Additional Notes for “Trends in Corporate Governance”

Benjamin E. Hermalin*
University of California

March 23, 2004

Proof of Claim in Footnote 34

While it is true that a consequence of flatter hierarchies is more monitoring, this does not necessarily translate into a demand for tougher monitors (i.e., greater \(\delta \)). Regardless of \(\delta \), all boards monitor more in response to a flatter hierarchy. Shareholders will only demand tougher monitors if the consequence of a flatter hierarchy is to increase the marginal benefit of tougher monitors. How a flatter hierarchy affects this marginal benefit is potentially indeterminant. To see this, suppose that shareholders’ preferences are captured by

\[
\lambda \left(P^*V + (1 - P^*)\mu \right) - K(\delta),
\]

(1)

where \(\lambda \in (0, 1] \) is the portion of expected firm value captured by the shareholders and \(K(\cdot) \) is the cost of imposing and maintaining a board whose diligence level is \(\delta \).\(^1\) The marginal benefit to increased diligence is, thus,

\[
\lambda \frac{\partial P^*}{\partial \delta} (V - \mu).
\]

(2)

If (2) is decreasing in \(\mu \), then a consequence of flatter hierarchies will be to raise the demand for greater board diligence. Differentiating (2) with respect to \(\mu \) yields:

\[
\lambda \times \left(\frac{\partial P^*}{\partial \delta} (\Phi - 1) + \frac{\partial^2 P^*}{\partial \mu \partial \delta} (V - \mu) \right); \quad (3)
\]

*Willis H. Booth Professor of Banking and Finance. Contact information — Phone: (510) 642-7575. E-mail: hermalin@haas.berkeley.edu. Full address: University of California • Walter A. Haas School of Business • 545 Student Services Bldg. #1900 • Berkeley, CA 94720-1900.

\(^1\)It seems reasonable to suppose that enhancing the diligence of the board is not without cost to the shareholders because otherwise why isn’t every board maximally diligent?

Copyright © 2004 by Benjamin E. Hermalin. All rights reserved.
hence, a sufficient condition for (2) to be decreasing in μ is that
\[
\frac{\partial^2 P^*}{\partial \mu \partial \delta} \leq 0;
\]
which holds, for example, if the directors’ cost function, $c(\cdot)$, is $p^2/2$, for then $P^* = \delta(V - \mu)$, the cross-partial derivative of which is $\Phi - 1 < 0$.

Derivation of Expression 17

The CEO loses his job if
\[
\hat{\mu} = \frac{\tau \mu + sy}{\tau + s} < -\Delta.
\]
Hence, the cutoff condition (the analog of expression (2)) becomes
\[
y < -\frac{\tau + s}{s} \Delta - \frac{\tau}{s} \mu \equiv \hat{Y}.
\] (4)

The firm’s expected earnings if the board will receive the signal y are
\[
\hat{V} = \int_{-\infty}^{\infty} \max \left\{ -\Delta, \frac{\tau \mu + sy}{\tau + s} \right\} \sqrt{\frac{H}{2\pi}} e^{-\frac{y^2}{2}} dy,
\]
which, making the change of variables $z = \sqrt{H}(y - \mu)$, can be written
\[
\hat{V} = \int_{-\infty}^{\sqrt{H}(\hat{Y} - \mu)} -\Delta \phi(z) dz + \int_{\sqrt{H}(\hat{Y} - \mu)}^{\infty} \frac{\tau \mu + s}{\tau + s} \phi(z) dz
\]
\[
= -\Delta \Phi(\sqrt{H}(\hat{Y} - \mu)) + \mu \left[1 - \Phi(\sqrt{H}(\hat{Y} - \mu)) \right] + \int_{\sqrt{H}(\hat{Y} - \mu)}^{\infty} \frac{\sqrt{H}}{\tau} z \phi(z) dz,
\] (5)
where (5) uses the definition of H to simplify from the previous line. Hence,
\[
\hat{V} = -\Delta \Phi(\sqrt{H}(\hat{Y} - \mu)) + \mu \left[1 - \Phi(\sqrt{H}(\hat{Y} - \mu)) \right] + \frac{\sqrt{H}}{\tau} \phi(\sqrt{H}(\hat{Y} - \mu)),
\]
which, using the symmetry of the standard normal about 0, can be written as
\[
(\mu + \Delta) \Phi(-\sqrt{H}(\hat{Y} - \mu)) + \frac{\sqrt{H}}{\tau} \phi(\sqrt{H}(\hat{Y} - \mu)) - \Delta.
\] (6)
From (4),
\[
\hat{Y} - \mu = -\frac{\tau + s}{s} (\mu + \Delta).
\]
Using the definition of H, this yields
\[
-\sqrt{H}(\hat{Y} - \mu) = \frac{\tau}{\sqrt{H}} (\mu + \Delta).
\]
Substituting the last expression into (6) yields expression (17) in the paper.