
1

Appendix A: Redline NBBO, API, and Code Implementation

Redline NBBO

We wrote customized code on the Redline server to record the tick data of the Redline
NBBO with time accuracy in nanoseconds. We first describe the details of the
implementation. We further consolidate the data and output in the format as shown in
Appendix B. To be noted first is that there are two sets of similar data, one from SIP
NBBO (SIP in the NBBO field) and the other from Redline NBBO (RL in the NBBO
field). To make it easy to compare, we put them in the same context, and sort according
to timestamp value. The exchange where the update occurs is also listed. The prices are
updated due to several trigger events, including new bid / ask quotes, cancellation and
trading activities. If an update is due to a new bid quote, which is higher than the status
quo bid price, the last column has a value of 1002. If it is a new ask quote then the last
column has a value of 1004. If a trade event triggered the update, the last column has a
value of 1108.

As shown in Appendix B, the trade events do not have to match the NBBO bid / ask price.
This is reasonable in that the trade can be an ISO trade or even a dark pool trade.
Nevertheless, the types of trades we are interested in are regular trades, which should be
executed on a NBBO price.

In Appendix B, there are approximately two sets of the same bid/ask/trade sequence, with
slightly different timestamps. Since the timestamp records when the server receives the
update, there is a delay compared with the real moment that it happens. The delay
depends on the source that the update is collected.

If the source of the data is UTP, the update information is first generated in the
corresponding exchange, is then sent to the UTP SIP data processor, gets calculated, and
is then further sent to the trader’s server. The Redline server works as the trader’s end.
But we still need to measure the time when the information is received by the trading
application.

If the source of the data is Redline NBBO, there are two possible routes depending on the
data feed of the Redline server. The server we work on has four feeds: exchange BATS,
exchange EDGE, exchange NASDAQ, and UTP. The feeds from BATS, EDGE, and
NASDAQ are direct feeds. UTP is the consolidated data processor that provides SIP
NBBO. The Redline system consolidates these updates in real-time to generate a local
NBBO. If an update is from BATS, EDGE, or NASDAQ and can make to the top of the
book as NBBO, it can be updated in Redline NBBO immediately. In this case the date

2

route is from the exchange to the Redline server, where it gets calculated and then an
update is made to the system directly. If the update is from an exchange other than BATS,
EDGE, and NASDAQ, the Redline system can only get the information through UTP.
Then the route of the information is from the exchange to UTP, where it gets calculated,
is sent to the Redline system, gets calculated again, and then an update is made to the
system. As a result, the total delay is shorter on Redline if the update originates from
BATS, EDGE, or NASDAQ and vice versa if the update originates from an exchange
other than BATS, EDGE, or NASDAQ.

Appendix B illustrates these two types of latencies. Our example uses a numberof
exchange PIDs. Some of them, including FH_PID_NYSE_ARCA, FH_PID_NSX,
FH_PID_NASDAQ, are not directly connected with the Redline system. As a result, a
SIP NBBO update has a timestamp earlier than that of the corresponding RL NBBO
update. On the other hand, three PIDs, including FH_PID_BATS_BZX,
FH_PID_BATS_BYX, FH_PID_EDGA, are directly fed into Redline system. Then a RL
NBBO update has a timestamp earlier than that of the corresponding SIP NBBO update.

Appendix C shows the distribution of top of book exchanges on the two NBBOs. It only
lists 6 major exchanges. According to SIP NBBO, AAPL has 2.99% of the best asks from
BATS_BYX, about 8.54% from BATS_BZX. They add up to 13.53% in total from
BATS. On the other hand, 20.2% of them are from EDGE, 16.66% from NASDAQ,
39.22% from NYSE ARCA. These numbers do not have to add up to 100% because there
are other exchanges that are not shown.

One observation is that for the percentage number, the values are different in the two
NBBO cases. This is related to different latencies in these two cases and the approach by
which these numbers are calculated. Every time the NBBO ask/bid price changes, the
corresponding exchange is recorded as the top of the book exchange. If later updates
show up with a different exchange but the same top of book price, that exchange is
ignored because we do not know whether it is other type updates, not a new ask/bid quote,
that bring up the exchange. As a result, we may over-count BYX in the case of Redline
NBBO. For example, if two asks with the same prices are quoted from NASDAQ first
and then BYX 1 millisecond later, BYX will show up early on Redline NBBO and then
be counted as top of book exchange. However in the case of SIP it should be NASDAQ.

Redline develops the C library to control the network connection, collect data and
calculate NBBO. It also provides an API so that customers can build their own
applications based on C or C++ language. They also provide a series of sample
application to analyze data.

3

One function provided by the API can completely print out the received quote or trade
update in the following format,
symbol: AAPL
 trigger: FH_TRIGGER_ASK
 updates included: 1
 status: FH_STATUS_BOOK_SUSPECT
 subscription flags: FH_REFRESH_FULL | FH_AGGREGATE_PRICE | FH_DEPTH_LIMITED
| FH_DELIVERY_CALLBACK
 feed: FH_FEED_UQDF pid: FH_PID_NYSE_ARCA sequence number: 22572032 line number:
0
 time: 17:25:23.080000000
 timestamp: 96078685308100
bids (1):
 level[01]: numOrders: 0, volume: 100, price: 476.7000, time: 17:24:31.681000000
asks (1):
 level[01]: numOrders: 0, volume: 400, price: 476.7600, time: 17:25:23.080000000

The key information includes the symbol, the trigger type, the feed (through which
channel we obtain the data), the exchange (shown as pid) where the quote is initiated, the
time that the exchange updates the information, the timestamp that the Redline server
receives the update, the bid and ask prices, volumes, and the time they are updated. In the
example above, it is a new ask quote, which happens at 17:25:23.08 in exchange NYSE
ARCA. The moment it happens is recorded in both the main time field and the ask time
field.

The data frequency is very high, with the lag between two updates as small as a few
nanoseconds. In order to record the data arrival time correctly, the program needs to have
a dedicated software thread to handle the information so that it processes the current data
very quickly and becomes available for the next data. As a result, the CPU may be idle
for more than 90% of the time. By dedicating computational resources to this we can
reduce the possibility that a new update arrives at the moment that the CPU is still
processing other jobs, so that it cannot be processed immediately. Since the data process
includes obtaining the timestamp, it will cause the recorded update arrival time to be
delayed.

We develop a multi-threaded code to deal with this. First, there is a thread #0 hidden
behind the Redline API to communicate with the hardware such as the network interface
card. It sends out call back function to thread #1, which saves the update information into
a FIFO queue that temporarily stores information. Another thread (#2) then sequentially
checks the FIFO queue. If there is new data then remove it from the FIFO queue and print
out to IO devices. Furthermore, we apply specific technology so that threads #0 and #1
are assigned to fixed CPUs (The server is a multi-core machine with 24 CPUs). In this

4

case thread #1 is the dedicated CPU that conducts the minimum amount of work,
including receiving the update, getting the timestamp and saving it to the FIFO queue.

Fig 2. Multi-thread program diagram

Another issue to handle is the correctness and accuracy of the timestamp. As a fact, the
clocks of different exchanges are not synchronized. So the exchange update time cannot
be used as a guideline on when the update happens. On the other hand, we are more
interested in the time that the trading system receives the updates. Thus we employ a
software clock to record the information arrival time. Specifically, we use the timestamp
field as shown in the example, which is available through the Redline API. Note that it is
stored as a 64-bit integer value, which is actually the count of CPU ticks starting from
system reboot time. This value can be converted into real clock up to the accuracy of one
nanosecond.

We collect daily data for six symbols: AAPL, AMZN, SOHU, SQQQ, FSLR, DNDN.
The size of daily data file ranges in 200-500 MegaBytes. We further wrote Perl and Unix
Shell scripts to pre-process the data and transfer the data to a local Windows machine
through ftp. The main data analysis procedure is coded in Matlab.

Call back Thread
Getting updates

#1

Main() Thread
I/O
#2

Data_t
…

Data_2
Data_1
Data_0

5

Appendix B: Sample Data

Symbol Exchange PID NBBO Time stamp Ask price Ask size Bid price Bid size Trade price Trade size Trigger
AAPL FH_PID_NYSE_ARCA SIP 09:30:10.544572841 547.1 100 547.29 200 0 0 1004
AAPL FH_PID_NYSE_ARCA RL 09:30:10.544573019 547.1 100 547.29 200 0 0 1004
AAPL FH_PID_NYSE_ARCA SIP 09:30:10.618426062 547.1 100 547.31 300 0 0 1004
AAPL FH_PID_NYSE_ARCA RL 09:30:10.618426317 547.1 100 547.31 300 0 0 1004
AAPL FH_PID_NSX SIP 09:30:10.644072413 547.1 100 547.31 300 0 0 1000
AAPL FH_PID_NSX RL 09:30:10.644072613 547.1 100 547.31 300 0 0 1000
AAPL FH_PID_NASDAQ RL 09:30:10.667109263 547.1 100 547.29 400 0 0 1004
AAPL FH_PID_NYSE_ARCA SIP 09:30:10.699665334 547.1 100 547.29 200 0 0 1004
AAPL FH_PID_NYSE_ARCA RL 09:30:10.699665455 547.1 100 547.29 200 0 0 1004
AAPL FH_PID_BATS_BZX RL 09:30:10.699665993 547.1 100 547.28 300 0 0 1004
AAPL FH_PID_BATS_BZX SIP 09:30:10.699666122 547.1 100 547.28 300 0 0 1004
AAPL FH_PID_BATS_BYX RL 09:30:10.699666636 547.1 100 547.27 200 0 0 1004
AAPL FH_PID_BATS_BYX SIP 09:30:10.699666895 547.1 100 547.27 200 0 0 1004
AAPL FH_PID_EDGA RL 09:30:10.699667199 547.1 100 547.31 300 0 0 1004
AAPL FH_PID_EDGA SIP 09:30:10.699667601 547.1 100 547.31 300 0 0 1004
AAPL FH_PID_NYSE_ARCA SIP 09:30:10.701459264 547.1 100 547.29 200 0 0 1004
AAPL FH_PID_NYSE_ARCA RL 09:30:10.701459282 547.1 100 547.29 200 0 0 1004

* NBBO - SIP vs. Redline (RL)
* Triggers - 1002: TRIGGER_BID; 1004: TRIGGER_ASK; 1108: TRIGGER_TRADE;

6

Appendix C: Percentage of time an exchange is on top of NBBO book

Symbol Feed &bid/ask FH_PID_BATS_BYX FH_PID_BATS_BZX FH_PID_EDGX FH_PID_EDGA FH_PID_NASDAQ FH_PID_NYSE_ARCA
AAPL SIP ask 2.99% 8.54% 16.39% 3.81% 16.66% 39.22%

 SIP bid 3.51% 7.45% 14.92% 5.17% 15.99% 38.83%
 Redline ask 5.21% 8.63% 16.29% 3.34% 14.74% 39.08%
 Redline bid 5.59% 7.74% 14.68% 4.48% 14.37% 38.80%

GOOG SIP ask 2.97% 8.72% 3.13% 5.91% 26.44% 18.63%
 SIP bid 12.32% 10.73% 2.50% 5.72% 24.93% 18.04%
 Redline ask 4.70% 8.65% 2.95% 4.88% 25.38% 18.61%
 Redline bid 13.91% 10.74% 2.44% 5.68% 23.85% 17.92%

ADRE SIP ask 11.87% 3.11% 7.82% 75.13%
 SIP bid 0.48% 0.03% 74.41% 25.04%
 Redline ask 11.53% 3.11% 8.83% 75.13%
 Redline bid 0.48% 0.03% 74.41% 25.04%

KNDI SIP ask 0.04% 0.27% 61.25% 38.41%
 SIP bid 11.17% 18.60% 23.76% 45.92%
 Redline ask 0.04% 0.27% 61.25% 38.41%
 Redline bid 11.17% 18.60% 23.76% 45.91%

QQQC SIP ask 99.71% 0.28%
 SIP bid 2.29% 97.70%
 Redline ask 99.66% 0.28%
 Redline bid 2.29% 97.70%

QQQM SIP ask 25.15% 36.74% 37.85%
 SIP bid 35.16% 27.73% 37.09%
 Redline ask 42.83% 17.01% 39.91%
 Redline bid 38.70% 24.20% 37.10%

