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ABSTRACT

We examine the network of trading relationships between insurers and dealers in the
over-the-counter (OTC) corporate bond market. Regulatory data show that one-third
of insurers use a single dealer, whereas other insurers have large dealer networks.
Execution prices are nonmonotone in network size, initially declining with more deal-
ers but increasing once networks exceed 20 dealers. A model of decentralized trade in
which insurers trade off the benefits of repeat business and faster execution quanti-
tatively fits the distribution of insurers’ network size and explains the price–network
size relationship. Counterfactual analysis shows that regulations to unbundle trade
and nontrade services can decrease welfare.

INSURANCE COMPANIES ARE VITAL FOR risk sharing: In exchange for premium
payments, they compensate for loss, damage, injury, treatment, or hardship.
To provide this coverage, insurance companies invest in a variety of financial
assets. However, corporate bonds dominate their investment portfolios,
accounting for almost 70% of their investments with a total value close to
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$4 trillion.1 To facilitate prompt compensation to policy holders, insurers need
to be able to liquidate their holdings quickly without incurring large trans-
action costs (Koijen and Yogo (2015), Chodorow-Reich, Ghent, and Haddad
(2016)). Yet, corporate bonds trade on decentralized over-the-counter (OTC)
markets, which are less liquid than centralized exchanges due to search fric-
tions arising from fragmentation and limited transparency (Duffie, Garleanu,
and Pedersen (2005, 2007), Weill (2007), Vayanos and Wang (2007)). Insurers
therefore have to search for best execution across more than 400 active broker-
dealers. In this paper, we investigate whether insurers and other market
participants search randomly in the OTC corporate bond market, or whether
they build long-term relations with dealers to mitigate search frictions.

Regulatory data provide information on the transactions between more than
4,300 insurers and their dealers over the period 2001–2014. Using these data,
we begin by empirically examining insurers’ choice of trading network and the
relation between the network choice and transaction prices. Figure 1 provides
examples of two different insurer-dealer trading networks. Panel A shows
buys and sells for an insurer that trades exclusively with a single dealer,
whereas Panel B shows buys and sells for an insurer that trades with multiple
dealers over time. We find that insurers tend to form small but persistent
dealer networks. At one extreme, approximately one-third of insurers trade
with a single dealer annually. At the other extreme, a small fraction of insurers
trades with up to 40 dealers each year. The overall degree distribution follows
a power law with exponential tail starting at about 10 dealers. When we
estimate trading costs as a function of network size N, we find that costs are
nonmonotone in N—costs decline with N for small networks and then increase
once N exceeds 20 dealers.

Our results provide insights into which models of trade in OTC markets
better describe the empirical evidence on client-dealer networks and trading
costs. In random search models, clients repeatedly search for best execution
without forming a finite network of dealers (Duffie, Garleanu, and Pedersen
(2005, 2007), Lagos and Rocheteau (2007, 2009), Gavazza (2016)). The fact
that insurers form finite dealer networks suggests that adding dealers must
be costly for insurers. Traditional models of strategic search (e.g., Stigler
1961) assume that each additional dealer imposes a fixed cost on insurers, in
which case insurers add dealers to improve prices up to the point at which the
marginal benefit of doing so equals the fixed cost. However, this leads prices to
improve monotonically in network size, which is inconsistent with our finding
that trading costs are nonmonotone in network size.

To rationalize the empirical evidence, we build a model of decentralized
trade in which insurers—or more generally, clients—establish relationships
with multiple dealers and trade off the benefits of repeat business and faster
execution. We model the relationship between clients and dealers as having

1 Insurers are major suppliers of capital to corporations. Schultz (2001) and Campbell and
Taksler (2003) estimate that insurers hold between 30% and 40% of corporate bonds and account
for about 12% of trading volume.
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Figure 1. Two types of dealer-client trading networks. This figure shows the buy (squares)
and sell (circles) trades of two insurance companies with different dealers. We sort dealers on the
vertical axis by the first time they trade with the corresponding insurance company. (Color figure
can be viewed at wileyonlinelibrary.com)

two components. The first component captures the extent of repeat trading
between a client and a dealer in her network, which both the client and
the dealer take into account when negotiating the terms of a transaction.
The second component captures all client-dealer business unrelated to bond
trading. The latter component includes transactions in other securities, the
ability to purchase newly issued securities, as well as other soft dollar and
nonmonetary transfers such as investment research.

In our model, a single console bond trades on an interdealer market that
clients can access only through dealers. Dealers have search intensity λ and
upon trading with a client transact at the competitive interdealer bid and ask
prices. Clients initially start without a bond but stochastically receive trading
shocks with intensity η that lead them to simultaneously contact N dealers to
buy. Trading intensity η, and hence N, vary across clients. A client’s effective
search intensity, � = Nλ, is increasing in the number of dealers. The first
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dealer to find the bond captures all benefits from the transaction. Our trading
mechanism is therefore identical to repeat winner-takes-all races (Harris and
Vickers (1985)). The bond’s purchase price is set by Nash bargaining. Once an
owner, the client stochastically receives a liquidity shock forcing her to sell the
bond. The mechanics of the sell transaction are the same as those of the buy
transaction. Both dealers and clients derive value from repeat transactions,
leading to price improvement for more frequent clients in Nash bargaining.

Existing OTC models provide predictions about network size or prices, but
not both. Random search models assume that investors may contact all other
counterparties. Other models allow investors to choose specific networks or
markets, but exogenously fix the structure of those networks. For instance,
in Vayanos and Wang (2007), investors search for a counterparty between
two markets for the same asset: a large market with faster execution but
higher transaction costs, and a small market with slower execution but lower
transaction costs. Neklyudov and Sambalaibat (2016) use a similar setup as
in Vayanos and Wang (2007) but investors choose between dealers with either
large or small interdealer networks instead of asset markets. By contrast,
both network size and transaction prices are endogenously determined in the
equilibrium of our model.

Our analysis highlights an important trade-off leading to optimal network
size, N∗, and transaction prices. In particular, clients trade off repeat relations
with dealers and the benefits of dealers competing to provide faster execution.
More dealers lead to faster execution. However, the value of repeat relations
declines in the number of dealers. Dealers compensate for a loss of repeat
business by charging higher spreads. Eventually the costs of having a larger
network outweigh the benefits and dealers’ spread starts to increase with
network size. This pattern corresponds to the empirical nonmonotonicity
of trading costs with respect to network size. The value of repeat relations
diminishes more slowly with the addition of dealers for clients with larger
trading intensity as dealers compete for more repeat business. Therefore,
these larger clients use more dealers and get better execution as benefits from
having more repeat business outweigh the costs of having a larger network.

The model can quantitatively match the cross-section of insurers’ observed
network sizes and transaction prices. Doing so requires structural estimation
of the model parameters not directly observable in the data, �. Clients’ trading
intensity, η, is the one parameter for which we observe its cross-sectional
distribution, p(η), in the data. Insurer i’s trading shock intensity, ηi, can
be estimated as the average number of bond purchases per year over the
sample period. We estimate ηi separately for each insurer using multiple
years of trade data, which enable us to construct p(η). The model provides the
optimal network size, N∗(�, ηi), for each client i as a function of its trading
intensity ηi. The model predictions allow us to estimate the unobservable
model parameters � by matching the model-implied distribution of network
size, p(N∗), to its empirical counterpart.

Using the structurally estimated parameters along with the distribution of
trading intensities quantitatively reproduces both the empirical distribution
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of network size and the dependence of trading costs on network size found in
the data. The model estimates reasonable unobserved parameters: Dealers
can find the bond within a day or two, and insurers’ average holding period
ranges from two to four weeks. The sunk cost of obtaining quotes from a
dealer is small, whereas insurers’ estimated willingness to pay for immediacy
is high. Allowing dealers’ bargaining power to decrease with insurers’ trading
intensity improves the model’s fit. Dealers’ bargaining power when insurers
are forced to sell is high and relatively insensitive to insurers’ trading
frequency. In contrast, dealers’ bargaining power when insurers are buying
declines significantly with insurers’ trading frequency.

The regulatory authorities in the United States and Europe address OTC
market frictions using different approaches. Regulatory initiatives in the
United States, including the Dodd-Frank Act, encourage dealer competition by
fostering multilateral electronic trading platforms. But these erode long-term
client-dealer relationships. In Europe, the Markets in Financial Instruments
Directive (MiFID) II requires the unbundling of trading and nontrading dealer
services, which are now supposed to be priced and sold separately. Little
evidence exists either empirically or theoretically on the welfare implications
of the proposed regulations for dealers and their clients.

Our model enables us to quantify the regulatory impact on trading costs
and the value of repeat interactions. We perform counterfactual analysis
by reducing the probability of repeat trading with the same dealer or by
eliminating the nontrade value of relationships. All types of insurers incur
higher transaction costs when the probability of repeat trading with the same
dealer is reduced, for example, due to mandatory use of anonymous electronic
trading venues/facilities.2 The impact on various insurer types and sizes is
different. Insurers that trade more frequently and, as a result, have larger
networks see a smaller increase in transaction costs than insurers that trade
less frequently and tend to trade repeatedly with one to five dealers.

Unbundling trade and nontrade insurer-dealer business as stipulated
by MiFID II regulations reduces the optimal network size and decreases
transaction costs for all insurers but the least active. The presence of nontrade
relationship value leads trading networks to be larger than what is required
to minimize trading costs. The loss of nontrade relationship value can induce
insurers that trade infrequently to cease trading completely, reducing market
liquidity. Thus, unless the nontrade relationship value can be captured
efficiently in an unbundled market, insurer welfare declines.

Relation to literature: Our paper complements the empirical literature on
the microstructure of OTC markets and its implications for trading, price
formation, and liquidity. Edwards, Harris, and Piwowar (2007), Bessembinder,
Maxwell, and Venkataraman (2006), Harris and Piwowar (2006), Green,
Hollifield, and Schürhoff (2007) document the magnitude and determinants of

2 Our counterfactual analysis takes the current decentralized market structure as given. It
cannot address what would happen if, say, the trading mechanism were centralized. The latter is
an interesting and important topic left for future research.
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transaction costs for investors in OTC markets. Our paper deepens our under-
standing of OTC trading costs by using the identities of all insurers along with
their trading networks and execution costs. These characteristics help explain
the substantial heterogeneity in execution costs observed in the studies above.
Harris (2015) and O’Hara, Wang, and Zhou (2018) examine best execution in
OTC markets without formally studying investors’ optimal network choice.

Our study also relates to an empirical literature on the value of relationships
in financial markets. Similar to our paper, Bernhardt et al. (2005) show that
on the London Stock Exchange broker-dealers offer greater price improvement
to more regular customers.3 However, Bernhardt et al. (2005) do not examine
client-dealer networks and in their centralized exchange setting quoted prices
are observable. Also similar to our paper, Afonso, Kovner, and Schoar (2013)
study the overnight interbank lending OTC market and find that a majority
of banks in the interbank market form long-term, stable, and concentrated
lending relationships that significantly affect the transmission of liquidity
shocks across the market. But Afonso, Kovner, and Schoar (2013) do not
formally model the network and do not observe transaction prices. DiMaggio,
Kermani, and Song (2017) study interdealer relationships in the OTC market
for corporate bonds. Our focus, in contrast, is on client-dealer relationships.4

The role of the interdealer market in price formation and liquidity provision
are the focus in Hollifield, Neklyudov, and Spatt (2017) and Li and Schürhoff
(2019). These studies examine the effect of heterogeneity in dealers’ network
centrality on the liquidity they provide and the prices they charge. By contrast,
we focus on how heterogeneity in clients’ trading intensity affects their
network choices and transaction prices.

The search-and-matching literature is vast. Duffie, Garleanu, and Pedersen
(2005, 2007) provide a prominent treatment of search frictions in OTC financial
markets, whereas Lagos and Rocheteau (2007, 2009), Weill (2007), Feldhütter
(2012), Hugonnier, Lester, and Weill (2018), Neklyudov (2019), and Üslü
(2019) generalize the economic setting. However, these papers do not focus
on repeat relationships, nor do they provide incentives to investors to have a
finite network size. Gavazza (2016) structurally estimates a model of trading
in decentralized markets with two-sided one-to-one search and bilateral
bargaining using aircraft transaction data. At the market level, Gavazza
(2016) quantifies the effects of market frictions on prices and allocations. We
use the structural estimation of our one-to-many search-and-match model to
quantify the effects of client-dealer relationships on execution quality in the
OTC market for corporate bonds.

Directed search models allow for heterogeneous dealers and investors, as
well as arbitrary trade quantities. These models typically rely on a concept of

3 For a comprehensive theoretical model of loyalty, see Board (2011).
4 Our paper also relates to a growing literature on trading in a network, for example, Gale

and Kariv (2007), Gofman (2011), Condorelli and Galeotti (2012), Colliard and Demange (2014),
Atkeson, Eisfeld, and Weill (2015), Chang and Zhang (2015), Babus (2016), Glode and Opp (2016),
Babus and Hu (2017), and Babus and Kondor (2018). However, while these papers also consider
persistent one-to-one dealer-client relationships, our model focuses largely on clients’ networks.
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competitive search equilibrium proposed by Moen (1997) in the context of labor
markets; examples include Guerrieri, Shimer, and Wright (2010), Guerrieri and
Shimer (2014), and Lester, Rocheteau, and Weill (2015). These papers explain
assortative matching between clients and dealers and show that heterogeneity
affects prices and liquidity. However, the matching technology employed by
these papers is one-to-one, which limits the network size to a single dealer.

The remainder of the paper is organized as follows. Section I describes the
data. Sections II documents our findings on insurer trading activity, dealer
networks, and trading costs. In Section III, we develop an OTC model with
repeat trading and dealer networks. We test the predictions of our model and
provide counterfactuals in Section IV. Finally, Section V concludes.

I. Data

Insurance companies, which invest heavily in the corporate bond market,
file quarterly reports of trades of stocks and long-term bonds to the National
Association of Insurance Commissioners (NAIC). For each trade, the NAIC
Schedule D data include the dollar amount, par value, and date of the trans-
action,5 the insurer code, the counterparty dealer name, and the direction
of the trade for both parties, whether the insurance company was buying
from or selling to the dealer. NAIC started collecting the Schedule D data
almost a decade before the Trade Reporting and Compliance Engine (TRACE)
became available, which makes the NAIC transaction data an important data
source for studies of the corporate bond market. For example, Schultz (2001)
uses these data to provide one of the earlier estimates of transaction costs of
corporate bonds. Ellul, Jotikasthira, and Lundblad (2011) provide a thorough
discussion of the NAIC data. The NAIC data are uniquely suitable for our
study as they allow us to observe, for each trade, the identities of both the
customer (insurer) and the dealer.6 The regulatory NAIC data differ from
publicly available sources in this respect.

There are several differences between the raw filing data used in this
paper and, for instance, the widely used “Time and Sales Data” from Mergent
Fixed Income Security Database (FISD) available on Wharton Research Data
Services (WRDS) (e.g., Bessembinder, Maxwell, and Venkataraman (2006)).
Most importantly, the public data do not identify the insurers, which is crucial
to identifying relationships in our paper. Moreover, the Mergent data only
use filings from the last quarter of each year, which report all purchases and
sales made over the calendar year. However, the annual reports suppress
some trades that are contained in the quarterly report. For completeness, we
compile the trade data using quarterly reports for Q1–Q3 and all trades in Q4
from the annual report.

To clean the raw NAIC data, we first limit attention to corporate bond
transactions. To focus on secondary trading, we further limit attention to

5 The NAIC data preclude intraday analysis as they do not include trades’ time stamps.
6 Even the supervisory TRACE data contain only the identity of the dealers.
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trades more than 60 days after issuance and more than 90 days to maturity.
We additionally remove nonsecondary transactions that are associated with
redemptions and calls. One of the most challenging yet important tasks of
cleaning the NAIC data relates to standardization of counterparty (dealer)
identities. The raw filings report hand-typed counterparty names, which
contain typos and alternative names for a given dealer. We use fuzzy matching
and human checking to standardize dealer names. Details on the data cleaning
and filtering procedure are provided in the Appendix. Our final NAIC sample
covers all corporate bond transactions between insurance companies and
dealers reported in NAIC from January 2001 to June 2014.

We supplement the NAIC data with a number of additional sources. Bond
and issuer characteristics come from Mergent FISD and Lipper eMAXX.
Insurer financial information comes from A.M. Best and SNL Financial. For
execution cost analysis, we incorporate daily corporate bond quotes (dealer
bids) from Merrill Lynch. The final sample contains 506,000 insurer buys and
497,000 insurer sells.

Table I reports descriptive statistics for the corporate bond trades (Panel A)
and insurers (Panel B) in our 2001–2014 sample. There are 4,324 insurance
companies in our sample. Insurance companies fall into three groups based
on their product types: (I) health, 617 companies (14% of the sample); (II) life,
1,023 companies (24% of the sample); and (III) property and casualty (P&C),
2,684 companies (62% of the sample). Health insurance companies account
for 16.3% of trades and 4.4% of yearly trading volume, and trade on average
with 6.59 dealers each year. Life insurance companies account for the majority
(46.9%) of trades and 70.4% of yearly trading volume, and trade on average with
8.06 dealers each year. P&C insurance companies comprise 36.8% of trades and
25.2% of yearly trading volume, and trade on average with 4.81 dealers each
year.

The distribution of trading activity is skewed, with the top 10 insurance
companies accounting for 6.3% of trades and 14.3% of trading volume. These
insurers use almost 30 dealers on average, which is much higher than the
sample average of 5.83 dealers per insurer. The top 100 insurers account for
27.8% of trades and 45.3% of trading volume. The 3,000 smallest insurers use
on average 3.76 dealers a year.

Order splitting is not common: An insurer trades the same bond multiple
times on just 1.2% of all insurer-days (13,000 out of 1.1 million trades). This
finding is consistent with larger transactions being cheaper to execute, which
eliminates incentives for order splitting.

Insurers trade a variety of corporate bonds. The average issue size is quite
large at $917 million and is similar across an insurer’s buys and sells. The
average maturity is nine years for insurer buys and eight years for insurer
sells. Bonds are on average 2.88 years old, with sold bonds being a little older
at 3.09 years. Finally, 75% of all bonds traded are investment grade, whereas
only 1% are unrated with the remainder being high yield. Privately placed
bond trades comprise a small part of our sample at 8%.
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Table I
Descriptive Statistics

This table reports descriptive statistics for trades (Panel A) and insurers (Panel B) in our sample
from 2001 to 2014. Panel A reports the average across all trades over the sample period. Panel B
reports the yearly average across insurers.

Panel A: Trades

All Trades Insurer Buys Insurer Sells

No. of trades (k) 1,003 506 497
Trade par size ($mn) 1.80 1.73 1.87
Bond issue size ($mn) 916.66 921.37 911.87
Bond age (years) 2.88 2.67 3.09
Bond remaining life (years) 8.54 8.94 8.13
Private placement (%/100) 0.08 0.08 0.07
Rating (%/100) – – –

Investment-grade 0.74 0.76 0.72
High-yield 0.25 0.23 0.28
Unrated 0.01 0.01 0.01

Panel B: Insurers (N = 4,324)

Volume ($mn) No. of Trades No. of Dealers

All insurers 17.32 9.52 5.83
Insurer type

Health (617, 14%) 10.66 21.74 6.59
Life (1,023, 24%) 103.00 37.71 8.06
P&C (2,684, 62%) 14.08 11.29 4.81

Insurer activity
Top 10 2,111.88 517.92 29.89
11–100 509.49 233.04 22.07
101–1,000 75.66 46.22 11.56
1,001+ 3.80 4.24 3.76

Insurer characteristics: Mean (SD) – –
Insurer size 4.97 (0.90) – –
Insurer RBC ratio 3.36 (0.35) – –
Insurer cash-to-assets 3.49 (10.79) – –
Life insurer 0.24 (0.42) – –
P&C insurer 0.62 (0.48) – –
Insurer rated A–B 0.37 (0.38) – –
Insurer rated C–F 0.01 (0.07) – –
Insurer unrated 0.53 (0.39) – –

The risk-based capital (RBC) ratio measures an insurer’s capital relative to
the riskiness of its business. The higher the RBC ratio, the better capitalized
the firm is. Insurer size is captured by reported assets. The cash-to-assets
ratio is cash flow from insurance business operations divided by assets.

Overall, there is a large degree of heterogeneity on the client side. Insurance
companies buy and sell large quantities of different corporate bonds and
execute these transactions with one to as many as 40 dealers.
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II. Empirical Evidence on Insurer Trading Networks

This section empirically characterizes insurers’ trading intensity and the
size of their trading networks. We investigate the determinants of both the
extensive margin, that is, the number of trades, and the intensive margin,
that is, the total dollar volume traded, of insurer trading in a given year. Both
margins reveal that insurers have heterogeneous trading needs.

A. Insurer Trading Activity

We start with univariate analysis. The majority of insurers do not trade
often at an annual frequency: About 30% of insurers trade just once per year,
whereas only 1% of insurers make at least 25 trades per year. This result is
consistent with evidence in Table I indicating that while the top 100 insurers
constitute just 0.23% of the insurer population, they account for as much as
32% of all trades in our sample. The mean number of trades per year is 19,
and the median is 14, with several insurers making more than 1,000 trades in
some years and up to 2,200 trades in a year.

Figure 2 shows the average number of trades per year across insurers.
For the large fraction of insurers that do not trade in a given month, we
report an annual figure. The annual distributions follow a power law with
p(X) ∝ 0.27 × X−1.21 for all insurer trades (buys and sells) combined. The
power law is 0.34 × X−1.31 for insurer buys (Panel A) and 0.40 × X−1.58 for
insurer sales (Panel B). Visually, the power law distributions for insurer buys
and sales in Figure 2 look similar. This suggests that insurers buy and sell at
similar rates, even though these rates vary significantly across insurers.

We next examine which characteristics explain the heterogeneity in trading
intensity. Table II documents the determinants of the intensive margin
(trading volume in $bn, column (1)) and the extensive margin (number of
trades, column (2)) of annual trading by insurance companies using pooled
regressions with time fixed effects. The specification consists of the trade par
size, insurer, and bond characteristics, as well as the variation in trade size
and bond characteristics across all trades of the insurer during the year. The
measures capturing variation in these characteristics capture complexity in
insurers’ portfolios and their need for more frequent rebalancing and dealer
specialization. Insurer characteristics include the insurer’s size, cash-to-assets
ratio, type, RBC ratio, and rating. Bond and trade characteristics include size,
age, maturity, rating, a private placement dummy, and trade size. Insurer size,
the RBC ratio, and the dependent variables are log-transformed. All regressors
are averaged across all trades of the insurer during the period and lagged by
one year.

Our evidence is consistent with insurance companies having persistent
portfolio rebalancing needs. Logarithms of both measures of trade intensity
are persistent: the coefficient on lagged log-volume is 0.67 and the coefficient
on lagged log-number-of-trades is 0.76. Both coefficients are statistically
significant at the 1% level.
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Figure 2. Insurer trading activity. This figure shows the distribution of the number of insurer
buys (top) and sales (bottom) per year. We use a log-log scale. (Color figure can be viewed at
wileyonlinelibrary.com)

Insurer trading strongly correlates with insurer size, type, and quality as
well as with bond type and bond variety as these variables explain 79% of the
variation in annual trading volume and 65% of the variation in annual number
of trades. A twofold increase in insurer size increases trading volume by 22%.
Larger insurance companies and insurers with a higher cash-to-assets ratio
also trade more often and submit larger orders. Insurers with a higher RBC ra-
tio trade less often than insurers with a low RBC ratio. Both margins of trading
increase with the insurer’s rating, that is, insurers with the lowest rating (C–F)
trade less than higher rated insurers. Life insurers tend to submit larger orders.

Both margins of bond turnover increase as bond ratings decline: Lower rated
bonds are traded more often and in larger quantities. Insurers tend to trade
privately placed bonds less, potentially because they own fewer of them than
publicly placed bonds. Both margins of bond turnover decline with par size
and bond age, indicating that the majority of insurers are long-term investors.
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Table II
Insurers’ Trading Activity

This table presents results on the determinants of insurance company trading activity. We measure
trading activity as the total dollar volume traded in a given year and, alternatively, by the number
of trades over the same time horizon. All dependent variables are log-transformed by 100 × log(1
+ x). All regressors are averaged across all trades of the insurer during the period and lagged
by one period. Estimates are from pooled regressions with time fixed effects. Standard errors are
adjusted for heteroskedasticity and clustering at the insurer and time levels. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% level, respectively.

Volume ($mn) No. of Trades
Determinant (1) (2)

Lagged volume 0.67*** –
Lagged no. of trades – 0.76***

Insurer size 21.95*** 14.51***

Insurer RBC ratio −1.53 −4.68***

Insurer cash-to-assets 0.27*** 0.26***

Life insurer 4.96*** 0.27
P&C insurer −1.06 −3.89**

Insurer rated A–B 5.13** 5.80***

Insurer rated C–F 1.97 −0.43
Insurer unrated 6.39*** 5.79**

Trade par size −3.62*** −3.22***

Bond issue size −0.00 0.00
Bond age −0.79*** −1.25***

Bond remaining life −0.04 −0.05
Bond high-yield rated 4.62*** 4.65***

Bond unrated −6.67 −12.81*

Bond privately placed −5.37 −3.56

Variation in trade size 4.50*** 1.52***

Variation in issue size 0.00 0.00
Variation in bond age 0.37 0.39
Variation in bond life 0.52*** 0.65***

Variation in bond rating −0.35 0.04
Variation in rated-unrated 39.60* 6.16
Variation in private-public 1.62 −1.60
No. varieties traded 9.23*** 13.64***

Year fixed effects Yes Yes
R2 0.789 0.646
N 30,029 30,029

Neither measure of trade intensity depends on bond issue size and remaining
life as the respective coefficients are not statistically significant.

Finally, both trading volume and the number of trades decline if an insurer
trades more bond varieties. However, a specific variety can have the opposite
effect on trading intensity. For instance, both measures of trading intensity
increase with variation in bond rating and bond life. This result is consistent
with insurers increasing trading intensity when rebalancing their portfolios,
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that is, shifting from high-yield to investment-grade bonds or from younger to
older bonds.

Overall, Table II reveals large heterogeneity in trading intensity across in-
surers. Trading intensity depends on the variety of bonds traded, bond-specific
characteristics, and the insurer’s type and quality. We now turn to how these
characteristics affect insurers’ choice of dealer network.

B. Properties of Insurer Networks

The results above document a large degree of heterogeneity in insurers’
trading intensity, with some insurers trading twice per day while others trade
just once per year. In this section, we study how many dealers they trade with
over time and how persistent these networks are. While insurers should have
heterogeneous demands for their dealer network depending on their trading
intensity, the concentration and persistence of their trading reveals basic
network formation mechanisms.

We start with the two illustrative insurer-dealer relationships depicted
in Figure 1. These examples show that insurers do not trade with a dealer
randomly picked from a large pool of corporate bond dealers. Instead, insurers
buy from the same dealers that they sell bonds to and they build long-term
repeat, but nonexclusive relationships. We examine how representative the
examples in Figure 1 are and how insurer characteristics affect network size.

Figure 3 plots the degree distribution across insurers by year, that is,
the fraction of insurers trading on average across all years with the given
number of dealers, using a log-log scale. The figure shows that insurers trade
with up to 31 dealers each year. We note that some insurers trade with as
many as 40 dealers, but such instances represent less than 1/10,000 of the
sample. Exclusive relationships are dominant, with almost 30% of insurers
trading with a single dealer in a given year.7 The degree distributions in
Figure 3 follow a power law with exponential tail starting at about 10 dealers.
This pattern is consistent with insurers building networks that they search
randomly within. Fitting the degree distribution to a Gamma distribution by
regressing the log of the probabilities of each N on a constant, the logarithm
of N, and N yields the following coefficients:

For all insurer trades: p(N) ∝ N0.15e−0.20N,

For insurer buys: p(N) ∝ N−0.12e−0.22N,

For insurer sales: p(N) ∝ N0.01e−0.24N. (1)

7 Because a large number of insurers do not trade in a given year. Figures 2 and 3 are not
directly comparable. Figure 2 plots the average number of trades per year, rounded to the next
integer and winsorized from below at one. For about half of insurer-years, there is no trade by
an insurer. Figure 3 does not impute a zero for a given year if the insurer does not trade. Hence,
27.7% of insurers use a single dealer in a year when they trade, whereas 14.8% of insurers trade
just once in a year. It follows that many insurers that trade more than once in a year use a single
dealer. Figure 4 further examines the relation between trading activity and network size.
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Figure 3. Size of insurer-dealer trading networks. This figure shows the degree distribution
for insurer-dealer relationships by year for insurer buys (top) and sales (bottom). We use a log-log
scale. (Color figure can be viewed at wileyonlinelibrary.com)

Table III reports the determinants of insurer-dealer network size using
pooled regressions with time fixed effects.8 We measure the size of the trading
network using the number of dealers that an insurance company trades with
in a given year. We log-transform all dependent variables by 100 × log(1 + x)
and average all regressors across all trades by the same insurer during the
year and lag them by one year. We perform the estimation on the full sample
(column (1)) and, to examine how these vary with insurer size, on subsamples
of small and large insurers based on asset size. We classify an insurer as small

8 Table IA.I in the Internet Appendix, which is available in the online version of the article
on The Journal of Finance website, reports correlations between insurer-dealer volume, network
size, and insurer characteristics. The correlations between insurer-dealer volume, network size,
and insurer size are all significantly positive, but less than 1. The correlations with other insurer
characteristics are weak.
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Table III
Size of Insurers’ Trading Network

This table presents results on the determinants of the size of insurers’ trading network. We measure
the size of the trading network as the number of dealers that an insurance company trades with
in a given year. See the caption of Table II for additional details. Standard errors are adjusted for
heteroskedasticity and clustering at the insurer and time levels. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% level, respectively.

All Insurers Small Insurers Large Insurers
Determinant (1) (2) (3)

Lagged no. of dealers 0.75*** 0.62*** 0.75***

Insurer size 9.95*** 7.93*** 5.04***

Insurer RBC ratio −3.58*** −3.64*** 0.11
Insurer cash-to-assets 0.15*** 0.15*** 0.11**

Life insurer −0.13 0.75 −2.77**

P&C insurer −2.60*** −1.20 −3.59***

Insurer rated A–B 4.12*** 6.00*** 0.13
Insurer rated C–F −1.54 −0.18 −5.42***

Insurer unrated 3.05* 3.98* −2.86**

Trade par size −1.92*** −1.23*** −1.24***

Bond issue size −0.00 −0.00 0.00
Bond age −0.91*** −0.77*** −1.10***

Bond remaining life −0.08 −0.11* 0.10
Bond high-yield rated 1.23 −2.93* 2.56
Bond unrated −13.74*** −12.50*** −7.73
Bond privately placed −3.85 1.10 −10.22

Variation in trade size 0.51 −0.10 0.81*

Variation in issue size 0.00 0.00 0.00
Variation in bond age 0.50** 0.56** 0.16
Variation in bond life 0.50*** 0.41*** 0.11
Variation in bond rating 0.05 0.19 0.36*

Variation in rated-unrated 3.60 −11.38 −24.50
Variation in private-public 1.20 −4.33 3.17
No varieties traded 5.88*** 2.71*** 12.50**

Year fixed effects Yes Yes Yes
R2 0.614 0.350 0.593
N 30,029 18,033 11,996

if it falls in the bottom three size quartiles and as large if it falls in the top
quartile of the size distribution.

Column (1) indicates that insurer size and type, bond characteristics, and
bond variety matter for the size of the dealer network. Large insurers, which
Table II shows have larger trading intensity, trade with more dealers. Insurers
with demand for more bond variety have larger networks even after controlling
for their size (columns (2) and (3)). Higher quality insurers, that is, insurers
with a higher cash-to-assets ratio and higher rating, have larger networks,
potentially due to it being cheaper for a dealer to set up a credit account for
higher quality insurers. However, this effect matters only for smaller insurers,
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Table IV
Persistence in Insurers’ Trading Network

This table reports switching probabilities, p(No. of dealers in t + 1 | No. of dealers in t), for choos-
ing a network size conditional on the insurer’s behavior in the past year.

No. of Dealers Next Year

No. of Dealers This Year 1 2–5 6–10 >10

1 0.61 0.30 0.06 0.03
2–5 0.20 0.54 0.20 0.06
6–10 0.05 0.31 0.40 0.24
>10 0.01 0.07 0.17 0.75

as column (2) indicates, because smaller insurers face larger adverse selection
problems in forming permanent links with dealers. Insurers with greater
variety in the bonds they trade also have larger networks.9 Overall, these
findings suggest that insurers’ network choice is endogenous and influenced
by multiple factors.

Table III shows persistence in the size of the network, with the coefficient on
lagged network size equal to 0.75 (column (1)). This result is mostly driven by
large insurers, as this coefficient equals only 0.62 for small insurers. Table IV
examines this result in more detail by reporting statistics for the frequency
with which insurers adjust their network size. We compute the likelihood that
an insurer uses a certain number of dealers in a given year and compare it to
the corresponding number in the following year. The transition probabilities
are reported in Table IV. Trading relationships are persistent from year to year.
This is especially true for exclusive relationships as the probability of staying
with a single dealer each year is equal to 0.61.10 Insurers with more than
one dealer are unlikely to switch to a single dealer as the annual switching
probabilities are equal to 0.20 for insurers with two to five dealers and 0.06 for
insurers with 6–10 dealers. Insurers with the largest networks (>10 dealers)
tend to maintain large networks over time, with a 75% probability of staying
with a large network. The distribution of insurers shown in Figure 3 together
with stable network sizes are difficult to reconcile with a “pure” random search
model à la Duffie, Garleanu, and Pedersen (2005, 2007).

9 One potential explanation for this result could be that dealers tend to specialize in a few bonds
and, as a consequence, this relation arises mechanically for insurers that demand greater bond
variety. Table IA.II in the Internet Appendix examines whether some dealers trade all bonds and
whether insurers use more than one dealer to trade the same bond. The 10 most active dealers
trade virtually all active bonds (bonds with more than 200 trades for a bond in the sample)—the
fraction of these bonds traded ranges from 95.9% to 99.8%. Table IA.III in the Internet Appendix
shows that for each of these same active bonds, the 10 most active insurers trade in each of them
with more than one dealer on average. These statistics show that specialization does not appear to
be a factor for large dealers and large insurers, which represent a substantial fraction of trading.

10 For consecutive insurer-years with one dealer, the dealer is the same in both years 75% of
the time.
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Figure 4. Insurer trading activity and network size. This figure shows the number of insurer
buys per year per dealer (top) and insurer sales per year per dealer (bottom) for all insurers
with more than one trade per year on average. Boxes correspond to the values at the lower and
upper quartiles, with the medians indicated by the lines inside a box. Whiskers indicate the
lower and upper adjacent Tukey values. We use a log-linear scale. (Color figure can be viewed at
wileyonlinelibrary.com)

One potential concern is that the relationship between the size of the
insurer and the size of its network arises mechanically. Small insurers trade
once or twice per year and thus need only a single dealer, whereas large
insurers need to execute many trades and therefore use many dealers. As
a consequence, small exclusive networks are pervasive simply because they
are used by small insurers. To examine this issue in Figure 4, we plot the
number of insurer buys (left) and sales (right) per dealer and year by network
size. The box and whisker plot provides information on the distribution of
trading frequencies per dealer for each network size. Although there is a fair
amount of cross-sectional variation for small networks, the average number
of trades per dealer decreases when going from one to four dealers. Starting
at five dealers, the number of trades per dealer is increasing in network size.
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This nonmonotonicity of trades per dealer in network size is inconsistent with
network size arising mechanically from trading needs.

In the next section, we study the relation between client-dealer networks
and execution costs.

C. Insurer Trading Costs and Networks

Tables II and III suggest that bond characteristics impact insurers’ trading
intensity. To control for bond, time, and bond-time variation, we compare
transaction prices to daily bond-specific Bank of America-Merrill Lynch
(BAML) bid (sell) quotes. BAML is the largest corporate bond dealer, transact-
ing with more than half of all insurers for almost 10% of trades and volume.
The BAML (bid) quotes can be viewed as representative quotes for insurer
sales and enable us to measure prices relative to a transparent benchmark
price. The BAML quotes essentially provide bond-time fixed effects, which
would be too numerous to estimate in our sample. Our measure of relative
execution cost, given in basis points, is defined as

Execution cost (bp) = BAML Quote − Trade Price
BAML Quote

× (1 − 2 × 1Buy) × 104, (2)

where 1Buy is a dummy variable indicating whether the insurer is buying or
selling. Because some quotes may be stale or trades may be misreported, lead-
ing to extreme cost estimates, we winsorize the distribution at the 1% and
99% levels.

Execution costs depend on the bond being traded, time, whether the insurer
buys or sells, the insurer’s characteristics, the dealer’s identity and character-
istics, and the insurer’s network size. To examine relationship-specific effects
on execution costs, we control for bond and time fixed effects. In principle, if
the BAML data perfectly controls for bond-time effects, the additional bond
and time fixed effects are unnecessary.

The relationship component of transaction costs depends on the properties
of insurers’ networks. Figure 3 and equation (1) indicate that the degree
distribution for insurer-dealer relations follows a Gamma distribution. Accord-
ingly, we include both the size of the network, N, and its natural logarithm,
ln(N), as explanatory variables. Both N and ln(N) are computed over the
prior calendar year. We control for seasonality using time fixed effects, αt, and
for unobserved heterogeneity using either bond characteristics or bond fixed
effects, αi. The other explanatory variables consist of insurer characteristics,
dealer characteristics, or both. We estimate the following panel regression for
execution costs in bond i at time t:

Execution costit = αi + αt + βNit−1 + γ lnNit−1 + θ Xit + εit. (3)

The set of explanatory variables X includes characteristics of the bond as well
as of the insurer and dealer.
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Table V
Execution Costs and Investor-Dealer Relationships

This table presents results on the determinants of execution costs. Execution costs are expressed
in basis points relative to the Merrill Lynch quote at the time of the trade. Standard errors are
adjusted for heteroskedasticity and clustered at the insurer, dealer, bond, and day levels. See the
caption of Table II for additional details. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% level, respectively.

Determinant (1) (2) (3) (4)

Insurer no. of dealers −0.22*** 0.32*** 0.32*** 0.32***

ln(Insurer no. of dealers) – −6.29*** −6.51*** −6.55***

Insurer size −3.72*** −3.59*** −3.52*** −3.95***

Insurer RBC ratio −3.51*** −4.19*** −4.68*** −5.40***

Insurer cash-to-assets −0.04** −0.04** −0.04** −0.03*

Life insurer 4.43*** 4.47*** 5.73*** 7.21***

P&C insurer 1.72** 1.73** 1.99** 2.82***

Insurer rated A–B −0.47 0.01 −0.18 −0.50
Insurer rated C–F 11.29* 11.13* 10.90* 12.18*

Insurer unrated 0.74 0.62 0.55 0.14

Insurer buy 39.56*** 39.27*** 39.71*** 40.17***

Trade size × Buy −0.26*** −0.25*** −0.20** −0.18*

Trade size × Sell 0.53*** 0.50*** 0.48*** 0.52***

Bond issue size – – −0.00*** −0.00***

Bond age – – 0.58*** 0.63***

Bond remaining life – – 0.81*** 0.82***

Bond high-yield rated – – 4.54*** 4.16***

Bond unrated – – −5.96*** −6.53***

Bond privately placed – – 3.38*** 3.26***

Dealer size – – – −5.37***

NYC dealer – – – −6.66***

Primary dealer – – – 2.43
Dealer leverage – – – −5.68**

Dealer diversity – – – 0.41***

Dealer dispersion – – – 0.07
Local dealer – – – 0.23
Dealer distance – – – −0.20
Dealer leverage missing – – – −6.41**

Dealer dispersion missing – – – 6.09

Bond fixed effects (16,823) Yes Yes No No
Dealer fixed effects (401) Yes Yes Yes No
Day fixed effects (3,375) Yes Yes Yes Yes
R2 0.154 0.155 0.103 0.098
N 918,279 918,279 918,987 891,875

Table V provides trading cost estimates from panel regressions. We adjust
standard errors for heteroskedasticity and cluster them at the insurer, dealer,
bond, and day level. The coefficient on insurer buys captures the average
bid-ask spread of roughly 40 basis points. Column (1) of Table V shows that
execution costs decline with insurer network size. Adding a dealer decreases
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trading costs by 0.22 basis points. Large insurers pay on average lower
execution costs. For instance, an insurer with 10 times as many assets has
3.72 basis points lower trading costs. Similar to the strength of the trading
relationship mechanism in Bernhardt et al. (2005), the size coefficient suggests
that an increase in the amount of trading between an insurer and a dealer
can lead to better prices. However, Table IA.IV in the Internet Appendix
shows that the inclusion of insurer-dealer trading volume does not impact the
coefficients on network size in the specifications in Table V.

Column (2) adds the logarithm of N to the specification reported in column
(1). The coefficient on N switches from −0.22 reported in column (1) to 0.32,
whereas the coefficient on the logarithm of N is −6.29. Both coefficients are
statistically significant at the 1% level. This result indicates that execution
costs are nonmonotone in network size. Improvements in execution quality
from having a larger dealer network are exhausted at N = 6.29

0.32 ≈ 20. Clients
with networks of 40 dealers and 10 dealers pay, on average, the same bid-ask
spread of 40 basis points. This finding goes against the traditional wisdom that
interdealer competition improves prices. It is also inconsistent with classic
static strategic network formation models (e.g., Jackson and Wolinsky (1996)).
In these models, a client trades off the fixed costs of adding an extra dealer
and better execution due to increased dealer competition, thus making price a
monotonically decreasing function of network size. In the next section, we use
this and other network-related empirical evidence to motivate an alternative
strategic model of finite network formation in which clients and the dealer
share the benefits of repeat interactions.

Columns (3) and (4) replace bond and dealer fixed effects with bond and
dealer characteristics. NYC-located dealers offer better prices to all insurers,
and more diversified dealers charge, on average, higher prices. Bond charac-
teristics matter for execution costs as insurers receive worse prices for special
bonds and better prices for bonds with larger issue size.

In the next section, we use our evidence on networks and execution costs to
motivate our model of OTC markets.

III. Model

The model is stylized but still rich enough to allow for the structural esti-
mation of its primitives from regulatory NAIC data. We view the relationship
between insurers and dealers as having two components. The first component
corresponds to the repeat trading interactions between insurers and dealers.
An insurer repeatedly buys and sells bonds from the dealers in her network.
This future repeat trading is taken into account by both the insurer and
dealers when negotiating the terms of a transaction. Because our data provide
direct evidence on trading relations, we model this component explicitly.
The second component captures all other business between insurers and
dealers. In practice, it includes transactions in other securities, the ability to
purchase newly issued securities, as well as other soft dollar and nonmonetary
transfers such as investment research. Because we do not directly observe
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these nontrade relations in our data, we employ a reduced-form approach to
model them. We quantify both components of the insurer-dealer relationship
when structurally estimating the model from the NAIC data.

A. Setup and Solution

The economy has a single risk-free perpetual bond that pays a coupon flow
C. The risk-free discount rate is constant and equal to r, so that the present
value of the bond is C

r . To model client-dealer repeat trade interactions, we
keep several attractive features of Duffie, Garleanu, and Pedersen (2005)
such as liquidity supply/demand shocks on the client side and random search
with constant intensity. Following Lester, Rocheteau, and Weill (2015), the
bond trades on a competitive market accessible only to dealers.11 Unlike the
frictionless interdealer market in Lester, Rocheteau, and Weill (2015), in our
model dealers face search frictions as in Duffie, Garleanu, and Pedersen (2005).
We implicitly assume that the structure of insurer-dealer networks does not
affect the interdealer market. Dealers therefore buy bonds at an exogenously
given price Mask from other dealers and sell bonds to other dealers at an
exogenously given price Mbid. The bid-ask spread Mask − Mbid ≥ 0 reflects
trading costs or the cost of carry.

In the model, we use the more generic term “client” instead of insurer.
Clients act competitively with respect to other clients by not internalizing other
clients’ network choices in their own decisions.12 Each client chooses a network
of dealers, N, without knowledge of other clients’ decisions. When a client
wants to buy or sell a bond, she simultaneously contacts all N dealers in her
network. Upon being contacted, each dealer starts searching the competitive
dealer market for a seller or buyer with search intensity λ.13 All dealers in the
client’s network search independently of each other. Therefore, the effective
rate at which a client with N dealers in her network finds a counterparty
equals λN.14 When the client receives a subsequent trading shock, all dealers
in the network are contacted to reverse the initial transaction.

Each client pays a fixed cost K per transaction.15 The cost K corresponds to
back-office costs of processing and clearing the transaction. Clients that trade
more frequently incur K more often. Although K does not depend directly

11 The interdealer market obviates the need to track where the entire stock of the asset is held
at each moment in time.

12 Although we do not have direct evidence on the information flows across insurers and between
insurers and dealers regarding trades, it is unlikely that such information is shared even voluntary.

13 Bessembinder et al. (2018) show that corporate bond dealers increasingly hold less inventory
and facilitate trade via effectively acting as brokers by simultaneously buying and selling the same
quantity of a given bond. We assume that the number of clients is large and therefore a fraction of
them is hit by the buy (sell) liquidity shock at any time.

14 We assume that there is no congestion in the dealers market, as in, for example, Afonso (2011).
15 The costs of additional dealers could alternatively be modeled as per dealer or per dealer per

transaction. Per dealer costs consist of the costs of forming a credit relationship and any other
costs of maintaining the relationship independent of the number of trades. Such per dealer costs
will immediately lead to clients with larger trading intensity using more dealers.
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on network size, clients that choose a larger network trade faster and thus
incur K more often. The cost K enters clients’ value functions and thereby
affects their reservation values in bargaining. However, K does not enter the
bargaining directly. We postpone discussion of the impact of K on transaction
prices and networks to the next section, where we estimate the model. Clients’
search mechanism can be viewed as a winner-takes-all race with the first
dealer to find the bond winning the race. The prize is the spread Pb − Mask

when the client buys and Mbid − Ps when the client sells, where Pb (Ps) is the
price at which the client buys (sells) the bond from (to) the dealer.

Clients transition through ownership and non-ownership based on liquidity
shocks. At these transitions, clients act as buyers and sellers. The discounted
transition probabilities and transaction prices link valuations across the
owner, non-owner, buyer, and seller states.

A client i starting as a non-owner with valuation V̂ no is hit by stochastic
trading shocks to buy with intensity ηi. Intensity ηi varies across clients
and its distribution can be directly inferred from the data. Section II.A
characterizes the distribution of trading activity. For the sake of clarity, we
omit the subscript i throughout our theoretical analysis.

The client contacts her network of N dealers, leading to her transiting
to a buyer state with valuation V̂ b. Let V r(η, N) capture exogenously given
relationship-specific nontrade flows to the client from her dealers. In steady
state, V̂ no satisfies the Bellman equation linking it to V̂ b and V r:

V̂ no = 1
1 + rdt

[λNdtV̂ b + (1 − λNdt)V̂ no + rV rdt], (4)

which can be solved to yield

V̂ no = V̂ b η

r + η︸ ︷︷ ︸
Value from Trading

+ V r r
r + η︸ ︷︷ ︸

Nontrade Value

. (5)

We are agnostic regarding whether V r(η, N) is increasing or decreasing in
trading intensity and network size, η and N; this will be determined by the
data in our structural estimation. For our model, we assume that V r(η, N) is a
monotonic function of N and satisfies the Inada condition limN→∞ V r (η,N)

N = 0,
which helps guarantee that the optimal network size is finite. Below we show
that V r(η, N) does not directly affect transaction prices, but it does impact
clients’ choice of network size.

The buyer purchases the bond from her network at the expected price E[Pb]
and transitions into being an owner with valuation V̂ o. In steady state, V̂ b

satisfies the Bellman equation linking it to V̂ o:

V̂ b = 1
1 + rdt

[λNdt(V̂ o − E[Pb] − K) + (1 − λNdt)V̂ b + rV rdt], (6)
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which yields

V̂ b = (V̂ o − E[Pb] − K)
λN

r + λN
+ V r r

r + λN
. (7)

While clients are owners, they receive a coupon flow C and have valuation
V̂ o. Non-owners do not receive the coupon flow. With intensity κ, an owner
receives a liquidity shock that forces her to become a seller with valuation
V̂ s. In steady state, valuations in these two states are linked according to the
Bellman equation

V̂ o = 1
1 + rdt

[dtC + κdtV s + (1 − κdt)V̂ o + rV rdt], (8)

which yields the expression for V̂ o:

V̂ o = C
r + κ

+ V̂ s κ

r + κ︸ ︷︷ ︸
Value From Future Sale

+ V r r
r + κ

, (9)

where the second term captures the value from future sales. The liquidity
shock received by the owner reduces the value of the coupon to C(1 − L) un-
til she sells the bond. After receiving the liquidity shock, she contacts her
dealer network expecting to sell the bond for E[Ps]. Upon selling she be-
comes a non-owner, completing the valuation cycle. Valuations V̂ s and V̂ no are
related by

V̂ s = 1
1 + rdt

[dtC(1 − L) + λNdt(E[Ps] + V̂ no − K)

+ (1 − λNdt)V̂ s + rV rdt], (10)

which can be solved for V̂ s according to

V̂ s = C(1 − L)
r + λN

+ (E[Ps] + V̂ no − K)
λN

r + λN
+ V r r

r + λN
. (11)

This sequence of events continues in perpetuity. We therefore focus on the
steady state of the model.

The above valuation equations depend on expected transaction prices. The
realized transaction prices are determined by bilateral Nash bargaining.
The clients’ reservation values are determined by the differences in values
between being an owner and non-owner and between being a buyer and seller.
Similarly, dealers’ reservation values arise from their transaction cycle. Each
dealer acts competitively, that is, without taking into account the effect of her
actions on the actions of other dealers. In addition, we assume that each dealer
internalizes only the trade-specific value of her relation with each client.16

16 We do not require that the dealer internalizes the client’s nontrade value V r of the relationship
and therefore we omit it from dealers’ valuations. This could happen, for instance, if the dealer is
compensated to maximize trading profits and is not incentivized to maximize the enterprise value.
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When a client who wants to buy the bond contacts her dealer network, each
dealer starts looking for the bond at rate λ and expects to pay the interdealer
ask price Mask for the bond. The value to the dealer searching for the bond
satisfies

U b = 1
1 + rdt

[λdt(Pb − Mask) + λNdtU o + (1 − λNdt)U b], (12)

which yields

U b = (Pb − Mask)
λ

r + λN︸ ︷︷ ︸
Transaction Profit/Loss

+ U o λN
r + λN︸ ︷︷ ︸

Value of Future Business

. (13)

The last term in the expression for U b captures the expected value of future
business with the client, which happens with frequency λN. This client, who
is now the owner of the bond, becomes a seller with intensity κ and contacts
dealers in her network to sell the bond. This generates a value U o per dealer.
The superscript “o” on the dealer’s valuation U o reflects the fact that delivering
the bond to a client requires that the dealer takes ownership of the bond in the
first place as well as the fact that the client is an owner. Dealer valuation U o

satisfies the Bellman equation

U o = 1
1 + rdt

[κdtU s + (1 − κdt)U o], (14)

which yields the following expression for U o:

U o = U s κ

r + κ
, (15)

where U s represents the valuation of the dealer searching to sell the bond. The
dealer expects to resell the bond at rate λ for the interdealer bid price Mbid and
earn a markup of Mbid − Ps. Upon selling the bond, the client becomes a non-
owner but the dealer still anticipates future business with the client, which
happens with frequency λN. This is because this client becomes a buyer with
intensity η and approaches the dealer in the future to buy the bond back, thus
again generating value U b to the dealer. As a result, future buy-back business
from a given client generates a total value of U no to the dealer. The superscript
“no” on the dealer’s valuation U no reflects the fact that both the dealer and
the client are both non-owners at the time of the purchasing request. Dealer
valuation U no satisfies the Bellman equation

U no = 1
1 + rdt

[ηdtU b + (1 − ηdt)U no], (16)

which yields

U no = U b η

r + η
. (17)
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Finally, the valuation of the dealer searching to sell the bond, U s, satisfies

U s = 1
1 + rdt

[λdt(Mbid − Ps) + λNdtU no + (1 − λNdt)U s], (18)

where the next-to-last term indicates that the dealer becomes a non-owner
upon selling the bond on the interdealer market. Equation (18) can be solved
to obtain

U s = (Mbid − Ps)
λ

r + λN︸ ︷︷ ︸
Transaction Profit/Loss

+ U no λN
r + λN︸ ︷︷ ︸

Value of Future Business

. (19)

Valuations U no and U o lead to price improvement for repeat business. Equa-
tions (13), (15), (17), and (19) fully characterize dealers’ transaction cycle.

As in most OTC models, prices are set by Nash bargaining, resulting in
prices that are the bargaining-power (w) weighted average of the reservation
values of the client and the dealer:17

Pb = (V̂ o − V̂ b)w + (Mask − U o)(1 − w), (20)

Ps = (V̂ s − V̂ no)w + (Mbid + U no)(1 − w). (21)

The above equations assume that the dealer loses all future business from the
client if the bilateral negotiations fail. Upon dropping a dealer, the client main-
tains her optimal network size by forming a new link with another randomly
picked identical dealer. Thus, by agreeing rather than not, the dealer receives
U o. As a consequence, dealers face intertemporal competition for future clients.
This is a novel assumption missing from existing models of OTC markets.

Each client’s valuation, V̂ k, k ∈ {b, o, s, no}, can be written as a sum of its
trade-specific, V k, and relationship-specific, V r, values as follows:

V̂ k = V k + V r. (22)

Substituting (22) into (23), (24), (27), and (26) yields the following relations
for trade-specific client valuations:

V no = V b η

r + η
, (23)

V b = (V o − E[Pb] − K)
λN

r + λN
, (24)

V o = C
r + κ

+ V s κ

r + κ
, (25)

V s = C(1 − L)
r + λN

+ (E[Ps] + V no − K)
λN

r + λN
. (26)

17 See Glode and Opp (2016) and others for models of OTC markets in which bargaining is not
Nash. We use Nash bargaining because it offers a parsimonious way to model the value of repeat
trading to the client.
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Correspondingly, transaction prices depend only on clients’ trade-specific
valuations:

Pb = (V o − V b)w + (Mask − U o)(1 − w), (27)

Ps = (V s − V no)w + (Mbid + U no)(1 − w). (28)

The valuations and prices provide 10 equations and 10 unknowns. Proposi-
tion 1 in the Internet Appendix provides the closed-form solutions (IA1) and
(IA2) for transaction buy prices Pb and sell prices Ps, respectively.

Bargaining power could differ for buys and sells. For ease of exposition, we
equate them here. In the structural estimation below, we allow for different
bargaining powers when the insurer is buying a bond, wb, versus selling a
bond, ws. In addition, we allow the bargaining power parameters to depend on
trading intensity η.

B. Discussion

The main friction in the model motivating clients to select multiple dealers
rather than a single dealer is the finite search intensity λ. The client always
optimally selects a single dealer if this friction is removed. We illustrate this
by considering the limiting case of large search intensity, λ → ∞. In this case,
a single dealer can instantaneously find the bond and the optimal size of the
network is one. Taking limits in equations (13) and (19) yields

U no
λ→∞ = 1

N

η

r+η

1 − κ
r+κ

η

r+η

[
Pb

λ→∞ − Mask + η

r + η

(
Mbid − Ps

λ→∞
)]

,

U o
λ→∞ = 1

N

κ
r+κ

1 − κ
r+κ

η

r+η

[
Mbid − Ps

λ→∞ + κ

r + κ

(
Pb

λ→∞ − Mask
)]

. (29)

Solving for transaction prices from (20) and (21), and using the fact that
(V o − V b)λ→∞ = Pb

λ→∞ + K and (V s − V no)λ→∞ = Ps
λ→∞ − K, we obtain

Pb
λ→∞ = Mask + w

1 − w
K − U o

λ→∞, (30)

Ps
λ→∞ = Mbid − w

1 − w
K + U no

λ→∞.

Expressions (30) show that U o
λ→∞ and U no

λ→∞ represent the repeat relation
buy discount and sell premium, respectively. Equations (29) show that both
U o

λ→∞ and U no
λ→∞ are strictly decreasing with the size of the network N. Thus,

the client optimally chooses a single dealer. When λ is finite, clients’ direct
benefit from having a network where N > 1 is the improved transaction speed.

The buy and sell prices, given by expressions (IA1) and (IA2) in Proposition
1 in the Internet Appendix, are nonlinear functions of the model primitives
and N, which complicates the analysis. However, we can verify that the prices
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are well-behaved functions of network size, N, in the large network limit,
N → ∞. Specifically, N → ∞ implies λN

r+λN → 1 and hence clients’ search fric-
tion in terms of time is zero. Dealers’ valuations, in this case denoted with sub-
script N → ∞, satisfy the system of equations U b

N→∞ = U s
N→∞

κ
r+κ

and U s
N→∞ =

U b
N→∞

η

r+η
. These equations have only the trivial solution U s

N→∞ = U b
N→∞ = 0,

which implies that dealers have no rents from future relationships with clients.
Clients have valuations V o

N→∞ − V b
N→∞ = Pb

N→∞ + K and V s
N→∞ − V no

N→∞ =
Ps

N→∞ − K, which yields the following expressions for transaction prices:

Pb
N→∞ = Mask + w

1 − w
K, (31)

Ps
N→∞ = Mbid − w

1 − w
K. (32)

Dealers receive no relationship-based rents, but they charge clients a spread
of w

1−w
2K per roundtrip transaction over the interdealer spread. The coefficient

w
1−w

indicates that the nonzero bargaining power enables dealers to extract
some value from a client. This is because each dealer charges the same price,
which makes clients’ threat of ending the relationship and forming a new link
not credible (Diamond’s (1971) paradox).

Overall, dealers’ surplus comes from both the immediate value of trade (the
spread) and the value of future transactions. As the probability of transacting
with the same client in the future declines with the size of the client’s network,
dealers may charge higher spreads, Pb − Mask and Mbid − Ps, as network size
increases. This result is similar to that in Vayanos and Wang (2007) where an
asset with more buyers and sellers has lower search times and worse prices
relative to its identical-payoff counterpart with fewer buyers and sellers.

To find the optimal network size N∗ in the general case, we maximize the
total valuation of the “first-time” owner, that is, the client buying the asset,
V̂ b. This is because the client has to take possession of the asset in the first
place. Maximizing V̂ b accounts for all trade and relation benefits the client
receives from a larger network. We solve for the optimal network size on
the grid of integers N ∈ I≥0. To do so, we start by assuming that all value
functions are well-behaved functions of the network size, N. We then solve for
the optimal network size on the continuous grid N∗ ∈ R≥0. Finally, we select
the closest integer value to N∗ that maximizes V̂ b(N). Proposition 2 given
in the Internet Appendix demonstrates that, for a given client type described
by the model primitives {L, K, w, κ, λ, η}, there may exist an optimal network
size N∗ = N(L, K, w, κ, λ, η). For the sake of clarity in our discussion below, we
consider optimization on the continuous grid of network sizes.

Next, we provide intuition for why the model yields finite-sized networks
for a general set of model primitives {L, K, w, κ, λ, η}. Because the equation
describing the optimal size of the client’s dealer network, given by condition
(IA24) in Proposition 2 in the Internet Appendix, is nonlinear in N, the
existence of the solution is not guaranteed for an arbitrary parameter set
{L, K, w, κ, λ, η}. Given the complexity of the problem, it is convenient to
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consider the optimal network resulting solely from repeat trading, N∗∗

maximizing V b from dV b

dN = 0. At this point, we do not take a stand on whether
V r is an increasing or decreasing function of N. The derivative dV r

dN > (<)0
implies that N∗∗ < (>)N∗, thus making N∗∗ the lower (upper) bound of N∗.
As a result, a sufficient condition for the existence of a finite N∗∗ also applies
to N∗. In addition, our analysis helps separate the trade-specific and the
relationship-specific network formation mechanisms.

To demonstrate that there exists a region of the parameter space in which
the optimal network size, N∗∗, is finite, we examine different terms of the
first-order condition for maximizing V b with respect to N. The derivative

dV b

dN
= λN

r + λN

(
rV b

λN2 + dV o

dN
− dPb

dN

)
(33)

must be positive on [1, N∗∗) and equal to 0 at N = N∗∗. As can be seen, dV b

dN con-
tains three terms in the parentheses. The first positive term captures the direct
effect of network size on the speed of execution as faster execution improves the
buyer’s valuation. The second term reflects the marginal effect of network size
on the owner’s value and can be written using relation (25) as dV o

dN = κ
r+κ

dV s

dN .
The third term represents the effect of network size on the transaction price.
We focus on the case in which the buy price, Pb, improves with the network
size, dPb

dN < 0, for which we derive a sufficient condition below. Because the first
and third terms in (33) are positive, dV b

dN can be 0 for some N∗∗ only if the second
term is negative, thus implying that the seller’s valuation must be decreasing
with N, dV s

dN < 0. In summary, in equilibrium the marginal improvements in
the buyer’s valuations due to faster transaction speed and the buy price are
balanced by a marginal decline in the seller’s valuation adjusted by the hazard
rate of selling.

The next step is to derive a sufficient condition for dV s

dN < 0. We start by noting
that as long as V s is decreasing with N, the sell price is also decreasing with N:

dPs

dN
=

⎛
⎜⎜⎝dV s

dN︸︷︷︸
<0

− η

r + η

dV b

dN︸ ︷︷ ︸
≥0

⎞
⎟⎟⎠w + dU no

dN︸ ︷︷ ︸
<0

(1 − w) < 0, N ∈ [1, N∗∗], (34)

where we use the fact that dealers’ valuations, U k, k ∈ {b, o, s, no}, decline with
N. Using relation (26), the sufficiency condition for dV s

dN < 0 can be written as18

18 Multiplying (26) by r + λN, differentiating it with respect to N, and multiplying the resulting
expression by N yields

λN2 dV s

dN
= −λNV s + λN(Ps + V no − K) + λN2

(
dPs

dN
+ η

r + η

dV b

dN

)
≤ 0, (35)

where we use the relation (23). After multiplying both sides of (26) by r + λN, it follows that
λNV s = −rV s + C(1 − L) + λN(Ps + V no − K). Substituting this expression back into (35) yields
(36) after some algebra.
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V s + λN2

r

⎛
⎜⎜⎝dPs

dN︸︷︷︸
<0

+ η

r + η

dV b

dN︸ ︷︷ ︸
≥0

⎞
⎟⎟⎠ ≤ C(1 − L)

r
, N ∈ [1, N∗∗]. (36)

Therefore, V s decreases with N when the marginal decline in the sell price
exceeds the hazard rate of buying times the marginal increase in V b sufficiently
that the seller prefers to hold the discounted asset forever to obtain C(1−L)

r .
Finally, we establish the sufficient condition for dPb

dN < 0. Differentiating
equation (20) with respect to N, we obtain

− dU o

dN︸ ︷︷ ︸
<0

<
w

1 − w

⎛
⎜⎜⎝dV b

dN︸ ︷︷ ︸
≥0

− κ

r + κ

dV s

dN︸︷︷︸
<0

⎞
⎟⎟⎠, N ∈ [1, N∗∗], (37)

where we use relation (26). We conjecture that there exists an interval of net-
work sizes belonging to [1, N∗∗] on which inequalities (36) and (37) are simulta-
neously satisfied for a range of values of the model’s primitives. Although this
conjecture cannot be proven analytically, we verify numerically that there exist
parameters over which these inequalities are satisfied. In particular, they are
satisfied for the structurally estimated parameters below. In the equilibrium,
the buy price Pb improves with N, whereas the sell price declines with network
size. As a result, the buyer’s value is maximized by trading off more frequent
buys at a discounted buy price against more frequent sells at a marked down
sell price.

The effect of N on buy and sell transaction prices is not symmetric, however,
due to the time lag between each buy and sell as well as the different effect
of repeat relationships on Pb and Ps. Therefore, instead of focusing on the
individual transaction prices, we investigate the sign of the marginal effect of
increasing the network size on the bid-ask spread SP ≡ Pb − Ps:

dSP
dN

= −w

(
r

r + κ

dV s

dN
+ r

r + η

dV b

dN

)

− (1 − w)
(

dU o

dN
+ dU no

dN

)
, N ∈ [1, N∗∗]. (38)

If inequalities (36) and (37) are satisfied simultaneously, the bid-ask spread
improves with the size of the network, dSP

dN < 0, as long as the following in-
equality holds:

0 < − r
r + κ

dV s

dN
− 1 − w

w

(
dU o

dN
+ dU no

dN

)
<

r
r + η

dV b

dN
, N ∈ [1, N∗∗]. (39)

For network sizes below the trade-specific optimal network size N∗∗, we must
have that dV b

dN > 0, whereas at N =N∗∗, we must have that dV b

dN | N=N∗∗ = 0,
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which violates inequality (39). This implies that dSP
dN switches sign from

negative to positive at some Ñ < N∗∗.
A finite optimal size of the trade-specific network follows from several

trade-offs. Starting with a client that has a small dealer network, when the
client adds another dealer to her network, the speed of execution, measured by

λN
r+λN , increases. Improved execution speed implies faster transitions between
the client’s “buyer” and “seller” states and thus creates more future repeat
trading for dealers. Some of the surplus from increased repeat trading is then
passed by dealers back to the client via price improvements, leading to a
narrower bid-ask spread. However, adding an additional dealer to the existing
network implies sharing the value of the relationship with one more dealer.
Consequently, the extra per-dealer value from the repeat trading created
through the increased execution speed declines with network size.

As the size of the network becomes larger, the per-dealer benefits of faster
execution are outweighed by losses from the additional rent-sharing with
other dealers. Dealers respond by reducing price improvements and hence the
bid-ask spread widens. At this point, the client starts trading off the benefit
due to increased execution speed and the cost due to a wider bid-ask spread
when deciding whether to add another dealer to her network. The optimal
size of the network is achieved when the benefits from transacting with the
increased number of dealers equal the costs. When the relationship-specific
nontraded value, V r(η, N), is added, and if it is increasing with network
size for a given value of η, the client is willing to accept even wider bid-ask
spreads in exchange for greater nontrade relationship-specific benefits. If the
marginal nontraded value improvement from a larger network decreases with
the size of the network, the overall optimal network size N∗ is reached when
relationship-specific benefits together with benefits from transacting faster
are balanced by the wider bid-ask spread.

C. Empirical Predictions

Although there is no client heterogeneity in the model, each client creates her
own access to the interdealer market and the interdealer market links clients
together. Therefore, the model’s empirical predictions can be considered via
comparative statics with respect to the client’s trading intensity, η. Section II.A
shows that η follows a power law with exponential tail in the cross-section of
insurers. Based on these empirical findings, we next discuss how larger trading
intensity impacts clients’ choice of network size and the prices they receive. The
predictions are complex as network size and transaction prices are interrelated.

Transaction prices: There exist several competing channels through which
more active insurers receive better prices than less active insurers. The first ex-
planation for price improvement is that active insurers have more repeat trade
business with those dealers that internalize the benefits from future busi-
ness and grant price improvements. A second, complementary, explanation is
that large insurers have greater bargaining power than small insurers vis-à-vis
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dealers. A third explanation is that insurers’ trading activity in corporate bonds
is correlated with the value of other business they conduct with the dealers.

To shed light on the intuition for price improvement from future business,
it is convenient to discuss the effect of η on prices while keeping the size of
the network fixed. When η = 0, a client that owns the bond will never be an
owner again after she sells. Therefore, all of a dealer’s surplus comes from the
price at which the sale occurs and none from future trades. In this case, the
dealer’s buy reservation value is lower, resulting in a wider bid-ask spread.
When η is large, dealers derive significant value from repeat trades, leading
to smaller bid-ask spreads. This implies that, conditional on network size,
clients with larger trading intensity (higher η) get better execution than
clients with smaller trading intensity (lower η). This is consistent with our
empirical findings above that insurers’ trading activity increases in insurer
size (Table II) and that trading costs decline in insurer size (Table V).

Network size: Increasing the network size increases buyers’ valuation,
V̂ b, through improved speed of execution, greater intertemporal dealer
competition,19 and increased relationship-specific nontrade value. The optimal
network size, N∗, as a function of η balances these gains against a lower buyer
valuation due to intratemporal dealer competition leading to a loss of repeat
trading business.

The optimal network size is increasing in η for a nonempty parameter
range over which the marginal gains from a larger network increase in η,
∂2V̂ b

∂N∂η
| N=N∗ > 0. Intuitively, dealers’ profit from repeat trade improves with

increasing trading intensity and thus dealers offer better execution. Clients
with larger trading intensity benefit from a larger network, which improves the
speed of execution and may generate larger nontrading relationship-specific
value. Therefore, consistent with Table III, the model can generate larger
insurers with more frequent trading needs that have larger dealer networks.

Ultimately, the model must be structurally estimated to test its ability to fit
the cross-sectional distribution of network size from Figure 3 as well as the
cross-sectional distribution of execution costs as a function of network size
from Table V.

IV. Model Estimation and Policy Analysis

The empirical findings in equation (1) and Table V and Table IA.IV in the
Internet Appendix suggest that in the cross-section, trading networks follow a
power law with exponential tail and trading costs are nonmonotone in network
size. Although the model can produce such nonmonotonicity, it is unclear if it
can quantitatively match the empirical relationship between network size and
trading costs. In this section, we test the model’s ability to quantitatively match

19 The buy transaction price may or may not be improving with N, dPb

dN ≷ 0. However, the cross

derivative ∂2 Pb

∂N∂η
is positive.
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these stylized facts. Given the model’s complexity, readers more interested in
the policy implications can focus their attention on Section IV.E.

A. Estimation Procedure

Settings such as labor markets and marriage markets involve one-to-one
matching. These literatures structurally estimate models to examine their
quantitative fit to the data (for example, Postel-Vinay and Robin (2002) and
Eckstein and Van den Berg (2007) for labor search, and Hitsch, Hortaçsu, and
Ariely (2010) and Choo (2015) for marriage search). Gavazza (2016) estimates
a one-to-one search-and-bargaining model of a decentralized market using
aircraft transaction data. The structural identification of our model shares
several similarities with Gavazza (2016). As in Gavazza (2016), identification
of unobserved parameters relies on key moments in the data. But unlike the
aggregate moments in Gavazza (2016), we use the granular nature of our
data and the heterogeneity in insurers’ trading intensity and network size to
facilitate our estimation.

Figures 2 and 3 highlight the heterogeneity in insurers’ trading intensity and
network size. To estimate the model’s network size distribution, we infer the dis-
tribution of trading intensities, ηi, i = 1, . . . , I, across insurers i. Section II.A
characterizes the distribution of trading activity. If trading shocks occur at
Poisson times, the intensity ηi of the shocks can be captured by the expected
number of buy trades per year. This fact yields the maximum likelihood estima-
tor η̂i = 1

T

∑T
t=1 Xit, where Xit is the number of bond purchases by insurer i in

year t. To use the multiple years of trade data, we perform the estimation sep-
arately for each insurer. This procedure yields a cross-sectional distribution of
trading intensities, which we index by p(η). Section II.A and Figure 2 show that
the distribution of the insurer trades per year follows approximately a power
law. For insurer buys, this distribution is best described by p(η) = 0.34 × η−1.31.

As discussed above, insurers’ trading shocks are heterogeneous and directly
observable in the data. In the model, κ measures clients’ selling intensity after
having bought. Because the empirical number of buys and sells are equal, and
buys and sells follow a similar power law, there is no evidence of heterogeneity
in κ. Therefore, κ does not vary across insurers. Because we fit the model to
the two observable outcomes of network size and trading costs, we limit the
number of model parameters that vary across insurers by assuming that L and
K are constant. The competitive interdealer spread is set to match the average
execution costs of insurers by choosing C = 1, r = 0.1, Mask = (1 + 0.0018) C

2r ,
and Mbid = (1 − 0.0018) C

2r . Because insurers can potentially access all dealers,
λ is constant across insurers.

Model parameters � = (L, K, κ, λ,wb, ws, V r) are not directly observable
in the data, so we estimate them structurally. To ensure that the estimated
parameters L, K, κ, and λ remain in their natural domains (i.e., positive or
between 0 and 1) in the estimation, we transform them as follows:

L = (θL) ∈ (0, 1), K = eθK ≥ 0, κ = eθκ ≥ 0, λ = eθλ ≥ 0, (40)
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where (x) is the normal cdf.20 The evidence in Table V shows that trading
costs depend on insurer size even after controlling for network size. The most
straightforward way to accommodate this fact is to allow dealer bargaining
power to vary across insurers, as large active insurers likely have higher ef-
fective bargaining power than small inactive insurers. We report the model fit
under both constant (specification 1) and variable (specification 2) bargaining
power by holding wb and ws constant and allowing wb and ws to be functions of
η as follows:

ws = 
(
θ0
ws + θ1

ws ln η
) ∈ (0, 1), wb = 

(
θ0
wb + θ1

wb ln η
) ∈ (0, 1). (41)

Specification 1 with constant bargaining power sets both θ1
ws and θ1

wb to 0.
The functional form of the nontrade value is Cobb-Douglas,

V r = eθ0
V ηθ1

V Nθ2
V , θ1

V + θ2
V < 1, (42)

with a constant “technology” eθ0
V and elasticities to trading intensity and net-

work size given by θ1
V and θ2

V , respectively. The Cobb-Douglas functional form
captures the potential complementarity between trading intensity, measured
by η, and network size, while precluding infinitely large nontrade value. We
do not impose specific restrictions on the elasticities beyond requiring that
their sum be less than 1. This specification allows the nontrade value to be
an increasing or decreasing function of N, η, or both. By construction, the
nontrade value is nonnegative. Taking into account transformations (40) and
(41) and parametrization (42), the estimated parameter set takes the form
� = (θL, θK, θκ , θλ, θ

0
wb, θ

1
wb, θ

0
ws , θ1

wb, θ
0
V , θ1

V , θ2
V ).

Section II.B and Figure 3 show that the degree distribution of client-dealer re-
lationships follows a mixed power-exponential law. The model also has implica-
tions for how percentage trading costs, (Pb − Ps)/(0.5(Pb + Ps)), depend on the
parameters � and η. Empirically, the estimated relation between trading costs
and network size is in column (4) of Table V as c(N) = 51 + 0.32N − 6.29 lnN.
The distance between the empirical and model-generated relationships
depends on the parameters �. We fit them by minimizing the sum of two
probability-weighted distances between the data and model,

ω

N∑
N=1

p(N)[N − N∗(�, η(p(N)))]2

︸ ︷︷ ︸
Size Distribution Criterion

+ (1 − ω)
N∑

N=1

1

N
[c(N) − c∗(�, η(p(N)))]2

︸ ︷︷ ︸
Trading Cost Criterion

, (43)

where ω is the weight put on matching the network size compared to trading
costs, p(N) is the empirical network size distribution, N is the largest network
size, and N∗(�, η) and c∗(�, η) are the model-implied network size and trading
cost, respectively. In our estimation, we choose equal weights on matching
network size and trading costs, ω = 0.5.21

20 Our results are robust to alternative transformations in place of  and e.
21 The Internet Appendix reports similar estimates with various asymmetric weights.
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Fitting the model based on network size (N) rather than insurer trading
needs (η) reduces the computational requirements. Inverting the power
law distribution for trading intensity from Panel A of Figure 2 yields
η(p) = ( p

0.34 )−
1

1.31 . It then follows from equation (1) that for insurer buys
p(N) = 0.28 e−0.22N N−0.12. Therefore, by substituting p(N) into the expression
for η(p), we obtain the mapping of trading intensities into network sizes,
η(p(N)) = ( 0.28

0.34 )−
1

1.31 e
0.22
1.31 N N

0.12
1.31 . We use this relation in (43). To fit the data, the

model’s optimal N∗ is constrained to be an integer. This makes the objective
function (43) nonsmooth. To accommodate this, we optimize using simulated
annealing with fast decay and fast reannealing.

Overall, we estimate a total of nine model parameters in specification 1
and 11 model parameters in specification 2 by fitting a total of 80 empirical
moments. Of these, 40 moments are the individual data points from the degree
distribution of client-dealer buy relationships presented in the left panel of
Figure 3. The remaining 40 moments are from the empirical trading costs
and network size relation, c(N) = 51 + 0.32N − 6.29 lnN, evaluated on the
40-point grid N = 1, 2, . . . , 40.

B. Estimated Model Parameters

The model can be solved assuming that the client maximizes her value
as a buyer or a seller. To simplify exposition, we use her value as a buyer.
Panel A of Table VI reports the estimates for the transformed model pa-
rameters from (40) to (42). Panel B reports the original model parameters
� = (L, K, κ, λ,wb, ws, V r). All parameters are significantly different from zero
and appear well identified, except for θL in specification 1. Panel C reports
statistics on model fit. Specification 2 allows bargaining power to vary across
insurers and generates a substantially lower minimum distance between the
model and empirical distributions than does the uniform bargaining power in
specification 1. The standard deviations from the size distribution criterion
and the trading cost criterion are small.

The estimated liquidity shock parameter L in both specifications is close
to 100% of the flow income from the bond, suggesting a high willingness to
pay for immediacy. The cost K of processing each transaction is small, at
about 0.1 (specification 1) and 16 (specification 2) basis points. The estimated
selling shock intensity κ is between 15 (specification 1) and 21 (specification
2), which amounts to a holding period from three weeks to a month. Longer
holding periods (i.e., smaller κ) reduce the value of repeat relations and
increase network size. Without heterogeneity in κ, the model needs relatively
short holding periods to reproduce the large fraction of insurers using a
single dealer.

Dealers’ search efficiency λ is estimated to be 291 in specification 1, corre-
sponding to dealers taking less than a day (250/λ) to locate a bond. Dealers’
search efficiency λ is estimated to be 146 (1.7 days) in specification 2. Given
overall corporate bond trading frequencies, these estimates seem reasonable.
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Table VI
Estimated Model Parameters

Panel A reports the estimated model parameters θ = (θL, θK, θκ , θλ, θ
j
wi , θV ). Estimates are based

on the minimum-distance estimation. Standard errors are computed using the sandwich estimator
and reported in parentheses. Panel B reports the implied values for the model parameters L =
(θL), K = e10∗θK , κ = e10∗θκ , λ = e10∗θλ , wi = (θ0

wi + θ1
wi ln η) for i = s, b, where  ∈ (0, 1) is the

normal cdf and nontrade value V r = eθ0
V ηθ1

V Nθ2
V . Panel C reports statistics on model fit.

wb, ws Constant wb(η), ws(η)
(1) (2)

Panel A: Parameter Estimates

θL 7.46 (17.31) 2.51 (0.01)
θK −1.20 (0.01) −0.64 (0.00)
θκ 0.27 (0.00) 0.31 (0.00)
θλ 0.57 (0.01) 0.50 (0.00)

θ0
wb 2.93 (0.12) 2.52 (0.00)

θ1
wb – −1.02 (0.00)

θ0
ws 1.76 (0.07) 1.24 (0.00)

θ1
ws – 0.04 (0.00)

θ0
V −3.82 (0.00) −1.70 (0.00)

θ1
V 0.12 (0.01) 0.33 (0.00)

θ2
V −0.46 (0.00) 0.13 (0.00)

Panel B: Implied Model Parameters

L 1.00 0.99
K (×104) 0.06 15.82
κ 15.36 21.19
λ 290.99 145.56
wb (SD) 0.98 (0.00) 0.86 (0.05)
ws (SD) 0.94 (0.00) 0.88 (0.01)
Nontrade value V r (SD) 0.01 (0.00) 0.32 (0.03)

Panel C: Model Fit

Minimum distance (×102) 145.35 2.82
SD residuals 1.21 0.17
SD residuals network 1.09 0.19
SD residuals prices 1.31 0.14

Dealers’ bargaining power on the buy and sell sides in specification 1 is large,
at 98% and 94%, suggesting that dealers capture most of the trade surplus
in this specification. In specification 2, when bargaining power depends on
the insurer’s type, dealers’ average bargaining power remains large and fairly
symmetric across buys and sells, at 86% and 88%. Dealers’ bargaining power
on sales is relatively insensitive to insurer trading frequency. In contrast,
θ1
wb = −1.02 indicates that dealers’ bargaining power when buying declines
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significantly with insurers’ trading intensity η.22 Dealers’ bargaining power
with insurers with trading intensity η = 1 is close to one. As insurer trading
intensity increases to five, dealers’ bargaining power falls to about half.
Dealers have almost zero bargaining power when the largest insurers are
buying. This could arise from insurers being buy-and-hold investors, in which
case a dealer can more easily locate a seller than a buyer. The heterogeneity in
bargaining across insurers and across buy and sell transactions suggests that
richer modeling of the price-setting process may enable deeper understanding
of OTC trading.

The estimated nontrade value, V r, is quite small in specification 1. The
estimated nontrade value, V r, is 25 times larger in specification 2, and it is
increasing in both the size of the network and trading intensity. The decreasing
returns to scale parameter restriction is satisfied. The trade intensity elasticity
is more than twice the network size elasticity.

Table IA.V in the Internet Appendix reports the parameter estimates when
we vary the minimum-distance weight ω between 0.1 and 0.9. Across columns,
we reestimate the model for specification 2. The estimates are generally
consistent with those reported in Table VI. The variation in the estimates
across columns is small. In column (2) with ω = 0.5, the residuals for network
size have the same order of magnitude as for prices. Naturally, the specification
in column (1) with ω = 0.1 yields smaller residuals for trading costs than
network size, while the reverse is the case in column (3) with ω = 0.9. We
conclude that our results are robust to the relative weight put on matching
network size compared to trading costs.

C. Sensitivity to Model Parameters and Identification

To provide intuition on the parameter identification, we estimate the
sensitivity of the model-implied moments to the baseline parameters using
the following exercise. We pick four sets of moments related to dealer network
size N across insurers, the cross-sectional distribution of network size Pr(N),
trading costs c(N), and the cost premium across different network sizes
relative to minimum trading costs. For the dealer network, we calculate the
average network size, the minimum network size Nmin, the maximum network
size Nmax, and the smallest cost network size Nmin−cost. We also characterize
the distribution of network size using the probability of having a network
smaller than three dealers, Pr(N ≤ 2), and the probability of having a network
greater than 20 dealers, Pr(N > 20). For trading costs c(N), we calculate its
average, minimum cmin = c(Nmin−cost), and maximum cmax = c(Nmin).23 We also
calculate the cost for the largest network c(Nmax). Finally, we calculate the
min-N cost premium cmax − cmin and the max-N cost premium c(Nmax) − cmin.
Trading costs and cost premia are expressed in basis points.

22 The asymmetry in buy-sell bargaining power’s sensitivity to η arises from our choice to max-
imize clients’ valuation as a buyer.

23 Although it is not true in general, this is true for all reported parameter specifications.
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Our baseline comprises the four sets of moments described above using
specification 2 from Table VI. We then take each parameter from the set
�S = (L, K, κ, λ, V r), reduce it by 10% while keeping all other parameters
fixed, solve the model, and recalculate all four sets of moments. Next, we
repeat this procedure using a 50% reduction in each parameter. Because we
discuss the role of dealers’ bargaining power later in this section, we exclude
wb and ws from the sensitivity analysis.

Table VII illustrates the sensitivity of the model fit to the parameters in �S.
To understand the mechanics of the comparative statics exercise reported in
Table VII, recall that a client with trading intensity η selects her equilibrium
network size N by balancing the gains from increased transaction speed
against the losses from wider spreads. Changing any parameter from the set
�S directly affects the transaction speed, the spread, or both, thus inducing
the client to change the size of her network. Because clients with larger
trading needs and, in turn, larger networks are more sensitive to changes in
transaction speed and spread, their networks are more affected by changes
in the parameters. Clients with low trading needs are less sensitive to such
changes and thus are much less likely to change their network size.

Reducing the liquidity shock parameter L has two direct effects. First, it
reduces the seller’s need for immediacy and thus decreases the benefits of
higher transaction speed provided by larger networks. As a result, some of the
network distribution mass shifts toward smaller networks. Table VII, columns
(1) and (2), show that when L is reduced by 10% (50%), the average network
size declines by 7% (30%), Pr(N ≤ 2) increases by 32% (58%), and Pr(N > 20)
declines by 20% (68%). Second, reducing L increases the reservation utility of
the seller thus improving the sell price and narrowing the spread across all net-
work sizes. The average c(N) declines by 2% (5%) while the maximum trading
costs remain unchanged. Overall, c(N) is either reduced or remains unchanged.

Finally, because the minimum network size remains unchanged while
the largest network size is reduced by only two dealers, changes in the cost
premium are due mostly to changes in cmin. For example, if cmax is fixed while
cmin declines, the cost premium at Nmin, cmax − cmin, must increase. Table VII
shows that cmin declines by 2% while cmax remains unchanged, thus leading
to an increase of 1% (6%) in cmax − cmin, while c(Nmax) remains unchanged
(decreases by 1%), thus leading to an increase of 5% (15%) in c(Nmax) − cmin.

Reducing the fixed costs of each trade K also has two direct effects. First,
it makes it cheaper to add extra dealers to the network. A large reduction
in K may even induce clients with very low trading needs to increase the
size of their dealer network, thus making Nmin > 1. Table VII, columns (3)
and (4), confirm this conjecture by showing that when K is reduced by 10%
(50%), the average network size increases by 10% (123%), Pr(N ≤ 2) remains
unchanged (declines by 42%), and Pr(N > 20) increases by 58% (2, 339%).
When K is halved, the minimum network size increases from one to two and
the maximum network size more than doubles. Overall, reducing K leads to
significant changes in the distribution of network size, as a sizable fraction of
its mass shifts toward larger networks.
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Table VII
Sensitivity to Model Parameters and Identification

This table reports the sensitivity of different moments describing the predictions of the model to the
main model parameters. The four sets of moments we consider are related to the dealer network
size N across insurers, the cross-sectional distribution of network size Pr(N), trading costs c(N),
and the cost premium across different network sizes N relative to minimum trading costs. The
smallest cost network size is the network size corresponding to minimum trading costs. Trading
costs and cost premiums are expressed in basis points.

L K κ λ V r

−10% −50% −10% −50% −10% −50% −10% −50% −10% −50%
Base (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Network size N:
mean 4.6 4.3 3.2 5.1 10.3 4.7 5.0 4.8 5.5 4.2 3.3

−7% −30% 10% 123% 2% 7% 3% 19% −10% −28%
Nmin 1 1 1 1 2 1 1 1 1 1 1

0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
Nmax 44 44 42 52 >100 46 65 45 48 39 21

0% −5% 18% – 5% 48% 2% 9% −11% −52%
Nmin−cost 21 17 13 21 45 18 17 19 23 17 13

−19% −38% 0% 114% −14% −19% −10% 10% −19% −38%

Network size distribution Pr(N):
Pr(N ≤ 2) 0.40 0.53 0.63 0.40 0.23 0.40 0.40 0.40 0.40 0.53 0.53

32% 58% 0% −42% 0% 0% 0% 0% 32% 32%
Pr(N > 20) 0.01 0.01 0.00 0.01 0.19 0.01 0.01 0.01 0.02 0.00 0.00

−20% −68% 58% 2,339% 0% 58% 0% 149% −50% −100%

Trading cost c(N):
mean 45.1 44.4 42.8 44.4 43.7 45.3 46.7 45.2 46.0 44.5 44.2

−2% −5% −2% −3% 0% 4% 0% 2% −1% −2%
cmin 38.6 38.5 37.9 38.6 38.8 38.8 40.5 38.7 39.2 38.4 37.8

0% −2% 0% 0% 1% 5% 0% 2% −1% −2%
cmax 51.1 51.1 51.1 49.7 48.3 51.4 53.5 51.1 50.4 51.1 51.1

0% 0% −3% −6% 1% 5% 0% −1% 0% 0%
c(Nmax) 41.0 40.9 40.6 41.2 41.0 41.7 48.1 41.1 41.6 40.5 38.7

0% −1% 0% 0% 2% 17% 0% 2% −1% −6%

Cost premium:
min-N 12.5 12.7 13.3 11.1 9.5 12.6 13.0 12.4 11.1 12.7 13.3

1% 6% −12% −24% 1% 4% −1% −11% 2% 7%
max-N 2.3 2.5 2.7 2.6 2.2 2.9 7.6 2.4 2.3 2.1 0.9

5% 15% 9% −8% 21% 224% 3% 0% −11% −61%

Second, reducing K narrows the spread across all clients independent
of their trading needs. Shifting the mass of the network size distribution
toward larger networks reduces the spread for networks smaller than Nmin-cost,
whereas it increases the spread for networks greater than Nmin-cost. Because
a substantial mass of the network size distribution shifts to the interval
N > Nmin-cost, the overall effect of decreasing K on trading costs c(N) is modest.
Indeed, Table VII (columns (3) and (4)) shows that when K is reduced by 10%
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(50%), the average c(N) declines only by 2% (3%). However, reducing K has
a strong effect on the cost premia mainly through its effect on cmax, as cmin
remains unchanged. Because the spread narrows for the smallest networks,
cmax decreases and, as a result, the cost curve flattens as cmax − cmin declines.
Conversely, c(Nmax) − cmin is nonmonotonic in K. Table VII shows that the cost
premium decreases for N = Nmin by 12% (24%) while it first increases (9%)
and then falls (−8%) for N = Nmax.

Reducing κ increases bond holding periods. This decreases the speed of
transition between a client’s owner and seller states. To compensate for the
loss of repeat trading, dealers widen the spread for all client types. Clients
with the highest trading needs, that is, with network sizes in the range of Nmax
for which the spread increases with N, scale their networks up to compensate
for the reduction in speed, the benefit of which outweighs the extra trading
costs. Clients with medium trading needs, that is, with network sizes in
the range of Nmin-cost for which the spread also increases with N, may scale
their networks down to avoid paying extra trading costs. When κ is reduced
by 10% (50%), clients with very high trading needs increase their networks
from 44 to 46 (65) dealers, whereas clients with N = Nmin-cost reduce their
networks from 21 to 18 (17) dealers. Overall, the 50% reduction in κ leads to
pronounced changes in the right tail of the network size distribution. Column
(6) of Table VII shows that when κ is halved, Pr(N > 20) increases by 58%.
Reducing κ by 10% (50%) widens spreads for all network sizes, as both cmax
and cmin increase by 1% (5%) while c(Nmax) increases by 2% (17%). Therefore,
the cost premium at Nmin, cmax − cmin, increases by 1% (4%), whereas the cost
premium at Nmax, c(Nmax) − cmin, increases by 21% (224%).

Reducing search intensity λ decreases the speed of transition between the
buyer, owner, seller, and non-owner states for both clients and dealers. Similar
to the case of κ, dealers widen the spread across all client types to compensate
for the loss in repeat trading, whereas clients either increase or decrease
their network size depending on whether the benefit from transacting faster
outweighs the higher trading costs. However, in the case of λ, which clients
end up increasing or decreasing their network size depends on the magnitude
of the reduction in λ. Column (7) of Table VII shows that when λ is reduced by
10%, clients with very high trading needs increase their networks from 44 to
45 dealers. In contrast, clients with low trading needs are not affected by this
change in λ, as Pr(N ≤ 2) remains unchanged. Clients with medium trading
needs reduce their networks, as Nmin-cost falls from 21 to 19 dealers. Overall,
changes in the network size distribution and trading costs are minor in this
case. However, changes in the network size distribution are pronounced when
λ is halved—column (8) of Table VII shows that Pr(N > 20) increases by 149%
in this case. For clients with medium to high trading needs, N ≥ Nmin-cost,
benefits from faster execution outweigh losses from higher trading costs and,
thus, Nmin-cost increases from 21 to 23 dealers while Nmax increases from 44
to 48 dealers. As a consequence, cmin, c(Nmax), and the average trading cost
all increase by 2%. Therefore, the cost premium at Nmax, c(Nmax) − cmin, stays
flat while the cost premium at Nmin, cmax − cmin, declines by 11%. Since the
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reduction in λ decreases the cost premium at Nmin while the reduction in κ

increases the cost premium at Nmin, the model can identify λ and κ separately.
Finally, reducing V r decreases the nontrade benefits from having a larger

network size for clients with both low and high trading needs, with the latter
being more affected. Clients respond by scaling down their networks. When
V r is reduced by 10% (50%), by decreasing θv

0 , the average network size
declines by 10% (28%), the maximum network size declines by 11% (52%),
Pr(N ≤ 2) increases by 32% (32%), and Pr(N > 20) declines by 50% (100%).
Because clients trade off the nontrade benefits against wider spreads, reducing
network size should lead to a narrower spread, except for Nmin = 1. Indeed,
the average c(N) declines by 1% (2%), cmin is unchanged (declines by 52%),
c(Nmax) declines by 1% (5%), and cmax is unchanged. Consequently, the cost
premium at Nmin, cmax − cmin, increases by 1% (6%), whereas the cost premium
at Nmax, c(Nmax) − cmin, declines by 13% (65%).

Overall, Table VII clearly demonstrates that the effect of each structural
parameter on the network size distribution and transaction costs exhibits
substantial variation, thus allowing for the parameter identification.

D. Model Fit and Discussion

Figures 5 and 6 provide visual evidence on the quality of the model’s fit.
In particular, both figures provide four plots illustrating the fit for their
respective specification. The top left graphs plot the number of dealers as
a function of their trading intensity both in the data (circles) and in the
model (dashed line). Similar to Figure 3, the top right graphs plot the degree
distribution for insurer-dealer relationships in the data (circles) compared to
the model-implied distribution under the estimated parameters (dashed line).
In both cases, the distance between the two lines captures the model fit.

To further visualize the goodness of fit, the bottom left graphs plot the
degree distribution for insurer-dealer relationships in the data against the
model-implied distribution under the estimated parameters. Each circle is
labeled with the corresponding network size. The deviation from the 45◦ line
measures model fit.

The specification with uniform dealer bargaining power fits the network
distribution between two and 19 dealers. In the bottom left graph in Figure 5,
the circles are on the 45◦ line for almost all values of N less than 20. The
goodness of fit deteriorates, however, for larger networks, and the model does
not generate networks larger than 22 dealers.

The bottom right graph in Figure 5 plots the empirical relation be-
tween trading costs and network size from column (4) of Table V (circles),
c(N∗) = 51 + 0.32N∗ − 6.29 lnN∗, against its model-implied counterpart
(dashed line).24 The distance between the two lines is a measure of model fit

24 Because values reported in Table V are estimated on individual transactions and contain
many control variables, it is simpler to plot the functional relationship rather than some other
transformation of the underlying data.
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Figure 5. Model fit with constant bargaining power wb, ws. This figure shows the model
fit for the base specification of constant dealers’ bargaining power, w. The top left graph (log-
log scale) plots the network size of insurer-dealer relationships for insurer buys as a function of
the insurers’ trading frequency in the data (circles) compared to the model-implied distribution
under the estimated parameters (solid line). The top right graph (log-log scale) plots the degree
distribution for network size in the data (circles) compared to the model-implied distribution under
the estimated parameters (solid line). The bottom left graph (log-log scale) compares the empirical
probability of a given network size to the model-implied probability. The bottom right graph (linear-
log scale) plots the bid-ask spread in the data as a function of insurers’ network size in the data
(circles) compared to the model-implied bid-ask spread under the estimated parameters (solid line).
(Color figure can be viewed at wileyonlinelibrary.com)

and shows that the parameter estimates from specification 1 do not well de-
scribe the relationship between network size and trading costs in the data. The
model’s relation is too weak as the line is too flat. In addition, the nonmonotonic-
ity in the relation is barely visible. This result suggests that uniform bargaining
power limits the variation in the benefits and costs of having a larger network.

In the model, network size affects trading costs, insurers with different
η choose different N∗(η), and η impacts trading costs independent of the
network size. Understanding how these effects interact in the model provides
insight into why the model with uniform bargaining power weakly fits the
relationship between network size and trading costs. The spread can be
written as SP(η(N∗), N∗). Its full derivative with respect to N∗ is

dSP
dN∗ = ∂SP

∂N∗︸ ︷︷ ︸
>0

+ ∂SP
∂η︸ ︷︷ ︸
<0

· dη

dN∗︸ ︷︷ ︸
≥0

. (44)
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Figure 6. Model fit with client-specific bargaining power wb(η),ws(η). This figure shows the
model fit when dealers’ bargaining power is a function of trading intensity, wb(η) and ws(η). Please
see the caption of Figure 5 for further details. (Color figure can be viewed at wileyonlinelibrary.com)

The top left graph in Figure 5 is the inverse of dη

dN∗ . The top right graph in
Figure 5 weighs this term by the observed empirical distribution of trading
intensities. Therefore, fitting the model requires fitting dη

dN∗ and dSP
dN∗ , and dSP

dN∗

depends on dη

dN∗ . The model determines ∂SP
∂N∗ and ∂SP

∂η
.

The first term in (44) corresponds to the derivative of the spread with respect
to optimal network size in the model. As discussed earlier, at the optimum
this derivative is positive. The second term in (44) corresponds to the effect
of insurers with different η choosing different N∗ and η impacting trading
costs independent of the network size. The value of future business causes
the bid-ask spread to improve with η, ∂SP

∂η
< 0, and the optimal network size is

a nondecreasing function of η, dη

dN∗ ≥ 0, so the second term in (44) is always non-
positive. The opposing signs of the two terms explain how the model produces
a nonmonotonic relationship between network size and trading costs in the
data. To fit the trading cost-network size relationship in Table V, the full deriva-
tive in (44) must be initially negative and then become positive at 20 dealers.
The slope of the line for the model with uniform bargaining power is not nega-
tive enough initially, nor does it increase noticeably enough at N = 20, to fit the
data.
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The log-log plot in the top left graph of Figure 5 shows that fitting dη

dN∗
requires that N∗ = 1 for a range of η’s. The estimation can achieve this for a
wide range of parameters by setting dealers’ bargaining power wb,s close to
one, but it does not do so in specification 1. This is because increasing dealers’
bargaining power has two effects for a fixed η. First, it widens the spread, and
second by shifting benefits of repeat trading from a client to a dealer, it reduces
the optimal network size. In contrast, increasing trading frequency η while
keeping wb,s fixed increases the total value of repeat trading thus narrowing
the spread and increasing the optimal network size. In the data, the clients
with the smallest networks pay wider spreads, with the widest spread paid
by clients with a single dealer, and the spread narrows monotonically with
network size until N = 20 and then widens. Bargaining power is fixed in
specification 1 of the model, while η varies over a very wide range of values.
Setting wb,s close to one allows the model to fit small networks (from N = 2 to
N = 9) for a wide range of η, match the widest spreads, and make the spread
decline with N for N < 20. Unfortunately, this same mechanism makes it
costly to have larger dealer networks, so the model produces no insurer with a
single dealer and no networks larger than 22. Finally, high dealer bargaining
power weakens the relationship between spreads and network size. If dealer
bargaining power declines with insurer trading intensity, then larger networks
may be optimal and the relationship between network size and trading costs
may be larger. Specification 2 allows bargaining power to vary with η.

The model fit improves significantly when dealers’ bargaining power depends
on η. All four plots in Figure 6 show a close correspondence between the model
and the data. The graphs show network sizes greater than 22, and the U-shape
in the bid-ask spread starts at 20 dealers. In this specification, dealers’ bargain-
ing power is greater than 0.8 for insurers with trading intensity less than 5.25

Dealer bargaining power for insurer buys is about 0.5 when trading intensity
approaches 10. When η exceeds 30, dealer bargaining power for insurer buys is
small. This enables the model to produce large networks for insurers with large
η, as the value that dealers place on repeat business increases with η. In addi-
tion, bargaining power varying with η has a direct effect on trading costs. Larger
insurers have greater bargaining power, which reduces their trading costs. This
strengthens the relationship between trading costs and network size.

Consistent with the treatment above, the top right graphs of Figures 5 and
6, which depict the fraction of insurers with different network size, contain
several nonmonotonic spikes. These spikes arise from the fact that the number
of dealers in the model are constrained to be integers. This constraint is also
visible in the top left graphs of Figures 5 and 6, which depict the network size
for different trading frequencies. The model line in the top left graphs has
flat regions since a range of trading frequencies η lead to the same network
size. These flat regions cause the fraction of dealers to be nonmonotonic. The
locations of the flat regions correspond to the spikes in the top right graphs.

25 Figure 2 shows that the majority of insurers have trading intensity less than 5.
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Table VIII
Model-Implied Persistence in Insurers’ Trading Network:

Simulation Evidence
This table reports model-implied switching probabilities, p(No. of dealers in t + 1 | No. of dealers
in t), for choosing a network size conditional on the insurer’s behavior in the past year. The
simulation uses model parameter estimates from Table VI. Details of the simulation are reported
in the text.

No. of Dealers Next Year

1 2–5 6–10 >10

No. of Dealers this Year Data Model Data Model Data Model Data Model

1 0.61 0.75 0.30 0.21 0.06 0.04 0.03 0.01
2–5 0.20 0.13 0.54 0.67 0.20 0.17 0.06 0.03
6–10 0.06 0.04 0.30 0.26 0.40 0.53 0.24 0.17
>10 0.01 0.00 0.07 0.03 0.17 0.13 0.75 0.84

To further examine the ability of the model to fit the data, we
compute the model-implied switching probabilities, p(No. of dealers in t +
1 | No. of dealers in t), between different network sizes and compare them to
their empirical counterpart reported in Table IV.26 To do so, we simulate panels
of realized network sizes Nit for insurer i in year t using the actual number of
buy transactions by insurer i in year t. Specifically, for each insurer in the sam-
ple, we use trading intensity ηi, as computed earlier in this section, and the esti-
mated model parameters from specification 2 of Table VI as inputs to determine
the insurer’s optimal network size N∗

i . Then, for each trade in the actual data
set, we simulate which of the N∗

i dealers in the insurer’s network is matched
to a given trade according to random search across the dealers in the network.
We record the identity of the dealer handling each such trade and use these
identities to compute the realized dealer network, Nit, as the unique number of
dealers from the insurer’s network matched to a trade with the insurer in year
t. The resulting panel of realized network sizes Nit for all insurers and all years
yields model-implied switching probabilities. We then bootstrap the switching
probabilities by repeating the trade-by-trade simulation of the insurer-dealer
matching several times and averaging over simulations. The switching proba-
bilities are highly stable from simulation to simulation, so 10 simulation rounds
suffice. Table VIII shows that the model can match the persistence in networks,
as the model-implied transition matrix is close to the actual transition matrix.

To summarize, the theoretical model in which dealers’ bargaining power
declines with trading intensity η fits the data well. In particular, it is important
that dealers’ bargaining power on the ask side depend on η. This leads to small
inactive insurers having very weak outside options both when they buy and

26 This assumes that the network is in steady state. In our model, all dealers are identical. How
clients dynamically choose new dealers when dealers are heterogeneous is an important question
that our model does not address. See Chaney (2018) for an example of a dynamic network formation
model with heterogeneous counterparties.
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when they sell. By contrast, large active insurers have strong outside options
when they buy and weak bargaining power when they sell.

E. Impact of Policy Changes

The parameter estimates help us quantify both the value of repeat client-
dealer trading and nontrade value V r. In this section, we use the model and
estimated parameters to construct counterfactuals that capture the impact of
repeat trade business on client-dealer networks and prices. We first compute
counterfactual networks and bid-ask prices under the assumption that dealers
extend only partial price improvement for future repeat trading from a given
client. In this case, search and bargaining proceed as above, but the dealers
in an insurer’s network are implicitly rechosen with probability one-half
after every trade. This is counterfactual scenario 1. Under this counterfactual
scenario, the bid and ask price equations in the model are adjusted by dividing
both U o and U no in (20) and (21) by 2.

To capture the impact of V r on networks and transaction prices, we also
compute counterfactual networks and bid-ask prices under the assumption
that clients fully benefit from repeat trading but nontrade relationships with
dealers are segregated, which we achieve by setting V r = 0 in the optimization
and then adding it back at the new optimum. This is counterfactual scenario
2. Setting V r = 0 in the optimization has the indirect effect that clients choose
smaller networks when the nontrade value is zero. Setting the nontrade value
to zero also reduces client valuations. An interpretation of the direct effect on
clients’ valuation is that unbundling trading from research and other activities
means that either dealers now no longer provide nontrade benefits to clients
or dealers charge clients for the services that provide these benefits. Our
expectation is that clients will lose (some of) these nontrade benefits. We focus
on the indirect impact on client valuations by adding the nontrade value back
in when we recompute client value. An alternative policy experiment would
be to assume that clients lose a fraction or all of their direct nontrade benefits,
in which case the decrease in value would be substantially larger.

The top left plot in Figure 7 corresponds to the top left plot in Figure 6 and
depicts the optimal network size, N∗. Because network size changes under the
counterfactuals, the top right plot in Figure 7 shows the bid-ask spread as a
function of trading intensity, η. All four graphs in Figure 7 use the parameters
estimated from specification 2 in Table VI. Each graph plots the results from
specification 2 (solid line), counterfactual 1 (crosses), and counterfactual 2
(circles).

Figure 7 highlights the fundamental trade-offs that the client faces in our
model. When dealers’ repeat trade benefits are reduced (counterfactual 1), deal-
ers charge wider bid-ask spreads. Dealers in smaller networks lose more repeat
trade surplus than dealers in large networks because each dealer’s per-trade
loss is scaled by the network size. Smaller clients with a lower trading intensity
have smaller networks. Consequently, the widening in bid-ask spread is slightly
larger for clients with a lower trading intensity than for clients who trade very
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Figure 7. Counterfactual analysis. The top left graph plots the client-dealer network size as a
function of clients’ trading frequency, η. The top right graph plots the bid-ask spread as a function of
η. The bottom left graph plots the change in clients’ value from trading, V b, as a function of clients’
trading frequency, η. The bottom right graph plots the change in dealers’ value from trading, U b,
as a function of clients’ trading frequency, η. Each plot shows the corresponding variable under the
parameters estimated from specification 2 in Table VI (solid line) compared to the counterfactuals
that would arise if (I) dealers suffer a permanent loss of 50% of repeat trade business (crosses) or
(II) the nontrade relationship value is zero (circles). We use a log-log scale. (Color figure can be
viewed at wileyonlinelibrary.com)

frequently. Both large (high η) and small (low η) clients respond to wider a bid-
ask spread by reducing the size of their network. The magnitude of this effect
is much smaller for clients with low η as they already have small networks.

Clients reduce their network size when the nontrade value V r is segregated
from trading in counterfactual 2. Because V r is larger for clients with a larger
trading intensity, they reduce the size of their network more than clients with
low η. Dealers respond to the reduction in network size by charging better trans-
action prices, thus leading to narrower bid-ask spreads for all η-type clients.
The magnitude of the bid-ask spread improvement is larger (smaller) for clients
with high (low) η because they reduce the size of their network more (less).

The U-shape in the bid-ask spread is not present without the nontrade
relationship value V r. This highlights the role that V r increasing in N∗ plays
in the nonmonotonicity of the relationship between network size and the
bid-ask spread. As V r increases with N∗, clients have an incentive to choose
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a larger network than in the absence of the nontrade value, because larger
transaction costs are offset by the nontrade value. Because V r increases with η

as well, this incentive is especially strong for clients with a very large trading
intensity and a large network, thus leading to the U-shape in the bid-ask
spread for large networks.

MiFID II attempts to unbundle various aspects of relationships between
clients and dealers. Trading and nontrading services are supposed to be priced
and sold separately. In addition, U.S. and European regulators seem to favor
shifting corporate bond trading to centralized electronic platforms like Marke-
tAxess, Tradeweb, and TruMid. These initiatives likely impact the transaction
costs incurred by clients, but very little empirical and/or theoretical evidence
exists that quantifies these effects. Our counterfactuals provide quantitative
insights regarding both unbundling trading and nontrading dealer services
(counterfactual 2) and moving bond trading from OTC to more centralized
electronic platforms where the probability of repeat trading with the same
dealer is reduced (counterfactual 1).

The top right panel of Figure 7 shows that when the probability of repeat
trading with the same dealer is reduced (green crosses), all clients will incur
higher transaction costs. Insurers that trade more frequently and, in turn,
have a larger network will see a much smaller increase in transaction costs
than clients that trade less frequently and tend to trade repeatedly with one
to five dealers. For instance, clients with 100 annual trades have on average
11 dealers in their network and see an increase in transaction costs of less
than 1 basis point per bond per transaction. These clients tend to be larger
with more market power. In contrast, smaller clients with less than 10 trades
annually have networks with up to five dealers and pay on average 3–7 basis
points more per bond per transaction.

With unbundling (circles), transaction costs improve for all clients, with the
largest clients trading most frequently realizing the largest improvement. This
is because with bundling, these clients obtain the largest nontrade benefits
from dealers at the expense of transaction prices. The largest clients reduce
their network size the most to benefit from trade-related relationship value.
Overall, our results indicate that decoupling trade and nontrade client-dealer
business are likely to decrease transaction costs for all but a few clients.

The bottom left plot of Figure 7 shows that the proposed regulations are
expected to decrease the value from trading, V b, for all client types, with larger
and more active clients affected differently than smaller and less active clients.
In the model, higher η clients incur the largest reduction in V b. These clients
also reduce the size of their trading network the most. If unbundling only
impacts network size and clients still receive nontrade relationship value from
their dealers, clients’ welfare loss is significant but does not turn the value from
trading negative. However, clients with lower η already extract little value
from trading. As a consequence, under the new regulations the value they
generate from trading may become negative. If small clients lose both trade
and nontrade benefits, they may exit the market altogether. Thus, the pro-
posed regulations can potentially reduce trading activity and decrease clients’
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welfare. Indeed, if MiFID II or other regulation eliminate both trade and
nontrade relationship value, the decline in client welfare may be substantial.

As for the dealers, the bottom right graph of Figure 7 shows that the
reduction in network sizes by clients raises the value of trading for those
dealers that still remain in the network. The profits from trading, U b, also
rise for the remaining dealers across all types of investors, which is somewhat
contrary to the intent of the proposed regulations, as our results suggest that
profits rise the most for low η clients, for which U b is already the highest.

V. Conclusion

OTC markets, which are pervasive across asset classes, are often considered
as functioning poorly due to search frictions arising from a lack of transparency
and fragmented trading. Regulators have attempted to address these concerns
by unbundling trade and nontrade services, increasing transparency, and
encouraging the use of electronic trading platforms. However, while changes in
regulations and market structure impact heterogeneous investors differently,
there is limited theory closely linked to empirical work to guide these decisions.

In this paper, we use comprehensive regulatory corporate bond trading
data for all U.S. insurance companies to examine investors’ choice of trading
network size and the relation between network size and the transaction
prices investors receive in the current decentralized OTC market setting.
We document that 30% of insurers trade with a single dealer, whereas few
insurers have networks of up to 40 dealers. The cross-sectional distribution in
trading activity follows a power law, whereas network size follows a power law
with exponential tail. Trading costs decline with network size up to 20 dealers
and then increase for larger networks.

A parsimonious model of OTC trading in which insurers choose one-to-many
dealer relationships can match the empirical regularities in our sample. In the
model, insurers trade off the value of repeat relationships with fewer dealers
and the benefits of faster execution with more dealers. The value of repeat rela-
tionships declines in the number of dealers as an increase in competition erodes
the probability of transacting. Dealers compensate for a loss of repeat business
by charging higher spreads. The value of repeat relationships diminishes more
slowly with the addition of dealers for clients with larger trading intensity as
dealers compete for more repeat business. Thus, larger clients use more dealers
and get better execution as the benefits of more repeat business swamp the costs
of a larger network. Dealers provide better prices to these larger clients because
their repeat business is more valuable. Eventually, the costs of a larger network
outweigh the benefits and the spread starts to increase with network size.

We use the structurally estimated model parameters to counterfactually
assess the impact of regulations that erode client-dealer relationships. We
find that clients incur higher transaction costs when repeat trading is reduced
through, for example, anonymous trading. Unbundling trade and nontrade
services reduce the optimal network size and decrease transaction costs for
all insurers except the least active ones. If clients cease to receive nontrading
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benefits from dealers, clients that trade infrequently may cease trading
altogether, which can reduce market liquidity. Our analysis thus suggests
that, unless nontrading services can be provided in a significantly more
efficient way in an unbundled setting, unbundling decreases welfare.
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Appendix A: Data Filters

Our insurance company Schedule D raw filing data are downloaded from
SNL financial, which obtains the data from the insurance company regulator,
NAIC. Parts 3 and 4 of Schedule D filed with the NAIC contain purchases and
sales made during the quarter, except for the last quarter. In the last quarter
of each year, insurers file an annual report in which all transactions during the
year are reported. Part 3 of Schedule D reports all long-term bonds and stocks
acquired during the year but not disposed of, whereas Part 4 of Schedule D
reports all long-term bonds and stocks disposed of. In addition, all long-term
bonds and stocks acquired during the year and fully disposed of during the
current year are reported in the special Part 5 of Schedule D. We compile
the information in Parts 3–5 of Schedule D to obtain a comprehensive set of
corporate bond transactions by all insurance companies regulated by NAIC.

There are several differences between the raw filing data used in this
paper and the “Time and Sales Data” from Mergent FISD available on WRDS
and widely used in previous studies such as Bessembinder, Maxwell, and
Venkataraman (2006). Most importantly, the Mergent data do not identify the
insurers, which is crucial in identifying relationships in this paper. Moreover,
the Mergent data use only filings from the last quarter of each year, which
report all purchases and sales made in the calendar year. However, we find
that annual reports appear to be missing many trades that show up in the
quarterly report. Thus, for completeness, we compile the trade data using the
quarterly reports from Q1 to Q3 and all trades that happened in Q4 using
the Q4 annual report.

NAIC’s counterparty field reports names in text, which can sometimes be
mistakenly typed. The bank with the most variation in spelling is DEUTSCHE
BANK. We manually clean this field to account for different spellings of
broker-dealer names.

We apply various FISD-based data filters based on Ellul, Jotikasthira,
and Lundblad (2011) to eliminate outliers and establish a corporate bond
universe with complete data. The data filters are described in Table A1, which
summarizes the number of observations that are affected by each step. We
exclude a bond if it is exchangeable, preferred, convertible, MTN, foreign
currency denominated, puttable, or has a sinking fund. We also exclude CDEB
(U.S. Corporate Debentures) bonds, CZ (Corporate Zero) bonds, and all govern-
ment bonds (including municipal bonds) based on the reported industry group,
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Table A1
Data Filters

Full Corporate
Filter sample bonds

1. All trades from original filings (includes all markets, all trades since
2001).

19.1 4.5

2. Remove all trades that do not involve a dealer (e.g., paydown,
redemption, mature, and correction).

6.6 3.1

3. Remove duplicates, aggregate all trades of the same insurance
company in the same CUSIP on the same day with the same dealer.

6.5 3.1

4. Map dealer names to SEC CRD number, drop trades without a name
match, and drop trades with a dealer that trades fewer than 10 times
over the sample period.

6.1 2.9

5. Drop if not fixed coupon (based on eMaxx data), drop if information
on outstanding amount information is missing in both eMaxx and
FISD.

5.3 2.5

6. Drop if trade is on a holiday or weekend. 5.2 2.5
7. Drop if counterparty is “various.” 4.1 2.1
8. Drop trades less than 90 days to maturity or less than 60 days since

issuance (i.e., primary market trade).
2.8 1.5

9. Merge with FISD data, keep only those securities that are not
exchangeable, preferred, convertible, issued by domestic issuer,
taxable muni, or missing the offering date, offering amount, or
maturity, and for which offering amount is not less than $100K.

1.0 1.0

as well as bonds for which any of the following fields are missing: offering date,
offering amount, and maturity. We further restrict our sample to bonds with
offering amount greater than $10 million, as issues smaller than this amount
are highly illiquid and hence rarely traded. Ellul, Jotikasthira, and Lundblad
(2011) use a cutoff of $50 million, which we find restrictive for our purpose.
We winsorize the cash-to-assets ratio at 99% to remove extreme values.
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