
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS Vol. 48, No. 4, Aug. 2013, pp. 1001–1024
COPYRIGHT 2013, MICHAEL G. FOSTER SCHOOL OF BUSINESS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195
doi:10.1017/S0022109013000471

Algorithmic Trading and the Market for Liquidity

Terrence Hendershott and Ryan Riordan∗

Abstract

We examine the role of algorithmic traders (ATs) in liquidity supply and demand in the
30 Deutscher Aktien Index stocks on the Deutsche Boerse in Jan. 2008. ATs represent
52% of market order volume and 64% of nonmarketable limit order volume. ATs more
actively monitor market liquidity than human traders. ATs consume liquidity when it is
cheap (i.e., when the bid-ask quotes are narrow) and supply liquidity when it is expensive.
When spreads are narrow ATs are less likely to submit new orders, less likely to cancel
their orders, and more likely to initiate trades. ATs react more quickly to events and even
more so when spreads are wide.

I. Introduction

Frictions related to investors’ participation and monitoring of financial mar-
kets are important for trading and asset price dynamics (Duffie (2010)). Imper-
fect monitoring prevents investors from immediately contacting all counterparties.
This prolongs search and causes investors to offer greater price concessions to
trade quickly, reducing liquidity. Uncertainty in the search process increases liq-
uidity risk. Both the level and uncertainty of liquidity depress prices and lead
to misallocations of capital. Technological progress in the form of algorithmic
traders (ATs) reduces monitoring frictions, which can improve efficiency in the
market for liquidity and facilitate gains from trade.1
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1Technology has revolutionized the financial market structure and trading: Investors use comput-
ers to automate their trading processes, and virtually all markets are now electronic limit order books
(Jain (2005)). The speed and quality of access to such markets encourages ATs.
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We examine the intersection of ATs and investor monitoring for Deutscher
Aktien Index (DAX) stocks (the 30 largest market capitalization stocks) traded on
the Deutsche Boerse (DB) with data identifying whether or not the order was gen-
erated with an algorithm. Directly identifying ATs is not possible in most markets.
We study how technology that lowers monitoring costs affects the market for liq-
uidity supply and demand by characterizing the role of investors with lower costs.

Lower monitoring costs for ATs should lead to more frequent activity as ATs
can react quickly to liquidity supply and demand dynamics resulting from trading
and order submissions. For example, the breaking up of large orders into smaller
trades that execute when liquidity is high facilitates the search process without
revealing the full trading interest. More generally, the ability to monitor and re-
act to events means that trading can be continuously and dynamically optimized,
leading ATs to consume liquidity when it is expensive and supply liquidity when
it is cheap. An AT’s rapid response to new events should be fastest when liquidity
is low.

Algorithms are used to trade in both agency and proprietary contexts
(Hasbrouck and Saar (2013)). Institutional investors utilize ATs to trade large
quantities gradually over time, thereby minimizing market impact and trading
costs. Proprietary algorithms, often used for intermediation, are usually referred
to as high-frequency traders (HFTs). HFTs use algorithms to quickly process in-
formation contained in order flow to identify when a security’s price deviates
from the efficient price and trade against the deviations. Studying ATs facilitates
our overall understanding of the importance of technological advances in financial
markets and how these affect the frictions in participation and monitoring faced
by investors and traders.2

ATs are identified in our data because of an unusual pricing scheme. Most
markets offer volume discounts to attract the most active traders. During our sam-
ple period the German competition authority did not allow for generic volume
discounts, but rather required that discounts have a cost-sensitive component. The
DB successfully asserted that algorithm-generated trading is lower cost and highly
sensitive to fee reductions and, therefore, could receive quantity discounts.3 The
fee rebate program also subsidized the investment in costly technology, encour-
aging more investors to automate and boosting trading volume and liquidity at the
DB. The DB provided data on AT orders, generated by members in the fee rebate
program, in the DAX stocks for the first 3 weeks of Jan. 2008.

In our sample ATs initiate 52% of trading volume via marketable limit or-
ders. ATs initiate smaller trades, with ATs initiating 68% of volume for trades of
fewer than 500 shares and 23% of volume for trades of more than 10,000 shares.
ATs cluster their trades together and initiate trade quickly when bid-ask spreads
are small. ATs are more sensitive to human trading activity than humans are to AT
activity. By splitting large orders into smaller slices, ATs reduce their own market
impact but also the volatility of liquidity in general.

2Examining HFTs and lower frequency traders separately, which is not possible with our data, can
provide insights into an AT’s application to particular investment and trading strategies.

3In Dec. 2006, the DB introduced its fee rebate program for automated traders. The DB modified
the fee rebate program on Nov. 2, 2009, to a volume discount program. This effectively ended the
AT-specific fee rebate at the DB.
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ATs submit 64% of nonmarketable limit order volume. ATs cancel orders
more frequently, leading to ATs supplying liquidity in only 50% of trading vol-
ume. When spreads are narrow, ATs are less likely to submit new orders and less
likely to cancel their orders. The net effect of their order submissions and can-
cellations leads ATs to be at the best bid and offer more often than humans, with
the difference being more pronounced when spreads are wider. ATs cluster their
orders together, and they are more sensitive to human order submission activity
than humans are to AT order activity.

These results on trading and order submissions are consistent with ATs closely
monitoring market liquidity supply and demand. The dependence of their trades
and orders on the size of the spread, in terms of activity and speed, shows that their
order placement strategy is not random, but rather part of an efficient demand and
supply strategy. Better monitoring allows traders to quickly react to changes in
market conditions, leading ATs to supply liquidity more when spreads are wide
and to demand liquidity more when spreads are narrow. This reduces uncertainty
in liquidity provision, thereby reducing liquidity risk.

To extend our examination of ATs’ monitoring, we move beyond the public
information contained in the limit order book by studying recent price changes in
the futures index market. Futures markets generally lead the underlying stocks,
so continuous monitoring of futures price changes is required to prevent limit
order from becoming stale. We estimate probit models of algorithmic liquidity-
demanding and -supplying trades and order cancellations, controlling for market
condition variables that incorporate the state of the limit order book, past volatil-
ity, and trading volume. We find evidence that algorithmic liquidity-demanding
trades take advantage of stale limit orders, as AT buys are more likely after recent
positive index future returns and AT sells are more likely after recent negative in-
dex future returns. We find that ATs are more likely to initiate trades when liquid-
ity is high in terms of narrow bid-ask spreads. Algorithmic liquidity-demanding
trades are negatively related to volatility and volume in the prior 15 minutes. For
liquidity-supplying trades, ATs are more likely to trade when liquidity is low. Al-
gorithmic liquidity-supplying trades are positively related to prior volatility and
negatively related to prior volume. An important component in the supply of liq-
uidity is the ability to continuously monitor market conditions and cancel limit
orders in the book to avoid being adversely selected. We find that ATs are more
likely to cancel orders that are in the opposite direction of recent index future
returns, making ATs better able to avoid being adversely selected based on public
information.

Section II relates our work to existing literature. Section III describes ATs
on the DB. Section IV describes our data. Section V analyzes when and how ATs
demand liquidity. Section VI examines order submission strategies. Section VII
uses multivariate probit analyses to study when ATs supply and demand liquidity
in transactions. Section VIII concludes.

II. Related Literature

Important implications of investors’ monitoring/attention and participation
decision for the movement of capital and asset prices are extensively reviewed in
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Duffie (2010). Electronic limit order markets represent a market for immediacy
where limit order submitters offer terms of trade to potential market orders. Limit
order submitters must either continuously monitor the market for changing condi-
tions or face being taken advantage of by later arriving traders. Parlour and Seppi
(2008) provide a general survey on limit order markets and the importance of the
monitoring friction.

Foucault, Roëll, and Sandas (2003) study the equilibrium level of effort that
liquidity suppliers should expend in monitoring the market. ATs lower the cost of
this kind of monitoring and the adjustment of limit orders in response to market
conditions.4 The monitoring of the state of liquidity in the market and taking
it when cheap and making it when expensive are consistent with ATs playing
an important role in the make/take liquidity cycle modeled by Foucault, Kadan,
and Kandel (2013). If ATs lower the costs of monitoring, then frictions may be
reduced and Rosu’s (2009) modeling of limit orders as being constantly adjusted
is a reasonable simplification for theoretical modeling.

Due to the difficulty in identifying ATs, initial research directly addressing
ATs used data from brokers who sell algorithmic products to institutional clients.
Engle, Russell, and Ferstenberg (2012) use execution data from Morgan Stanley
algorithms to study the trade-offs between algorithm aggressiveness and the mean
and dispersion of execution cost. Domowitz and Yegerman (2006) study execution
costs of Investment Technology Group buy-side clients, comparing results from
different algorithm providers.

Several recent studies use comprehensive data on ATs. Chaboud, Chiquoine,
Hjalmarsson, and Vega (2009) study the rise of ATs in the foreign exchange mar-
ket on the electronic broking system (EBS) in 3 currency pairs: euro-dollar,
dollar-yen, and euro-yen. They find little relation between ATs and volatility.
Chaboud et al. find that ATs seem to follow correlated strategies, which is consis-
tent with our results on ATs clustering together in time. Hendershott, Jones, and
Menkveld (2011) use a proxy for ATs, message traffic, which is the sum of order
submissions, order cancellations, and trades. Unfortunately, such a proxy makes
it difficult to directly examine when and how ATs behave and their role in liquid-
ity supply and demand. Hendershott et al. use an instrumental variable to show
that ATs improve liquidity and make quotes more informative. Our results on AT
liquidity supply and demand show the channels by which ATs could lead to more
liquid markets.

Algorithms are used by traders who are trying to passively accumulate or
liquidate a large position. Bertsimas and Lo (1998) find that the optimal dy-
namic execution strategies for such traders involve optimally breaking orders into
pieces to minimize cost.5 While such execution strategies predate the widespread

4Biais, Hombert, and Weill (2010) theoretically examine the relation between ATs, market mon-
itoring, and liquidity dynamics under limited cognition. See Biais, Foucault, and Moinas (2011) and
Pagnotta and Philippon (2011) for models where investors compete on their trading algorithm’s speed.
Monitoring also has important cross-market competition implications, as in Foucault and Menkveld
(2008) and others.

5Almgren and Chriss (2000) extend this by considering the risk that arises from breaking up orders
and slowly executing them.
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appearance of ATs (see also Keim and Madhavan (1995)), brokers now automate
the process with algorithmic products.

For each component of the larger transaction, a trader (or algorithm) must
choose the type and aggressiveness of the order. Cohen, Maier, Schwartz, and
Whitcomb (1981) and Harris (1998) focus on the simplest static choice: mar-
ket order versus limit order. If a trader chooses a nonmarketable limit order,
the aggressiveness of the order is determined by its limit price (Griffiths, Smith,
Turnbull, and White (2000), Ranaldo (2004)). Lo, MacKinlay, and Zhang (2002)
find that execution times are very sensitive to the choice of limit price. If limit
orders do not execute, traders can cancel them and resubmit them with more ag-
gressive prices. A short time between submission and cancellation suggests the
presence of ATs. Hasbrouck and Saar (2009) find that a large number of limit or-
ders were canceled within 2 seconds on the INET trading platform (which is now
Nasdaq’s trading mechanism).

A number of papers analyze the high-frequency trading subset of ATs. Biais
and Woolley (2011) provide background and survey research on HFTs and ATs.
Brogaard, Hendershott, and Riordan (2013) study the role of overall, aggressive,
and passive trading by HFTs in the permanent and transitory parts of price discov-
ery. Kirilenko, Kyle, Samadi, and Tuzun (2011) analyze HFTs in the E-mini S&P
500 futures market during the May 6, 2010, flash crash. Jovanovic and Menkveld
(2011) model HFTs as middlemen in limit order markets and study their welfare
effects. Menkveld (2013) shows how one HFT firm enabled a new market to gain
market share.

III. Deutsche Boerse’s Automated Trading Program

DB’s order-driven electronic limit order book system is called Xetra (see Hau
(2001) for details).6 Orders are matched using price-time-display priority. Quan-
tities available at the 10 best bid and ask prices and the number of participants at
each level are disseminated continuously. See the Appendix for further details on
Xetra.

During our sample period, Xetra had a 97% market share of German eq-
uities trading. With such a dominant position, the competition authorities (Bun-
deskartellamt) required approval of all fee changes prior to implementation. The
criteria used to evaluate fee changes were: i) All participants are treated equally;
ii) changes must have a cost-related justification; and iii) fee changes are trans-
parent and accessible to all participants. Criteria i) and iii) ensure a level playing
field for all members and are comparable to regulation in the rest of Europe and
North America. The 2nd criterion is the most important for this paper. ATs were
viewed as satisfying the cost justification for the change, so the DB could offer
lower trading fees for ATs.7

6Iceberg orders are allowed as on the Paris Bourse (see also Venkataraman (2001)).
7The logic was that electronic order generation by algorithms could be less costly for an exchange,

making lower fees justifiable. This is debatable. At the end of 2009 the ATP was ended and lower AT
fees were replaced by the volume discounts used in most other markets.
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In Dec. 2007 the DB introduced its Automated Trading Program (ATP) to
increase the volume of automated trading on Xetra. By offering fee rebates, the
DB was implicitly subsidizing investment in AT technologies. To qualify for the
ATP an electronic system must determine the price, quantity, and submission time
for orders. In addition, the DB ATP agreement required that: i) the electronic sys-
tem must generate buy and sell orders independently using a specific program and
data; ii) the generated orders must be channeled directly into the Xetra system;
and iii) the exchange fees or the fees charged by the ATP member to its clients
must be directly considered by the electronic system when determining the order
parameters.

Before being admitted to the ATP, participants were required to submit a
high-level overview of the electronic trading strategies they plan to employ. The
level of disclosure required was intended to be low enough to not require ATP
participants to reveal important details of their trading strategies. Following ad-
mission to the ATP, the orders generated by each participant were audited monthly
for plausibility. If the order patterns generated did not match those suggested by
the participant’s submitted strategy plan or were considered likely to have been
generated manually, the participant was terminated from the ATP and possibly
suspended from trading on Xetra. The ATP agreement and the auditing process
ensure that most, if not all, of the orders submitted by an ATP participant are elec-
tronically generated and that most, if not all, electronically generated orders are
included in our data.8

The DB charges fees for executed trades and not for submitted orders. The
rebate for ATP participants could be significant and increased with the total trad-
ing volume per month. The 1st euro volume rebate level began at 250 million in
euro volume and rebated 7.5% of fees. Rebates rose to a maximum of 60% for
euro monthly volume above 30 billion. Table 1 provides an overview of the rebate
per volume level.

TABLE 1

ATP-Rebate Program

Table 1 presents the fee rebate schedule for ATP participants by volume levels.

Cumulative Monthly ATP-Volume ATP-Rebate
(in mil. euros) (per volume level)

0–250 0.0%
251–500 7.5%
501–1,000 15.0%
1,001–2,000 22.5%
2,001–3,750 30.0%
3,751–7,500 37.5%
7,501–15,000 45.0%
15,001–30,000 52.5%
≥ 30,001 60.0%

8Conversations with the DB revealed that a small portion of AT orders may not be included in
the data set. The suspicion on the part of the DB is due to the uncommonly high number of orders
(message traffic) to executions of certain participants, which is typical of ATs. However, these partic-
ipants make up less than 1% of trades in total and are, therefore, unlikely to affect our results.
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For an ATP participant with 1.9 billion euro volume, the percentage rebate
was

250× 0% + 250× 7.5% + 500× 15.0% + 900× 22.5%
1,900

= 15.6%.(1)

In the example above, an ATP participant received a rebate of 15.6% of
fees. This translates into roughly 14,000 euros in trading cost savings on 91,200
euros in total fees plus an additional 5,323 euro savings on 61,500 euros in to-
tal in clearing and settlement costs. This rebate (14,000 + 5,323) translates into a
0.1-basis-point (bp) saving on the 1.9 billion euros in turnover. For high-frequency
trading firms, whose turnover is much higher than the amount of capital invested,
these savings are significant.

The fee rebate for ATP participants was the only difference in how orders
were treated. AT orders were displayed equivalently in the publicly disseminated
Xetra limit order book. The Xetra matching engine did not distinguish between
AT and human orders. Therefore, there were no drawbacks for an AT firm to be-
come an ATP participant. Thus, we expect all ATs took advantage of the lower
fees by becoming ATP participants. From this point on we equate an ATP partic-
ipant with an algorithmic trader and use AT for both. We will refer to non-ATP
trades and orders as human or human-generated.

IV. Data and Descriptive Statistics

The DB provided data contain all AT orders submitted in DAX stocks, the
leading German stock market index composed of the 30 largest and most liq-
uid stocks, between Jan. 1 and Jan. 18, 2008, a total of 13 trading days. This is
combined with Reuters DataScope Tick History data provided by the Securities
Industry Research Centre of Asia-Pacific (SIRCA). The SIRCA data contain 2
separate data sets: one for transactions and another for order book updates.

We generate a data set similar to Biais, Hillion, and Spatt (1995). Using the
order book snapshots, we recreate the order causing the observed book changes.
To identify trades, which, when observing order book updates, are similar to can-
cels at the best, we match these orders with the public transaction data set. We
match the generated events (insert, cancel, trade) with the DB-provided AT order
data set. As in Biais et al. (1995), we truncate the order book at the first 5 levels
to focus on orders closest to the best bid and ask. The resulting data contain all
orders submitted by ATs and humans at the first 5 levels on the bid and ask sides
of the book.

Table 2 describes the 30 stocks in the DAX index. Market capitalization is
as of Dec. 31, 2007, in billions of euros.9 The smallest firm (TUI AG) is large
at 4.81 billion euros but is more than 20 times smaller than the largest stock in
the sample, Siemens AG. The standard deviation of daily returns is calculated
for each stock during the sample period. All other variables are calculated daily
during the sample period for each stock (30 stocks for 13 trading days for a total

9Firms’ market capitalization is gathered from the DB Web site (http://deutsche-boerse.com) and
cross-checked against data posted directly on each company’s Web site.
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TABLE 2

Summary Statistics

Table 2 presents descriptive statistics for the 30 constituents of the DAX index between Jan. 1, 2008, and Jan. 18, 2008.
The data set combines Deutsche Boerse (DB) Automated Trading Program system order data and SIRCA trade, quote,
and order data. Market capitalization data are gathered from the DB Web site (http://deutsche-boerse.com) and cross-
checked against data posted directly on the company’s Web site and are the closing market capitalizations on Dec. 31,
2007. Other variables are averaged per stock and day (390 observations), and the mean, standard deviation, maximum,
and minimum of these stock-day averages are reported.

Variable Mean Std. Dev. Min. Max.

Mkt. Cap. (euro billion) 32.85 26.03 4.81 99.45
Price (euros) 67.85 42.28 6.45 155.15
Std. Dev. of Daily Return (%) 3.12 1.40 1.47 9.29
Daily Trading Volume (euro million) 250 217 23 1,509
Daily Number of Trades per Day 5,344 3,003 1,292 19,252
Trade Size (euro) 40,893 15,808 14,944 121,710
Quoted Spread (bp) 2.98 3.01 1.24 9.86
Effective Spread (bp) 3.49 3.05 1.33 10.05
Depth (euro 10 million) 0.0177 0.0207 0.0044 0.1522
Depth3 (euro 10 million) 0.1012 0.1545 0.0198 1.0689

of 390 observations). Means and standard deviations, along with the minimum
and maximum values, are reported across the 390 stock-day observations.

DAX stocks are quite liquid. The average trading volume is 250 million
euros per day, with 5,344 trades per day on average. This implies that our data
set contains roughly 2 million transactions (5,344 × 390). Quoted half-spreads
are calculated when trades occur. The average quoted half-spread of 2.98 bp is
comparable to large and liquid stocks in other markets. The effective spread is
the absolute value of the difference between the transaction price and the mid-
quote price (the average of the bid and ask quotes). Average effective spreads are
only slightly larger than quoted spreads, evidence that market participants seldom
submit marketable orders for depth at greater than the best bid or ask.

We measure depth in two ways. The first is the standard measure of the
depth at the inside quotes: the average depth in euros at the best bid price and
the best ask price. As with spreads, depth is measured at the time of transactions.
More depth allows traders to execute larger trades without impacting the price,
corresponding to higher liquidity. However, if the width of the spread varies over
time, then comparisons of depth at the inside do not clearly correspond to levels of
liquidity; for example, 50,000 euros at an inside spread of 10 bp need not represent
more liquidity than 5,000 euros at an inside spread of 5 bp if in the latter case there
is sufficient additional depth between 5 and 10 bp. To account for time variation
in the spread, we calculate a 2nd depth measure using the limit order book. For
each stock, we aggregate the depth at bid and ask prices that have a distance of
less than 3 times that stock’s average quoted half-spread from the quote midpoint
at the time of transaction. We refer to this measure of depth that does not depend
on the spread at the time of the transaction as depth3. A similar measure is used
in Foucault and Menkveld (2008) to capture depth away from the best prices.

V. Trading

Trades represent liquidity demand and are arguably the most important events
in limit order markets. Trades allow investors to manage risk and adjust their
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portfolio throughout the trading day, and they are not subject to later cancella-
tion as with nonmarketable limit orders. Large liquidity-demanding orders placed
during periods of low liquidity can have substantial price impact and disrupt
market liquidity and stability for long periods of time. Breaking the same or-
der up into smaller pieces and submitting these conditional on market conditions
can reduce the negative impact of the overall order. Therefore, better monitoring
by ATs should lead their trades to be more sensitive to market conditions than
human trades.

To measure AT liquidity demand, we create marketable order (trade) and
limit order variables for ATs and humans, labeled AT and HUM, respectively.
The AT variable takes the value 1 when a trade or order is from an AT, and 0
otherwise. The HUM variable takes the value 1 when a trade or order is from a
human and 0 otherwise. Panel A of Table 3 reports the fraction of euro trading
volume for algorithmic-initiated trades by trade size and overall. For simplicity
and comparability, we use the U.S. Securities and Exchange Commission (SEC)
Rule 605 trade-size categories based on the number of shares traded. Panel B of
Table 3 reports the fraction of trades initiated by ATs by trade size and overall.
Overall, ATs initiate 52% of euro volume and more than 60% of all trades. AT
initiation declines as trade size increases. The proportion of ATs exceeds 68% and
57% in the 2 smallest trade-size categories (0–499 shares and 500–999 shares)
and decreases to 23% in the largest trade-size category (10,000 + shares). ATs’
decline with trade size is consistent with several possibilities: ATs are breaking
up large orders into smaller trades as suggested by Bertsimas and Lo (1998) and
HFTs using tight risk-management strategies as in Menkveld (2013). ATs’ use of
smaller liquidity-demanding trades may help to reduce the volatility of liquidity.

TABLE 3

Trade Participation by Size Category

Table 3 reports participation by ATs and humans in 5 size categories. Panel A reports volume-weighted trade participation.
Panel B reports transaction-weighted trade participation.

Trades

Size Categories AT HUM All

Panel A. Volume-Weighted

0–499 68% 32% 21%
500–999 57% 43% 21%
1,000–4,999 42% 58% 43%
5,000–9,999 30% 70% 7%
10,000+ 23% 77% 8%
All 52% 48% 100%

Panel B. Transaction-Weighted

0–499 61% 39% 62%
500–999 62% 38% 18%
1,000–4,999 53% 47% 18%
5,000–9,999 39% 61% 1%
10,000+ 31% 69% 1%
All 59% 41% 100%

Panels A and B of Table 4 provide the same statistics as Table 3 for non-
marketable limit order submissions. The AT share of limit orders is substantially
higher than its share of trades, 64% versus 52%. This difference declines in trade
size. For nonmarketable limited orders that eventually execute, ATs represent only
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TABLE 4

Order Participation by Size Category

Table 4 reports participation by ATs and humans in 5 size categories. Panel A reports order size-weighted participation
for nonmarketable limit orders. Panel B reports order-weighted participation for nonmarketable limit orders.

Nonmarketable Limit Orders

Size Categories AT HUM All

Panel A. Size-Weighted

0–499 78% 22% 32%
500–999 74% 26% 24%
1,000–4,999 55% 45% 35%
5,000–9,999 30% 70% 5%
10,000+ 20% 80% 4%
All 64% 36% 100%

Panel B. Order-Weighted

0–499 77% 23% 62%
500–999 74% 26% 20%
1,000–4,999 60% 40% 16%
5,000–9,999 31% 69% 1%
10,000+ 24% 76% 1%
All 73% 27% 100%

50% of volume. Therefore, ATs submit more orders than they execute either by
submitting uncompetitive orders away from best prices or by canceling and re-
placing orders close to the best prices.

Because nonmarketable limit order submissions are reversible and because
limit orders vary by the aggressiveness of their prices, we first focus on trans-
actions before turning to order submission strategies more generally. To better
understand how monitoring affects liquidity demand conditional on past trading,
we perform a series of analyses similar to those found in Biais et al. (1995) for
algorithmic and human trades. Examining algorithmic and human trades sepa-
rately doubles the number of variables, requiring some adaptations. First, we re-
port the results of 2 separate and related analyses in Table 5. The 1st column of
Table 5, labeled unconditional, provides the fraction of trade sequences (i.e., AT
followed by AT, AT followed by human, etc.) we expect if algorithmic and hu-
man trades are randomly ordered. The other columns in Panel A are essentially a
contingency table documenting the probability of observing a trade of a specific
type after observing a previous trade of a given type. Rows sum up to 100% and
can be interpreted as probability vectors.

TABLE 5

Trade Frequency Conditional on Previous Trade

Table 5 reports the conditional frequency of observing algorithmic and human trades after observing trades of other par-
ticipants. In column and row headings, t indexes trades. AT represents algorithmic trades and HUM represents human
trades.

Ordering Unconditional Frequency BUYt−1BUYt SELLt−1SELLt BUYt−1SELLt BUYt−1BUYt

ATt−1ATt 37.0 40.7 13.7 10.9 7.8 8.2
ATt−1HUMt 23.8 20.1 5.5 5.0 5.4 4.1
HUMt−1ATt 23.8 20.1 6.4 5.6 3.8 4.1
HUMt−1HUMt 15.3 19.0 5.4 5.3 3.7 4.4

Total 100.0 31.1 27.0 20.9 20.9
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The 1st row in Table 5 shows that if algorithmic and human trades were ran-
domly ordered, 37% of the transactions would be AT followed by AT, while in the
data this occurs 40.7% of the time. This shows that algorithmic trades are more
likely to follow algorithmic trades than we would expect unconditionally. In addi-
tion, algorithmic trades are more likely to be repeated on the same side of the mar-
ket. The same is true for human trades. This suggests that human and algorithmic
liquidity-demanding trading strategies execute at different times while having re-
lated characteristics. Table 5 also shows ATs to be relatively more sensitive to
human order flow than humans are to an algorithmic order flow. The conditional
probability of an algorithmic following a human trade is 51.4% as compared to
66.9% following an algorithmic trade. Human trades follow algorithmic trades
with a conditional probability of 33.1% as compared to 48.6% following a human
trade.

Table 6 extends the analysis of algorithmic and human trade sequences to
include trade-size categories. As in Biais et al. (1995), we highlight in bold the
3 largest values in a column to illustrate the interdependence of trade sequences.
The results are similar to the diagonal results reported in Biais et al. (1995) and
predicted theoretically in Parlour (1998). The diagonal finding implies that trades
of the same type (algorithmic or human trades in the same trade-size category)
follow other similar trades. This leads to a diagonal effect, where the highest prob-
abilities lie on the diagonal. The largest probability by far is for small algorithmic
trades: The AT1

t−1AT1
t probability of 48.7% is much higher than the uncondi-

tional probability of 31.6%. This suggests that: i) ATs repeatedly use small trades
to hide their information; ii) ATs limit their transitory price impact; or iii) differ-
ent ATs are following related strategies. All of these strategies are consistent with
ATs closely monitoring market conditions.

TABLE 6

Trade Frequency Conditional on Previous Trade

Table 6 reports conditional frequencies based on the previous trade’s size and participant. The 3 highest values per
column are highlighted in bold. In column and row headings, t indexes trades. AT represents algorithmic trades and HUM
represents human trades. Superscripts represent trade sizes with lower numbers corresponding to smaller trade sizes.
Each row adds to 100.

t− 1 AT5
t AT4

t AT3
t AT2

t AT1
t HUM5

t HUM4
t HUM3

t HUM2
t HUM1

t

AT5
t−1 8.3 9.4 18.1 16.7 7.8 8.1 6.0 6.7 7.9 10.5

AT4
t−1 3.8 7.8 15.9 23.3 11.7 4.5 4.6 7.3 9.9 10.9

AT3
t−1 1.3 2.7 12.0 28.9 20.6 2.2 2.7 6.2 11.1 12.0

AT2
t−1 0.2 0.7 4.6 27.1 33.8 0.6 1.1 4.0 11.8 15.7

AT1
t−1 0.0 0.1 1.7 16.6 48.7 0.2 0.5 2.2 9.9 19.9

HUM5
t−1 5.4 6.5 13.7 17.5 8.3 10.3 7.2 8.7 10.3 12.1

HUM4
t−1 1.8 3.4 10.4 22.5 14.4 4.2 6.4 9.8 13.5 13.6

HUM3
t−1 0.5 1.4 6.7 23.5 21.2 1.7 2.8 10.2 16.4 15.6

HUM2
t−1 0.2 0.5 3.4 19.2 28.4 0.7 1.3 4.9 19.8 21.5

HUM1
t−1 0.1 0.3 2.2 14.9 33.1 0.6 0.9 3.4 13.9 30.5

Uncond. 0.4 0.7 3.4 17.1 31.6 1.0 1.0 3.9 15.1 26.2

VI. Order Submissions

ATs’ greater sensitivity to past trading activity is consistent with better mon-
itoring and lower frictions in the trading process. AT monitoring should enable
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their trading and entire submission strategy, including liquidity provision, to
incorporate the most current information on other traders’ orders in the limit order
book. This should lead their trades, order submissions, and order cancellations to
be more sensitive to past orders and the current state of the limit order book (e.g.,
the bid-ask spread) than human submission strategies.

Table IV in Biais et al. (1995) examines orders and trades conditional on
the prior order or trade. Tables 5 and 6 study this using our data for algorithmic
and human trades. Table 7 incorporates order submissions. To make the table size
manageable, we narrow the scope of trade sizes and orders relative to Biais et al.
(1995) by using one trade size and not including limit order submissions away
from the best prices.

Table 7 reports that the diagonal effect for trades also holds for orders, as
actions of similar type are more likely to be repeated. As in Tables 5 and 6,
ATs react more to human orders than humans respond to algorithmic orders.
This can be seen visually in the pattern of bold numbers, which are more preva-
lent in the lower left quadrant than the upper right quadrant. The conditional
probabilities can also be calculated across various human orders and algorith-
mic orders. Similar to the calculations above for Table 5, using all order types,
the relative difference in conditional probabilities for ATs following algorithmic
versus human trades is smaller than the difference in conditional probabilities for
humans following human versus algorithmic trades.

Tables 5–7 provide evidence on the clustering and interdependence of algo-
rithmic and human trades and orders. To study how the monitoring of market
conditions captured in the limit order book affect algorithmic and human or-
der submissions, Table 8 examines order frequencies conditional on the bid-ask
spread. As in Biais et al. (1995), spread-size categories are calculated for each
stock separately. Large spreads occur when spreads are in their widest quartile for
that stock, whereas small spreads are the lowest quartile.

Panel A of Table 8 provides the order frequencies for ATs and humans for
each spread category. Within each spread category, the order frequencies across
ATs and humans sum to 100. Panel B calculates the order frequency differences
between small spreads and large spreads. We calculate the order frequencies for
each stock each day. Statistical inference is conducted across the 390 stock-day
observations, controlling for contemporaneous cross-sectional correlation and
within-stock correlation by double clustering standard errors on stock and day
as suggested by Petersen (2009) and Thompson (2011).

Overall algorithmic order activity is greater in all spread categories, and the
AT-human difference increases in the spread, with algorithmic orders represent-
ing 66.4% of orders when spreads are small and 75.3% when spreads are large.
Algorithmic orders worse than the best bid and ask prices are not sensitive to the
spread, whereas algorithmic limit orders at or within the best prices become more
frequent as spreads increase: AT orders at or inside the best prices make up 16.3%
of orders when spreads are small and 22.7% of orders when spreads are wide.10

Algorithmic trade initiations decline as spreads widen, falling from 10.3% of

10It is interesting to note that ATs are less likely to cancel orders at the best price when spreads are
narrow. This could represent the value of time priority when spreads are lower.
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TABLE 7

Order Conditional on Past Order

Table 7 reports the conditional frequencies of 8 order types, based on the previous order type and participant. The 3 highest values per column are highlighted in bold. AT represents algorithmic orders and HUM
represents human orders. Each row adds to 100.

Panel A. AT Panel B. Human Trading

Order Cancel Order Order Cancel Order Order Cancel Order Order Cancel Order
t− 1 Buy At Ask At Ask New Bid Sell At Bid At Bid New Ask Buy At Ask At Ask New Bid Sell At Bid At Bid New Ask

AT Buy 24.9 7.5 3.9 6.2 5.5 8.5 6.7 5.9 5.6 3.9 3.3 2.7 3.0 2.8 5.0 4.5
AT Order At Ask 5.8 9.1 6.1 9.6 4.4 20.1 16.5 4.8 2.8 3.2 2.0 2.6 2.9 4.2 4.1 1.7
AT Cancel At Ask 4.3 18.3 15.1 5.7 4.2 10.6 11.8 8.6 2.7 3.1 2.1 1.6 2.3 2.8 4.8 2.2
AT Order New Bid 5.0 8.5 8.4 5.3 4.2 26.9 17.4 7.1 2.1 2.1 1.5 1.4 2.4 3.1 2.5 2.2
AT Sell 11.0 7.6 3.4 5.0 24.5 6.5 6.4 6.4 3.1 2.8 1.7 4.2 5.5 3.1 5.8 2.9
AT Order At Bid 4.7 10.7 5.8 11.2 3.7 17.3 17.8 8.5 2.3 2.8 1.6 2.5 2.6 3.1 3.6 1.9
AT Cancel At Bid 3.6 12.2 5.5 12.7 3.1 14.7 19.1 12.0 1.8 2.4 1.2 2.3 2.2 2.1 3.2 2.0
AT Order New Ask 5.0 23.7 1.4 6.6 4.2 8.5 24.7 5.8 2.1 3.3 0.3 2.0 2.1 2.0 6.6 1.6
HUM Buy 8.2 5.5 2.8 3.8 3.6 5.8 4.6 4.0 28.5 3.1 8.8 1.9 3.2 2.5 8.6 5.2
HUM Order At Ask 6.5 11.9 5.7 3.1 4.2 7.7 8.0 6.7 3.6 12.4 9.5 1.8 3.4 4.9 6.8 4.0
HUM Cancel At Ask 6.6 5.8 4.2 3.7 3.0 7.0 4.8 2.5 14.0 10.0 12.6 2.4 3.0 5.2 12.7 2.5
HUM Order New Bid 5.5 7.1 12.4 3.5 8.4 13.8 6.8 4.8 2.7 2.9 3.5 2.2 5.5 6.4 10.7 3.9
HUM Sell 4.5 5.2 2.0 2.9 7.1 4.9 5.1 3.6 11.1 2.6 2.1 2.5 26.6 2.6 15.3 2.1
HUM Order At Bid 5.3 8.0 5.5 6.4 5.5 11.8 8.0 3.5 3.3 5.6 4.7 3.7 3.9 10.5 12.0 2.2
HUM Cancel At Bid 3.8 6.7 2.9 7.7 4.3 6.3 7.9 5.5 4.7 4.6 2.8 12.5 9.8 5.5 10.6 4.2
HUM New Bid 6.9 9.3 0.6 3.5 3.5 5.6 16.1 3.1 2.9 5.1 1.1 2.3 2.0 2.1 33.9 2.0
Unconditional 6.8 12.1 5.8 6.5 5.7 11.8 12.2 6.9 4.4 4.6 2.8 2.8 4.3 4.0 6.5 2.9
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TABLE 8

Order Frequency Conditional on Spread

Table 8 reports the frequency of 6 order types conditional on contemporaneous spread broken down by AT and human
participants. Panel A reports order frequencies conditional on spread size (small, small medium, medium, and large). We
calculate conditional spread sizes by taking time-series quartiles for each stock and comparing these to the contempora-
neous spread. If the spread is lower than or equal to the 25th percentile, we classify it as small. If the spread is greater than
or equal to the 75th percentile, we classify it as large. Rows report frequencies of orders. The AT-Human column reports
the difference between AT and human frequencies in that row. The t-Stat column reports the t-statistics for the AT-Human
column accounting for both within stock time-series and contemporaneous cross-sectional correlation. In Panel B we report
the difference between small and large spread order frequencies for ATs and humans. * and ** indicate significance at the
5% and 1% levels, respectively.

AT Human AT-Human t-Stat.

Panel A. Spread Categories

Small Spreads
New Bid-Ask inside 6.6 5.2 1.3 4.42**
New Bid-Ask at 9.7 4.8 4.9 11.17**
New Bid-Ask outside 16.9 6.2 10.7 12.55**
Cancel At 5.6 5.2 0.4 1.39
Cancel Away 17.3 6.2 11.1 13.39**
Trade Initiation 10.3 6.0 4.3 10.79**

Small-Medium Spreads
New Bid-Ask inside 6.4 3.2 3.2 9.42**
New Bid-Ask at 11.7 4.9 6.8 11.76**
New Bid-Ask outside 17.6 6.8 10.8 12.08**
Cancel At 7.9 5.0 2.9 6.11**
Cancel Away 18.3 6.6 11.7 13.62**
Trade Initiation 6.9 4.7 2.2 12.42**

Medium Spreads
New Bid-Ask inside 7.0 2.1 4.9 12.06**
New Bid-Ask at 13.6 4.5 9.2 15.72**
New Bid-Ask outside 17.6 6.4 11.2 14.32**
Cancel At 10.4 4.6 5.8 11.14**
Cancel Away 18.8 6.1 12.7 15.23**
Trade Initiation 5.1 4.0 1.1 7.14**

Large Spreads
New Bid-Ask inside 7.8 1.4 6.4 11.15**
New Bid-Ask at 14.8 3.7 11.1 11.54**
New Bid-Ask outside 16.7 5.9 10.9 9.79**
Cancel At 13.6 4.7 8.9 8.44**
Cancel Away 18.7 5.5 13.2 10.47**
Trade Initiation 3.6 3.4 0.2 1.64

Panel B. Differences: Small-Large Spreads

New Bid-Ask inside −1.3 3.8 −5.0 −12.19**
New Bid-Ask at −5.1 1.1 −6.2 −9.43**
New Bid-Ask outside 0.1 0.3 −0.2 −0.47
Cancel At −8.0 0.4 −8.5 −10.21**
Cancel Away −1.3 0.7 −2.1 −1.97
Trade Initiation 6.7 2.6 4.1 11.42**

orders when spreads are narrow to 3.6% of orders when spreads are large. Because
order frequencies sum to 100, the human frequencies generally decline as spreads
widen.

These results are consistent with ATs monitoring market conditions to op-
timize their liquidity supply and demand activities. There are several possible
underlying strategies that would account for the increase in new algorithmic liq-
uidity supply and the decline in algorithmic liquidity demand as spreads widen.
The same algorithm could switch from supply to demand as spreads narrow.
Alternatively, liquidity supply and liquidity demand algorithms could be entirely
separate,11 but both types of algorithms are sensitive to market conditions related

11See Menkveld (2013) for an example of a high-frequency algorithm that almost exclusively sup-
plies liquidity.
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to the competition for liquidity supply and demand. For example, a liquidity-
demanding algorithm could increase its trade initiations when spreads are tighter,
and a liquidity-supplying algorithm could increase its limit order submissions
when spreads widen. Without data identifying specific algorithms, we cannot es-
tablish which of these strategies drives the results, but we expect it is likely that all
are present. These represent healthy competitive responses to market conditions
and likely lead to less volatility in liquidity supply and demand.

The order frequencies in Table 8 demonstrate the sensitivity of algorithmic
orders to market conditions. However, calculating frequencies does not capture
how the rate at which events occur depends on market conditions. To better un-
derstand the impact of monitoring on time in order submission dynamics, we
continue to follow Biais et al. (1995) in Table 9 to report the average time be-
tween orders conditional on the same spread categories as in Table 8. For brevity
we do not report details for each spread-size category, but report the overall time
between events and the small-large spread differences. The small-spread times be-
tween events are equal to the average times plus 1/2 of the small-large differences.

TABLE 9

Time Interval Between Events and At Best Bid-Ask

Table 9 reports the time in seconds between events in Panel A and how long ATs or humans spend at the best bid-ask.
Panel A reports the time in seconds between events. The columns report time between events for ATs, humans, and ATs-
humans and t-statistics. The rows report average time between events and the difference for small-large spread times.
Small spreads are defined as spreads that are equal to or below the 25th percentile, and large are defined as spreads that
are greater than the 75th percentile. Percentiles are calculated as the time-series mean for each stock. Panel B reports
the number of seconds ATs are at the best bid and ask quotes minus the number of seconds human traders are at the
best quotes. The remainder of the time, both ATs and humans are at the best quotes. Small/Small-Medium (Small) spreads
are spreads that are below the time-series mean. Medium/Large (Large) spreads are above their time-series mean. The
t-statistics account for both within stock time-series and contemporaneous cross-sectional correlation. * and ** indicate
significance at the 5% and 1% levels, respectively.

AT Human AT-Human Diff. t-Stat.

Panel A. Time Between

Trades 6.78 9.27 −2.48 −18.97**
Small-Large Spreads −4.36 −2.34 −2.02 −23.42**
t-statistics −38.73** −15.53**

Spread Narrowing and Trade 4.33 4.63 −0.30 −1.24
Small-Large Spreads 5.52 1.35 4.17 11.23**
t-statistics 14.23** 2.06*

Spread Widening and Narrowing Order 3.22 4.11 −0.89 −2.38*
Small-Large Spreads 3.36 5.36 −2.00 −6.84**
t-statistics 9.87** 11.21**

Panel B. Time At

Best Bid-Ask 4,482 1,118 3,360 7.00**
Small-Large Spreads −2,149 −704 −1,445 −7.21**
t-statistics −12.22** −2.01*

Panel A of Table 9 gives results for the times between 2 trades, between
the spread narrowing and a trade, and between the spread widening and an or-
der narrowing the spread. On average 6.78 seconds pass between when a trade
occurs and the next algorithmic trade. Human trades are less frequent, and con-
sequently there is an average of 9.27 seconds from the time of a trade until a hu-
man trade. Both ATs and humans trade more quickly when spreads are narrower.
The human time decreases by 2.34 seconds from large to small spreads versus a
decline of 4.36 seconds for ATs. The difference-in-difference of 2.02 seconds
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between algorithmic large spread minus algorithmic small spread and human
large spread minus human small spread is statistically significant and econom-
ically large. Panel A of Table 9 also shows that ATs trade more quickly than
humans following the spread narrowing. These results are consistent with the fre-
quency results in Table 8, suggesting that ATs more actively monitor market con-
ditions when demanding liquidity.

The make/take liquidity cycle examined in Foucault et al. (2013) alternates
between two phases. First, an order from a liquidity supplier narrows the spread
by offering a better price. Second, a liquidity demander monitors the market and
reacts to the narrow spread by initiating a trade. The trade causes the spread to
widen and the cycle repeats. The above discussion of the time from a narrow-
ing order to a trade is consistent with ATs having lower monitoring costs in the
2nd phase of the Foucault et al. (2013) cycle. To examine the initial phase of the
make/take cycle, where a liquidity supplier monitors the market for a wide quote
and offers a better price, Panel A of Table 9 also provides the time between the
spread widening due to a trade or cancellation and an order narrowing the spread.
ATs react faster to a widening spread, with the difference increasing in the width
of the spread. This is consistent with ATs attempting to capture the liquidity sup-
ply profits in the Foucault et al. (2013) make/take liquidity cycle.

Monitoring the limit order book and the resulting liquidity cycles are mani-
festations of search frictions for investors seeking gains from trade. Lower mon-
itoring costs implicitly lowers search costs. Lower search costs typically result
in greater competition among traders due to lower bargaining frictions. In limit
order books, these frictions are a form of market power and are a component of
the bid-ask spread. Therefore, lower monitoring by ATs can lead to better liquid-
ity, as found by Hendershott et al. (2011). However, the benefits of ATs are not
necessarily equally distributed between ATs and humans.

Table 8 documents algorithmic and human activity conditional on spreads.
We see that ATs are more likely to submit a new bid-ask at the inside or better
overall and when spreads are wide. Because ATs are also more likely to cancel
their orders, Table 8 is not fully informative about the overall impact of algorith-
mic activity (inserts and cancels) on the best quotes over the entire trading day. In
Panel B of Table 9 we report the number of seconds ATs and humans spend alone
at the best bid-ask across the trading day. Panel B of Table 9 shows that ATs are
on average at the inside for almost 1 hour more per day than humans. The small-
large spread difference examines whether or not ATs are more likely to be present
at the inside when spreads are wide or narrow. As before, we identify times when
spreads are wider and narrower for each stock. We then calculate the amount of
time ATs and humans are on the inside during the large- and small-spread times.
Table 9 shows that ATs are on the inside more often during both large- and small-
spread periods, but the AT-human difference is significantly higher during the
large-spread periods. This shows that ATs are more likely to offer to supply liq-
uidity when it is expensive.

For ATs to be on the inside more often yet only provide liquidity for 50% of
volume, AT orders must be smaller or times when humans are alone at the inside
are more likely to have transactions. One natural explanation for trades occurring
more often when humans are alone at the inside quote is that the human quote is
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stale and is picked off. Our next analysis of liquidity supply and demand moves
beyond the unconditional and single-dimension conditioning thus far and attempts
to examine potentially stale limit orders.

VII. Multivariate Liquidity Supply and Demand Analysis

Up to this point we have studied how the increased ability of ATs to monitor
the limit order book impacts liquidity demand and supply dynamics. To broaden
our examination of ATs’ differential reaction to public information, we move be-
yond the limit order book itself by studying recent price changes in the futures
index market. To attempt to measure public information about when unexecuted
limit orders may be stale, we use the fact that index futures price changes typi-
cally lead price changes in the underlying stocks (e.g., Kawaller, Koch, and Koch
(1987)). We measure returns on DAX futures in the 30 seconds prior to each
trade.12 A sell limit order could be thought of as stale if the previous DAX return is
positive, as the systematic component of the stock price will have increased since
limit order placement. If the limit order executes before incorporating changes in
the index value, it could be stale.

If futures prices lead the underlying, then sell limit orders after positive fu-
tures returns and buy limit orders after negative futures returns are more likely
to be stale. To capture these, we interact lagged 30-second futures returns with
a BUYSELL indicator variable set to +1 if the trade is buyer initiated and −1 if
the trade is seller initiated. To limit the number of estimates while providing in-
formation on the potential staleness of the DAX returns, we also decompose the
30-second return into the return over the prior second, 2–10 seconds earlier, and
11–30 seconds earlier. The lagged futures returns are calculated as RTNt−x,t−X =
ln(MIDPOINTt−x/MIDPOINTt−X), where x = 0, 2, and 11, and X = 1, 10,
and 30. We interact positive and negative futures returns separately with trade
direction as follows: RTN+

t−1,t−30 × BUYSELL and RTN−t−1,t−30 × BUYSELL.
Because these reflect marketwide factors that may be correlated with

the state of the limit order book in each stock, we also account for contempo-
raneous and lagged liquidity measures and market conditions. Following Barclay,
Hendershott, and McCormick (2003), we use the liquidity variables summarized
in Table 2 along with past return volatility and trading volume. Lagged volatility
is the absolute value of the stock return over the 15 minutes prior to the trans-
action. Lagged volume is the euro trading volume in the 15 minutes prior to the
transaction.

Table 10 gives the univariate correlations between dummy variables for
algorithmic-initiated trades, ATINIT; trades where an AT’s nonmarketable limit
order executes, ATPASS; algorithmic order cancellations, ATCANCEL; the futures

12To analyze the lead-lag relationship, we calculate the cross autocorrelation of the front month
DAX future and DAX index prints at 5-second frequencies. For the future, we take the prevailing
midpoint on Eurex, and for the index, DB uses the last transaction price for each index constituent.
The cross autocorrelations of the lagged future (in 5-second intervals) and the contemporaneous index
are 0.21, 0.08, 0.04, 0.02, 0.02, and 0.01, all of which are significant at the 1% level. The cross
autocorrelations of the lagged index (in 5-second intervals) and the contemporaneous future are 0.06,
0.03, 0.01, 0.01, 0.00, and 0.00; the first 4 lags are significant at the 1% level.
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TABLE 10

Correlation of Order Flow and Liquidity Measures

Table 10 reports the correlation of ATINIT and ATPASS trading and ATCANCEL orders with liquidity variables and DAX future
returns. ATINIT takes the value of 1 if the trade is initiated by an AT. ATPASS takes the value of 1 if an AT supplies at least 1
share of a trade. ATCANCEL takes the value of 1 if an AT cancels an order at the best and takes the value of 0 if a human
cancels an order at the best. RTN±t−1,t−30 × BS is the return on the DAX future between t − 1 and t − 30 seconds × a
buy/sell indicator for positive and negative DAX returns, respectively. Depth is the depth at best. Depth3 is the depth at 3
times the average quoted at the bid and ask side. Depth and Depth3 are reported in 10 million euros. Lagged volatility is
the absolute value of the stock return in the 15 minutes prior to the trade. Lagged volume is the sum of the volume in the
15 minutes prior to the trade.
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ATINIT 1.00
ATPASS −0.02 1.00
ATCANCEL — — 1.00
Quoted Spread −0.08 0.10 0.03 1.00
RTN+

t−1,t−30 × BS 0.02 0.00 0.01 0.01 1.00

RTN−t−1,t−30 × BS −0.01 0.00 −0.01 −0.02 0.12 1.00
Size −0.09 0.00 −0.13 0.16 0.01 −0.01 1.00
Depth −0.05 −0.08 −0.10 −0.01 0.00 0.00 0.22 1.00
Depth3 −0.05 −0.04 −0.10 −0.01 −0.01 0.01 0.26 0.63 1.00
Lagged Volatility 0.01 0.01 −0.06 −0.05 0.02 0.04 0.01 0.01 0.04 1.00
Lagged Volume −0.05 −0.04 −0.01 −0.12 0.04 −0.05 0.04 0.14 0.14 −0.17 1.00

return variables; and the market condition variables. Consistent with Tables 3
and 4, larger trades are less likely to be initiated by ATs. ATPASS is positively
correlated with trade size. This reflects the fact that ATPASS captures trades that
are entirely supplied by ATs and trades that are supplied by both ATs and humans
because they are large. Consistent with Tables 8 and 9, narrower spreads are pos-
itively correlated with algorithmic-initiated trades and negatively correlated with
passive algorithmic trades and AT cancellations.

Table 11 reports coefficients estimates from probit regressions for
algorithmic-initiated trades, passive trades, and AT cancellations along with their
corresponding linear probability slopes and p-values. To control for stock effects
and time-of-day effects, we include, but do not report, firm dummy variables (30)
and time-of-day dummy variables (17, one for each 1/2-hour period). The only sig-
nificant time-of-day effects are that algorithmic trading becomes less likely at the
end of the trading day, primarily in the last 1/2 hour of continuous trading.

The probit results show that ATINIT is more likely when spreads are narrow
and when trading volume over the prior 15 minutes is low. As in Table 3, larger
trades are less likely to be initiated by ATs. Volatility over the prior 15 minutes
is negatively related to ATINIT. Depth at the inside (depth) and depth measured
independently of the inside spread (depth3) are negatively related to ATINIT. The
negative relations between AT initiation and spreads and between AT initiation
and lagged volatility provide no evidence to support a hypothesis that ATs exac-
erbate volatility.

The probit results show that ATPASS is more likely when spreads are wide.
Volatility over the prior 15 minutes is somewhat positively related to ATPASS.
Depth at the inside (depth) and depth measured independently of the inside spread
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TABLE 11

AT Probit Regression

In the first 2 columns the dependent variable (ATINIT) is equal to 1 if the trade is initiated by an AT, and 0 otherwise. In the
3rd and 4th columns the dependent variable (ATPASS) is equal to 1 if at least 1 share in the trade is supplied by an AT,
and 0 otherwise. In the last 2 columns the dependent variable (ATCANCEL) takes the value of 1 if an AT cancels an order
at the best and takes the value of 0 if a human cancels an order at the best. Size is the euro volume of a trade divided by
100,000. Depth is the depth at the best bid and ask. Depth3 is the depth at 3 times the average quoted spread on the bid
and ask side. Depth and Depth3 are reported in 10 million euros. RTN±t,t−x × BUYSELL is the return on the DAX future for
t and t − x seconds × a buy/sell indicator variable for positive and negative DAX returns, respectively. Lagged volatility
is the absolute value of the stock return in the 15 minutes prior to the trade. Lagged volume is the sum of the volume in
the 15 minutes prior to the trade. Firm fixed effects and time-of-day dummy variables for each 1/2 hour of the trading day
are not reported. The p-values are calculated using standard errors that account for both time-series and cross-sectional
correlation. * and ** indicate significance at the 5% and 1% levels, respectively.

ATINIT ATPASS ATCANCEL

Variable Model A Model A1 Model B Model B1 Model C Model C1

ATPASS −0.02 −0.02 — — — —
Probability Slope −0.02 −0.02 — — — —
p-value (0.00**) (0.00**) — — — —

Quoted Spread −0.016 −0.016 0.035 0.035 0.04 0.04
Probability Slope −0.01 −0.01 0.01 0.01 0.01 0.01
p-value (0.00**) (0.00**) (0.00**) (0.00**) (0.00**) (0.00**)

Size −0.11 −0.12 0.02 0.00 −0.57 −0.57
Probability Slope −0.09 −0.09 0.02 0.01 −0.21 −0.21
p-value (0.15) (0.05*) (0.00**) (0.00**) (0.00**) (0.00**)

Depth −0.10 — −0.73 — −1.91 —
Probability Slope −0.06 — −0.28 — −0.80 —
p-value (0.00**) — (0.00**) — (0.00**) —

Depth3 — 0.01 — −0.02 — −0.58
Probability Slope — −0.01 — 0.00 — −0.26
p-value — (0.00**) — (0.00**) — (0.00**)

RTN+
t,t−1 × BUYSELL 20.70 20.75 17.96 17.94 25.02 24.98

Probability Slope 8.56 8.58 7.00 6.98 9.49 9.48
p-value (0.00**) (0.00**) (0.00**) (0.00**) (0.00**) (0.00**)

RTN+
t−2,t−10 × BUYSELL 34.33 34.21 2.81 1.58 42.55 42.18

Probability Slope 14.40 14.22 0.84 0.35 15.86 15.71
p-value (0.00**) (0.00**) (0.51) (0.55) (0.00**) (0.00**)

RTN+
t−11,t−30 × BUYSELL 50.50 50.45 3.80 2.84 49.72 49.52

Probability Slope 20.06 19.95 1.38 1.01 18.36 18.28
p-value (0.00**) (0.00**) (0.55) (0.66) (0.00**) (0.00**)

RTN−t,t−1 × BUYSELL −21.18 −21.21 −13.52 −13.35 −29.19 −29.11
Probability Slope −8.79 −8.80 −5.22 −5.14 −11.02 −11.00
p-value (0.00**) (0.00**) (0.00**) (0.00**) (0.00**) (0.00**)

RTN−t−2,t−10 × BUYSELL −38.71 −38.77 −7.09 −6.43 −68.52 −67.92
Probability Slope −15.87 −15.77 −2.59 −2.33 −25.55 −25.31
p-value (0.00**) (0.00**) (0.00**) (0.00**) (0.00**) (0.00**)

RTN−t−11,t−30 × BUYSELL −39.69 −39.63 −5.55 −4.60 −58.12 −57.70
Probability Slope −16.11 −15.97 −2.02 −1.65 −21.59 −21.41
p-value (0.00**) (0.00**) (0.47) (0.54) (0.00**) (0.00**)

Lagged Volatility −0.01 −0.01 0.02 0.02 −0.01 −0.01
Probability Slope −0.01 −0.01 0.01 0.01 −0.01 −0.01
p-value (0.03*) (0.05) (0.01*) (0.01*) (0.00**) (0.00**)

Lagged Volume −0.08 −0.09 −0.37 −0.41 −0.05 −0.05
Probability Slope −0.11 −0.11 −0.12 −0.14 −0.02 −0.02
p-value (0.00**) (0.00**) (0.00**) (0.00**) (0.00**) (0.00**)

No. of obs. 2,084,347 2,084,347 2,084,347 2,084,347 3,208,761 3,208,761

(depth3) are negatively related to ATPASS. The positive relation between AT
liquidity supply and spreads and lagged volatility, and the negative relation to
depth, could lead to AT liquidity supply reducing volatility and smoothing liquid-
ity. ATPASS having a negative coefficient in the ATINIT regression shows that ATs
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are less likely to supply liquidity when they are demanding liquidity even after
controlling for market conditions.

The coefficients on lagged futures return variables are consistent with ATINIT

picking off stale human limit orders. Following past positive futures returns,
ATINIT buy markets orders are more likely. Conversely, when past futures returns
are negative, ATINIT sell orders are more likely. If futures prices lead the underly-
ing stock prices, then the trades initiated by ATs impose adverse selection costs on
the nonmarketable limit orders they execute against. ATPASS has some relation to
the lagged futures return variables, suggesting that AT nonmarketable limit orders
may also be adversely selected.

In the ATCANCEL regressions, the coefficients on lagged positive and nega-
tive DAX futures confirm the conjecture that ATs are able to cancel limit orders
quickly before they become stale. ATs being able to cancel orders before they be-
come stale may also allow ATs to offer tighter spreads throughout the trading day
by reducing their adverse selection costs. ATs are also more likely to cancel their
orders when spreads are wide and less likely to cancel when depth at the inside
and depth independent of the inside spread are high. Volatility and volume over
the prior 15 minutes are negatively related to ATCANCEL.

Consistent with prior univariate results, the probit results suggest that ATs
help smooth out liquidity over time and are consistent with ATs having lower
monitoring costs in the liquidity make/take cycle proposed by Foucault et al.
(2013). There is some evidence of aggressive ATs adversely selecting stale limit
orders. However, we cannot determine whether or not the introduction of ATs in-
creased this adverse selection or if ATs execute spot/future arbitrage that was pre-
viously executed manually. This latter possibility is quite plausible, as spot/future
arbitrage is one of the easiest strategies to automate.

VIII. Conclusion

We study algorithmic traders’ (ATs’) use of technology that reduces their
monitoring frictions and their role in liquidity supply and demand dynamics. We
find that ATs consume liquidity when it is cheap and provide liquidity when it
is expensive, likely reducing the volatility of liquidity. ATs closely monitor the
market and respond more quickly to changes in market conditions. The results are
consistent with technology facilitating ATs to more closely resemble the Friedman
(1953) stabilizing speculator in terms of market liquidity. Further examinations
of particular types of algorithmic (e.g., high-frequency) trading should provide
insight into the potentially differing impact that types of AT strategies may have.

Our results have important implications for academics, regulators, and
market operators. Theoretical models of limit order books should allow for a sig-
nificant fraction of traders who closely monitor the market. These traders would
constantly reprice their orders and prevent spreads from widening beyond a cer-
tain point; both of these features can help simplify theoretical models as
they reduce the dimensionality of the state space (see also Goettler, Parlour, and
Rajan (2009)). Given the slow progress in the modeling of theoretical limit order
markets, this may have significant value.
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Monitoring costs and limited attention are frictions limiting trade. In models
without information asymmetry, better market monitoring increases trading and
investors’ gains from trade (see, e.g., Foucault et al. (2013), Biais et al. (2010)).
Our results support the intuitive notion that ATs reduce trading frictions and the
use of the reduced form assumption that ATs increase the probability of finding a
counterparty (as in Biais et al. (2011)).

While lower monitoring costs for investors can be beneficial for important as-
pects of liquidity supply and demand, heterogeneous monitoring costs could also
impose information asymmetry on slower traders. Slower traders face adverse
selection if faster traders have an information advantage due to access to better
and more current information about market conditions. Our results on net buying
and selling of AT-initiated trades being correlated with the direction of past index
futures returns is consistent with this. If ATs increase the scope of adverse selec-
tion sufficiently, liquidity and welfare could decline. While there is little empirical
evidence supporting such a negative impact of technology in the trading process,
it is an important avenue for future research, particularly if the adverse selection
costs fall disproportionally on certain types of investors.

The increase in ATs has important implications for both regulators and
designers of trading platforms. For example, the U.S. Securities and Exchange
Commission’s Regulation National Market System (NMS) (SEC (2005)) tries to
promote competition among liquidity suppliers.13 ATs lowering the monitoring
costs for liquidity suppliers must also ensure vigorous competition among them.
Trading venues should compete for ATs by lowering development and implemen-
tation costs by facilitating the production of useful information and metrics for
ATs. Markets allowing ATs to co-locate their servers in the markets’ data cen-
ter should attempt to place all market participants on an equal footing. Finally,
markets and brokers can offer additional order types with features designed to
lower investors’ monitoring costs (e.g., pegged orders). Incorporating AT features
into the market mechanism itself can lessen infrastructure costs for investors and
mitigate arms races in technology investment.

Appendix. Xetra and AT Matching Details

A. Xetra

The Xetra trading system is the electronic trading system operated by the DB and
handles more than 97% of German equities trading by euro volume in DAX stocks (2007
Deutsche Boerse Factbook). The DB is a publicly traded company that also operates the
Eurex derivatives trading platform and the Clearstream European clearing and settlement
system. DB admits participants that want to trade on Xetra based on regulations set and
monitored by German and European financial regulators. After being admitted, partici-
pants can only connect electronically to Xetra; floor trading is operated separately, with no
interaction between the 2 trading segments.

Xetra is implemented as an electronic limit order book with trading split into phases
as follows:

13ATs lowering monitoring costs should also improve linkages and integration among markets,
potentially reducing concerns about liquidity fragmenting across many trading platforms. The DB’s
dominant market share during our sample period precludes us from studying this.
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• opening call auction with a random ending that opens trading at 9:00,

• a continuous trading period,

• a 2-minute intraday call auction at 1:00 with a random ending,

• a 2nd continuous trading period,

• a closing call auction beginning at 5:30 with a random ending after 5:35.

We focus our analysis on trade occurring during the 2 continuous trading periods. Liquidity
in DAX stocks is provided by public limit orders displayed in the order book of each stock.
Orders execute automatically when an incoming market or marketable limit order crosses
with an outstanding nonmarketable limit order. Order execution preference is determined
using price-time-display priorities. Three types of orders are permitted: limit, market, and
iceberg orders. Iceberg orders are orders that display only a portion of the total size of an
order. Iceberg orders sacrifice time priority on the nondisplayed portion. Pretrade trans-
parency includes the 10 best bid and ask prices and quantities but not the identity of the
submitting participant (as on the Paris Bourse (Venkataraman (2001)). Trade price and size
are disseminated immediately to all participants. The tick size for most stocks is 1 euro
cent, with the exception of 2 stocks that trade in 1/10ths of a cent.14

B. Matching

To create the final data set of trades and orders, we use 3 separate data sources: AT
order data from DB, public order book data from SIRCA, and public transactions data from
SIRCA. Because SIRCA time stamps reflect routing delays between DB and Thompson-
Reuters, the SIRCA data sets are subject to time lags relative to the AT system order.
The time stamp or SIRCA order book data is lagged by up to 250 milliseconds (ms). The
SIRCA transactions data set is lagged by up to 500 ms. The matching process for orders
and trades is described in more detail below.

1. Order Matching

We generate orders from successive order book updates similar to Biais et al. (1995).
We match AT orders with the SIRCA public order book-generated orders for the 5 best
levels (bid and ask). To match the AT order data to the public data, we use the following
criteria:

• Symbol

• Price

• Size

• Side (bid or ask)

• Order type (insert or delete)

• Time stamp (microsecond)

Adjustments are made for a lag between the AT and SIRCA order book data sets. The
publicly available data are time-stamped to the microsecond but, due to transmission and
additional system processing, they lag the system order data. We allow for a time window
of up to 250 ms in the public data when looking for a match of the remaining criteria.
The 250-ms-maximum lag was determined by manual inspection of a large number of AT
orders and SIRCA order books. We match the AT order with the next public order that
matches the above criteria. If we do not find a match, we delete the AT record. Approxi-
mately 5% of AT orders cannot be matched in the public data, many of these because they
are outside the 5 best bid and ask prices in the SIRCA order book.

14Both Deutsche Telekom AG and Infineon AG have trade prices below 15 euros. Stocks with
prices lower than 15 euros have a tick size of 1/10th of a cent.
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2. Trade Matching

For trades we match 2 separate types of data, the DB-supplied AT order data and
the public transactions record. Algorithmic trades are matched with trades in the SIRCA
public data record. To match algorithmic trades to the SIRCA data, we use the following
criteria:

• Symbol

• Price

• Size

• Trade direction

• Time stamp (microsecond)

We identify the trade direction in the SIRCA public data using the Lee and Ready (1991)
trade direction algorithm with the Bessembinder (2003) modifications to determine the
trade direction in the public data. Liquidity-demanding (ATINIT) trades match trade size
and price in the public data. AT liquidity-supplying trades (ATPASS) may be smaller than
the total trade size, as the marketable order may execute against multiple limit orders. We
identify ATPASS using the same criteria as for ATINIT and modify the size criteria to be less
than or equal to the size reported in the public data.

Adjustments are made for a lag in the time stamp between the AT and SIRCA trans-
action data sets. As with orders, the publicly available trade data are time-stamped to the
microsecond but, due to transmission and additional system processing, they lag the sys-
tem order data. We allow for a time window of 500 ms in the public transactions data when
looking for a match on the remaining criteria. If we do not find a match, we delete the
algorithmic trade. Roughly 97% of all algorithmic trades are matched in the public data.
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