.00] [1.00]

Biweekly β-Avg -0.619 -0.009

T-Avg (-4.81) (-1.02)

P-value [0.00] [1.00]

Monthly β-Avg -0.782 -0.019

T-Avg (-3.52) (-0.82)

P-value [0.00] [1.00]

9



Internet Appendix 4

Notes on the Number of Unique Correlations

Number of

Step Correlations Description Additional Notes

3 series × 3 series × 3 lead/lags × 4 frequencies

#1 108 Total correlations The 3 series consist of the holdings/trades

of 2 investor types + 1 return series

36 Above the main diagonals (symmetry) These corrs are not shown in Tables 3 & 4

12 “Ones” on the comtemp main diags Shown in Tables 3 & 4 for clarity only

#2 60 On or below the main diagonals* Correlations of interest

—- ———————————– ———————

108 Total correlations From Step 1

12 “Repeats” across time Example of a repeat: Corr(rt−1,rt) = Corr(rt,rt+1)

#3 48 Unique correlations We focus on these 48 unique correlations

—- ———————————– ———————

60 On or below the main diagonals* From Step 2

* Excludes “ones” on the contemporaneous main diagonals.

10



Internet Appendix 5

ARIMA Model

In the state space model, we have

pi,t = mi,t + si,t

mi,t = mi,t−1 + δi,t + βift + wi,t

wi,t = κMM
i M̃Mi,t + κindvi ∆Ĩndvi,t + ui,t

si,t = αMM
i MMi,t + αindvi ∆Indvi,t + εi,t

The corresponding ARIMA model is

ridioi,t = (κMM
i + αMM

i )MMi,t − αMM
i MMi,t−1 + (κindvi + αindvi )∆Indvi,t − αindvi ∆Indvi,t−1

+ui,t + εi,t − εi,t−1

or

ridioi,t = ζMM
i0 MMi,t + ζMM

i1 MMi,t−1 + ζindvi0 ∆Indvi,t + ζindvi1 ∆Indvi,t−1

+ηi,t + θηi,t−1 (IA.10)

Above, ridioi,t is a stationary series following a MA(1) process (plus explanatory variables.) We can use

an AR(q) model to approximate the above ARIMA series and estimate it by OLS1−
q∑
j=1

ϕijL
j

 ridioi,t =

1∑
j=0

γMM
ij MMi,t−j +

1∑
j=0

γindvij ∆Indvi,t−j + ηi,t (IA.11)

The long-run effect of market makers’ inventories on price is then equal to
∑1
j=0 γ

MM
ij

1−
∑q
j=1 ϕij

, and the tem-

porary effect of market makers’ inventories is γMM
i0 −

∑1
j=0 γ

MM
ij

1−
∑q
j=1 ϕij

. Similarly, the effect of individuals’

net trades on efficient price is
∑1
j=0 γ

indv
ij

1−
∑q
j=1 ϕij

and the effect on temporary price is γindvi0 −
∑1
j=0 γ

indv
ij

1−
∑q
j=1 ϕij

.
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Corresponding to the coefficients in the state space model, we define

κ̇MM
i ≡

∑1
j=0 γ

MM
ij

1−
∑q

j=1 ϕij

κ̇indvi ≡
∑1

j=0 γ
indv
ij

1−
∑q

j=1 ϕij

α̇MM
i ≡ γMM

i0 −
∑1

j=0 γ
MM
ij

1−
∑q

j=1 ϕij

α̇indvi ≡ γindvi0 −
∑1

j=0 γ
indv
ij

1−
∑q

j=1 ϕij

We estimate the model on a stock-by-stock basis and report the cross-sectional average of the

coefficients in the table on the following page. The variances of the coefficients at the individual stock

level are derived by the delta method. Standard errors of the cross-sectional means are adjusted for

contemporaneous correlation across stocks.
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ARIMA Model Estimates

(cf. Table 6 in the main text)

This table presents estimates from an AR(8) model with market makers’ inventories and individuals’ net trading as

explanatory variables. Below the coefficient estimates, there are t-values in parentheses. Standard errors are adjusted

for contemporaneous correlations among the stocks. In these equations, ri,t is the idiosyncratic return of stock i over

month t. (
1−

8∑
j=1

ϕijL
j

)
ri,t =

1∑
j=0

γMM
ij MMi,t−j +

1∑
j=0

γindvij ∆Indvi,t−j + ηi,t

Coefficients related to efficient price effects (κ̇MM
i and κ̇indvi ) as well as coefficients related to transitory price effects (α̇MM

i

and α̇indvi ) are defined below. Coefficients estimates are reported directly below in the table.

κ̇MM
i ≡

∑1
j=0 γ

MM
ij

1−
∑8

j=1 ϕij
α̇MM
i ≡ γMM

i0 −
∑1

j=0 γ
MM
ij

1−
∑8

j=1 ϕij

κ̇indvi ≡
∑1

j=0 γ
indv
ij

1−
∑8

j=1 ϕij
α̇indvi ≡ γindvi0 −

∑1
j=0 γ

indv
ij

1−
∑8

j=1 ϕij

Efficient Price Transitory Price

Effects Effects

κ̇MM
i |κ̇MM

i | ×
σ(MM)

κindvi |κ̇indv
i | ×

σ(∆Indv)
α̇MM
i |α̇MM

i | ×
σ(MM)

α̇indvi |α̇indv
i | ×

σ(∆Indv)

Daily -0.16 36 -0.03 18 -0.56 121 -0.09 13

(-27.6) (-4.8) (-18.0) (-7.9)

Weekly -0.37 83 -0.04 60 -0.58 128 -0.09 44

(-21.6) (-3.4) (-16.9) (-12.0)

Biweekly -0.53 119 -0.03 99 -0.56 129 -0.09 89

(-17.7) (-1.7) (-14.7) (-8.0)

Monthly -0.67 179 -0.06 190 -0.61 169 -0.09 168

(-12.2) (-5.0) (-12.8) (-10.5)

13



Internet Appendix 6

State Space Model with Model-Generated Data

The price equations in Internet Appendix 2 in log-form are:

pi,t = mi,t + si,t (IA.12)

mi,t = mi,t−1 + δi,t + wi,t

The log stock price is written as the sum of an efficient (permanent) part and a transitory part. The

efficient price (mi,t) is modeled as a process of uncorrelated increments with a nonzero drift equal

to the stock’s required return (δi,t). These increments are related to the dividend surprises and are

denoted wi,t. We use Eq.IA.12 and the approach in Internet Appendix 2 when generating data to

serve as the basis for our empirical estimation in Section 4 of the main text.

This table presents estimates of a state space model from data simulated by our theoretical model. The estimated state

space model is shown below. We run 1,000 simulations of the model with length T = 1, 760 days. pi,t (in bps) is the

model generated price along with the deviation (st) and random walk component (mt). MMi,t is the model generated

market maker’s inventory positions, ∆Indvi,t is the model generated individuals’ net trades. Since our theoretical model

does not include information-based trading, we exclude the trading variables from the efficient price equation. We report

the averages of the estimates from 100 times simulations and the t-values are reported in the parentheses.

pi,t = mi,t + si,t

mi,t = mi,t−1 + wi,t

si,t = αMM
i MMi,t + αindvi ∆Indvi,t + εi,t

σ(w) αMM
i αindvi σ(ε)

Daily 226 -2.34 -0.05 15

(-337.9) (-14.7)

Weekly 500 -2.13 -0.09 44

(-79.4) (-7.9)

Biweekly 698 -2.01 -0.15 82

(-84.1) (-24.4)

Monthly 988 -2.42 -0.07 150

(-54.9) (-9.2)
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