Abstract

We identify long-lived pricing errors through a model in which inattentive investors arrive stochastically to trade. The model’s parameters are structurally estimated using daily NYSE market-maker inventories, retail order flows, and prices. The estimated model fits empirical variances, autocorrelations, and cross-autocorrelations among our three data series from daily to monthly frequencies. Pricing errors for the typical NYSE stock have a standard deviation of 3.2 percentage points and a half-life of 6.2 weeks. These pricing errors account for 9.4%, 7.0%, and 4.5% of the respective daily, monthly, and quarterly idiosyncratic return variances.

Keywords: Transitory Volatility, Limited Attention, Market Makers

JEL Codes: G12, G14
Asset Price Dynamics with Limited Attention

We identify long-lived pricing errors through a model in which inattentive investors arrive stochastically to trade. The model’s parameters are structurally estimated using daily NYSE market-maker inventories, retail order flows, and prices. The estimated model fits empirical variances, autocorrelations, and cross-autocorrelations among our three data series from daily to monthly frequencies. Pricing errors for the typical NYSE stock have a standard deviation of 3.2 percentage points and a half-life of 6.2 weeks. These pricing errors account for 9.4%, 7.0%, and 4.5% of the respective daily, monthly, and quarterly idiosyncratic return variances.
1 Introduction

How much do observable stock prices deviate from fundamental values? And when they do, how long do these “pricing errors” last? Financial economists have long known that asynchronously arriving (or inattentive) investors could be the root cause of these errors.\(^1\) The pricing errors compensate market makers who supply liquidity by stepping in to match buyers and sellers across time. In a complementary view, the interaction of liquidity supply and pricing errors produces a pattern of predictable return reversals.\(^2\) Short-run reversals are a major focus of the market microstructure literature, while lower-frequency reversals are typically studied in the asset pricing literature. A goal of our paper is to link these two literatures by studying the magnitude of pricing errors for typical New York Stock Exchange (NYSE) stocks at frequencies from a day to a quarter. We find that pricing errors for the typical NYSE stock have a standard deviation of 3.2 percentage points and a half-life of 6.2 weeks. They account for 9.4%, 7.0%, and 4.5% of the respective daily, monthly, and quarterly idiosyncratic return variances.

Why study pricing errors? A fundamental goal of financial economics is to understand the extent to which a stock’s price (or change in a stock’s price) reflects a company’s fundamental value (or change in value). For cases in which an observed price deviates from a company’s fundamental value, financial economists seek to understand why and where this “noise” or “pricing error” comes from. Research into noise and inferences about firm values go back at least as far as the 1960s. Fama (1970, 1991) provides concise reviews. Investor welfare provides further impetus for studying pricing errors—see Brennan and Wang (2010). Finally, pricing errors (or noise) have recently been linked to biases in asset pricing tests. Our paper provides estimates of the magnitude and duration of noise which could then be used to measure biases, following, for example, Asparouhova, Bessembinder, and Kalcheva (2010, 2013). In a related paper, Brennan and Wang (2010) show that pricing errors affect a stock’s expected return beyond what can be attributed to fundamental risk.

Research agenda: A financial economist who wants to better understand pricing errors can follow

\(^2\)Examples of such price reversals can be found in Grossman and Miller (1988), Jegadeesh (1990), Lehmann (1990), Campbell, Grossman, and Wang (1993), Llorente et al. (2002), Nagel (2012), and others.
at least three different research directions. The first involves an econometric exercise that tries to decompose a stock’s observed price into a “fundamental component” and a “transitory component.” With sufficient identifying assumptions, for example, a random-walk component fundamental component and independent noise as in Roll (1984), it is possible to estimate the transitory component with available price data, making measurement of pricing errors’ magnitude and duration straightforward.\(^3\) However, a purely econometric approach provides few insights into how financial markets work and/or the trade-offs faced by economic agents. The second approach, also empirical, focuses on infrequent events where large supply shocks help identify times when pricing errors may appear—see Duffie (2010) for examples.

A third direction, and the one followed in our paper, is to use an economic theory model and data on liquidity providers’ inventories to identify pricing errors. In our model, different classes of investors have different exposures to private-value shocks. The shocks induce hedging motives to trade and the shocks net to zero across investors (e.g., holdings may change, but do not affect prices if there are no frictions). Our model introduces a friction: some investors continually monitor the stock market while others are inattentive and arrive infrequently to trade. The presence of the infrequent investors gives rise to the long-lived pricing errors that compensate financial intermediaries for bridging the gap between the needs of frequent and infrequent investors. In the simplest example, if frequent investors want to buy today while infrequent investors want to sell tomorrow, in equilibrium a market maker will be able to sell today at a higher price than s/he buys the stock back tomorrow. If infrequent investors arrive over horizons longer than a day, the pricing errors can also last longer than a day.

Our contribution: The contribution of our paper is to identify long-lived pricing errors through an economic model. We show how to transform our continuous-time model’s theoretical results so that its parameters can be estimated using discretely-sampled data. Data in our paper consist of daily NYSE market-maker inventories, retail order flows, and prices. We structurally estimate the pricing errors’ magnitude, their duration, as well as deeper economic quantities, such as the risk-bearing capacities of different investor classes.

Papers such as Hendershott and Seasholes (2007) and Hendershott and Menkveld (2014) link market-maker inventories to return reversals. The second of these papers uses a discrete-time model

\(^3\)Other examples of this econometric approach can be found in Poterba and Summers (1988), Cochrane (1994), and Brennan and Wang (2010).
with supply and demand shocks arriving independently each period. Market makers accommodate these shocks and are the only economic agents who operate across periods. This framework results in pricing errors following an autoregressive process—specifically, an AR(1). In contrast, in our paper market makers and attentive investors optimize across periods, and the stochastic arrivals of inattentive investors lead to auto-correlated supply and demand shocks. Our framework produces complex pricing error dynamics that are richer than those of an AR(1) process and is better able to match empirical autocorrelation patterns. Also, our pricing errors can last for days and even months.

Our structural estimation provides additional insights. We are able to estimate the magnitude of continuously arriving private-value/hedging shocks that cause pricing errors. The model yields a flexible form for the pricing errors’ data generating process. This is particularly important when studying NYSE data. At the time of a private-value shock, the market maker takes on an inventory position that initially decays quickly. However, the inventories also contain a longer-lived component that does not revert to pre-shock levels for at least a month. Our model emphasizes the role played by the least attentive investors who arrive (on average) once a quarter to trade.\footnote{For example, retail flows serve as a proxy for trading by some of the inattentive investors.} It is the long-tailed autocorrelation of market-maker inventories in the NYSE data that allows us to more precisely estimate slowly-decaying pricing errors.

Using our daily NYSE data on prices, market-maker inventories, and retail trading, we perform maximum likelihood estimation (MLE) to recover the model’s underlying parameters. We compare the empirical and model-implied variances and autocorrelations (including cross-autocorrelations among these variables) contemporaneously and with lags ranging from a day to a month. The estimated model matches all the relevant dynamic relations, both in terms of signs and magnitudes. This is noteworthy because the model is only a single friction away from a standard asset-pricing model.

Beyond identifying the structure of pricing errors, the model and structural estimation enable deeper understanding of the interplay between the retail order flows and returns in Kaniel, Saar, and Titman (2008). We also provide new empirical findings such as the interplay between retail order flows and market-maker inventories.

The model’s rich and long-lasting autocorrelation structure for prices ties together results tradi-
tionally in the microstructure literature (daily) with those in the asset pricing literature (monthly and quarterly). Our results show that “noise” is not solely a short-term microstructure effect. Instead, this paper shows that there are significant pricing errors in monthly data—the data most commonly used in the asset pricing literature. Below, we expand our discussion of this paper’s approach and its contributions.

1.1 Our theoretical approach

Our theoretical model is recursive in nature, assumes that all investors are price-takers, and runs in continuous time. The model’s core distinguishing feature is the inclusion of multiple classes of inattentive investors who operate at different frequencies. Such inattention is the only friction in the model (i.e., information is symmetric and agents are zero-mass price-takers). The model includes private-value shocks that investors experience and which offset one another. Therefore, in the absence of the inattention friction, trade is purely reallocational, does not require intermediation, and does not affect prices (i.e., no pricing errors). However, if at least one investor class is inattentive the model can generate non-trivial price and trade patterns.

Intuition for the channels that generate our trading and return patterns can be obtained by considering an example subsumed by our model. Consider investors who might experience private-value shocks for a single asset. Let part of the investor mass experience no such shocks and be perfectly attentive, meaning they are continuously present in the market and ready to trade. These investors will endogenously become market makers. Divide the remaining investor mass in half and let the private-value shocks that one-half experiences be offset by the shocks that the other half experiences. In other words, the target-holding changes for the asset sum to zero. Let one-half be perfectly attentive (fast), like the market makers, and the other half be inattentive and arrive to trade with (stochastic) delays.

Now consider that the attentive investors receive a negative private-value shock. As the inattentive or slow investors are not all there at the time of the shock, prices temporarily experience downward pressure to clear the market. This negative pricing error attracts market makers who purchase the

\footnote{Having only one friction (inattention) both clarifies the channels at work in the model and disciplines the data fitting exercise.}
securities that the fast investors want to sell.6 It also induces these fast investors to reduce their current liquidity demands and spread these demands over time (i.e., the optimal trading strategy calls for “parceling out” trades).7 Both the fast investors and the market makers will sell to slow investors once the latter investor class arrives at the market in the future, and as a result, the pricing error will subside. The magnitude of the shocks, the relative sizes of the different investor classes, and the inattention frequency of the slow investors together determine the magnitude and duration of the pricing errors.

1.2 From theory to structural estimation

The model’s strength is its simplicity and versatility. Our model is invariant to the sampling frequency. Section 3 shows how one can convert the implied model dynamics from continuous time to discrete sampling times, where the latter can span a second, an hour, a day, a month, or a quarter. Our model, therefore, can be used by both monthly asset pricers and sub-millisecond microstructure researchers. In addition, allowing for multiple classes of slow investors who operate at different frequencies turns out to be a crucial feature when fitting NYSE price and trading dynamics. In particular, the autocorrelation in daily idiosyncratic returns8 decays too slowly to be explained using only a single class of slow investors. We find a good fit using three classes of slow investors: one with investors who arrive daily (on average), one with investors who arrive monthly, and a third with investors who arrive quarterly.

The monthly and quarterly inattentive investors lead to the slowly decaying pricing errors found in the autocorrelations of NYSE returns. The presence of these classes is also the main reason why pricing errors are sizeable. We estimate that prices deviate from fundamental values by 3.2 percentage points with a half-life of 6.2 weeks.

The slow decay in pricing errors can further explain a (perhaps) puzzling empirical feature of NYSE

6Modeling the inventory control choices of market makers is highlighted in both Madhavan and Smidt (1993) and Hendershott and Menkveld (2014). Our paper treats market makers as competitive price takers and does not allow them to trade strategically. Such an assumption is helpful for obtaining closed-form solutions. At short horizons the NYSE market makers have information and positional advantages that likely enable them to behave strategically. These advantages diminish at lower frequencies, making NYSE market makers compete with hedge funds and other investors to provide liquidity at longer horizons.

7This links our paper to the optimal execution literature—see Bertsimas and Lo (1998) and Almgren and Chriss (2001) for examples. In our model, both the market makers and fast investors solve for optimal trading strategies, albeit with different goals, leading to endogenous pricing errors.

8All returns in the paper are idiosyncratic. Hereafter, to ease exposition we typically refer to them simply as “returns.”
Table 1

Stock return autocorrelations at various frequencies

This table presents first-order autocorrelations of individual stock returns. It illustrates that longer period returns can have more negative first-order autocorrelations. The Campbell, Lo, and MacKinlay (1997, p.73, Table 2.7) results are based on a mapping from their variance ratios to first-order autocorrelations (see their Eq.2.8.1 on p. 69). Their results are based on individual returns for 411 U.S. stocks. Our data are more recent and based on idiosyncratic returns for 689 U.S. stocks. The model-implied autocorrelations are based on estimates presented in Section 4.

<table>
<thead>
<tr>
<th></th>
<th>Period</th>
<th>Daily</th>
<th>Monthly</th>
<th>Bi-monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell, Lo, & MacKinlay</td>
<td>1962-1994</td>
<td>−0.03</td>
<td>−0.04</td>
<td>−0.04</td>
</tr>
<tr>
<td>Our data</td>
<td>1999-2005</td>
<td>−0.02</td>
<td>−0.04</td>
<td>−0.08</td>
</tr>
<tr>
<td>Model-implied</td>
<td>1999-2005</td>
<td>−0.01</td>
<td>−0.04</td>
<td>−0.05</td>
</tr>
</tbody>
</table>

data: first-order return autocorrelations can become more negative when sampled at lower frequencies. Table 1 illustrates this puzzle for both a classic and a modern sample of U.S. equities. Campbell, Lo, and MacKinlay (1997) find that stock-specific returns are more negatively autocorrelated at a bi-monthly frequency than at a monthly frequency for their 1962-1994 sample. In our 1999-2005 sample, we find a similar pattern when comparing daily, monthly, and bi-monthly returns. The table further shows that our model can produce such a pattern. The model-implied autocorrelations become increasingly more negative as one moves from daily to monthly and then to bi-monthly returns.

The intuition for why such patterns can occur is best developed by taking pricing-error persistence to a limit. At high frequencies, such errors will wash out when taking first differences (i.e., when computing stock returns) and the first-order autocorrelation will tend to zero. At low frequencies the errors will decay enough to “contaminate” returns and cause a negative first-order autocorrelation. The argument is developed more formally in Appendix A. This insight should caution researchers not to conclude that prices are “efficient” when seeing negligible first-order autocorrelation in returns sampled at high frequencies.9

9Papers estimating both a stock’s fundamental price and its pricing error include Poterba and Summers (1988), Roll (1988), and Cochrane (1994). Papers such as Poterba and Summers (1988) assume that pricing errors evolve as a specific autoregressive process, while we use NYSE trade data to identify the timing and dynamics of pricing errors. Put differently, it is very difficult to separate pricing errors from fundamental values using only observable prices in a finite sample. Using trading data (as we do) helps avoid such difficulties.
1.3 Novel results from the structural estimation

Our structural model estimation yields novel insights in five broad areas:

First, the model requires a range of slow investor classes in order to achieve a reasonable fit: we use daily slow investors, monthly slow investors, and quarterly slow investors. These classes feature both slow institutional and retail investors. Institutions are more prevalent at all three frequencies. While retail investors are a small part of the market, they make up a relatively larger part of the monthly and quarterly slow investors. These observations are based on our estimates of the total masses of private-value shocks, referred to as “risk masses.” This term emphasizes that it is the product of the mass of investors times the size of the per-investor private-value shock. In other words, while the model is unable to identify how many investors are in each class or the hedge shocks they experience, we are able to identify the product of the two.

Second, the model allows for a decomposition of the pricing error variance. The standard deviation of the various components are: 0.097%, 1.575%, and 2.548% due to the respective daily, monthly, and quarterly slow investors and 1.106% due to a component shared across all the investor arrival classes. In addition to producing results for our sample of NYSE stocks, we also produce them for three, size-based sub-samples of stocks (large, medium, and small stocks).

Third, the model provides measures of the liquidity supply and demand dynamics following a hedging shock. Fast investors trade in the direction of the pricing error and market makers and slow investors trade in the opposite direction of the pricing error. Trading against pricing errors is a traditional definition of liquidity provision. Fast investors slowing their trading to limit their price impact is the focus of the optimal execution literature. The model enables calculation of the fraction of trading against pricing errors by market makers versus retail investors following a shock.

10 Since we have market-maker inventories and retail trades, institutional trades are defined by a market clearing constraint. Lakonishok, Shleifer, and Vishny (1992), measure the size of the institutional imbalance and its relation to current price movements. Other papers study interactions of institutional and retail trading—see papers such as Nofsinger and Sias (1999) and Griffin, Harris, and Topaloglu (2003). Our paper speaks to both literatures. We can measure the magnitude of pricing errors and relate it to buy-sell imbalances of any of our investor classes.

11 Stock trading by retail investors is well studied, and the most relevant paper is Kaniel, Saar, and Titman (2008). The authors show that net trades by retail investors this week are positively related to returns the following week. We confirm the earlier results and add new economic insights based on the inattention friction. Not surprisingly, we estimate retail investors to be a small fraction of slow investors. We further find that, in relative terms, they are a larger part of quarterly and monthly slow investors than of daily slow investors.
Market makers make up 100% of this fraction at the time of the initial shock, but their participation rapidly decays over the next month to 2.8%. These results provide some support for the interpretation of retail traders supplying liquidity as found in Kaniel, Saar, and Titman (2008). However, careful consideration is needed as inattentive retail traders in our model trade against pricing errors, but their motivation for trade is inconsistent with the standard view that liquidity suppliers temporarily hold a sub-optimal position to profit from the pricing error.

The model also enables calculation of institutions’ optimal liquidity demand dynamics. One day after an initial shock, institutional net trading demand is only 51.9% of their final trading demand. This initial trading occurs primarily with the market maker. The remaining 48.1% of institutions’ trading demand occurs slowly over time. A month after the shock, the net demand is 91% with 9% of the ultimate demand occurring more than a month after the initial shock. The dynamics of the long-lasting execution are a function of: a) the market makers’ risk mass relative to that of the fast institutions and b) how quickly slow investors arrive to trade following a shock.

Fourth, the model quantifies the price impact of institutional trading. A $192 million shock to fast institutions’ target portfolios leads to a pricing error of only 1.3%. This indicates there is substantial risk-bearing capacity at the time of the initial shock, both in terms of market making and in terms of institutions ability to patiently trade.

Fifth, we are able to carry out a counterfactual analysis. We find pricing errors explain 9.4% of daily return variance. We then vary the risk aversion of the fast investors. Also, we assume slow institutions start reacting faster (perhaps due to technology improvements). Not surprisingly, having twice as many risk-tolerant fast investors (or having quarterly and monthly slow institutions become daily slow investors) dramatically reduce the pricing errors’ fraction of daily return variance (from 9.4% to 2.5% and 0.9% respectively).

The counterfactual analysis also highlights the underlying economics of our approach. Low-frequency arrivals, although small in terms of risk masses, can play an important role in price-pressure magnitudes. In equilibrium, their “conditional price pressure” scales with the inverse of their arrival rate. Hence, investors who arrive once a quarter (on average) have approximately 63 times the impact as those who arrive once a day. Why? Fast investors, who trade against initial shocks, expect to end
up holding positions for long periods of time before ultimately unwinding them.

Our paper is closely tied to a literature that started with Grossman and Miller (1988) in which market makers smooth non-synchronous trading demands due to inattentive investors. Recent inattention papers such as Duffie (2010) and Bogousslavsky (2016) include attention heterogeneity that increases the need for intertemporal smoothing. Bogousslavsky (2016) shows that the inattentive investors can explain regularities in stock return autocorrelation patterns. Our model differs from these papers in a number of key ways. First, our model has market makers, attentive (fast) investors, and multiple classes of inattentive (slow) investors. Importantly, our inattentive investors arrive stochastically. This feature keeps the dimensionality of the state space small enough to make structural estimation feasible and thus identification of pricing errors possible (a detailed argument can be found at the end of Section 2.2). Our closed-form solutions also allow us to decompose the pricing errors into easily understood economic quantities.

Duffie (2010) discusses a number of empirical examples where pricing errors are found by identifying liquidity demand shocks. Koijen and Yogo (2019) provide systematic evidence on liquidity demand by using changes in 13F (holdings) data and changes in prices to estimate the latent demand of institutions at a quarterly frequency. Under the assumption that this latent demand is mean reverting, Koijen and Yogo (2019) find that institutions can cause long-lived price pressure in the cross-section of stock returns. This complements our stock-level findings that pricing errors (in the time series dimension) are identified by liquidity supply (market-maker inventories). Cella, Ellul, and Giannetti (2013) examine how the institutional investors’ average holding periods across stocks relate to pricing errors during market-wide negative shocks. They find that stocks held more by short-horizon investors experience larger price drops and subsequent reversals. If short-horizon holding periods correspond to more frequent rebalancing needs, their results are consistent with our model and empirical results that larger hedging shocks lead to larger pricing errors.

Pricing errors arise in studies of bond and currency markets as well. Bao, Pan, and Wang (2011) assume prices follow a random walk and estimate illiquidity as the negative covariance of high-frequency and daily price changes. Hu, Pan, and Wang (2013) construct a market-wide noise measure by back-
ing out the implied yield curve from the daily cross-section of bonds and bills. Bacchetta and van Wincoop (2010) calibrate a two-country model with infrequent portfolio rebalancing. Their results of a forward discount bias mirror empirical findings that have long puzzled economists.

2 Asset pricing model with limited attention

2.1 Model primitives

Time is continuous, indexed by t, and runs forever. Setting the model up in continuous time yields closed-form expressions that serve three purposes. First, the setup creates transparent relationships between the model’s deep parameters and the economic variables of interest. This transparency facilitates economic insights. Second, the closed-form expressions make structural estimation feasible. Third, our model becomes invariant to the sampling frequency. Section 3 shows how to convert the implied model dynamics from dt to Δt where the latter can span a second, an hour, a day, or a month. Our model, therefore, can be used by monthly asset pricers as well as sub-millisecond microstructure researchers. Appendix B provides a summary of the notation used in our model.

Assets. There are two assets in the economy. First, there is a risky asset in zero net supply that pays dividends over any interval $(t, t + dt]$, with B being a Brownian motion.

$$dD_t = \sigma_w dB_t. \tag{1}$$

The dividend process, having an expected value of zero, implies that the asset’s fundamental value is zero. However, this dividend process is consistent with modeling a pricing error that fluctuates around zero. Of course, adding a positive expected dividend would cause the asset’s expected price to be above zero. Given that this paper’s empirical focus is on pricing errors and price changes, it becomes convenient to center the dividend dynamics around zero. Second, there is a risk-free asset with an exogenously given rate of return $r > 0$. The risk-free asset is in perfectly elastic supply ensuring a constant payoff.
Investors. There are $N + 2$ classes of investors: Fast institutions (indexed by F), market makers (indexed by M), and $N \in \mathbb{N}$ classes of slow investors (indexed by $i = 1, \ldots, N$). Let $\mathbb{N} := \{1, \ldots, N\}$ denote all classes of slow investors. We index all of the $N + 2$ classes with $j \in \{F, M\} \cup \mathbb{N}$. There is a continuum of agents in each of the $N + 2$ classes. The masses of the investor classes are m_F, m_M, m_1, \ldots, m_N, respectively.

The slow investors are inattentive and only trade the risky asset infrequently. Concretely, a slow investor belonging to class i trades the risky asset at the jump times of a Poisson process. The jump intensity of this Poisson process is λ_i and the Poisson processes are independent across investors (even within a class).\footnote{A more general setting would allow for correlation across the inattention processes. For example, one could add common shocks that would bring all inattentive investors to the risky-asset market at the same time. In such a case, the price jumps towards its efficient level (i.e., to zero in our setting). Furthermore, even when not all investors are paying attention, the possibility of this abrupt convergence induces bolder bets against inefficient prices. Overall, making the attention processes correlated across agents attenuates the effect of inattention on prices, but does not eliminate the qualitative results.} For convenience, we define Λ to be the diagonal matrix whose entries are the attention intensities of the slow investors.

$$\Lambda := \text{diag} (\lambda_1, \ldots, \lambda_N)$$

Preferences. All investors are risk-neutral but suffer a quadratic utility loss when their holdings of the risky asset deviate from a certain target. This target is moving over time and shared by investors within a given class (more details can be found in a few paragraphs). Concretely, at time t, an investor i of class j chooses his policies to maximize:

$$\sup_{C, \pi} \mathbb{E}_t \left[\int_t^{\infty} e^{-r(u-t)} \left(dC_u - \frac{r \gamma_j \sigma^2_w}{2} (T_{j,u} - \pi_{i,u})^2 \right) du \right],$$

where C_u is the cumulative consumption of the investor up to time u, $T_{j,u}$ is the target portfolio for class j at time u, $\pi_{i,u}$ denotes his actual risky asset holdings at time u, and $\gamma_j > 0$ is a risk-aversion parameter that determines the utility loss per unit of differential between target and actual holdings.

We interpret preferences as specified in (3) as follows: A class j investor wants to hedge some risky exposure and can do so perfectly by holding $T_{j,t}$ shares of the risky asset. If the expected excess return on this asset is not currently zero, then a speculative position in the risky asset will increase the investor’s expected wealth and consumption. The optimal portfolio balances hedging benefits and
speculative profits. The quasi-linear preferences of (3) are similar to those in Biais (1993), Duffie, Gârleanu, and Pedersen (2007), Gârleanu (2009), Lagos and Rocheteau (2009), and Afonso and Lagos (2015).

Target portfolios. An N-dimensional Brownian motion, Z, drives the slow investors’ target portfolios (the innovations to Z_t are also referred to as “hedge shocks” in this paper). Concretely, the target portfolio vector that comprises all slow investor classes is shown below. The first term in (4) is the volatility of the target shocks experienced by each of the N slow investor classes.

$$T_{N,t} := \text{diag} (\sigma_1, \ldots, \sigma_N) Z_t \in \mathbb{R}^N. \quad (4)$$

The target portfolio of the market makers is zero at all times and is shown in (5). This definition is consistent with market makers only trading to facilitate risk-sharing among the other market participants.

$$T_{M,t} := 0. \quad (5)$$

Finally, the (scalar) target portfolio of the fast institutions is shown in (6) where $1_{(k \times l)}$ is a $k \times l$ matrix of ones.\(^{14}\)

$$T_{F,t} := - \frac{1}{m_F} 1_{(1 \times N)} \text{diag}(m_1, \ldots, m_N) T_{N,t}. \quad (6)$$

With the target portfolios defined in (4), (5), and (6), the sum of the target holdings in the risky asset is zero at all times:

$$\sum_{j \in \{F,M\} \cup N} m_j T_{j,t} = 0. \quad (7)$$

If all investors are attentive at all times, then all investors will always hold their target portfolios, and there is no reason for the price to differ from fundamental value (i.e., what is often referred to as the “permanent component of price” is zero in our setting).

The Brownian motions in our paper are allowed to be correlated (i.e., the B_t that drives the dividend process and the Z_t’s that drive the target portfolios). Specifically, a correlation of ρ links

\(^{14}\)In our model, we abstract away from target shocks affecting the risky asset’s fundamental value. We follow Lo, Mamaysky, and Wang (2004) in assuming that the fast institutions’ target portfolio is equal and opposite to a weighted sum of the slow investors’ targets.
the ‘with dividend’ price/return dynamics and a shared target portfolio shock to all investors:

$$\text{Corr}(dB_t, dZ_t) = \rho \cdot 1_{(N \times 1)}.$$ (8)

Equation (8) is a reduced-form way to model correlation between the permanent component of price and shocks faced by slow/fast investors. Such a correlation could arise from target portfolio shocks being imbalanced between fast and slow investors such that the sum of the shocks is non-zero.\footnote{Such a correlation could also arise from information-based trading. For example, ρ would be negative if fast investors trade on information in addition to their target portfolio shocks.} In this case, the permanent component of price will adjust so that market clearing occurs at the long-run/permanent price where fast and slow investors’ target portfolios (conditional on the new equilibrium price) sum to zero. Appendix C illustrates how imbalanced shocks can yield a permanent price process that is equivalent to the with-dividend permanent price process used here. Overall, Appendix C illustrates how imbalanced shocks can result in a correlation of ρ between the balanced shock process and returns.

The gap process (state variable). Finally, it is useful to define a “gap process” or G_t across all classes of slow investors. This process keeps track of the gaps between the target and actual portfolios and is summed across all slow investors in the N different classes. More precisely,

$$G_t := \text{diag}(m_1, \ldots, m_N) (T_{N,t} - A_{N,t}) \in \mathbb{R}^N,$$ (9)

where entry i of $A_{N,t} \in \mathbb{R}^N$ contains the actual holdings of all investors in class i: \begin{equation}
A_{i,t} := \int_{u \in m_i} \pi_{u,t} du. \end{equation} (10)

This gap process turns out to be the state variable upon which all the model’s dynamics depend. Defining the gap process at an investor-class level benefits from the independent arrivals of the investors within the class. A “law of large numbers” result holds and consequently the gap process is an Ornstein-Uhlenbeck (OU) process [an AR(1) process in continuous time].

The OU (gap) process has economic appeal as it essentially captures the order imbalance relative to a first-best (i.e., the case when all investors are fully attentive). Because the gap process represents an imbalance, market-clearing prices and their dynamics depend on it. This dependence will become
clear in the next subsection where we present equilibrium results. We will also show that changes in the gap process relate to market-maker inventories and slow-investor flows.

2.2 Equilibrium

To ensure that the model’s full dynamics become available in closed-form, we assume slow investors are infinitely risk-averse (i.e., $\gamma_j = \infty, \forall j \in N$).\(^{16}\) This is a technical assumption that removes speculation by slow classes.\(^{17}\) This makes inattentive investors act like liquidity traders in many models. Such traders do not act strategically nor condition their trading on price.

Our main equilibrium result is based on standard definitions that feature individual optimality, market clearing, and rational expectations (see Appendix D.3 for this definition and a proof of the following proposition). Our approach to solving for an equilibrium can be categorized as “guess and verify.” We first solve the individual problems for all agents assuming a price process for the risky asset. Then, given these solutions, we show that the assumed price process is the result of market clearing. A more detailed description is in Appendix D.1.

Appendix D.1 discusses the three key assumptions/guesses: 1) The gap process follows an Ornstein-Uhlenbeck (“OU”) process; 2) The pricing errors are linear in the gap process; and 3) The gap process is public information.\(^{18}\) We can write the gap process as follows where $\mu_j := m_j \sigma_j$ is the total risk mass of investors in class j:

$$
\text{d}G_t = -\Lambda G_t \text{d}t + \text{diag}(\mu_1, \ldots, \mu_N) \text{d}Z_t, \tag{11}
$$

An OU process for the gap vector in (11) has intuitive appeal as mentioned earlier. We see that class j’s gap decays smoothly with intensity λ_j (an element in Λ). The independent arrivals of investors

\(^{16}\)Prior versions of this paper presented an extended version of the Duffie (2010) model. That model allows for market makers and multiple classes of slow investors who trade strategically. The model with slow investors trading strategically results in qualitatively similar predictions as those in the current draft: All of the previous model’s moments have the same sign as those in the continuous-time model with non-strategic slow investors. However, our extended Duffie (2010) model does not have closed-form solutions and is not suitable for structural estimation. Finally, please note that myopia, which limits strategic behavior, is used in models such as Nagel (2012) and facilitates obtaining closed-form solutions.

\(^{17}\)Investors who trade monthly are more likely to trade to exactly their target portfolio because the cost of speculative trading (quadratic loss) is greater the longer the duration between the investor’s trades.

\(^{18}\)As agents are risk-neutral in terms of consumption with a time preference parameter equal to the interest rate, any policy in which consumption eventually takes place is equally good. Therefore, no consumption policy is reported. Note that delaying consumption forever is not optimal.
generate the smoothness. The size of gap shocks scales with the mass of investors in this class since \(\mu_j \) is the product of \(m_j \) and the size of an individual-investor shock (\(\sigma_j \)).

The equilibrium price process and optimal holdings of all agents are available in closed form (with a proof in Appendix D).

Proposition 1 (Equilibrium Price Process and Holdings). An equilibrium exists and is unique. The first expression is for the price process. The final three expressions are for holdings:

- The equilibrium price of the risky asset is given below where \(p \in \mathbb{R}^N \) and \(I_N \) is the identity matrix in \(\mathbb{R}^{N \times N} \):
 \[
P_t = -p^\top G_t \quad \text{with} \quad p^\top = \frac{\sigma_w^2}{r \gamma M} \frac{m}{r \gamma M} 1_{(1 \times N)} (r I_N + \Lambda)^{-1}.
 \]
 (12)

- A market maker holds \(\pi_{M,t} \) shares of the risky asset:
 \[
 \pi_{M,t} = \frac{1}{r \gamma M \sigma_w^2} \left[\frac{1}{dt} \mathbb{E}_t (dP_t) - r P_t \right] = \frac{1}{r \gamma M \sigma_w^2} \left[p^\top (r I_N + \Lambda) G_t \right]
 \]
 (13)

- A fast institution holds \(\pi_{F,t} \) shares of the risky asset:
 \[
 \pi_{F,t} = T_{F,t} + \frac{1}{r \gamma F \sigma_w^2} \left[p^\top (r I_N + \Lambda) G_t \right]
 \]
 (14)

- A slow investor of class \(j \) who arrives at the market at time \(t \) holds \(\pi_{j,t} \) shares:
 \[
 \pi_{j,t} = T_{j,t}.
 \]
 (15)

Proposition 1 leads to the following observations. The equilibrium price process determines the dynamics of the trading policies of the market makers and fast institutions—see the row vector of weights, \(p^\top \), in (12).

Second, the price impact row vector \(p^\top \) that translates portfolio-holding gaps to pricing errors yields several insights. Higher fundamental risk (\(\sigma_w \)) or lower risk absorption capacity of fast investors increase the price impact. This is not surprising. What is not as obvious is that a one unit larger gap for class \(j \) investors commands a price impact that is inversely proportional to the arrival intensity of investors plus the risk-free rate. Investors in our model require a larger compensation for speculating.
against slower investors. This result is intuitive, as fast investors are stuck with a position for longer.\footnote{The larger premium for lower interest rates and, at the same time, less discounting—see preferences in (3)—is more challenging to explain. It appears that temporarily tying up capital in speculative positions is more expensive in our economy.}

Third, Proposition 1 shows how hedging and/or speculative motives define the various optimal portfolios. Starting with the market maker’s holdings in (13), note that the RHS term loads positively on a weighted sum of the gap process with weights proportional to the row vector p^\top. In (12), the pricing error loads negatively on this same weighted sum. By holding more of an asset with a negative pricing error (that will mean revert to zero), the market maker makes a speculative profit in expectation. Further, note that the speculative motive is larger when he is less risk-averse (γ_M) or when the asset has less fundamental risk (σ_w). The fast institution’s portfolio in (14) features both hedging and speculative motives additively. The first RHS term involves his target portfolio and therefore represents hedging. The second RHS term is the speculative motive. Note that the slow investor’s portfolio in (15) only features a hedging motive as, by assumption, this investor classes does not engage in speculation.

Fourth, expressions for the optimal holdings yield an interesting observation. As noted when discussing Proposition 1, more fundamental risk reduces the speculative positions of fast investors (i.e., fast institutions and market makers), all else equal. In equilibrium, however, the same logic does not follow, and speculative positions are invariant to fundamental risk. The compensation for bearing fundamental risk increases in equilibrium to the point that fast investors willingly take it on—i.e., note that the σ_w^2 in (14) cancels against σ_w^2 in (12). This result is best understood by market clearing. The risky positions have to be held by the fast investors as they are the only ones with positive risk-bearing capacity (i.e., $\gamma_F, \gamma_M < \infty, \gamma_j = \infty$).

Finally, note that the dimensionality of the state variable G_t depends on the number of slow-investor classes N and can therefore be kept small during estimation (e.g., $N = 6$ in Section 4.2). Yet, pricing errors can stretch across long horizons depending on how inattentive the slowest investor is. This is an important feature of our model as it makes structural estimation possible. One can compare our stochastic-arrivals set-up to the set-up found in a model such as Duffie (2010) which features infrequent but deterministic arrivals. Such a model needs a state space with dimensionality equal to the frequency of the slowest investors. If one wants to generate monthly effects using daily
data, this requires a state-space of dimensionality 21. An additional benefit of our model is that it yields analytic expressions for any dimensionality, while Duffie’s model generally does not.

3 Model-implied discrete-time dynamics

This section translates the continuous-time model to a version that makes estimation possible for discrete-time data sampled in Δt periods. The section first derives the model dynamics to provide expressions for variances, covariances, and autocorrelations. Appendix B provides a notational summary of the parameters used in estimation. In Section 4, we use maximum likelihood to estimate the model’s parameters using NYSE data. Our data’s sampling period is one day. To keep the structural estimation numerically tractable, we consider three classes of limited-attention (slow) investors:

- Class d investors who, on average, arrive at the market once a day,
- Class m investors who, on average, arrive once a month, and
- Class q investors who, on average, arrive once a quarter.

As our data is daily, we pick one class (d) to match this frequency. We then add a slower class (m) and a much slower class (q).\(^{20}\) The slow investors arrive at the market with Poisson intensities such that average durations are once a day (for d), once a month (for m), and once a quarter (for q). For each of the slow investor classes, we further categorize into two sub-classes. Slow investors are either institutional (“i”) or retail (“r”). The reason for this further categorization is that we have retail-flow data.\(^{21}\) The investor-class subscripts are thus \{d, m, q\} x \{i, r\}.

The matrix with Poisson intensities is given by:

$$
\Lambda_j = \text{diag}(\lambda_{dj}, \lambda_{mj}, \lambda_{qj}) = \text{diag}\left(1, \frac{1}{21}, \frac{1}{63}\right), \quad j \in \{i, r\}
$$

$$
\Lambda = \begin{bmatrix}
\Lambda_i & 0 \\
0 & \Lambda_r
\end{bmatrix} \in \mathbb{R}^6 \times \mathbb{R}^6.
$$

\(^{20}\)Internet Appendix E shows that adding an intermediate frequency, such as weekly, does not provide additional insights. The model simply puts no weight on the risk masses of the weekly investor classes.

\(^{21}\)We refer to individuals as “retail” so we can use different single-letter subscripts for institutions and individuals.
The gap processes for the 3×2 classes of slow investors become:

$$
G_{j,t} = \begin{pmatrix} G_{dj,t} & G_{mj,t} & G_{qj,t} \end{pmatrix}^\top \in \mathbb{R}^3, \quad j \in \{i, r\}
$$

(17)

$$
G_t = \begin{bmatrix} G_{i,t} \\ G_{r,t} \end{bmatrix} \in \mathbb{R}^6.
$$

The gap processes are associated with investors that have risk masses (i.e., $\mu = m\sigma$):

$$
\mu_j = \begin{pmatrix} \mu_{dj} & \mu_{mj} & \mu_{qj} \end{pmatrix}^\top \in \mathbb{R}^3, \quad j \in \{i, r\}
$$

(18)

$$
\mu = \begin{bmatrix} \mu_i \\ \mu_r \end{bmatrix} \in \mathbb{R}^6.
$$

Discrete-time dynamics. The discrete-time dynamics for the full model can now be written down explicitly. First, we stack all the model variables in the following vector:

$$
Y_t = \begin{pmatrix} G_t^\top & MMInv_t & RetFlow_t & Return_t \end{pmatrix}^\top \in \mathbb{R}^9
$$

(19)

where G_t is defined above, $MMInv_t, RetFlow_t, Return_t \in \mathbb{R}$ are the end-of-period market-maker inventories, per-period retail flows, and per-period returns, respectively (where period t runs from time $t - 1$ to time t). The model-implied dynamics are:

$$
Y_t = VY_{t-\Delta t} + W\varepsilon_t.
$$

(20)

The dynamics in (20) imply a vector autoregression (VAR) in which the coefficient matrix V incorporates the autoregressive component and the coefficient matrix W maps the shocks into the model’s variables. The VAR cannot be estimated directly because the elements of G_t are not directly observable in the data.

Writing out the model’s discrete time dynamics shows how the different model parameters affect the model’s dynamics and allows for structural estimation. The coefficient matrix V (with row and

The model estimation procedure is based on maximum likelihood estimation (MLE). In principle, there is no bound to the number of classes/frequencies a researcher could study. However, one runs into issues with dimensionality of the parameter space and troubles inverting key matrices. We have three classes of slow investors and have chosen natural frequencies that match our data frequency and existing empirical work. Internet Appendix E shows that adding an intermediate frequency of investors (i.e., weekly) does not provide additional insights.
where I_n is the identity matrix of size n, $A_j = (r I_3 + \Lambda_j)^{-1} (I_3 - e^{-\Lambda_j \Delta t})$ with $j \in \{i, r\}$, and the betas are defined as follows:

$$
\beta_w = \frac{\sigma_w}{\frac{m_F}{\gamma_F} + \frac{m_M}{\gamma_M}} \quad \text{and} \quad \beta_M = \frac{m_M}{\frac{m_F}{\gamma_F} + \frac{m_M}{\gamma_M}}.
$$

These two betas capture (ratios of) deep economic parameters from our model and are discussed further in the next two paragraphs. We refer to $\frac{m_j}{\gamma_j}$ as the “risk-aversion adjusted mass of investor class-j.” In our model, two of the investor classes (M and F) are present at the time of a shock. Each class conditions its behavior on the price impact it may have. Thus, the risk-aversion adjusted masses of both appear in (22).

The first beta in (22), β_w, is the ratio of the asset’s fundamental risk (σ_w) to the sum of the risk-aversion adjusted masses of the market makers and fast institutions. In other words, it is the magnitude of a typical shock divided by how many investors (adjusted) are immediately around to trade. Note also that $\beta_w \sigma_w$ is also the first term in the factor (p^\top) that scales the gap process as shown in (12). If β_w is zero, then investors’ inattention does not impact prices. β_w can be zero if the dividend process has zero variance, if the market makers are risk neutral, or if the fast investors are risk neutral.

The second beta in (22) is β_M, which captures the market makers’ fraction of risk-aversion adjusted mass available to trade at the time of the shock. This is important because the larger market makers are relative to the trading needs of the fast institutions, the more markets will accommodate the fast institutions’ immediate trading needs. Hence, β_M plays a significant role in the market-maker inventory dynamics while β_w plays a significant role in the price dynamics. Both betas are proportional
to the gap processes, but with different sensitivities.

The various elements of V are intuitive. The first three rows capture what (in expectation) at
the end of the period is left of start-of-period inefficient holdings of the three classes of inattentive
institutions. The change is due to in-period arrivals of some of these institutions. The same goes
for the second set of three rows, which correspond to retail investors. The seventh row sums these
residual inefficient holdings across all slow investors to identify how they contribute to end-of-period
market-maker inventory. The eighth row picks up the flow of in-period retail investor arrivals by
subtracting their end-of-period inefficient holdings from their start-of-period inefficient holdings (i.e.,
$I_3 - e^{-\lambda t}$). The ninth row also picks up this flow for inattentive institutions and retail investors to
capture how much of the pricing error disappeared due to in-period arrivals.

3.1 Intuition

A description of the dynamics of the full model with nine variables is given in Appendix E. This includes
the various elements of W and the variance and covariance of the shocks, ε_t. To gain intuition about
how the VAR and our data identify model parameters, we simplify (19) from \mathbb{R}^9 to \mathbb{R}^3 by focusing
only on one gap process (one class of slow investors), market-maker inventories, and returns. In
addition, we set $\rho = 0$ for the time being.\(^{23}\) Thus, the VAR in (20) has a reduced form using
$Y_t = \begin{pmatrix} G_t & MMInv_t & Return_t \end{pmatrix}^\top$ in this example. The V matrix in (21) is similarly reduced for this
simplified version of the model by considering only rows and columns numbered 1, 7, and 9.

The lag k ($k > 0$) autocovariance matrix of the reduced Y_t vector is shown below. We omit the first
row and column that correspond to the unobservable gap process and focus only on the lower-right
2×2 elements that relate to $MMInv_t$ and $Return_t$:

$$
Cov(Y_t, Y_{t-k}) = e^{-k\lambda \Delta t} \cdot \frac{\mu^2}{2\lambda} \cdot \begin{bmatrix}
\cdot & \beta^2_M & -\beta_M \beta_w \left(\frac{1-e^{-\lambda \Delta t}}{r+\lambda} \right) \\
\cdot & \beta_M \beta_w \left(e^{+\lambda \Delta t} \right) \left(\frac{1-e^{-\lambda \Delta t}}{r+\lambda} \right) & -\beta^2_w \left(e^{+\lambda \Delta t} \right) \left(\frac{1-e^{-\lambda \Delta t}}{r+\lambda} \right)^2
\end{bmatrix}
$$

(23)

where both β_w and β_M are defined in (22) earlier. The structure of (23) indicates that the variance

\(^{23}\)The full system in Appendix E is used in the empirical estimation, and it allows for additional classes of slow
investors, retail order flows, and $\rho \neq 0$.

20
of returns and market-maker inventories should help enable identification of β_w and β_M. The entire matrix is multiplied by an exponential decay factor in λ and the constant $\frac{\mu^2}{2\lambda}$. Because μ does not appear anywhere else we must use more than just the variances and covariances of returns and market-maker inventories to identify μ. This motivates our use of autocorrelations and cross-autocorrelations.

From the above autocovariance matrix we can calculate covariances, cross-autocovariances, variances, correlations, and cross-autocorrelations. We begin with market-maker inventories which have a variance of:

$$\text{Var}(MMinv_t) = \frac{\mu^2}{2\lambda} \cdot \beta_M^2.$$ \hspace{1cm} (24)

Once μ and λ are identified the variance of market-maker inventories identifies β_M. The autocovariance of market-maker inventories is:

$$\text{Cov}(MMinv_t, MMinv_{t-k}) = e^{-k\lambda \Delta t} \cdot \frac{\mu^2}{2\lambda} \cdot \beta_M^2.$$

Combining these into the autocorrelation of market-maker inventories yields:

$$\text{Corr}(MMinv_t, MMinv_{t-k}) = e^{-k\lambda \Delta t}. \hspace{1cm} (25)$$

The market-maker inventories follow an OU process which leads to their decay following an AR(1) process. Hence, the dynamics of market-maker inventories identifies the arrival intensity of the slow investors (the λ parameter). Note that while there is only one λ in this simplified version of the model, we consider multiple classes of slow investors in our empirical analysis. In the more general setting, market-maker inventories continue to help identify the arrival intensities of the different classes of slow investors. Additional classes of slow investors cause market-maker inventories to follow a multi-dimensional OU process. This requires multiple values of k to be used to help identify the different arrival intensities of the different classes of slow investors. The intuition from the simple model is that if the estimated multiple-slow-investor-class model fits the autocorrelation of market-maker inventories in the data then the number and arrival intensities of the classes of slow investors is well identified.
We next turn to returns, which have a variance of:

\[
\text{Var}(\text{Ret}_t) = \frac{\mu^2}{\lambda} \cdot \beta_w^2 \cdot \frac{(1 - e^{-\lambda \Delta t})}{(r + \lambda)^2} + \sigma_w^2 \Delta t. \tag{26}
\]

The first term of this variance is increasing in \(\mu\), while both terms are increasing in \(\sigma_w\) because \(\beta_w\) is proportional to \(\sigma_w\)—see (22). In addition, the variance of returns can be decomposed to reflect both the slow reduction of legacy pricing errors and new shocks that arrive:

\[
\text{Var}(\text{Ret}_t) = \left\{ \begin{array}{ll}
\text{Legacy error reduction} & \frac{\mu^2}{2\lambda} \cdot \beta_w^2 \cdot \frac{(1 - e^{-\lambda \Delta t})^2}{(r + \lambda)^2} \\
\text{New shocks} & \frac{\mu^2}{2\lambda} \cdot \beta_w^2 \cdot \frac{(1 - e^{-2\lambda \Delta t})}{(r + \lambda)^2} + \sigma_w^2 \Delta t.
\end{array} \right.
\]

The autocovariance of returns displays a similar AR(1) decay as does market-maker inventories:

\[
\text{Cov}(\text{Ret}_t, \text{Ret}_{t-k}) = -e^{-(k-1)\lambda \Delta t} \cdot \frac{\mu^2}{2\lambda} \cdot \beta_w^2 \cdot \left(\frac{1 - e^{-\lambda \Delta t}}{r + \lambda} \right)^2.
\]

The autocorrelation of returns is more complicated than the autocorrelation of market-maker inventories,

\[
\text{Corr}(\text{Ret}_t, \text{Ret}_{t-k}) = -e^{-(k-1)\lambda \Delta t} \cdot \frac{\mu^2}{2\lambda} \cdot \beta_w^2 \cdot \left(\frac{1 - e^{-\lambda \Delta t}}{r + \lambda} \right)^2 + \frac{\sigma_w^2}{2\lambda} \cdot \frac{1 - e^{-\lambda \Delta t}}{(r + \lambda)^2}, \tag{27}
\]

because of the variance due to the fundamental value component, \(\sigma_w^2 \Delta t\). Given \(\sigma_w^2\) is in the numerator of \(\beta_w^2\), \(\sigma_w^2\) is in all terms in the numerator and denominator and the autocorrelation of returns is independent of \(\sigma_w\). In contrast, \(\mu\) only appears in one of the denominator’s terms in (27). Therefore, the autocorrelation of returns is increasing in \(\mu\). This enables the autocorrelation of returns to help identify \(\mu\)—an identification not possible using the autocorrelation of market-maker inventories.

Overall, in the simplified version of the model with one class of slow investors there are four parameters to be identified: \(\lambda\), \(\beta_M\), \(\mu\), and \(\beta_w\). The above discussion focuses on how the four equations for the variance and autocorrelations of market-maker inventories and returns [(24), (25), (26), and (27)] can be used to identify the model: the autocorrelation of market-maker inventories identifies \(\lambda\);

\[24\] By setting \(\rho = 0\) in this simplified version of the model, the variance due to new shocks does not include a component due to the shared effect.
the variance of market-maker inventories helps identify β_M; and the variance and autocorrelation of returns help identify μ and β_w.

The simplified model only has one state variable—the gap process. Both prices and market-maker inventories are proportional to the gap process—see (13) and (12). Therefore, it is not surprising that observing market-maker inventories and returns are sufficient to identify the model without needing to use information about the slow investors. This intuition holds for the general model.

In addition to variances and autocorrelations of market-maker inventories and return, the model provides the lead-lag cross-autocovariances of returns and market-maker inventories. However, the $\text{Cov}(Y_t, Y_{t-k})$ shows that:

$$\text{Cov}(\text{MMInv}_t, \text{MMInv}_{t-k}) \cdot \text{Cov}(\text{Ret}_t, \text{Ret}_{t-k}) = \text{Cov}(\text{MMInv}_t, \text{Ret}_{t-k}) \cdot \text{Cov}(\text{Ret}_t, \text{MMInv}_{t-k}).$$

Therefore, once the autocorrelation of returns and market-maker inventories are known, the product of the lead-lag dynamics between returns and inventories is determined. Hence, we focus only on the covariance of returns with past market-maker inventories:

$$\text{Cov}(\text{Ret}_t, \text{MMInv}_{t-k}) = e^{-(k-1)\lambda\Delta t} \cdot \frac{\mu^2}{2\lambda} \cdot \beta_M \cdot \beta_w \cdot \frac{1 - e^{-\lambda\Delta t}}{r + \lambda}.$$

Hence, dividing this autocovariance by the standard deviations of returns and market-maker in-

\footnote{Note that while the model is identified using only market-maker inventories and returns, the parameters that are identified are less economically interesting. β_M, μ, and β_w are not exactly identified because μ is always multiplied by β_M or β_w. β_M and β_w share the same denominator—see (22). Therefore, the four equations—(24), (25), (26), and (27)—identify λ, σ_w (the numerator of β_w), μ divided by the sum of the risk-aversion adjusted masses of market makers and fast investors (the denominator of β_M and β_w), and the risk-aversion adjusted mass of market makers (the numerator of β_M). Put another way, $\mu \cdot \beta_M$ and $\mu \cdot \beta_w$ are identified, but the values of μ and the betas are not separately identified. The source of μ and β_M and β_w not being fully separable is (21) where the dynamics and market-maker inventories and returns based on the gap process are scaled by β_M and β_w. Note that in (21) the dynamics of the slow investors trading in row 8 is not scaled by the betas. Therefore, the variance of the slow investor trading can be used to separately identify μ, which then identifies β_M, and β_w—see also (11). Because this section focuses on parsimoniously providing intuition for how the various moments help the identify the model, we do not write out moments based on slow investor trading.

As long as a sufficient number of lagged autocorrelations are used relative to number of slow investor class (which determines the dimension of the state variable), the dynamics of market-maker inventories and return at different lags provide enough information to characterize the multidimensional state variable.

This relation does not hold in the more general model with multiple classes of slow investors.}
ventories gives the cross autocorrelation of returns with past market-maker inventories:

\[
Corr(R_{it}, MMInv_{t-k}) = e^{-(k-1)\lambda \Delta t} \cdot \frac{\sqrt{\frac{\mu^2}{2\lambda} \cdot \beta_w \cdot \frac{1-e^{-\lambda \Delta t}}{r+\lambda}}}{\sqrt{\frac{\mu^2}{X} \cdot \beta_w^2 \cdot \frac{(1-e^{-\lambda \Delta t})}{(r+\lambda)^2} + \sigma_w^2 \Delta t}}.
\] (28)

While the structure of the above autocorrelation (returns and lagged market-maker inventories) share some similarity to the structure of the autocorrelation of returns (by themselves), it differs in that it is decreasing in \(\sigma_w\). While the cross-autocorrelation of returns with past market-maker inventories is not needed for identifying the simplified model, the fit of this cross-autocorrelation can be thought of as an over-identification test in the empirical estimation.

4 Estimation and Results

4.1 Data

Our data start in January 1999 and end in December 2005 and comes from four datasets:

- An internal New York Stock Exchange (“NYSE”) database named the Specialist Summary File (or “SPETS”) contains specialists’ closing inventory positions for each stock at the end of each day. The NYSE assigns one specialist per stock and a given specialist is responsible for making a market in approximately ten stocks. See Hasbrouck and Sofianos (1993) for further discussion of the SPETS database.

- An internal NYSE database named the Consolidated Equity Audit Trail Data (or “CAUD”) contains the number of shares bought and sold by retail (individual) investors, for each stock, over each day. In addition, the CAUD database provides trading volume. See Kaniel, Saar, and Titman (2008) for further discussion of the CAUD database.

- The Trades and Quotes (“TAQ”) database provides daily closing mid-quotes prices. Prices and

\footnote{The investor classification in CAUD—together with market clearing—implies that the number of shares bought/sold by the market maker equals the sum of the number of shares bought/sold by the retail investors and institutions.}

\footnote{We convert market makers’ inventory positions and retail investor net trades to US dollars (both variables are originally in number of shares). For each stock, we multiply the number of shares by the stock’s sample average price so as not to introduce price changes directly into the trading variables.}
returns in this paper are measured at the mid-quote to avoid bid-ask bounce. All prices are adjusted to account for stock splits and dividends.

- The Center for Research in Security Prices (“CRSP”) provides the number of shares outstanding (used to calculate market capitalizations) and information necessary to adjust prices for stock splits/dividends.

Before discussing the details of the data, it is worthwhile to provide some context. During our sample period, 80 percent of trading occurred on the NYSE. Historically, the NYSE assigned one market maker (called a specialist) to each stock. While the designation of a single market maker is relatively unique to the NYSE, the fundamental economic forces related to limited risk bearing capacity for liquidity provision remain the same. It is likely that other investors, for example, hedge fund traders and, more recently, high-frequency traders, compete with the specialist by placing limit orders to supply liquidity.\(^3\)

Using the retail trading data from the NYSE has pros and cons similar to using the specialist data. The data represent a large, comprehensive sample of trades. However, there exist retail trades with broker dealers who internalize orders and trades on markets other than the NYSE.\(^3\) As discussed above, the data on slow investors, which include retail traders, is not required to identify the model’s price dynamics but is useful for identifying more economically intuitive parameters in the model.

We start with the 2,357 common stocks that can be matched across the NYSE, TAQ, and CRSP databases. We construct a quasi-balanced panel of data to ensure results are comparable throughout time—a stock’s data need to be available at the beginning and end of our sample period. Stocks with an average share price of less than $5 or larger than $1,000 are removed from the sample. The final sample consists of 689 actively-traded stocks.\(^3\)

\(^{30}\)Hendershott and Moulton (2011) show the NYSE’s market structure changes after our sample period (2006-7) leading to a reduced role for the specialist and a decline in the NYSE’s share of trading. These evolutions highlight a potential weakness of our data, as well as some strengths. On the positive side, the NYSE specialist system that we study is the market structure underlying much of the data used in modern asset pricing. Comprehensive data on the trades and positions of other liquidity suppliers who compete with (or replace) the specialists are not available. It is unclear when or if such data may become available.

\(^{31}\)Our retail trading and market-maker inventory data may not be comprehensive for all such market participants, e.g., other investors provide liquidity. If not, as long as our data is representative of market participants, then all of our estimation results remain unchanged except for: i) our estimate of the market-makers’ share of the immediate risk aversion-adjusted mass \(\beta_M\) is likely to be a lower bound; ii) the risk masses of the retail-investor classes \(\mu_r\)’s, as fractions of the risk mass of all slow investors, become lower bounds.

\(^{32}\)The sample is similar to the one used in Hendershott and Menkveld (2014). For a more detailed characterization of
Idiosyncratic variables: We focus on idiosyncratic components of our variables for several reasons. First, the autocorrelation of stock market returns is not statistically significantly different from zero. Therefore, unlike for individual stocks, there is little evidence to suggest market-wide pricing errors. This could arise from the risks associated with market-wide return shocks being able to be hedged with highly-liquid index products. Second, unlike the market-maker inventory dynamics for individual stocks, the systematic market-wide component of the market-maker inventories exhibits little autocorrelation.

For each return and trading variable, we construct a common factor equal to the market capitalization weighted average of the underlying variable. We regress each variable on its common factor and save the residual as the corresponding idiosyncratic variable. For notational simplicity, we omit any subscripts or superscripts referring to “idiosyncratic” and, for example, use $MMInv_t$ to denote the idiosyncratic component of market-maker inventories.

This idiosyncratization procedure has a strong effect on returns (not surprisingly) but has only a very weak effect on the trading variables. For example, in the cross-section, the variance of the idiosyncratic components are 97.4% of total variance for $MMInv_t$ and 99.9% for $RetFlow_t$. Not idiosyncratizing trade variables likely affects model estimates only mildly, yet we prefer to use the idiosyncratic versions to not introduce bias. The model focuses on non-systematic effects; order flows and positions due to (market-wide) systematic effects are removed by the procedure described above.

Figure 1 plots our three variables’ autocorrelations and the lead-lag correlations among the variables up to a lag of 20 days. For ease of exposition, we refer to the lead-lag correlations as cross-autocorrelations. The upper nine plots show the (cross) autocorrelations of all possible ordered pairs of the three series. Note that contemporaneous correlations are shown at lag zero on the six off-diagonal plots. The lower three plots show the standard deviation of each series. These 12 plots in Figure 1 illustrate the multivariate auto-covariance function for all series with lags ranging from zero days to 20 days (monthly). The plots summarize the dynamics of our data series.\footnote{The plots show the cross-sectional average moments along with their confidence intervals based on a cross-section of the 689 stocks. We first compute the variance and (cross) autocorrelations for each stock. The observations for all 689 stocks are then collected into a cross-sectional sample. This sample is then used to conduct statistical inference (i.e., compute means, standard errors, and error correlations).}

\footnote{The plots show the cross-sectional average moments along with their confidence intervals based on a cross-section of the 689 stocks. We first compute the variance and (cross) autocorrelations for each stock. The observations for all 689 stocks are then collected into a cross-sectional sample. This sample is then used to conduct statistical inference (i.e., compute means, standard errors, and error correlations).}
Figure 1. Empirical moments. These upper nine plots show the empirical autocorrelations and cross-autocorrelations with 95% confidence bounds. The lower three plots show empirical standard deviations.
The figure has some notable and statistically significant patterns. First, the standard deviation of market-maker inventories is $1.25 million—see plot (4,1). Inventories initially decay rather quickly as the first-day autocorrelation is 0.58—see plot (1,1). After a day, they decay slowly and end with a 20-day autocorrelation of 0.2. Second, the standard deviation in retail flows is $2.0 million—see plot (4,2). Similar to market-maker inventories, they decay extremely quickly on the first day (even more quickly than do market-maker inventories) and then slowly in the following nineteen days—see plot (2,2). Third, the standard deviation in idiosyncratic daily returns is 2.5% (or 250 basis points)—see plot (4,3). The return autocorrelations are significantly negative throughout the majority of the first twenty days suggesting that at least part of the original pricing error is persistent—see plot (3,3).

The figure further reveals strong cross-autocorrelations. First, market-maker inventories and retail flows are positively correlated, both contemporaneously and through time—see plot (2,1) and (1,2). This pattern is consistent with our model. Periods when market makers are long securities correspond with periods when retail investors are buying. This is consistent with market makers holding securities for slow retail investors to later purchase.

Second, there is a strong negative correlation between the market-maker inventories and contemporaneous returns (-0.25) that turns to a modest positive correlation with future returns (but is basically zero after day 10). This pattern suggests market makers are compensated for intermediation—see plot (1,3). They purchase securities cheaply to sell at higher future prices. Such selling is consistent with the current return correlating steadily less negatively with future inventories—see plot (3,1).

Third, a negative current return correlates with retail investors buying contemporaneously as well as with continued retail buying in days to come—see plot (3,2).34 This is consistent with a positive target shock that makes the more-attentive retail investors buy now, while slower retail investors buy at a later time. While inattention in our model causes retail investors to have lower utility, retail investors benefit in monetary terms because as a group they appear to buy below fundamental values. Even those who arrive late seem to buy at depressed prices—to see this point, cumulate the strong contemporaneous negative return with modest future positive returns shown in plot (2,3).

34In our model, if $\rho = 0$, then hedging shocks are uncorrelated with fundamental-value innovations implying a zero contemporaneous correlation of retail flows and returns, which is inconsistent with the data. This implies that the contemporaneous correlation of retail flows and returns plays an important role in identifying ρ.

28
4.2 Results

A standard MLE procedure is used to estimate the model’s deep parameters. For a particular value of the parameters, the likelihood is evaluated recursively (through time) using the Kalman filter (Durbin and Koopman, 2012, Ch. 7). This likelihood is then optimized with respect to these parameters by using a standard steepest-ascent method. The method requires picking starting values, which is done by matching a subset of auto-covariances in the data. Please see Internet Appendix A for a detailed discussion.

We present “pooled” estimates for all stocks in our sample, as well as for three, sized-based sub-samples of stocks. When performing a given estimation, firm data are stacked. A sufficient number of empty observations are inserted between the firms so as not to affect the lead-lag relationships inherent within a given firm’s data. Also, because market makers and retail traders are likely to trade for reasons other than those in our model, our estimation allows for shocks to the market-maker inventories and retail investor trading that are independent of the model’s shocks. The standard deviations of these shocks are σ_{e_M} and σ_{e_r}, respectively.

The single-slow-investor-class version of the model in Section 3.1 provides intuition for the moments that can be used to identify the model: the autocorrelations of market-maker inventories help identify the classes of slow investors and their arrival intensities (Λ); the variance of market-maker inventories helps identify β_M; and the variance and autocorrelation of returns help identify the risk masses of the slow investor classes (μ) as well as β_w. The single-slow-investor-class version of the model suggests that data on slow investors’ trading are not needed to identify the moments in the model that do not include slow-investor flows. The variance of retail flows and the cross-autocorrelation of market-maker inventories and retail flows are driven by the level of retail risk mass(es).

Finally, a nonzero contemporaneous correlation between retail flows and returns identifies the shared component parameter ρ.

Table 2 presents the estimation results for our full sample (“All Stocks”) as well the three, size-
Table 2
Parameter estimates

This table presents the maximum likelihood parameter estimates and their standard errors. We consider “All Stocks” as well three size-terciles labeled “Large,” “Medium,” and “Small”. Subscripts: “d” daily; “m” monthly; “q” quarterly; “i” slow institutional investors; “r” slow retail investors. Idiosyncratic noise in dividends (σ_w); market-maker inventories (σ_{eM}); and retail flows (σ_{er}); The stars (*/**/***)) indicate statistical significance at a 10%, 5%, and 1% level, respectively.

<table>
<thead>
<tr>
<th></th>
<th>All Stocks</th>
<th>Large Stocks</th>
<th>Medium Stocks</th>
<th>Small Stocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Risk masses of slow institutional investors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{di}</td>
<td>151 ***</td>
<td>387 ***</td>
<td>62.5 ***</td>
<td>12.8 ***</td>
</tr>
<tr>
<td></td>
<td>(2.99)</td>
<td>(15.3)</td>
<td>(2.78)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>μ_{mi}</td>
<td>25.1 ***</td>
<td>49.4 ***</td>
<td>9.29 ***</td>
<td>3.85 ***</td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td>(2.08)</td>
<td>(0.42)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>μ_{qi}</td>
<td>7.76 ***</td>
<td>24.9 ***</td>
<td>2.18 ***</td>
<td>0.65 ***</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(1.19)</td>
<td>(0.16)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Panel B: Risk masses of (slow) retail investors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{dr}</td>
<td>1.63 ***</td>
<td>2.90 ***</td>
<td>0.494 ***</td>
<td>0.182 ***</td>
</tr>
<tr>
<td></td>
<td>(0.0030)</td>
<td>(0.0084)</td>
<td>(0.0017)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>μ_{mr}</td>
<td>4.97 ***</td>
<td>8.55 ***</td>
<td>1.39 ***</td>
<td>0.623 ***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.08)</td>
<td>(0.01)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>μ_{qr}</td>
<td>2.03 ***</td>
<td>5.89 ***</td>
<td>0.916 ***</td>
<td>0.0359</td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.297)</td>
<td>(0.0571)</td>
<td>(0.0315)</td>
</tr>
<tr>
<td>Panel C: Deep parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_M</td>
<td>0.0082***</td>
<td>0.0050***</td>
<td>0.0089***</td>
<td>0.0209***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>β_w</td>
<td>0.0933***</td>
<td>0.0479***</td>
<td>0.257***</td>
<td>0.537***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.012)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Panel D: Volatility related to returns, market-maker inventories, and retail flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_w</td>
<td>222 ***</td>
<td>187 ***</td>
<td>223 ***</td>
<td>255 ***</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.716)</td>
<td>(0.585)</td>
<td>(0.47)</td>
</tr>
<tr>
<td>σ_{eM}</td>
<td>0.385 ***</td>
<td>1.05 ***</td>
<td>0.174 ***</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.033)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>σ_{er}</td>
<td>1.58 ***</td>
<td>2.59 ***</td>
<td>0.497 ***</td>
<td>0.209 ***</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0222)</td>
<td>(0.0004)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Panel E: Shared component</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>-0.223***</td>
<td>-0.249***</td>
<td>-0.222***</td>
<td>-0.234***</td>
</tr>
<tr>
<td></td>
<td>(0.0006)</td>
<td>(0.0009)</td>
<td>(0.0010)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td># of stocks</td>
<td>689</td>
<td>230</td>
<td>229</td>
<td>230</td>
</tr>
<tr>
<td># of obs</td>
<td>1,206,935</td>
<td>403,971</td>
<td>402,169</td>
<td>400,795</td>
</tr>
</tbody>
</table>
based sub-samples. All but two parameter estimates are significant at the 99%-level.37

First, focusing on “All Stocks”, the slow institutions’ risk masses are, perhaps not surprisingly, a lot higher than those of the retail investors. The slow institutions’ risk masses are 151, 25.1, and 7.76 for daily, monthly, and quarterly frequencies, while the slow retail investors’ risk masses are 1.63, 4.97, and 2.03 for the same frequencies.38 Note further that comparing within investor type, there is relatively more retail risk mass at the quarterly frequency than at the daily frequency. This confirms our intuition that institutions, even the ones who are slow, are still relatively faster than retail investors. However, the results do show that there are some attentive retail investors who visit the market once a day on average and some relatively inattentive institutions who visit the market once a quarter on average.

Second, our estimate of β_M is 0.0082. If $\gamma_M = \gamma_F$, then market makers make up 0.82% of the ‘fast’ risk mass, while fast institutions make up the other 99.18%. If the two risk aversion parameters are similar but not equal, we can conclude that market makers are small relative to fast institutions. Cross-sectionally, we see the role of market makers (β_M) increases monotonically from large stocks (0.0050) to small stocks (0.0209), consistent with Hendershott and Menkveld (2014).

The idiosyncratic component of dividend risk (σ_w) declines with firm size: large stocks (1.87%) to small stocks (2.55%). The sensitivity of the pricing error to the gap process, β_w, also declines with firm size. This is consistent with trading costs being lower in larger stocks and with results in Hendershott and Menkveld (2014).

Third, the risk-bearing capacity of fast participants (market makers plus fast institutions) is substantial. A one standard deviation shock to each slow investor class corresponds to a shock to the

37Standard errors are computed numerically using the estimated Hessian of the likelihood function. There is an implicit assumption of no contemporaneous correlation across stocks. If removing the common components does not fully eliminate such correlation, then the standard errors should be adjusted upwards. Suppose that one has N time series each of length T that are drawn from the same distribution. If the series are mutually and serially uncorrelated, then the standard error of the overall sample mean is $(\frac{1}{T} \times \frac{1}{N})^{\frac{1}{2}}$. If the contemporaneous correlation is $\rho \geq 0$, then this standard error equals $(\frac{1}{T} \times \frac{1}{N^2} (N(N-1)\rho + N))^{\frac{1}{2}}$ which is approximately $(\frac{1}{T} \times (\rho + \frac{1}{N}))^{\frac{1}{2}}$. The standard error (with correlations) is approximately $(\frac{\rho + \frac{1}{N}}{T})^{1/2}$ larger than the case with no contemporaneous correlation. For a large N, the adjustment is roughly equal to $(\rho \times N)^{1/2}$. If the correlation is 10%, the adjustment factor is $(0.1 \times 689)^{\frac{1}{2}} = 8.3$. Adjusting by that amount causes one parameter estimate to go from statistically significant to not significant at the 10% level (μ_{at}) for medium stocks.

38The risk masses also correspond to the standard deviations of the hedging shocks in millions of dollars. Cross-sectionally, the shocks are declining in firm size.
fast investors target portfolios of $192 million (the sum of the μ’s).\footnote{Note that this argument relies on shocking each investor class by its standard deviation. If instead, one is interested in a one standard deviation shock to the sum of target portfolios, then there is some diversification to be accounted for. The relative differences across small, medium, and large stocks remain unaffected as the shared components are the same size across size terciles (see the ρ’s in Table 2).} Weighting these shocks by the reciprocal of their corresponding λ and multiplying the sum by β_w yields a pricing error of 1.3%—i.e., substitute (22) into (12) and set $r=0$. A one standard deviation shock for large stocks is almost $500 million, with a resulting price pressure of 1.7%. For small stocks, a one standard deviation shock is only $18 million, with a resulting price pressure of 0.8%. Comparing price pressures across size terciles suggests that the price impact of a $1 million shock to fast investors corresponds to 0.35 basis points for large stocks and 4.4 basis points for small stocks.\footnote{The pricing error for a one standard deviation shock being larger for large stocks compared to small stocks differs from Hendershott and Menkveld (2014). As we will see in Section 4.3, most of the pricing error in this paper is due to very persistent shocks whereas in Hendershott and Menkveld (2014) the shocks are not persistent. This difference could cause the statistical estimation in Hendershott and Menkveld (2014) to incorrectly identify long-lived pricing errors as permanent price changes.}

Finally, note that shocks to the target holdings of slow investors correlate negatively with fundamental value changes ($\rho = -0.223$). This negative correlation amplifies the security’s volatility as, for example, a sudden drop in the security’s fundamental value coincides with contemporaneously higher target levels for slow investors and, therefore, with lower target holdings for fast investors. In other words, fast investors want to sell their securities as fundamental values are dropping. On average, the fast investors cause a negative pricing error, which adds to the price drop. Because this shock applies equally to slow investors at all frequencies, we refer to the negative correlation as a “shared component.” As discussed in Section 2.1, the shared component could arise from fast investors having larger shocks than slow investors. Such an imbalance in shock size would then lead to the permanent component in prices being positively correlated with the pricing error.

Figure 2 illustrates the model’s fit using “All Stocks”. We plot the empirical autocorrelations, cross-autocorrelations, and standard deviations (same as those shown in Figure 1) as well as the model-implied counterparts. This figure gives a visual overview of the estimation results shown in the first column of Table 2.\footnote{The empirical returns are computed as the first difference of log prices. We therefore implicitly assume that log-price differences are normally distributed when fitting the model. In particular, log-prices can become negative as is the case in the model. Note further that the model’s dividend shocks correspond to log fundamental-value changes in the data.}
Figure 2. **Empirical and model-implied moments.** This figure illustrates the model’s fit. The light blue lines in the top three rows and light blue shaded bars in the bottom row are the empirical moments. The dark blue lines and dark blue bars are the model-implied moments. Parameters are estimated with maximum likelihood. This model features slow investors who arrive at daily, monthly, and quarterly frequencies (on average).

Model:

\[
(\mu_{di}, \mu_{mi}, \mu_q) = (150.6, 25.1, 7.8), \quad (\mu_{dr}, \mu_{mr}, \mu_{qr}) = (1.6, 5.0, 2.0), \quad \beta_M = 0.0082, \quad \beta_w = 0.0933, \quad \sigma_w = 222, \quad \rho = -0.22, \quad \sigma_{eM} = 0.39, \quad \sigma_{er} = 1.58
\]
Figure 3. **Pricing error magnitude and duration.** The top panel of the figure illustrates the magnitude of the pricing errors along with a decomposition across the frequencies at which slow investors arrive (i.e., daily, monthly, and quarterly). The bottom panel of the figure shows how pricing errors decay over time. These graphs are based on parameter estimates from the model in Table 2.
4.3 Characterization of pricing errors

The estimated model characterizes the pricing errors, their effect on returns, and how slow institutions and retail investors contribute to them. Overall, we find pricing errors are significant and long lasting.

The upper panel of Figure 3 decomposes the steady-state pricing error variance into four components based on (66) from Appendix E. The largest component is due to quarterly slow investors and amounts to a standard deviation of 2.548%. Daily slow investors only contribute 0.097% to the overall standard deviation, while monthly slow investors contribute 1.575%. The difference in contributions stands in stark contrast to the risk masses of the three classes—the risk mass of daily investors (μ_d) is much larger than the risk mass of quarterly investors (μ_q), as shown in Table 2. The reason for the wedge between risk masses and contributions is that quarterly investors’ hedge shocks last 60 days, whereas the daily investors’ shocks last only a single day. Figure 3 further shows that the shared component in pricing errors is sizable with a 1.106% standard deviation.

The lower panel of Figure 3 illustrates the decay in pricing errors by plotting their autocorrelation function. The plot is based on (67) from Appendix E. The lower panel clearly shows that pricing errors are very persistent and decay only slowly over time. After a month (i.e., trading 20 days) almost two-thirds remain. The reason is that the pricing errors are dominated by the quarterly slow investors, as the decomposition in the upper panel clearly shows. The half-life of a pricing error shock is just over 31 days or 6.2 weeks and can also be seen in the lower panel.

The persistence of pricing errors cause them to substantially affect daily, monthly, and quarterly returns. Figure 4 illustrates this observation by decomposing returns into three components based on (68) from Appendix E. Fundamental-value innovations constitute the largest component of returns at all frequencies. Its standard deviation is 2.224%, 10.193%, and 17.655% for daily, monthly, and quarterly returns respectively. The standard deviations of the other components range from 0.11% to 0.707% for daily returns, from 1.318% to 2.463% for monthly returns, and from 2.353% to 3.036% for quarterly returns.

We use Figure 4 to calculate the relative contribution of pricing errors to idiosyncratic return variance. For daily returns, we see $(11.0^2 + 70.7^2)/222.4^2 = 9.4\%$ indicating that pricing errors account for 9.4% of daily idiosyncratic return variance. Similar calculations show that pricing errors...
Figure 4. **Return volatility decomposition.** The graphs illustrate how total idiosyncratic return volatility can be decomposed into a fundamental-value change component and two pricing error components (a legacy-error reduction component and a new target portfolio shocks’ component). The upper panel illustrates the decomposition for daily return volatility; the middle panel illustrates monthly return volatility; and the lower panel illustrates quarterly return variance. These graphs are based on parameter using All Stocks.
account for 7.0% and 4.5% of respective monthly and quarterly variances.

Note that the relative sizes of the *legacy error reduction* components represent the most salient differences between the daily and quarterly returns. The strong error persistence reduces the amount of pricing error eliminated over all time periods, with the impact being higher the shorter the time period. This makes the legacy error reduction a small component in daily returns and a modest component in quarterly returns. This feature is also the root cause for why first-order autocorrelations are more negative for monthly returns than for daily returns in Table 1—see also the discussion in Appendix A.

4.4 Characterization of liquidity supply and demand dynamics

The model also enables the quantification of the liquidity supply and demand dynamics following a hedging shock. In the market microstructure literature, liquidity provision is often defined by how a trade is initiated, for example, do high-frequency traders (HFTs) place limit or market orders? In models such as ours, market clearing is effectively a batch auction, so the market-order vs. limit-order distinction is not directly applicable. In our setting, there are two natural definitions for liquidity provision:

(A) Temporarily hold a sub-optimal position to profit from the pricing error, i.e., when the pricing error is positive, own less of an asset than when the pricing error is zero or negative;

(B) Trade against price pressure, i.e., sell when the pricing error is positive.

Definition A corresponds to the economic channel that is typically thought of as liquidity provision or arbitrage, while Definition B could arise from that same channel or from other economic motivations. Market makers provide liquidity under both definitions. However, because investors’ optimal and actual positions are typically not observable by econometricians, inferences about liquidity provision are typically made using the correlation of an investor group’s trading and subsequent price movements. For example, Definition B is empirically consistent with lagged investor order flow, positively predicting returns as in Kaniel, Saar, and Titman (2008)—though this need not imply that retail investors provide liquidity under Definition A. Our model shows how the two definitions of liquidity provision can differ: In our model, fast investors provide liquidity under Definition A, but slow/retail investors
Figure 5. Dynamics of liquidity demand by institutions, supplied by others. This figure illustrates the dynamics of net liquidity demanded by institutions (top panel) and trading against pricing errors by market makers and retail investors (lower panel). The graphs are based on the equilibrium response of agents to a single target-portfolio shock of one standard deviation experienced by all investors (i.e., μ_{kl} where $k \in \{d, m, q\}$ and $l \in \{i, r\}$). The top graph plots the evolution of institutional demand. It asymptotes to one as institutions eventually reach their target portfolios. The bottom graph plots fraction of trading against pricing errors by market makers vs. retail investors. It asymptotes to zero as market makers eventually hold zero stock. These graphs are based on parameter estimates from “All Stocks” in Table 2.

Under liquidity provision Definition A, the fraction of liquidity provided by market makers versus fast investors is constant over time and equal to β_M. This means that market makers and fast traders reduce their inefficient holdings by a constant and equal fraction over time as the slow investors arrive. Under Definition B, the model also enables calculation of the fraction of liquidity supplied by market makers versus retail investors following a shock. The lower panel of Figure 5 shows the fraction of trading against pricing errors by market makers vs. retail investors. At time zero, only the market makers trade against the pricing errors as the graph is at 100%. The least inattentive retail traders arrive soon after the shock such that market makers represent 37.3% of the trading against price pressure after a day (while the retail traders are the remaining 62.7%). By a month, the trading
against pricing errors by market makers is down to 2.8%.

Under liquidity provision Definition B, the lower panel results provide some support for the interpretation of retail traders supplying liquidity as in Kaniel, Saar, and Titman (2008). However, careful consideration is needed as inattentive retail traders in our model trade against pricing errors, but their motivation for trade is inconsistent with the standard view (Definition A) that liquidity suppliers temporarily hold a sub-optimal position to profit from the pricing error.

4.5 Counterfactual analysis

Our structural model allows us to conduct some counterfactual analyses. We consider two dimensions. First, we assume the risk-aversion of all fast investors is either $\frac{1}{2}$ or 2 times the value implied by the structural estimation. Equation (22) shows the role risk-aversion plays in β_w and the estimated values for this parameter are shown in Table 2. Half or double the risk-aversion is implemented by adjusting β_w by halving or doubling it. These counterfactual scenarios could arise if changes to regulations attempting to influence financial stability by reducing speculation by banks and institutions impact the risk-aversion of fast investors in our model.

Second, we change the arrival intensities of the institutional slow investors. We assume all slow institutional investors arrive once a day (on average): $\mu_{di}' = \mu_{di} + \mu_{mi} + \mu_{qi}$ with $\mu_{mi}' = 0$ and $\mu_{qi}' = 0$. We then assume the daily slow institutions become fast institutions: $\mu_{di}' = 0$, while the other slow institutions remain unchanged. These changes to the institutions’ slowness could arise from investments in technology, enabling more frequent attention. The two cases represent the slowest institutions becoming faster and the least-slow slow institutions becoming fast, respectively.

To quantify the effects of changing risk-aversion or risk masses, we record the fraction of pricing errors in daily, monthly, and quarterly idiosyncratic returns (the values calculated using results shown in Fig 5). The results of the counterfactual analysis are summarized in Figure 6.
Figure 6. Counterfactual analysis. We report the fraction of return variance due to pricing errors for daily returns (top panel), monthly returns (middle panel), and quarterly returns (lower panel). The counterfactual analysis considers the fast investors’ risk aversion to either fall by 50% or double (Columns 2 and 3). Also, we consider a scenario in which all slow institutions arrive daily on average (Column 4) and a scenario in which daily slow institutions become fast (Column 5).

Starting with the top panel in Figure 6, we see that pricing errors account for 9.4% of return variance (“Base Case” as shown in Column 1). If the risk-aversion of the fast investors falls in half (these investors become more risk tolerant), we see pricing errors account for only 2.5% of return variance (Column 2). If these investors’ risk-aversion doubles, pricing errors account for 29.3% of return variance (Column 3). The results are not surprising. As fast investors become more risk averse, they require more compensation (larger pricing errors) in order to trade.
We next consider all slow institutions arriving daily (on average). The net result is zero risk mass at monthly and quarterly frequencies ($\mu'_{mi} = 0$ and $\mu'_{qi} = 0$). As can be seen in Column 4, the fraction of return variance due to pricing errors goes to almost zero (it is 0.9% in the top panel). However, if the daily slow institutions (only) become fast investors, the reduction in pricing errors is negligible as Column 5 is 9.1% vs. the Column 1 value of 9.4%. We see similar patterns of results when looking at the monthly and quarterly return variances in Figure 6, Panels 2 and 3.

The counterfactual analysis illustrates the relevance of accounting for arrival intensities of investors when explaining price pressure. We see that the per-dollar price pressure scales with the inverse of intensity (i.e., tending to infinity as the intensity tends to zero). For example, in our Base Case, the risk mass of daily slow investors is 16 times larger than the risk mass of quarterly slow investors, yet the price pressure they command in four times lower.\footnote{The corresponding calculations are from the “All Stocks” column in Table 2: \((151 + 1.63) / (7.76 + 2.03) = 16\). Next we see: \(16 \times \left(\frac{1}{\pi^2}\right) = 0.25\), with a quarter consisting of 63 days.}

5 Conclusion

We analytically solve a structural model with inattention and estimate its parameters using the dynamics of NYSE market-maker inventories, retail order flows, and prices. The model and trade data enable identification and measurement of pricing errors’ role in stock return volatility. We find that pricing errors account for 9.4%, 7.0%, and 4.5% of the respective daily, monthly, and quarterly idiosyncratic return variances.

Our model and empirical approach can be applied to other data from a range of investor groups and over different time horizons. For example, even lower-frequency dynamics could be estimated using data from very long-term investors. Such data could be obtained from public SEC filings (13F) or private data providers such as Ancerno. The continuous-time model can also be translated into frequencies as high as a millisecond. Data from exchanges identifying high-frequency traders could therefore also be incorporated into our approach to examine these traders’ roles in correcting or possibly causing pricing errors. An important component of extending our approach to other samples is to identify and measure market-maker inventories.
In the future, it may also be possible to add informational frictions to our model. These frictions could potentially help quantify the role attention plays in prices slowly adjusting to new information. Data sources on public news could also be incorporated to measure how attention varies with both market conditions and the arrival of information. At the lowest frequencies, macroeconomic variables could be added to study how they impact the duration of pricing errors. These extensions provide examples of potentially important future work.
A Pricing error persistence and return autocorrelation

This section explores how pricing errors relate to return autocorrelations. If the first-order autocorrelation of returns is highly negative, then pricing errors must be large relative to fundamental value changes. However, the reverse need not be true. If pricing errors are persistent then they can be relatively large while short horizon return autocorrelations can be small. This may explain why pricing errors have largely been overlooked in the literature. Daily return autocorrelations are typically small and one might (erroneously) conclude that pricing errors can safely be ignored. Our paper shows that such errors are economically large for actively traded U.S. equities.

To examine pricing errors assume that daily (log) prices, say mid-quotes, consist of two unobserved components: a martingale m_t plus an error term s_t. The first-order autocovariance of daily returns is

$$\text{cov} \left(w_t + s_t - s_{t-1}, w_{t-1} + s_{t-1} - s_{t-2} \right) = - (1 + \rho_{s,2} - 2\rho_{s,1}) \sigma_s^2 < 0, \quad (29)$$

where w_t is the martingale innovation and $\rho_{s,i}$ is the ith order autocorrelation in the pricing error s_t. Assuming that w_t and s_t are uncorrelated yields the following expression for return variance:

$$\text{var} \left(w_t + s_t - s_{t-1} \right) = \sigma_w^2 + 2 (1 - \rho_{s,1}) \sigma_s^2. \quad (30)$$

The first-order autocorrelation of daily returns is therefore

$$\rho_{r,1} = - \frac{(1 + \rho_{s,2} - 2\rho_{s,1}) \sigma_s^2}{\sigma_w^2 + 2 (1 - \rho_{s,1}) \sigma_s^2}. \quad (31)$$

Case A: Pricing errors are uncorrelated across days. If pricing errors are not persistent ($\rho_{s,1} = \rho_{s,2} = 0$), then the first-order autocorrelation in (31) becomes

$$\rho_{r,1} = - \frac{\sigma_s^2}{\sigma_w^2 + 2\sigma_s^2}. \quad (32)$$

When pricing errors are large relative to fundamental-value innovations, the first-order return autocorrelation is large and negative. When pricing errors are small relative to fundamental-value innovations (σ_s^2 is small relative to σ_w^2), the above expression is small, negative, and approximately equal to minus the ratio of σ_s^2 to σ_w^2. Finally, note that the pricing errors’ relative size diminishes as one downsamples the data from a daily to, say, monthly frequency. To understand the effects of daily-to-monthly downsampling, notice that when σ_s^2 is small relative to σ_w^2, the denominator in (32) increases by a factor of 20 (approximately) while the numerator remains unchanged. This implies that downsampling makes the first-order return autocorrelations less negative the lower the sampling frequency.

The first-order autocorrelations of returns in Table 1 shows that the autocorrelation is more negative at a monthly frequency than at a daily frequency. The above downsampling logic demonstrates that empirical return autocorrelations are inconsistent with pricing errors being uncorrelated across days.

Case B: Pricing errors are correlated across days. Persistent pricing errors are difficult to detect in first-order return autocorrelations. This is perhaps best seen by considering the following limit:\footnote{Formally showing this limit requires additional assumptions about pricing error process, e.g., its variance must remain finite.}

$$\lim_{\rho_{s,2} \uparrow 1} \rho_{r,1} = 0. \quad (33)$$

This limit shows that as pricing errors become persistent enough the first-order return autocorrelation approaches zero. Essentially, the pricing error begins to resemble a martingale so returns become uncorrelated.

How does pricing-error persistence affect return autocorrelations at different sampling frequencies? Downsampling mechanically reduces pricing error persistence, which can help disentangle longer-lived pricing errors.
from the martingale component of prices. For example, shocks to pricing errors might live for several days causing high persistence at a daily frequency. If the shocks largely die out at longer (monthly) frequencies, the pricing errors sampled at such frequencies exhibit only moderate persistence. Downsampling therefore guarantees that at some point first-order return autocorrelations becomes substantially negative again. Therefore, pricing-error persistence can make these autocorrelations more negative at lower frequencies: the derivative of \(\rho_{r,1} \) with respect to the sampling horizon can be negative.

We illustrate how this line of reasoning can generate the empirical patterns shown in Table 1. Let (daily) pricing errors decay exponentially with intensity 1/20 so that the expected duration is a month. Let both their (unconditional) standard deviation and the daily martingale innovation be 1%. Then simply applying (31) yields a first-order autocorrelation in daily returns of −0.01. This autocorrelation is however −0.05 when computed for monthly returns. These autocorrelations (−0.01 and −0.05) are quite close to those for the U.S. stock market data in Table 1. In our model, the slowly decaying pricing errors are generated by some inattentive investors who only participate in the market once a month on average.
B Notation Summary

This appendix summarizes the notation used throughout our paper. We first describe the model’s variables and parameters, next the data series, and finally the estimated parameters.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt</td>
<td>The period length implied by the sampling frequency.</td>
</tr>
<tr>
<td>ε_t</td>
<td>Vector with all the model’s shocks in the period from $t - \Delta t$ to t.</td>
</tr>
<tr>
<td>G_t</td>
<td>The gap between target and actual portfolio aggregated across all investors.</td>
</tr>
<tr>
<td>λ_i</td>
<td>Poisson arrival intensity for investor class $i \in {d, m, q}$. Note on subscripts: “d” daily; “m” monthly; “q” quarterly;</td>
</tr>
<tr>
<td>Λ_k</td>
<td>Diagonal matrix with the intensities of investor class $k \in {i, r}$ on the diagonal.</td>
</tr>
<tr>
<td>m</td>
<td>Mass of investors.</td>
</tr>
<tr>
<td>r</td>
<td>Risk-free rate.</td>
</tr>
<tr>
<td>σ</td>
<td>Per-investor shock in target portfolio.</td>
</tr>
<tr>
<td>Y_t</td>
<td>State vector that stacks all the model’s unobserved and observed variables.</td>
</tr>
</tbody>
</table>

Data Description

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$MMInv_t$</td>
<td>Market makers’ inventory at time t.</td>
</tr>
<tr>
<td>$RetFlow_t$</td>
<td>Retail investor order flow in the period from $t - \Delta t$ to t.</td>
</tr>
<tr>
<td>$Return_t$</td>
<td>Asset’s idiosyncratic (mid-quote) return in the period from $t - \Delta t$ to t.</td>
</tr>
</tbody>
</table>

The twelve estimated parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_w</td>
<td>Asset’s fundamental-value risk relative to total risk-absorption capacity (i.e., market makers’ plus fast investors).</td>
</tr>
<tr>
<td>β_M</td>
<td>Market makers’ risk-absorption capacity relative to total capacity (i.e., market makers’ plus fast investors).</td>
</tr>
<tr>
<td>$\mu_{j,l}$</td>
<td>The size of the total target portfolio shock aggregated across all slow investors of class $j \in {i, r}$ and frequency $l \in {d, m, q}$. Note 1: There are six $\mu_{j,l}$ variables. Note 2: $\mu := m\sigma$ is the mass of investors times average per-investor shock size. Note 3: “i” institutional; “r” retail. Note 4: “d” daily; “m” monthly; “q” quarterly;</td>
</tr>
<tr>
<td>ρ</td>
<td>Correlation of all slow investors target portfolio shocks and the asset’s fundamental-value change.</td>
</tr>
<tr>
<td>σ_w</td>
<td>Asset’s fundamental risk (i.e., standard deviation of the asset’s fundamental-value changes).</td>
</tr>
<tr>
<td>$\sigma_{e,M}$</td>
<td>Daily noise in market-maker inventories.</td>
</tr>
<tr>
<td>$\sigma_{e,r}$</td>
<td>Daily noise in retail order flow.</td>
</tr>
</tbody>
</table>
C Imbalanced shocks: Their correlation with balanced shocks and returns

This appendix illustrates permanent price dynamics44 that can result from non-zero sum (or imbalanced) shocks to investors’ target portfolios. Crucially, below we assume that permanent price changes are linear in imbalanced shocks. Permanent price dynamics may arise even if all investors are (always) attentive and present to trade. Therefore, for ease of illustration, assume only two classes of investors and that both classes are fast/attentive. In this setting there is no need for market makers. For consistency with the model in the body of the paper, we use the same labels for the different classes of traders:

- Class 1 of traders (indexed \(n \))
- Class 2 of traders (indexed \(F \))

There are two (possibly correlated) Brownian motions:

- \(Z_t \) represents “balanced” shocks as in (equation reference in main text).
- \(I_t \) represents “imbalanced” shocks (new process in this appendix).

The imbalanced shock is distributed across the investors’ target portfolios by the function \(f(I_t) \):

\[
T_{n,t} = \sigma_n Z_t + (1 - f(I_t))I_t
\]

\[
T_{F,t} = -\frac{m_n}{m_F} \sigma_n Z_t + \frac{m_n}{m_F} f(I_t)I_t
\]

Note: If \(I_t = 0 \) \(\forall t \) (no permanent imbalance) then the sum of the target portfolios is zero, as in the body of the paper, with: \(m_F T_{F,t} + m_n T_{n,t} = 0 \).

For the market to clear, investors must be willing to deviate from the above target portfolios conditional on price. In Proposition 1, the fast investors’ holdings deviate from their target portfolio as a linear function of price. Using that same functional form here, investors’ holdings (conditional on price) are given by downward sloping functions (of price). Note that we are using a lower case \(p \) to denote the permanent component of price:

\[
\pi_{n,t} = T_{n,t} - a_n p_t
\]

\[
\pi_{F,t} = T_{F,t} - a_F p_t
\]

Then by market clearing:

\[
m_n \pi_{n,t} + m_F \pi_{F,t} = 0
\]

\[
m_n I_t - (a_n m_n + a_F m_F) p_t = 0
\]

\[
\Rightarrow p_t = \frac{m_n}{a_n m_n + a_F m_F} I_t
\]

44We use the term “permanent price dynamics” as shorthand for the price process purged of all pricing errors (i.e., it is the accumulation of permanent price changes).
Thus, market clearing implies that if optimal holdings are linear in price, then price is linear in I_t.

The permanent price with dividends in body of the paper is $p_t^p = \sigma_w B_t$. Given that B_t and I_t are both Brownian motions, setting $\sigma_w = \frac{m_a}{\sigma_m + \alpha \rho m_p}$ yields an equivalent permanent price process due to dividends or imbalanced shocks: $p_t^p = p_t$.

Additionally, using the same equivalence between B_t and I_t and assuming B_t and I_t both have the same correlation ρ with Z_t yields:

$$\text{Corr} (dZ_t, dB_t) = \text{Corr} (dZ_t, dp_t^p) = \rho = \text{Corr} (dZ_t, dp_t) = \text{Corr} (dZ_t, dI_t).$$

Thus, imbalanced shocks can yield a permanent price process that is equivalent to the with-dividend permanent price process in the body of the paper. In addition, if the correlation between the imbalanced and balanced shocks is the same as the correlation between the balanced shocks and the dividend process in the main paper, then the correlation between the balanced shocks and the changes in the ‘imbalanced’ permanent price process and the ‘dividend’ permanent price process is the same. Overall, our example illustrates how imbalanced shocks can generate correlations between the balanced shock process and returns as found in the body of the paper.

It is important to note that the above intuition relies on the assumption that the permanent price process is linear in the imbalanced shocks. While the temporary price process is a linear function as shown in Proposition 1, it is unlikely the permanent price would be linear in equilibrium. Price being linear allows us to use the Kalman filter to compute the exact likelihood function when structurally estimating the model. Hence, in the main text we solve the model with ρ, which has linear prices as opposed to the model with imbalanced shocks.
D Limited-Attention Model and Its Equilibrium

D.1 Equilibrium structure

Our approach to solve for an equilibrium is to “guess and verify”. Concretely, we assume a certain functional form, or ansatz, for the equilibrium price process of the risky asset. Several parameters in the ansatz are assumed to be known by the agents but are, at first, left unspecified. In Section D.2 (below) we solve for the optimal individual policies taking the ansatz as given. In Section D.3 we pin down the unspecified parameters by imposing market clearing. If a choice of parameters in the ansatz allows the equilibrium conditions to hold, the ansatz is shown to be ex-post rational.

We turn to a description of our ansatz. The equilibrium behavior of our economy is driven by the “gap process.” We make three assumptions regarding the equilibrium structure. Existence and uniqueness of equilibrium, shown below, then prove these assumptions to be rational.

First, we assume that the gap process follows a multi-dimensional Ornstein-Uhlenbeck process.

Assumption 1 (Ornstein-Uhlenbeck). The dynamics of the gap process is

\[dG_t = -\Lambda G_t dt + \sigma_G dZ_t \]

for a mean-reversion speed \(\Lambda \in \mathbb{R}^{N \times N} \) and a diffusion matrix \(\sigma_G \in \mathbb{R}^{N \times N} \).

In equilibrium, the mean-reversion speed in (34) is the diagonal matrix of attention intensities. This is shown in the proof of Proposition 2 below. To avoid verbosity we, however, already use the notation \(\Lambda \) for the mean-reversion speed.

Second, we assume that the price \(P_t \) of the risky asset is linear in the components of the gap process.

Assumption 2 (Linear Equilibrium). The price of the risky asset satisfies

\[P_t := -p^\top G_t \]

for a vector \(p \in \mathbb{R}^N \).

Finally, we assume the following for the information structure.

Assumption 3 (Gap is public information). All investors know the current value of the gap process when they make portfolio decisions.

As our analysis focuses on risk-sharing, it is natural to abstract from other economic mechanisms, including asymmetric information. Assumption 3 makes all investors have the same expectations regarding risky returns. Without Assumption 3 investors would have to filter the current value of the gap process and investors in different classes would reach different estimates. This filtering would only obscure the risk-sharing mechanisms.

D.2 Individual problems

In this subsection, we characterize the optimal policies of all investors conditional on the assumptions of Section D.1 regarding the equilibrium structure.
Fast investors. A fast investor \(i\) chooses its policy at \(t\) to solve
\[
\max_{C_t, \pi_t} E_t \left[\int_t^{\infty} e^{-r(u-t)} \left(dC_u - \frac{r_{F} \sigma_w^2}{2} (T_{F,u} - \pi_{i,u})^2 du \right) \right],
\]
with admissible strategies \((C_t, \pi_t)\) satisfying three conditions. First, the consumption \(C_t\), the risky holdings \(\pi_t\), and the wealth \(w_t\) satisfy the **budget constraint**:
\[
dw_t = rw_t dt - dC_t + \pi_t (dD_t + dP_t - rP_t dt).
\]
Second, to prevent infinite financing of consumption with debt, the **no-Ponzi condition**
\[
\lim_{T \to \infty} e^{-r(T-t)} E_t (w_T) = 0
\]
must hold for any time \(t > 0\). Third, to prevent so-called doubling strategies, the **regularity condition**
\[
E_t \left(\int_t^T \pi_s^2 ds \right) < +\infty
\]
holds for any \(t < T\). Finally, the expectation \(E_t[\cdot]\) in (36) is conditional on the current target portfolio \(T_{I,t}\) and wealth \(w_t\) of the institution, along with the current value \(G_t\) of the gap process.

Market makers. A market maker \(i\) chooses its policy at \(t\) to solve
\[
\max_{C_t, \pi_t} E_t \left[\int_t^{\infty} e^{-r(u-t)} \left(dC_u + \frac{r_{M} \sigma_w^2}{2} (\pi_{i,u})^2 du \right) \right].
\]
Just like fast investors, a policy \((C_t, \pi_t)\) is admissible for a market maker if it satisfies the budget constraint (37), the no-Ponzi condition (38), and the regularity condition (39).

Lemma 1 (Holdings). We have the following three expressions:

- A market maker holds \(\pi_{M,t}\) shares of the risky asset where \(p \in \mathbb{R}^N\) and \(I_N\) is the identity matrix in \(\mathbb{R}^{N \times N}\):
\[
\pi_{M,t} = \frac{1}{r_{M} \sigma_w^2} \left[\frac{1}{dt} E_t (dP_t - rP_t) \right] = \frac{1}{r_{M} \sigma_w^2} \left[p^T (rI_N + \Lambda) G_t \right]
\]
(41)

- A fast institution holds \(\pi_{F,t}\) shares of the risky asset:
\[
\pi_{F,t} = T_{F,t} + \frac{1}{r_{F} \sigma_w^2} \left[p^T (rI_N + \Lambda) G_t \right]
\]
(42)

- A slow investor of class \(j\) who arrives at the market at time \(t\) holds \(\pi_{j,t}\) shares:
\[
\pi_{j,t} = T_{j,t}.
\]
(43)

Proof of Lemma 1. A time \(t = 0\) a fast investor \(i\) maximizes
\[
E_0 \left[\int_0^{+\infty} e^{-ru} \left(d\tilde{C}_u - \frac{r_{F} \sigma_w^2}{2} (\tilde{T}_{F,u} - \tilde{\pi}_{i,u})^2 du \right) \right]
\]
(44)
over the admissible strategies $\tilde{(C, \pi)}$. A strategy is admissible if it satisfies a budget constraint, a no-Ponzi condition, and a certain regularity condition.45

By combining the budget constraint
\begin{equation}
\text{d} \tilde{w}_u = r \tilde{w}_u \text{d}u - d \tilde{C}_u + \tilde{\pi}_{i,u} (dP_u - rP_u \text{d}u) \quad (45)
\end{equation}
and Itō’s product rule, we can rewrite the discounted incremental consumption as
\begin{equation}
e^{-ru} \text{d} \tilde{C}_u = e^{-ru} \tilde{\pi}_{i,u} (dP_u - rP_u \text{d}u) - \text{d} \left(e^{-ru} \tilde{w}_u \right). \quad (46)
\end{equation}
Then, by using the no-Ponzi
\begin{equation}
\lim_{T \to \infty} E \left[e^{-rT} \tilde{w}_T \right] = 0, \quad (47)
\end{equation}
and by injecting (46) into (44), we can rewrite the objective function of our investor as
\begin{equation}
E_0 \left[\int_0^{+\infty} e^{-ru} \left(\text{d} \tilde{C}_u - \frac{r \gamma F \sigma_w^2}{2} (T_{F,u} - \tilde{\pi}_{i,u})^2 \text{d}u \right) \right] = w_0 + E_0 \left[\int_0^{+\infty} e^{-ru} \left(\tilde{\pi}_{i,u} (dP_u - rP_u \text{d}u) - \frac{r \gamma F \sigma_w^2}{2} (T_{F,u} - \tilde{\pi}_{i,u})^2 \text{d}u \right) \right] = w_0 + E_0 \left[\int_0^{+\infty} e^{-ru} \left(\tilde{\pi}_{i,u} p^\top (rI_n + \Lambda) G_u - \frac{r \gamma F \sigma_w^2}{2} (T_{F,u} - \tilde{\pi}_{i,u})^2 \text{d}u \right) \right], \quad (48)
\end{equation}
where we used the law of iterated expectations for the second equality and the Assumptions 1 and 2 for the third equality. In particular, any admissible consumption plan \tilde{C} is equally good for our investor.

Let us now consider the unique pointwise maximizer $\tilde{\pi}_{i,u}$ of the term between the parentheses in the last line of (48):
\begin{equation}
\tilde{\pi}_{i,u} = T_{F,u} + \frac{1}{r \gamma F \sigma_w^2} p^\top (rI_n + \Lambda) G_u. \quad (49)
\end{equation}
As inspection shows, this unique maximizer defines an admissible strategy and, as measured by (44), no other admissible strategy is better than the strategy defined by (49). In particular, (49) is the optimal trading strategy for our investor, as stated in the proposition.

The argument for a market maker is identical, up to the target portfolio being 0 at all times. \hfill \Box

D.3 Equilibrium: Holdings and Price

Our equilibrium definition is standard and combines individual optimality with market clearing for the risky asset.

Definition 1 (Equilibrium). An equilibrium consists of policies $\{\pi_i\}_{i \in \{I,M\} \cup N}$ giving the risky holdings of all classes of investors, parameters Λ and σ_G defining the dynamics of the gap process as in Assumption 1, and a vector p defining the price of the risky asset as in Assumption 2.

These quantities satisfy three conditions.

45The use of a tilde ($\tilde{\cdot}$) denotes any given admissible strategy (e.g., $\tilde{\pi}$ as any admissible trading strategy), whereas the notation without a tilde denotes its optimal counterpart (e.g., π).
(i) **Individual optimality**: The policies \(\{\pi_i\}_{i \in \{I,M\} \cup N}\) are given by Proposition 1 with the parameters of the gap process being set at their equilibrium values.

(ii) **Market clearing**:
\[
m_F \pi_{F,t} + m_M \pi_{M,t} + \mathbf{1}_{(1 \times N)} \text{diag} (m_1, \ldots, m_N) \pi_{N,t} \equiv 0,
\]
with \(\pi_{N,t} := (\pi_{i,t})_{i=1}^N\).

Lemma 2 (Price). An equilibrium exists and is unique. The gap process follows an Ornstein-Uhlenbeck process:
\[
dG_t = -\Lambda G_t dt + \text{diag} (\mu_1, \ldots, \mu_N) dZ_t,
\]
where \(\mu_j := m_j \sigma_j\) is the total “risk mass” of investors in class \(j\). The equilibrium price of the risky asset is
\[
P_t = -p^\top G_t \quad \text{with} \quad p^\top = \frac{\sigma_w^2}{m_F r \gamma F} + \frac{m_M}{r \gamma M} \mathbf{1}_{(1 \times N)} (r I_N + \Lambda)^{-1}.
\]

The equilibrium price process determines the dynamics of the trading policies shown in Proposition 1 with the row vector of weights, \(p^\top\), being explicit in (52).

Proof of Lemma 2. The inelastic demand of all slow investors, the definition of the gap process, and a heuristic application of a cross-sectional strong law of large numbers (SLLN) yields the dynamics
\[
dG_t = -\Lambda G_t dt + \text{diag} (\mu_1, \ldots, \mu_N) dZ_t
\]
for the gap process.\(^{46}\)

We must still make sure that the assumed price process
\[
P_t = -p^\top G_t
\]
is consistent with market clearing. Concretely, market clearing at time \(t\) amounts to
\[
m_M \pi_{M,t} + m_F \pi_{F,t} + \mathbf{1}_{(1 \times N)} A_t = 0 \iff \left(\left(\frac{m_M}{r \gamma M} \sigma_w^2 + \frac{m_F}{r \gamma F} \sigma_w^2 \right) p^\top (r I_N + \Lambda) - \mathbf{1}_{(1 \times N)} \right) G_t = 0,
\]
where we used Proposition 1, the definition \(T_{F,t}\) in (6), and the definition of \(G_t\) in (9). As market clearing holds at any point in time and any state of the world in equilibrium, the price sensitivities \(p\) must be
\[
p^\top = \frac{\sigma_w^2}{m_M r \gamma M} + \frac{m_F}{r \gamma F} \mathbf{1}_{(1 \times N)} (r I_N + \Lambda)^{-1},
\]
as stated in the proposition. \(\square\)

\(^{46}\)See, for example, Judd (1985) and Sun (2006) for rigorous discussions of cross-sectional SLLNs.
D.4 Proof of Proposition 1

We combine the results from Lemma 1 and its associated proof in Section D.2 with the results from Lemma 2 and its associated proof in Section D.3. The result proves Proposition 1 from the main paper. □
E Model-Implied Discrete-Time Dynamics

In this appendix, we provide additional details on the components of the model implied dynamics given in (20). The model moments calculated in Section 3.1 can be obtained using the full model dynamics by setting $\rho = 0$ and using the scalar λ in place of the matrix Λ. The VAR in (20) includes the coefficient matrix V discussed and given in the main text in (21). This incorporates the autoregressive component of the model dynamics.

Below, we provide details related to the shocks. This includes the variance and covariance of the shocks, as well as the coefficient matrix W that maps the shocks into the model’s variables. Finally, we also provide analysis on the pricing errors and returns for the full model.

The coefficient matrix W is:

$$W = \begin{pmatrix}
3 & 3 & 1 & 3 & 3 \\
3 & 0 & 0 & 0 & 0 \\
1 & \beta_M 1_{(1 \times 3)} & \beta_M 1_{(1 \times 3)} & 0 & 0 \\
1 & 0 & -1_{(1 \times 3)} & 0 & 1_{(1 \times 3)} \\
1 & -\beta_w 1_{(1 \times 3)} B_i & -\beta_w 1_{(1 \times 3)} B_r & 1 & 0 & 0
\end{pmatrix} \in \mathbb{R}^{9 \times 13},$$

with $B_j = (r I_3 + \Lambda_j)^{-1}$ and $j \in \{i, r\}$. The intuition for the elements in W follows immediately from the discussion of the corresponding elements in V (see previous paragraphs). The only difference is that W pertains to new shocks in target portfolios (and not to changes in legacy inefficient holdings).

The error term is:

$$\varepsilon_t = (\varepsilon_{1,t}, \varepsilon_{2,t}, \varepsilon_{3,t})^\top,$$

where $\varepsilon_{1,t} \in \mathbb{R}^6$ captures the net change in the gap process and $\varepsilon_{3,t} \in \mathbb{R}^6$ captures the change in target portfolios. Note that these are highly correlated but not identical. Only part of the target portfolio change enters the gap process because of intra-period trading. $\varepsilon_{2,t}$ captures the dividend shock. The covariance matrix of ε_t is:

$$\text{Var} (\varepsilon_{1,t}) = \int_0^{\Delta t} e^{-\Lambda (\Delta t - u)} \left((1 - \rho^2) \text{diag}^2 (\mu) + \rho^2 \mu \mu^\top \right) \left(e^{-\Lambda (\Delta t - u)} \right)^\top du,$$

$$\text{Var} (\varepsilon_{2,t}) = \sigma_w^2 \Delta t,$$

$$\text{Var} (\varepsilon_{3,t}) = \left((1 - \rho^2) \text{diag}^2 (\mu) + \rho^2 \mu \mu^\top \right) \Delta t,$$

$$\text{Cov} (\varepsilon_{1,t}, \varepsilon_{2,t}) = \int_0^{\Delta t} e^{-\Lambda (\Delta t - u)} \rho \sigma_w \mu^\top du,$$

$$\text{Cov} (\varepsilon_{1,t}, \varepsilon_{3,t}) = \int_0^{\Delta t} e^{-\Lambda (\Delta t - u)} \left((1 - \rho^2) \text{diag}^2 (\mu) + \rho^2 \mu \mu^\top \right) du,$$

$$\text{Cov} (\varepsilon_{2,t}, \varepsilon_{3,t}) = \rho \sigma_w \mu^\top \Delta t,$$

where ρ is the correlation between the dividend shock and infrequent investors’ target portfolio shocks.\footnote{Note that element (i,j) from $\text{Var} (\varepsilon_{1,t})$ is $\frac{\rho^2}{2 \Lambda_{ii}} \left(1 - e^{-2 \Lambda_{ii} \Delta t} \right)$ for $i = j$. This element is $\frac{\rho^2 \mu_i \mu_j}{\Lambda_{ii} + \Lambda_{jj}} \left(1 - e^{-(\Lambda_{ii} + \Lambda_{jj}) \Delta t} \right)$ for $i \neq j$.}
Let \tilde{V} be the sub-matrix of V consisting of only the non-zero columns:

$$\tilde{V} = V_{(\cdot,1:6)},$$

where the subscript indicates the rows and columns that are selected with a dot used to select them all (above, \tilde{V} has selected all the rows and the first six columns of V). Then (20) can then be written as:

$$Y_t = \tilde{V}G_t - \Delta_t + W\varepsilon_t.$$ \hfill (61)

Model-implied covariance and auto-covariance matrices. The variance matrix for the gap process G_t is easily derived by taking Δt to infinity for $\text{Var}(\varepsilon_{1,t})$ in (59). The result is twice the variance of the gap process (i.e., $\text{Var}(G_t - G_{t-\Delta t}) = \text{Var}(G_t) + \text{Var}(G_{t-\Delta t}) - 2 \text{Cov}(G_t, G_{t-\Delta t})$ where the last term vanishes for $\Delta t \uparrow \infty$). Let

$$\text{Var}(G_t) = \left((1 - \rho^2) \text{diag}(\mu) + \rho^2 \mu \mu^\top\right) \odot \left((\Lambda_{kk} + \Lambda_{ll})^{-1}\right)_{0 \leq k,l \leq 6}.$$ \hfill (62)

where \odot is the Hadamard product (i.e., element-wise product).

The simple first-order autoregressive structure of Y_t implies that its variance is:

$$\text{Var}(Y_t) = \tilde{V} \text{Var}(G_t) \tilde{V}^\top + W \text{Var}(\varepsilon_t) W^\top$$

and its auto-covariance of order $n > 0$ is:

$$\text{Cov}(Y_t, Y_{t-n}) = \tilde{V} e^{-(n-1)\Delta t} \begin{pmatrix} \text{Var}(G_t) \\ \text{Cov}(G_t, \text{MIMInv}_t) \\ \text{Cov}(G_t, \text{RetFlow}_t) \\ \text{Cov}(G_t, \text{Return}_t) \end{pmatrix}^\top.$$ \hfill (64)

The autocovariance function in (64) shows that, not surprisingly, all decay is governed by the individual gap components ($e^{-(n-1)\Delta t}$). The decay could, however, still be different for different variable pairs,\footnote{For example, one could compare the decay (for increasing n) of $(\text{MIMInv}_t, \text{RetFlow}_{t-n})$ and $(\text{MIMInv}_t, \text{Return}_{t-n})$.} as they load differently on the gap components (governed by \tilde{V}).

Characterizing pricing errors and returns. The model-implied variance and auto-covariances can be used to develop several additional results that generate further economic insight. One particularly useful result is that the estimation delivers a full characterization of the pricing errors, their size, a decomposition, and their decay. To generate these results, let us first define the pricing error at time t as:

$$s_t = W_{(9,1:6)} G_t \in \mathbb{R}.$$ \hfill (65)

Its variance therefore is:

$$\text{Var}(s_t) = W_{(9,1:6)} \text{Var}(G_t) W_{(9,1:6)}^\top.$$ \hfill (66)

The structure of $\text{Var}(G_t)$ admits a decomposition of pricing error variance into idiosyncratic components associated with the various slow-investor classes and frequencies and a common factor correlated with the fundamental-value shock. Such a decomposition immediately follows from the structure of $\text{Var}(G_t)$ in (62). The autocorrelation function for pricing errors (s_t) that defines their decay follows from the autocovariance
function of G_t:
\[\rho_{s,1} = \frac{W_{(9,.)} e^{-\Lambda \Delta t} \Var (G_t) W_{(9,.)}^T}{W_{(9,.)} \Var (G_t) W_{(9,.)}^T}. \]

(67)

An alternative way to characterize the persistence of pricing errors is to compute their half life. This is most easily done by looking at the bottom panel in Fig 3. The downward line crosses the 0.5-level after 31 (trading) days or 6.2 weeks.

Another useful result is to compute the extent to which returns are “polluted” by pricing errors. More specifically, we want to know how different components of the pricing errors affect returns. The variance of returns follows immediately from (63):
\[\Var (r_t) = \tilde{V}_{(9,.)} \Var (G_t) \tilde{V}_{(9,.)}^T + W_{(9,.)} \Var (\varepsilon) W_{(9,.)}^T. \]

(68)

where the “new shocks” component can be further decomposed into:

- A fundamental-value change component corresponding to $\Var (\varepsilon)_{(7,7)}$,
- New idiosyncratic target shock components corresponding to the diagonal of $\Var (\varepsilon)_{(1:6,1:6)}$, and a
- New shared component (correlated with fundamental-value change) corresponding to all off-diagonals of $\Var (\varepsilon)_{(1:7,1:7)}$.

The return autocorrelations follow immediately from (64) as the risky asset’s return is the last element of Y_t—see (19).
F Impulse Response Analysis

To characterize the dynamics of liquidity supply by market makers and retail investors to institutions we propose to base it on an impulse response function. Let the time-zero shock to target portfolios of all investors be one standard deviation (from the fourth and final model as shown in Table 2). For ease of exposition, let the fast institutions get the negative shock and, by design, the slow institutions and retail investors, collectively, receive an opposite shock. The time-zero shock therefore is:

\[G_0 = (\mu_{d_i} \mu_{m_i} \mu_{q_i} \mu_{d_r} \mu_{m_r} \mu_{q_r})^\top = (151 \ 25.1 \ 7.76 \ 1.63 \ 4.97 \ 2.03)^\top \]

Absent any further shocks the gap at time \(t \) will be:

\[G_t = e^{-\Lambda t} G_0 \]

Define liquidity demand as trading in the direction of the pricing error and liquidity supply as the opposite. This characterization of demand and supply along with (70) allows one to compute cumulative liquidity demand and supply up until any time \(t \) after the shock. Importantly, at the time of the shock no slow investor has yet to arrive (with probability one), so there is an instantaneous trade of fast institutions with market makers where the latter supply liquidity to the former. The size of this trade at time zero equals: \(\beta_M \mathbf{1}_{(1 \times 6)} G_0 \).

We can now compute the net liquidity demand of institutions and the supply by market makers and retail investors:

\[
\begin{align*}
\text{LiqDemFastInst}_t &= \beta_M \mathbf{1}_{(1 \times 6)} G_0 + (1 - \beta_M) \mathbf{1}_{(1 \times 6)} (G_0 - G_t) \\
\text{LiqSupSlowInst}_t &= \mathbf{1}_{(1 \times 3)} (G_0 - G_t)_{1:3} \\
\text{LiqDemInst}_t &= \text{LiqDemFastInst}_t - \text{LiqSupSlowInst}_t \\
\text{LiqSupMM}_t &= \beta_M \mathbf{1}_{(1 \times 6)} G_0 - \beta_M \mathbf{1}_{(1 \times 6)} (G_0 - G_t) \\
\text{LiqSupRetail}_t &= \mathbf{1}_{(1 \times 3)} (G_0 - G_t)_{4:6}
\end{align*}
\]

\[(71) \quad (72) \quad (73) \quad (74) \quad (75) \]
References

Internet Appendix for
“Asset Price Dynamics with Limited Attention”

This Internet Appendix contains the notes on MLE estimation and additional figures. References to tables and figures may correspond to those in the main document. Note, to avoid confusion the numbering in this Internet Appendix starts where the numbering in the main text left off.
A Details of the Maximum Likelihood Estimation

The maximum-likelihood estimation is implemented in Python’s statsmodels (Seabold and Perktold, 2010). More specifically, our code uses Chad Fulton’s statespace model within this software module. After acceptance the code submitted with the revision will be posted online together with simulated sample to run it on. The code includes a simplified version that is easier to parse and can serve as a starting point for researchers interested in estimating related models. The paper’s data falls under a nondisclosure agreement with the NYSE. Numerous researchers who were visiting economists at the NYSE have had access to the data.

In the remainder of the section we calibrate the model to find reasonable starting values for the steepest-ascent algorithm used to maximize the likelihood. A high-level summary of the way starting values are set is that we first set the correlation of dividend shocks and target portfolios to zero (i.e., \(\rho = 0 \)) to sequentially pick parameter values. We then pick the correlation at a level that would explain potential excess negative correlation between dividend shocks and market-maker inventories in the data.

If \(\rho \) is assumed to be zero, then all remaining parameters can then be solved sequentially by matching several observed “identifying” cross-autocovariances as follows:

1. First solve for retail risk-mass (\(\mu_{dr}, \mu_{mr}, \) and \(\mu_{qr} \)) based on retail order flows. These parameters are identified solely off of the autocovariance function for retail order flow.
2. Then, given these estimates, solve for gap-sensitivity of market-maker inventories (\(\beta_M \)) which is identified through a cross-autocovariance between market-maker inventories and retail order flows.
3. All these estimates are unlikely to fit the autocovariance of market-maker inventories. The differential between the implied autocovariance based on retail flows and the observed autocovariance is used to identify the risk-mass of slow institutions (\(\mu_{di}, \mu_{mi}, \) and \(\mu_{qi} \)).
4. Now that all trade-data parameters are identified, we involve price data to solve for gap-sensitivity of price pressure (\(\beta_w \)) through the first-order autocovariance of market returns (which is preferred over return variance as it removes dependence on the thus far unknown \(\sigma_w \)).
5. Finally, these parameters imply a variance in returns. The extent to which the observed return variance exceeds this variance identifies dividend risk (\(\sigma_w \)).

The remainder of the section will describe all these steps in full detail. All derivations are based on the closed-form expressions for the (multivariate) autocovariance function (that includes variance) of model variables in (63)-(64).

Starting value for retail risk-mass: \(\mu_{dr}, \mu_{mr}, \) and \(\mu_{qr} \). Retail-flow autocovariance does not depend on any parameter other than retail risk-mass. Picking three autocovariances should therefore identify the three retail risk-mass parameters. We pick the autocovariance at lag one, five, and 20.\(^{49}\) Picking element (8,8) of the autocovariance function in (64) yields the following expression:

\[
\text{cov} \left(\text{RetFlow}_t, \text{RetFlow}_{t-n} \right) = 1_{(1 \times 3)} \left(I_3 - e^{-\Lambda_t} \right) e^{-(n-1)\Lambda_t} \text{cov} \left(G_{rt}, \text{RetFlow}_t \right).
\]

\(^{49}\)These frequencies are chosen because they are visible in Figure 1 and enable an reasonable fit to the curvatures of the lines in Figure 1 at the optimization’s starting values.
The contemporaneous covariance between G_t and RetFlow_t is in row four through six and column eight of $\text{var} (Y_t)$ in (63). The corresponding two terms on the right-hand side of (63) are

$$e^{-\Lambda r} \text{diag} \left(\frac{\mu_{dr}^2}{2\lambda_d} \frac{\mu_{mr}^2}{2\lambda_m} \frac{\mu_{qr}^2}{2\lambda_q} \right) \left(I_3 - e^{-\Lambda r} \right) 1_{(3\times1)}$$

and

$$\begin{pmatrix} 0_{(1\times3)} & -1_{(1\times3)} & 0_{(1\times4)} & 1_{(1\times3)} \end{pmatrix} \text{var} (\varepsilon_t) \begin{pmatrix} 0 \ (3\times3) \\ I_3 \\ 0_{(7\times3)} \end{pmatrix},$$

respectively. Therefore the model-implied autocovariance is:

$$\text{cov} (\text{RetFlow}_t, \text{RetFlow}_{t-n}) = \sum_{j \in \{d, m, q\}} \left(1 - e^{-\lambda_j} \right) e^{-(n-1)\lambda_j} \times \left(\frac{e^{-\lambda_j} (1 - e^{-\lambda_j})}{2\lambda_j} + \left(\frac{1 - e^{-\lambda_j}}{\lambda_j} - \frac{1 - e^{-2\lambda_j}}{2\lambda_j} \right) \right) \mu_{ij}^2.$$

Note that (79) evaluated at $n \in \{1, 5, 20\}$ yields a system with three equations and three unknowns with boundary conditions because risk-mass parameters have to be non-negative. One way to find reasonable risk-mass estimates is to solve the following least-squares minimization:

$$\begin{pmatrix} \hat{\mu}_{dr} \\ \hat{\mu}_{mr} \\ \hat{\mu}_{qr} \end{pmatrix} = \left(\text{argmin}_{(x_{(3\times1)} \geq 0)} (A_n x - b)^\top (A_n x - b) \right)^{\frac{1}{2}},$$

where b is a 3×1 column vector with observed retail-flow autocovariances at lags $n \in \{1, 5, 20\}$, respectively, and A_n is a matrix with as row labels the frequencies $f \in \{d, m, q\}$ and as a column labels the lags $n \in \{1, 5, 20\}$. Element (f, n) in A_n equals the coefficient of μ_{ij}^2 in (79) for lag n. As the matrix A_n is well conditioned we solve the argmin part in (80) simply by taking $x_0 = A_n^{-1} b$. Should any element of x_0 be negative we set it to zero ex-post so as to ensure risk-mass starting values are non-negative.

Starting value gap-sensitivity MMInv: β_M. The starting values $\hat{\mu}_{dr}$, $\hat{\mu}_{mr}$, and $\hat{\mu}_{qr}$ along with the following autocovariance term identify β_M:

$$\text{cov} (\text{RetFlow}_t, \text{MMInv}_{t-1}) = \begin{pmatrix} 0_{(1\times3)} & -1_{(1\times3)} & 0_{(1\times4)} & 1_{(1\times3)} \end{pmatrix} \text{var} (\varepsilon_t) \begin{pmatrix} 0 \ (3\times3) \\ I_3 \\ 0_{(7\times3)} \end{pmatrix},$$

$$\hat{\beta}_M$$

therefore is:

$$\hat{\beta}_M = \frac{\text{cov} (\text{RetFlow}_t, \text{MMInv}_{t-1})}{\text{cov}(\text{RetFlow}_t, \text{MMInv}_{t-1})} \left(\frac{\mu_{dr}^2}{2\lambda_d} \frac{\mu_{mr}^2}{2\lambda_m} \frac{\mu_{qr}^2}{2\lambda_q} \right) 1_{(3\times1)}.$$

Note that the beauty of picking the cross-autocovariance of market-maker inventories and retail flows is that one does not need to know the risk mass of slow institutions as their target portfolio changes are assumed to be orthogonal to those of retail investors.

50 In the code we use very small values instead of zero to avoid a singular prediction error covariance matrix in the Kalman filter.

51 Note that $\hat{\beta}_M$ in (82) equals the ratio of the observed covariance and the model-implied covariance assuming β_M is one. This insight is used in the code to maximize code efficiency. This trick is used for several starting-value expressions.
Starting value for the risk mass of slow institutions: μ_{di}, μ_{mi}, and μ_{qi}. The identification of the risk masses of slow institutions is in the extent to which market-maker inventory autocovariance exceeds what the model predicts it to be solely based on $\hat{\mu}_{dr}$, $\hat{\mu}_{mr}$, $\hat{\mu}_{qr}$, and $\hat{\beta}_M$ (i.e., assuming risk mass to be zero for slow institutions). More specifically, the model-implied autocovariance of market-maker inventories at lag n is (using (63)):

$$
cov(MMInv_t, MMInv_{t-n}) = \beta_M^1(1 \times 6)e^{-n\lambda_d}\mu_{di}^2 + \mu_{jr}^2\lambda_j
$$

(83)

At this point the approach is similar to the one we used to identify the risk mass of retail investors. In other words, utilizing (83) we solve for risk masses in the same way as we did based on (80):

$$
\begin{bmatrix}
\hat{\mu}_{di} \\
\hat{\mu}_{mi} \\
\hat{\mu}_{qi}
\end{bmatrix} = \left(\arg\min_{x \in (3 \times 1) \geq 0} (A_n(x-c)-b)\top(A_n(x-c)-b)\right)^{\frac{1}{2}},
$$

(84)

where b is a 3×1 column vector with observed inventory autocovariance at lags $n \in \{1, 5, 20\}$, respectively, and A_n is a matrix with as row labels the frequencies $f \in \{d, m, q\}$ and as a column labels the lags $n \in \{1, 5, 20\}$. Element (f,n) in A_n equals the coefficient of μ_{fr}^2 in (83) for lag n and

$$
c = \left(\frac{\hat{\mu}_{dr}^2}{\tilde{\sigma}_{MM}^2} \frac{\hat{\mu}_{mr}^2}{\tilde{\sigma}_{MM}^2} \frac{\hat{\mu}_{qr}^2}{\tilde{\sigma}_{MM}^2}\right)\top.
$$

(85)

Now that we have identified all risk-masses $\hat{\mu}_{jk}$ with $j \in \{d, m, q\}, k \in \{i, r\}$ along with $\hat{\beta}_M$, we add price data to the trade data used thus far to identify the remaining parameters β_w and σ_w.

Starting value gap-sensitivity price pressure: β_w. With all parameters calibrated thus far β_w can be calibrated by matching the first-order autocovariance in return. Note that this object does not depend on w and therefore removes dependence on σ_w which is thus far unknown. The mathematical expression for this autocovariance is in principle available but involves long mathematical expressions. Since the observed covariance is affine in the model-implied covariance assuming $\beta_w = 1$ with zero intercept and a coefficient of β_w^2. This allows us to calibrate $\hat{\beta}_w$ as follows (yielding the exact same result as computing the analytic expression but more easily expressed and coded, see also footnote 51):

$$
\hat{\beta}_w = \left(\frac{\text{cov} (\text{Return}_t, \text{Return}_{t-1})}{\tilde{\sigma}_{\text{Return},\text{Return}_{t-1}}}\right)^{\frac{1}{2}}
$$

(86)

where $\hat{\sigma}_{\text{Return},\text{Return}_{t-1}}$ denotes the model-implied covariance between Return_t and Return_{t-1} on the assumption that β_w is one.52

52In practice, one could set β_w as the square root of the average of multiple ratios based on different lag values. In the code, we used 1, 5, and 20 to have a smoothen the calibrated value. This could also be done when calibrating the other parameters but in our application the returns variable was more noisy than others and we therefore only implemented it here.
Starting value dividend risk: \(\sigma_w \). The variance of returns along identifies the remaining parameter \(\sigma_w \) given starting values for all other parameters:

\[
\begin{align*}
\text{var} (\text{Return}_t) &= \\
\beta_w 1_{(1 \times 6)} (rI_6 + \Lambda)^{-1} (I_6 - e^{-\Lambda}) \text{var} (G_t) (I_6 - e^{-\Lambda}) (rI_6 + \Lambda)^{-1} 1_{(6 \times 1)} \beta_w + \\
\beta_w 1_{(1 \times 6)} (rI_6 + \Lambda)^{-1} \text{diag} \left(\frac{1 - e^{-2\lambda_d}}{2\lambda_d} \hat{\mu}_{d_1}^2 \ldots \frac{1 - e^{-2\lambda_m}}{2\lambda_m} \hat{\mu}_{m_1}^2 \right) (rI_6 + \Lambda)^{-1} 1_{(6 \times 1)} \beta_w + \\
\sigma_w^2
\end{align*}
\]

and therefore

\[
\hat{\sigma}_w = \left(\text{var} (\text{Return}_t) - \hat{\beta}_w^2 \sum_{j \in \{d,m,q\}} \frac{1 - e^{-\lambda_j}}{\lambda_j (r + \lambda_j)^2} (\hat{\mu}_{j_1}^2 + \hat{\mu}_{j_m}^2) \right)^{\frac{1}{2}}.
\]

Starting value correlation dividend and target portfolio innovations: \(\rho \). Finally, \(\rho \) is estimated as:

\[
\hat{\rho} = \frac{\text{cov} (\text{MMInv}, \text{Return}) - \hat{\sigma}_{\text{MMInv,Return}}}{\hat{\sigma}_{\text{MMInv}} \hat{\sigma}_w},
\]

where \(\hat{\sigma}_{\text{MMInv,Return}} \) denotes the model-implied covariance between \(\text{MMInv} \) and \(\text{Return} \) on the assumption that \(\rho \) is zero. The same goes for \(\hat{\sigma}_X \) which denotes the model-implied volatility of \(X \). Note that the denominator is \(\hat{\sigma}_w \) instead of \(\hat{\sigma}_{\text{Return}} \) as \(\rho \) pertains to dividend innovations.
B Model-Implied Autocorrelations for Lower-Frequency Returns

The N-period return (used for lower frequency returns such as monthly or quarterly) is:

$$r_{m,t} = p_t - p_{t-N} \quad (90)$$

where t runs over days and it is assumed that there are N work days in a month. The price p_t consist of a martingale component m_t with daily innovations w_t plus a friction-induced pricing error s_t. The return therefore becomes:

$$r_{m,t} = m_t - m_{t-N} + s_t - s_{t-N} = (w_{t-1} + \ldots + w_{t-N}) + s_t - s_{t-N}. \quad (91)$$

The variance of monthly returns therefore is:

$$\sigma^2_{r_{m,t}} = N\sigma^2_w + 2\sigma^2_s - 2\rho_{s,N}\sigma^2_s \quad (92)$$

where $\rho_{s,N}$ is the N lag autocorrelation in the pricing error. The first-order autocovariance of monthly return is:

$$\text{Cov}(r_{m,t}, r_{m,t-N}) = -\sigma^2_s + 2\rho_{s,N}\sigma^2_s - \rho_{s,2N}\sigma^2_s. \quad (93)$$

Therefore, the first-order autocorrelation in monthly return is:

$$\frac{- (1 - 2\rho_{s,N} + \rho_{s,2N}) \sigma^2_s}{N\sigma^2_w + 2(1 - \rho_{s,N})\sigma^2_s}. \quad (94)$$

The pricing error at any time t is defined as:

$$s_t = -\beta_w (rI_6 + \Lambda)^{-1} G_t \quad (95)$$

where the variance of G_t is in (62). The covariance of s_t and s_{t-j} with $j > 0$ is:

$$\text{Cov}(s_t, s_{t-N}) = \beta_w (rI_6 + \Lambda)^{-1} e^{-\Lambda} e^{-(j-1)^1} \Sigma_G (rI_6 + \Lambda)^{-1} \beta_w^\top \quad (96)$$

and

$$\text{Var}(s_t) = \beta_w (rI_6 + \Lambda)^{-1} \Sigma_G (rI_6 + \Lambda)^{-1} \beta_w^\top. \quad (97)$$
C Daily Target Portfolio Changes

The variance of daily total target-portfolio changes of large investors are:

\[\int_0^{\Delta t} \mu^\top \mu du. \]

(98)

As the units of both market-maker inventories and retail flows are in million dollar and \(\Delta t \) is a day, this implies that the standard deviation of the total daily target portfolio changes is:

\[\left(\sum_{k \in \{d, m, q\}} \mu_{ki}^2 + \mu_{kr}^2 \right)^{\frac{1}{2}} \text{ million dollar.} \]

(99)
D MLE Results for Size Terciles

The following four pages show the results of our MLE for each of the three size terciles. The underlying parameter estimates are shown in Table 2 from the main paper. The figures compare with Fig 2 from the main paper.
Figure 7. MLE Results for Large Stocks Only. Similar to Figure 2 except for the sample of large stocks only.
Figure 8. MLE Results for Medium Stocks Only. Similar to Figure 2 except for the sample of medium stocks only.
Figure 9. MLE Results for Small Stocks Only. Similar to Figure 2 except for the sample of small stocks only.
E MLE Results with Daily / Weekly / Monthly Slow Investors

Version. This table presents the maximum likelihood parameter estimates and their standard errors. We consider “All” stocks as well three size-terciles labeled “Large”, “Medium”, and “Small”. Subscripts: “d” daily; “w” weekly; “m” monthly; “i” slow institutional investors; “r” slow retail investors. Idiosyncratic noise in dividends (σ_w); market-maker inventories (σ_{eM}); and retail flows (σ_{er}); The stars (*/**/***) indicate statistical significance at a 10%, 5%, and 1% level, respectively.

Panel A: Risk masses of slow institutional investors

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{di}</td>
<td>154 ***</td>
<td>381 ***</td>
<td>55.0 ***</td>
<td>9.50 ***</td>
</tr>
<tr>
<td></td>
<td>(3.36)</td>
<td>(17.6)</td>
<td>(2.32)</td>
<td>(0.32)</td>
</tr>
<tr>
<td>μ_{wi}</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(0.90)</td>
<td>(4.15)</td>
<td>(0.50)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>μ_{mi}</td>
<td>28.9 ***</td>
<td>65.9 ***</td>
<td>8.97 ***</td>
<td>2.97 ***</td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>(3.10)</td>
<td>(0.39)</td>
<td>(0.10)</td>
</tr>
</tbody>
</table>

Panel B: Risk masses of (slow) retail investors

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{dr}</td>
<td>1.65 ***</td>
<td>3.03 ***</td>
<td>0.46 ***</td>
<td>0.16 ***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.008)</td>
<td>(0.002)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>μ_{wr}</td>
<td>0.010</td>
<td>0.012</td>
<td>0.010</td>
<td>0.170 ***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.11)</td>
<td>(0.02)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>μ_{mr}</td>
<td>5.23 ***</td>
<td>9.78 ***</td>
<td>1.55 ***</td>
<td>0.56 ***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.05)</td>
<td>(0.01)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

Panel C: Deep parameters

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_M</td>
<td>0.0089 ***</td>
<td>0.0066 ***</td>
<td>0.0100 ***</td>
<td>0.0279 ***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.0003)</td>
<td>(0.0004)</td>
<td>(0.0009)</td>
</tr>
<tr>
<td>β_w</td>
<td>0.0935 ***</td>
<td>0.0426 ***</td>
<td>0.288 ***</td>
<td>0.720 ***</td>
</tr>
<tr>
<td></td>
<td>(0.0025)</td>
<td>(0.0023)</td>
<td>(0.0141)</td>
<td>(0.0333)</td>
</tr>
</tbody>
</table>

Panel D: Volatility related to returns, market-maker inventories, and retail flows

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_w</td>
<td>237 ***</td>
<td>217 ***</td>
<td>233 ***</td>
<td>262 ***</td>
</tr>
<tr>
<td></td>
<td>(0.53)</td>
<td>(0.54)</td>
<td>(0.58)</td>
<td>(0.53)</td>
</tr>
<tr>
<td>σ_{eM}</td>
<td>0.011</td>
<td>0.014</td>
<td>0.0008</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>(0.0001)</td>
<td>(0.0002)</td>
<td>(0.0004)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>σ_{er}</td>
<td>1.58 ***</td>
<td>2.53 ***</td>
<td>0.50 ***</td>
<td>0.21 ***</td>
</tr>
<tr>
<td></td>
<td>(0.0077)</td>
<td>(0.022)</td>
<td>(0.0004)</td>
<td>(0.0002)</td>
</tr>
</tbody>
</table>

Panel E: Shared component

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>-0.210 ***</td>
<td>-0.199 ***</td>
<td>-0.208 ***</td>
<td>-0.245 ***</td>
</tr>
<tr>
<td></td>
<td>(0.0011)</td>
<td>(0.0018)</td>
<td>(0.002)</td>
<td>(0.0022)</td>
</tr>
</tbody>
</table>

| # of stocks | 689 | 230 | 229 | 230 |
| # of obs | 1,206,935 | 403,971 | 402,169 | 400,795 |