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Abstract

Previous work on network interconnection has tended to overlook that both the sender and
receiver of an electronic message take actions, bear costs, and derive benefits from the mes-
sage exchange. In a simple model with two-sided benefits and fixed network architectures,
we find that the socially optimal interconnection charge is independent of the “direction”
of the message and is used to induce optimal end-user prices for sending and receiving mes-
sages that account for demand conditions. These optimal retail prices depend solely on the
sum of the marginal costs of exchanging a message across the two networks, not the specific
marginal costs of the individual networks. Optimal interconnection pricing with endogenous
network investment is also explored.
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1 Introduction

The benefits from subscribing to a communications network derive from being able to ex-

change messages with other parties. The interconnection of distinct networks allows users

to communicate with a large community of users without the need for carriers to duplicate

one anothers’ networks. Interconnection can thus significantly affect efficiency and market

structure. Consequently, interconnection rules, particularly those concerning intercarrier

compensation, are one of the most important — and contentious — areas of public policy

concerning telecommunications markets.1

Consumption of communications services (e.g., talking on the phone, exchanging e-mails,

sharing files, or holding a video conference) generally involves a sender and receiver, both of

whom take actions, bear costs, and derive benefits.2 With a few notable exceptions, previous

theoretical work on interconnection pricing has ignored the benefits enjoyed by the receiving

party.3 This treatment typically is justified by one of two assumptions: either the receiving

party enjoys no benefits from a message exchange or the effects between two parties are

internalized. The first assumption clearly is unrealistic. If it were correct, we would never

answer the telephone or read our e-mail. The second assumption is applicable only to certain

situations in which either the two communicating parties are altruistic with respect to one

another or have a repeated relationship.4

Although our focus is on inter-carrier pricing, the welfare consequences of interconnec-

1For recent statement of many of the issues, see Federal Communications Commission (2001).
2The fact that multiple parties consume a single message gives rise to external effects. See Hermalin

and Katz, 2001b, Laffont and Tirole, 2000, and Taylor, 1994, Chapter 9, for surveys of telecommunications
externalities.

3Leading analyses of the no-receiver-benefits case include Armstrong (1998), Laffont and Tirole (2000),
and Laffont et al. (1998).

4Willig (1979, pages 124–25) establishes conditions under which call externalities will be internalized in the
demand for sending messages and thus can be incorporated into the standard analysis of access externalities.
Essentially the condition is that sending a message triggers a set number of incoming messages. Hermalin
and Katz (2001b, §3.5) develop a simple game-theoretic model in which users can (partially) internalize call
externalities by engaging in tit-for-tat message initiation.
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tion charges derive in large part from their effects on the resulting retail prices set by the

networks. In discussions of telecommunications pricing, it is often asserted that the principle

of cost-causative pricing implies that it is efficient for the sender to pay the marginal cost of

exchanging a message. In the absence of receiver benefits, this claim is correct: The sender

can be viewed as the “cost causer,” efficient pricing is purely cost based, and efficient pricing

sets the send price equal to the marginal message cost. This view suggests that the receiver’s

network should recover its message costs from the sender, either directly by billing the sender

or indirectly by billing the sender’s carrier. Indeed, when the receiver derives no benefits

from the exchange, he is unwilling to pay for messages.

The presence of receiver benefits changes all of these findings. First, one could just as well

assert that the receiver causes the costs by accepting the message. Second, efficient prices

must internalize the external effects across the two parties to a message exchange. Hence,

efficient pricing requires consideration of demand conditions, as well as cost conditions.

Third, it frequently is not socially optimal to have one party bear the full marginal costs of

exchanging a message. Given the significant effects that receiver benefits have on optimal

retail prices, it is not surprising that receiver benefits can also have strong effects on optimal

intercarrier-charges.

Atkinson and Barnekov (2000) and DeGraba (2000a,b, 2001) recently proposed inter-

connection pricing regimes based on analyses recognizing that the parties at both ends of

a message enjoy benefits. DeGraba (2000a) investigates socially optimal interconnection

charges in a model in which the sender and receiver enjoy equal benefits from any given

message exchange and the networks to which the sender and receiver subscribe have equal

marginal costs. DeGraba argues that having an interconnection charge of 0 — so-called

bill and keep — is efficient. As DeGraba notes, one needs to consider the implications of a

broader set of distributions for sender and receiver valuations and of unequal network costs.

Below, we provide that analysis and demonstrate that non-zero interconnection charges may

be optimal in the presence of receiver benefits.
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Atkinson and Barnekov (2000) examine a model in which parties at both ends benefit

from message exchange, and they conclude that each carrier should recover from its own sub-

scribers all costs not incremental to interconnection itself. Critically, Atkinson and Barnekov

assume that retail prices are independent of the interconnection pricing regime. However,

interconnection costs represent either marginal message costs or fixed per-subscriber costs.

In either event, these costs will affect a carrier’s profit-maximizing retail prices. In contrast

to Atkinson and Barnekov, we allow retail prices to reflect the interconnection charge. In

fact, in our basic model, the sole role of interconnection charges is to influence retail prices.

Not surprisingly, we reach very different conclusions than do Atkinson and Barnekov.

There is a related literature on transfers between firms that are part of a payment system

(e.g., a bank that handles the account of a merchant that accepts a credit card and the bank

that issues that credit card). This work can be reinterpreted in terms of telecommunications

carrier interconnection charges.5 Because both merchants and consumers may value card

use, this literature examined the implications of two-sided benefits. In an early analysis,

Baxter (1983) identified the use of the interconnection charge as a means to internalize

what would otherwise be external effects between the end users. In a more recent analysis,

Schmalensee (2001) implicitly solves for welfare-optimal interconnection charge for the case

of linear demands by both sides of the market, where he allows for both monopoly and

oligopoly among the “carriers.”6

We characterize socially optimal inter-carrier charges for the interconnection of two net-

works. In Section 3, we assume that the interconnecting carriers do not compete with each

other. This situation arises, for example, when a mobile telephone user calls a landline local

exchange carrier’s customer. Alternatively, the sender’s network could be a long-distance

carrier completing a call on the local exchange network to which the receiver subscribes. We

5One must be careful about extending application of the theory in the opposite direction — there are
important effects that arise because card-accepting merchants may compete with one another and may have
commercial relationships with the other sides of transactions.

6His analysis focuses on privately optimal interconnection charges.
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consider both bilateral monopoly and markets in which there is competition at each end of

the message (e.g., competing long-distance carriers). Our analysis demonstrates that non-

zero interconnection charges often are optimal, and that the role of interconnection charges

is to share the costs of the message exchange efficiently between the two users. The optimal

retail prices depend on demand conditions and the sum of marginal costs, not the individual

networks’ costs. However, the optimal interconnection charge does depend on the networks’

individual costs because those costs affect the carriers’ choices of retail prices. In stark con-

trast with the no-receiver-benefits view of the world, the socially optimal interconnection

charge does not depend on the direction of the message exchange.

In Section 4, we examine markets in which the interconnecting carriers compete with one

another. These carriers can be thought of as competing local exchange telephone service

providers or competing Internet backbone service providers.7 We demonstrate how the

optimal interconnection charge depends on both demand conditions and the costs of the

higher-cost carrier, even when it carries no traffic in equilibrium. Moreover, in those cases

where both network have positive equilibrium traffic volumes, the traffic balance between

them is irrelevant.

The analysis proceeds as follows. Section 2 introduces notation and preliminary con-

cepts. Our basic model is used to examine interconnection between non-competing carriers

in Section 3 and competing carriers in Section 4. Each of the next two sections then relaxes

one of the major assumptions of the basic model. Section 5 allows for greater stochastic

dependence between the sender and receiver’s message values, while Section 6 allows for

endogenous network architectures and costs. The paper closes with a brief conclusion.

7In a paper written independently of ours, Laffont et al. (2001) also examine this case. The relationship
between the two analyses is discussed below.
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2 Preliminaries

2.1 Model Structure

Consider two individuals, A and B, who may wish to communicate. We model the commu-

nication between A and B as the exchange of a single message, which can be a telephone

call, a paging message, an sms message, a data file, or an e-mail, for example. One party

initiates the communication (e.g., places a phone call) and the other party accepts it (e.g.,

answers the phone). We refer to the communication initiator as the sender and the acceptor

as the receiver.

When message exchange generates benefits and costs for both parties, there are important

differences between situations in which either party can initiate a message exchange (“two-

way calling”) and those in which only one party can do so (“one-way calling”). Our analysis

in this paper is restricted to one-way calling models.8

One-way calling has several interpretations. One is that message origination is literally

one-sided. Many telecommunications technologies, such as paging and pay phones are in-

herently one-way technologies. Other technologies are two way, but in many instances only

one of the two parties knows there is value in communicating. For instance, A could wish

to announce some news to B. Alternatively, A could be a consumer calling a pizza parlor,

B, to order a pie. Or, A could be an end user establishing a dial-up connection with her

Internet service provider, B. In such situations, it is reasonable to view only one of the two

parties as the potential message initiator. Other situations, in which the parties both know

there’s a value to communicating and it is technically feasible for either party to initiate a

message exchange, are two-way calling situations.

An alternative interpretation of the distinction between one-way and two-way calling

models is the following. With a two-way technology, if a message costs more to send than

8Previous theoretical examinations of retail pricing in the presence of call externalities, Hahn (2000),
Squire (1973), and Srinagesh and Gong (1996), implicitly examine the one-way calling case. Hermalin and
Katz (2001c) examine retail pricing by a single network in both one-way and two-way calling models.
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A B{ {

Network X Network Y

Figure 1: Schematic of message transit between consumers A and B across X and Y ’s networks.

receive, then a party may strategically delay sending a message in anticipation that the other

party will initiate the exchange instead. For cheaply priced messages, this type of strategic

behavior may be implausible, and the situation can again be approximated by a one-way

calling model in which a party sends a message whenever her expected value of message

exchanges exceeds the price she must pay.9

Initially, there are two networks in our model, with user A connected to network X, and

user B connected to network Y . Figure 1 illustrates. The cost of exchanging a message

between A and B is m = mX + mY , where mX and mY are the non-negative marginal costs

incurred by networks X and Y , respectively.

To simplify the analysis of message exchange, we assume the set of parties connected to

the networks is invariant with respect to pricing. Alternatively, consumers can be thought

of as subscribing to an always-on service, and our model can be interpreted as examining

the probability with which someone connects to a network.10 Under either interpretation,

an external effect arises because the receiver takes an action that effects whether the sender

can exchange a message with him. We also abstract from repeated-play considerations: each

party is motivated only by his or her private net benefits for a given potential message

exchange.

We ignore income effects by assuming that consumer j derives gross monetary benefits vj

9More precisely, we have a pair of one-way calling models — see Hermalin and Katz, 2001c for an analysis
of a pair of one-way calling models in the context of a single network provider.

10For analyses of network connection decisions, see Hahn (2000), Littlechild (1975), Rohlfs (1974), and
Squire (1973).
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from communication. These benefits should be interpreted as net of any opportunity costs

incurred in exchanging messages (e.g., answering a telemarketing call during dinner).11 The

parties’ values of communicating, vA and vB, could be unknown to them at the time they

make their send and receive decisions. Specifically, each individual has some prior knowledge

(type, signal, etc.), ωj ∈ Ωj. The pair (ωA, ωB) has joint distribution Ψ(ωA, ωB), which is

common knowledge. Each (ωA, ωB) vector defines a joint distribution over (vA, vB).

Observe that under the information structure presented above, either party may draw

inferences about his or her value of message exchange from the other party’s behavior. The

possibility of complex inferences makes the analysis of a general model difficult.12 Progress

can be made if one assumes each party’s information is relevant only for predicting his or

her own value of communicating because then neither party draws on the behavior of the

other to form inferences about his or her own value of exchanging a message. To that end,

we make the following assumption throughout our analysis:

Assumption 1 For i = A,B, Ωi ⊆ R and vi = ωi + ηi, where ηi is a random variable

satisfying E {ηi|ωi} = E {ηi|ωi, ωj} ≡ 0.13

Under this assumption, ωi contains no additional information useful to j in predicting the

expected value of vj conditional on the information he or she already possesses, ωj. Observe,

however, that, ex ante, the parties’ information, ωi and ωj, could be correlated. Observe,

too, that ωi is now party i’s expected value of communicating.

11These opportunity costs could be sufficiently large that it could be efficient to charge positive message
prices even when m = 0, either to discourage message exchange (e.g., a tax on “junk” email) or to raise
revenues to subsidize the other party to engage in message exchange. See Hermalin and Katz (2001b) for a
discussion.

12In a companion paper (Hermalin and Katz, 2001a), we examine the effects of such inferences more fully.
Hermalin and Katz (2001b) also contains examples drawn from the general model.

13Given the parties’ behavior, what is important about their information is how it maps to their expected
values of calling. That is, one could assume that each party’s information lies in some multi-dimensional set
and that there is some mapping from this set to expected values. The set Ωi would then be the range of this
mapping for party i. What we are assuming in Assumption 1 is that this mapping not change when a party
learns new information from observing the behavior of the other party (e.g., that he is called).
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Assumption 1 strikes us as reasonable when applied to the sender because the receiver’s

decision whether to accept often will not convey much information to the sender about the

value to her of having sent the message. This relationship is particularly likely in markets

where there are multiple potential senders and the receiver does not know the identity of

the party sending the message at the time the acceptance decision is made. Moreover, in

this latter situation, application of Assumption 1 to the receiver is plausible: It may be

unreasonably complex for the receiver to draw inferences about the message’s value to him

from the fact that a message was sent. When the receiver knows who is sending him a message

(e.g., the receiver has caller ID or can see the sender’s email address), the assumption that

the receiver infers nothing from being sent a message could be less innocuous. On the other

hand, if the sender is known to send messages that vary greatly in value to the receiver, or if

the receiver’s message value strongly depends on his current opportunity cost of time (e.g.,

whether he’s eating dinner or not), then the receiver’s estimation of a message’s value to

him may be little influenced by the sender’s having initiated the message.

Our basic model also assumes that ωA and ωB are independently distributed, with dis-

tribution functions ΨA(·) and ΨB(·), respectively.14 Let Si(ω) ≡ 1 − Ψi(ω) be the survival

function. If ψi(·) is the density associated with Ψi(·), then S ′
i(ω) = −ψi(ω). Thoughout our

basic model, we assume:

Assumption 2 For i = A,B, there exists finite ωi and ω̄i such that Si(ωi) = 1, Si(ω̄i) = 0,

and Si(·) is twice differentiable, with S ′
i(·) < 0 and S ′′

i (·) ≤ 0, on
[
ωi, ω̄i

]
.

Examples of concave survival functions include those derived from convex power-function

distributions. Power-function distributions describe random variables, U , defined on an

interval [u1, u2], such that Pr{U ≤ u} =
(

u−u1

u2−u1

)κ

. If κ ≥ 1, the distribution is everywhere

weakly convex (note κ = 1 is the uniform distribution).

14The independence of ωA and ωB does not imply that vA and vB are independently distributed; ηA and
ηB may still be correlated.
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Figure 2: Messages that are efficient to exchange and those that are exchanged at prices p and
r.

We take total surplus, the sum of producer and consumer surplus, as our welfare measure.

Under the first-best outcome, total surplus is maximized if all messages for which vA+vB > m

are exchanged and no messages for which vA + vB < m are exchanged. Because vA and vB

might be realized only after a message is sent and received, the first-best outcome is generally

unattainable. A more realistic welfare standard is second-best, or information-constrained,

efficiency: A message is exchanged if and only if the social expected value conditional on

what the parties know exceeds the cost. As the left panel of Figure 2 shows, it is information-

constrained efficient to exchange all messages above the line ωA + ωB = m.15

Throughout, we assume that, with positive probability, both A and B expect message

exchange to be valuable:

Assumption 3 SA

(
λm

)
SB

(
(1 − λ)m

)
> 0 for some λ.

15For convenience, we have drawn the figures for cases in which all messages have non-negative values to
both parties. Nothing in our analysis precludes messages with negative values.
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2.2 Two Retail-Pricing Benchmarks

Although our focus is on inter-carrier pricing, the welfare consequences of interconnection

charges in our basic model derive from charges’ effects on the carriers’ resulting retail prices.

Hence, we begin by characterizing the first-best retail prices and then identifying two useful

retail pricing benchmarks.

When both parties benefit from a message exchange, it is feasible to charge both the

sender and receiver positive prices. Examples of positive receive prices in the U.S. include

collect calling, 800 numbers, and most wireless telephone service. Let p denote the per-

message price paid by the sender, and let r denote the per-message price paid by the receiver.

These prices are paid if and only if the message is successfully exchanged.

Given the retail prices, a consumer equilibrium comprises a pair of mutual best-response

functions: a sending rule for A and an acceptance rule for B. Under Assumption 1, a weakly

dominant strategy for A is to send a message if and only if ωA ≥ p. Likewise a weakly

dominant strategy for B is to accept the message if and only if ωB ≥ r. Because it relates

the probability of purchase to the price user i faces, the survival function can be viewed as

user i’s demand function. The right panel of Figure 2 shows the set of messages exchanged

when users face prices p and r. As a comparison of the two panels shows, even if below-cost

pricing is feasible, it generally is impossible to achieve efficient message exchange using only

simple send and receive prices.

We now consider two retail price benchmarks. The first is Ramsey (1927) prices — the

prices that maximize total surplus subject to the constraint that they cover the message

costs. Ramsey prices must satisfy the constraint that that p + r ≥ m.16 For later use, it is

helpful to consider a modified version of the Ramsey problem. Let π denote a non-negative

constant. We are interested in characterizing socially optimal prices subject to the constraint

that p + r = m + π.

16To focus on the effects of receiver benefits on pricing, we assume there are no network fixed costs.
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Given prices p and r = m + π − p, expected welfare, EW , is

EW =

∫ ∞

m+π−p

(∫ ∞

p

(
ωA + ωB −m

)
ψA(ωA)dωA

)
ψB(ωB)dωB .

Recalling the definition of Si(·) and integrating by parts,

EW = SB(m + π − p)

∫ ∞

p

SA(ω)dω + SA(p)

∫ ∞

m+π−p

SB(ω)dω + πSA(p)SB(m + π − p) . (1)

The expression for expected welfare, equation (1), is stated solely in terms of m, the sum

of the individual networks’ marginal costs.17 Intuitively, there is no sense in which the costs

of a given network are associated with a specific user, as opposed to a specific sender-receiver

pair. Hence, the welfare question is how to share the sum of the costs efficiently between the

two users:

Observation 1 The optimal send and receive prices depend solely on the sum the networks’

marginal costs, mX + mY , and not the individual components.

As should be clear, this result holds under much broader conditions than those of our basic

model.18

The following result is a straightforward generalization of Proposition 2 in Hermalin and

Katz (2001c), and its proof is omitted here.

Proposition 1 Suppose that ωA and ωB are independently and identically distributed ac-

cording to the survival function S(·). Then, for any non-negative constant π, the prices

p = r = (m + π)/2 maximize total surplus subject to the constraint that p + r = m + π.

17Although our maintained interpretation of m is that it is the sum of the networks’ marginal message
costs, in Propositions 1 and 2, which follow, m can also be interpreted as social marginal cost (e.g., including
congestion costs imposed on other users).

18This result was first identified by Srinagesh and Gong (1996). One situation in which it does not hold
is when a user can choose among alternative networks that have different marginal costs and give rise to
different distributions of benefits between the two users. See footnote 25 below.
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The next proposition (proved in the Appendix) extends a second result of Hermalin and

Katz (2001c) to characterize optimal retail prices in certain asymmetric cases, including

survival functions derived from power function distributions.

Proposition 2 Suppose that ωA and ωB are independently distributed according to the sur-

vival functions SA(·) and SB(·), respectively. If ψj(ω) crosses ψi(ω) once from above at

ω̂ ≥ m+π
2

,19 then party i pays more than party j under any socially optimal pricing scheme

that satisfies the constraint p + r = m + π, π ≥ 0.

Another useful benchmark is provided by a profit-maximizing, monopoly network. It is

helpful to divide the monopolist’s problem into two steps. First, suppose the monopolist’s

profit margin is fixed at π per message exchanged: p + r − m = π. The profit maximizer

chooses a price pair from this line that maximizes the probability of message exchange:

SA(p)SB(r) = SA(p)SB(π + m− p) . (2)

The corresponding first-order condition for an interior maximum is20

S ′
A(p)SB(π + m− p) − SA(p)S ′

B(π + m− p) = 0 . (3)

When SA(·) ≡ S(·) ≡ SB(·), p = 1
2
(π + m) is a solution, which implies r = 1

2
(π + m).

Equation (3) is sufficient, as well as necessary, under our assumption that S(·) is concave.

Once the optimal prices p and r for a given π are found, the second step is to maximize

expected profits with respect to π. When SA(·) ≡ S(·) ≡ SB(·), the profit maximizer’s

problem is to

max
π

S

(
π + m

2

)
S

(
π + m

2

)
π

19That is, ψj(ω) > ψi(ω) if ω < ω̂ and ψj(ω) < ψi(ω) if ω > ω̂.
20Here, and throughout our analysis, we can limit attention to interior maxima. Given Assumption 2,

only interior equilibria exist as long as a carrier does not wish to shut down. By Assumption 3, it is not
privately optimal for the monopoly network to shut down. Similarly, below it will never be in the interest of
policy makers to set the interconnection charge at a level that would lead to an equilibrium with no message
exchange.
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Because the derivative of this expression with respect to π is positive at π = 0 (it equals

S2), the usual monopoly distortion of too few sales holds. Note, however, that conditional

on this distortion, the profit-maximizing monopolist imposes no further distortion in terms

of the optimal division of the cost and markup between sender and receiver. When SA(·) is

not identical to SB(·), the profit-maximizing monopolist may distort the relative levels of the

send and receive prices, in addition to setting the markup up too high. The relative-price

distortion arises because — for a given margin — the profit maximizer chooses the relative

prices solely to maximize the probability that a message will be exchanged, while the welfare

maximizer also takes into account the value of the messages exchanged.

3 Interconnection of Non-Competing Carriers

This section and the following one present the results for our basic model. In each case,

we make two broad assumptions that are relaxed in later sections. First, we assume that

the A and B’s expected message values are independently distributed. Second, we take the

carriers’ network architectures as exogenous. The difference between the models of the two

sections lies in the assumption about whether the interconnecting carriers compete with one

another. In the present section, we assume that they do not. Within this framework, we

consider two market structures. In one, each carrier has a monopoly with respect to one of

the subscribers. The sender’s only choice of carrier is network X, and the receiver’s only

choice of carrier is network Y . This situation corresponds to one in which A subscribes

to a monopoly provider of mobile telephone or long distance telephone service, while B

subscribes to a monopoly landline local exchange provider. Later in the section, we allow

for competition between multiple carriers at a given end of the message.

Let t denote the interconnection or access charge paid by network X to network Y when

a message is carried from A to B. At this point, t may be positive or negative.

Network X chooses p to maximize:

SA(p)SB(r)(p−mX − t) . (4)
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The corresponding first-order condition for an interior maximum is

S ′
A(p)(p−mX − t) + SA(p) = 0 . (5)

Similarly, network Y chooses r to maximize:

SA(p)SB(r)(r −mY + t) , (6)

and the corresponding first-order condition for an interior maximum is

S ′
B(r)(r −mY + t) + SB(r) = 0 . (7)

Assumption 2 ensures that (5) and (7) are sufficient as well as necessary.

Because of the multiplicative structure of demand, each network sets a price that depends

solely on its costs (including the effects of any interconnection charge) and the distribution

of its subscribers’ message exchange values. In particular, a change in r has no effect on

X’s profit-maximizing choice of p and vice versa. Each network sets its margin equal to

one over the hazard rate for its subscriber’s valuation. Let pb(q) ≡ arg maxp SA(p)(p − q)

and rb(q) ≡ arg maxr SB(r)(r − q) denote the maximizing price for networks X and Y ,

respectively.

As expected, the usual Cournot (1838) complements problem arises, and the bilateral

monopolists set retail send and receive prices that sum to more than those that would be

set by a single monopoly network:

Proposition 3 For any interconnection charge, t, bilateral monopoly networks set higher

prices than would a single monopoly network with cost mX + mY .

Proof: Adopt the shorthand pb = pb(mX + t) and rb = rb(mY − t). ¿From (5) and (7):

pb −mX − t =
−SA(pb)

S ′
A(pb)

> 0 and rb −mY + t =
−SB(rb)

S ′
B(rb)

> 0 . (8)
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Hence,

S ′
A(pb)

(
pb + rb − (mX + mY )

)
+ SA(pb) < 0 (9)

and

S ′
B(rb)

(
pb + rb − (mX + mY )

)
+ SB(rb) < 0 . (10)

Multiplying the left-hand sides of (9) and (10) by SB(r) and SA(p), respectively, we get the

derivatives of the single monopoly network’s profits with respect to p and r, respectively.

Because, as shown, these derivatives are negative when evaluated at pb and rb, we can con-

clude that pb and rb are each set at a higher level than a single monopoly network would

set them. (It is readily shown that Assumption 2 is sufficient for the single monopolist’s

profit-maximization problem to be globally concave.)

Now consider the choice of t. The analysis of the socially optimal inteconnection charge

turns on two straightforward, but important, observations. First, the interconnection charge

affects relative prices: an increase in t generally raises the equilibrium value of p and lowers

the equilibrium value of r. Second, the level of t may affect the equilibrium level of the sum

of the retail prices, p + r.

The next lemma is an immediate consequence of the fact that the two networks face

identical optimization problems when SA ≡ SB and t = (mY −mX)/2.

Lemma 1 Suppose that ωA and ωB are independently and identically distributed according

to the survival function S(·). If t = (mY − mX)/2, then there exists a unique equilibrium

and p = r.

Combined with Proposition 1, Lemma 1 tells us that t = (mY −mX)/2 induces efficient

retail prices conditional on the industry margin. The next result characterizes t’s effect on

that margin. We present the proof, which relies on a standard monopoly comparative statics

result, in the Appendix.
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Lemma 2 Suppose that ωA and ωB are independently and identically distributed according

to the survival function S(·). If S ′′′ ≥ 0, then t = (mY −mX)/2 minimizes the equilibrium

industry margin, p + r −m.

These two lemmas establish conditions under which t = (mY −mX)/2 both induces the

surplus-maximizing retail prices among those having a constant industry margin and induces

the lowest equilibrium industry margin. Combining these results, one obtains

Proposition 4 Suppose that ωA and ωB are independently and identically distributed ac-

cording to the survival function S(·). If S ′′′ ≥ 0, then the socially optimal interconnection

charge for bilateral monopolists is t = (mY −mX)/2.

As do all of our propositions, Proposition 4 builds on the assumption that S ′′(·) ≤ 0. If

one relaxes this assumption, one can obtain a striking result: When S(z) = e−z/ν , the level of

t is irrelevant. Simple calculations show that any pair of retail prices such that p+r = m+π

yield expected welfare (2ν+π)e−(m+π)/ν . Moreover, the equilibrium prices are p = ν+mX +t

and r = ν + mX − t, so that the industry margin is independent of t. Hence, for any value

of t, expected welfare is 4νe−(2+m/ν).

Proposition 4 indicates that the socially optimal interconnection charge can depend on

the values of the individual networks’ marginal costs. It is important to recognize, however,

that t depends on the distribution of the total marginal cost between the two networks only

because those costs affect the networks’ retail pricing decisions; the socially optimal retail

prices themselves are independent of the distribution of costs between the networks.

That t is driven by demand considerations can be seen by considering the following

example in which the two parties’ message values are not identically distributed. Suppose

that ωA is uniformly distributed on [0, 1], while ωB is uniformly distributed on [0, β], β a

positive constant. Then SA(p) = 1− p, and SB(r) = 1− r/β; uniform distributions give rise

to linear demand functions. Simple calculations demonstrate that p = (1 + mX + t)/2 and

r = (β+mY −t)/2. The equilibrium industry margin is independent of t: p+r = (1+β−m)/2.
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Hence, when S ′′(q) ≡ 0, t is set solely to induce socially optimal prices given the margin.

Somewhat more tedious calculations demonstrate that expected welfare is

1

β
[β − r][1 − p]

(
1

2
[β + r + 1 + p] −m

)

=

(
β −mY + t

2

)(
1 −mX − t

2

)
Λ ,

where Λ = (1
2
[β + r + 1 + p] − m) is a constant with respect to t. The welfare optimal

interconnection charge is consequently

t =
mY −mX + 1 − β

2
. (11)

Therefore, if mX = mY , the optimal interconnection charge is negative if β > 1 and positive

if β < 1.

Applying Proposition 2 to this example, observe that ψi(ω) = min
{

1
β
, 1

}
and ψj(ω) =

max
{

1
β
, 1

}
. If

0 ≤ m

4
+ min{1, β} − 1

2
max{1, β} ,

then ψj crosses ψi once from above at or to the right of 1
2
(m+π). Proposition 2 then implies

t should be chosen to induce p > r if β < 1 and induce p < r if β > 1. The value of t given

by equation (11) satisfies this condition.

In practice, many carriers face competition. Suppose that there are two networks at each

end of a potential message exchange, X1 and X2 which compete to serve user A, and Y1 and

Y2 which compete to serve user B. The carriers at each end are undifferentiated Bertrand

(1883) competitors with one another. However, the interconnecting carriers (e.g., X2 and

Y1) do not compete with each other.

By the usual analysis, it is straightforward to establish:21

21Kaplan and Wettstein (2000) establish that the only Nash equilibrium is the pure-strategy one when, as
here, S(q)q is bounded as q → +∞ (see Assumption 2).
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Lemma 3 Suppose that at each end the higher-cost carrier’s marginal cost is less than the

lower-cost carrier’s monopoly price. The unique Bertrand equilibrium prices given t are

p = max {mX1 ,mX2} + t and r = max {mY1 ,mY2} − t.

As is typical in Bertrand models, if the carriers have unequal costs marginal costs, the

lower-cost supplier prices “just below” the marginal cost of the other one. With Bertrand

competition, the equilibrium margin is unaffected by the interconnection charge regardless of

the shape of the survival functions. Moreover, the value of t does not affect network compe-

tition — the lower-cost network serves all subscribers. The sole effect of the interconnection

charge is to induce different relative retail prices. The socially optimal interconnection charge

is the one that induces Ramsey prices that recover max {mX1 ,mX2}+ max {mY1 ,mY2} in an

efficient way from the two users. It follows from Proposition 1 that

Proposition 5 Suppose that ωA and ωB are independently and identically distributed ac-

cording to the survival function S(·). If there is Bertrand competition at each end of the

message, then the socially optimal interconnection charge is

t =
max {mY 1,mY 2} − max {mX1 ,mX2}

2
.

Similarly, it follows from Proposition 2 that

Proposition 6 Suppose that ωA and ωB are independently distributed according to the dis-

tribution functions with densities ψA(·) and ψB(·), respectively, where ψj(ω) crosses ψi(ω)

once from above at

ω̂ ≥ 1

2
(max {mX1 ,mX2} + max {mY1 ,mY2}) .

With competing carriers at each end, the socially optimal inteconnection charge is greater

than (max {mY1 ,mY2} − max {mX1 ,mX2})/2 if i = A and less than that if i = B.
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One can also consider mixed cases. For example, there might be competition among

wireless or long-distance providers to originate a call, but a monopoly local exchange carrier

terminates it. In this case, p = max {mX1 ,mX2}+ t while the value of r depends on whether

the local exchange carrier is regulated. Suppose it is not. Then r = rb(mY − t), and the

optimal interconnection charge depends on two effects. First, it is readily shown that, when

SA(·) ≡ SB(·), to induce p = r requires t > (mY − max {mX1 ,mX2})/2 in order to correct

for the differential markup strategies pursued by the two networks carrying the traffic in

equilibrium. Second, in addition to affecting the relative levels of p and r, the interconnection

charge affects the industry margin when r′b(mY + t) �= 1. The optimal t depends on the sum

of these two effects. Now suppose the local exchange carrier were regulated and forced to

set r = mY − t + σ, for some σ ≥ 0. Then the industry margin would be independent of

t. Hence, when SA ≡ SB, the socially optimal interconnection charge induces p = r, or

t = (mY + σ − max {mX1 ,mX2})/2. The effects of other forms of regulation remain to be

explored.

It is clear from inspection that, if one reverses the values of SA and SB and of mX and

mY in any of the analyses above, the sign of the optimal interconnection charge is reversed

as well. Hence, another important observation is the following.

Observation 2 The socially optimal interconnection charge is independent of the calling

direction.

The analysis thus far has assumed that a given carrier can bill only its own subscribers.

We close this section by considering what happens when monopoly carriers at either end of

a message exchange can directly levy charges on their own customer and the other carrier’s

customer. That is, carrier Z = X,Y sets send and receive prices pZ and rZ , respectively.

The following result is proved in the Appendix.

Proposition 7 When each bilateral monopolist can bill both ends of a message exchange,

there is a unique equilibrium level of message exchange and it is independent of the inter-
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connection charge. Moreover, in equilibrium, the two carriers earn equal margins,

pX + rX −mX − t = pY + rY −mY + t .

When each carrier has the authority to bill the other carrier’s customers, policy makers

cannot meaningfully affect retail prices through the interconnection charge. For a given in-

dustry margin, such carriers act like an integrated monopolist to maximize the probability of

message exchange without regard for the values of different exchanges.22 Thus, in symmetric

situations, the power to bill the other network’s customers does not have adverse welfare

effects on relative prices because equal send and receive prices are socially optimal and will

be chosen by the carriers. But in general, this type of billing undermines the ability of policy

makers to use interconnection charges to induce socially optimal retail prices.

4 Interconnection of Competing Carriers

The model of the previous section assumed that the interconnecting carriers did not compete

with one another. In this section, we consider the case in which the two interconnecting

networks are undifferentiated Bertrand competitors with one another.23

Suppose that there are two networks, either of which can compete for either type of user.

Continue to assume that user A originates messages and user B receives them so that the

two carriers compete for A’s patronage in terms of a send price and B’s patronage in terms

of a receive price. By the usual Bertrand analysis, it is again straightforward to establish:

22This property can be seen from the first-order necessary conditions for pZ and rZ presented
in the proof of Proposition 7 in the Appendix. Inspection shows that S′

A(pX + pY )SB(rX + rY )
must equal SA(pX + pY )S′

B(rX + rY ) in equilibrium, which is the first-order condition for maximizing
SA(pX + pY )SB(rX + rY ) subject to the constraint that pX + pY + rX + rY is equal to some constant.

23Laffont et al. (2001) also examine optimal interconnection charges for the case of competing carriers.
Unlike the present section, they also allow for differentiated networks and they examine the effects of pay-
ments between the sender and receiver. They do not consider the extensions of this case that we examine in
Sections 5 and 6 below.
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Lemma 4 Suppose that the higher-cost carrier’s marginal costs are less than the lower-cost

carrier’s monopoly price. Given t, the unique Bertrand equilibrium prices are pZ = mZ + t

and rZ = mZ − t, where mZ = max {mX ,mY }.

Note that these are the equilibrium prices even when one carrier wins both types of subscriber

and does not actually pay the interconnection fee.24

Like the case of Bertrand competition at each end of a message, which we examined in

the previous section, Lemma 4 indicates that both the equilibrium margin and the ability of

either carrier to win sales in equilibrium are unaffected by the level of the interconnection

charge. Again, the sole effect of the interconnection charge is to induce different relative

retail prices. There is, however, an important difference between the two cases. When the

interconnecting firms are competitors with one another, the lower-cost network serves all

subscribers. Hence, the interconnection charge does not have to correct for the possibility

that the sender’s network has different marginal costs than the receiver’s network. Instead,

the socially optimal interconnection charge is the one that induces Ramsey prices that recover

2 max {mX ,mY } in an efficient way from the two users.

Applying Proposition 1, one obtains the following result.

Proposition 8 Suppose that ωA and ωB are independently and identically distributed ac-

cording to the survival function S(·) and that the higher-cost carrier’s marginal cost is less

than the lower-cost carrier’s monopoly price. Then bill and keep is the socially optimal inter-

connection regime with competing interconnected carriers ( i.e., t = 0 maximizes equilibrium

total surplus subject to the constraint that p + r = 2 max {mX ,mY }).

Comparing the findings for the cases of competition at each end with competition between

the interconnecting carriers (Propositions 5 and 8, respectively), one sees that the socially

24Laffont et al. (2001) call this the off-net-cost pricing principle. A similar result arises in the intellectual
property licensing literature (see, for example, Katz and Shapiro, 1985), where an intellectual property owner
acts as if it is paying itself a royalty because displacing the output of rivals has an opportunity cost equal
to the foregone royalty. Laffont et al. provide an extensive and insightful analysis of the conditions under
which the result holds.
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optimal interconnection charge accounts for cost differences in the first case but not in the

second. This is a consequence of the fact that competition between the interconnecting

carriers ensures that the lower-cost network serves both ends of a message exchange and

there are no cost differences for which to correct.

Asymmetric cases can be addressed by applying Proposition 2 to obtain the following

result.

Proposition 9 Suppose that ωA and ωB are independently distributed according to the sur-

vival functions SA(·) and SB(·), respectively, and ψj(ω) crosses ψi(ω) once from above at

ω̂ ≥ max {mX ,mY }. With competing interconnected carriers, the socially optimal intercon-

nection charge is positive if i = A and negative if i = B.

If the two networks have unequal costs, only the lower-cost network carries traffic in

equilibrium. If mX = mY , both carriers can serve end users in equilibrium, and can do so in

any proportion or mix. None of the analysis of the socially optimal interconnection charge

depends on the mix of customers each network obtains. In other words,

Observation 3 The socially optimal interconnection charge is independent of the traffic

balance.

5 Stochastically Dependent Message Values

The basic model assumes that the sender and receiver’s expected message values are inde-

pendently distributed. We now allow ωA and ωB to be perfectly correlated. Specifically, let

ωB ≡ α + βωA, where β > 0. Figure 3 illustrates.

We first characterize the Ramsey optimal retail prices. As can readily be seen from Figure

3, the information-constrained optimal prices are

p∗ =
m + π − α

1 + β
and r∗ =

β(m + π) + α

1 + β
. (12)



Hermalin & Katz Stochastically Dependent Message Values 23

m+πp*

r*

ωA

ωB

m+π
α+βωA

Figure 3: The correlated values case.

Observe that these prices do not depend on any other properties of the joint distribution of

ωA and ωB. In particular, it is possible with positive correlation that the party who faces

the higher price has the lower expected value of message exchange (e.g., α + βω crosses ω

from above, α
1−β

> m/2, and most of the weight is on ωA ≥ α
1−β

).

We first examine the socially optimal interconnection charge when networks X and Y

are bilateral monopolists as in Section 3. Consider X’s profit-maximizing choice of p given

Y ’s choice of r. Given r, X sets p to maximize

Prob[ωA ≥ p and ωB ≥ r](p− t−mX) = Prob

[
ωA ≥ max

{
p,

r − α

β

}]
(p− t−mX) .

Network X does better to set p equal to (r − α)/β rather than less than (r − α)/β because

the former response yields the same message volume as the latter, but at a higher profit

per message. Hence, p ≥ (r − α)/β and, thus, Prob[ωA ≥ p and ωB ≥ r] = SA(p). The

latter equation implies that X’s expected profits are SA(p)(p−mX − t). Recall that pb(q) ≡
arg maxp SA(q)(p− q). Because SA(p)(p−mX − t) is concave in p, X sets p at the maximum

of (r − α)/β and pb(mX + t). Summarizing X’s reaction function:

pe(r) =

{
pb(mX + t) if r ≤ α + βpb(mX + t)
r−α

β
otherwise

.
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rc

ωA

ωB

α+βωA

pc

Y's reaction curve

X's reaction curve

Figure 4: Reaction functions for X (solid line) and Y (dashed line). The set of equilibria are
where both reaction functions coincide with the ωB = α + βωA line.

Note, for low r, X chooses the same price as it would were ωB distributed independently of

ωA. A similar analysis for Y reveals that

re(p) =

{
rb(mY − t) if p ≤ rb(mY −t)−α

β

α + βp otherwise
,

where, as before, rb(mY − t) ≡ arg maxr SB(r)(r −mY + t).

Figure 4 illustrates the reaction curves for both carriers simultaneously. As the figure

shows, there is a continuum of equilibria of the form p = q and r = α + βq, with the lowest

value of q being

max

{
pb(mX + t),

rb(mY − t) − α

β

}
.

For a given t, the equilibrium with the lowest value of q is socially optimal. This con-

clusion follows from the fact that welfare is a decreasing function of q for all q ≥ m−α
1+β

.

Moreover, for a given t, both networks prefer this equilibrium to any other. This conclusion

follows from the fact that p ≥ pb(mX + t) and r ≥ rb(mY − t) in all of the equilibria and

each network’s profits are a concave function of its own price and a non-increasing function

of the other network’s price. We will focus on this equilibrium in our analysis of the socially

optimal interconnection charge.
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The welfare-optimal interconnection charge minimizes

max

{
pb(mX + t),

rb(mY − t) − α

β

}
.

Observe that pb(mX + t) is increasing in t, while rb(mY − t) is decreasing. Hence, if there

exists a value of t for which α + βpb(mX + t) = rb(mY − t), then that value of t is welfare

maximizing. As the next proposition shows, such a value of t exists.

Proposition 10 Suppose that ωB ≡ α + βωA, where β > 0. The socially optimal intercon-

nection charge under bilateral monopoly is

t =
mY − βmX − α

1 + β
.

Proof: By hypothesis,

SA

(
q − α

β

)
= SB(q) .

Hence, pb and rb solve

max
p

SA(p)(p−mX − t)

and

max
r

SA

(
r − α

β

)
(r −mY + t) ,

respectively. The first-order conditions are

S ′
A(p)(p−mX − t) + SA(p) = 0

and

S ′
A

(
r − α

β

)
1

β
(r −mY + t) + SA

(
r − α

β

)
= 0 ,

respectively. Substituting in

t =
mY − βmX − α

1 + β
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and rearranging algebraically, these equations become

S ′
A(p)

(
p− mX + mY − α

1 + β

)
+ SA(p) = 0

and

S ′
A

(
r − α

β

)(
r − α

β
− mX + mY − α

1 + β

)
+ SA

(
r − α

β

)
= 0 ,

respectively. By Assumption 2, the first-order conditions are sufficient as well as necessary

and, moreover, S ′
A(q)(q − k) + SA(q) = 0 has a unique solution for any k. Hence,

rb − α

β
= pb .

DeGraba (2000a) analyzed the case of α = 0, β = 1, and mX = mY , and found that t = 0

is socially optimal. The present analysis shows extends this finding to alternative values of

α, β, and unequal network marginal costs, and it shows that non-zero values of t are socially

optimal outside of the special case considered by DeGraba.

To conclude this section, suppose that X and Y are Bertrand competitors. Recall that

when the higher-cost carrier’s marginal costs are less than the lower-cost carrier’s monopoly

price, the unique Bertrand equilibrium prices are pZ(t) = mZ + t and rZ(t) = mZ − t,

where mZ = max {mX ,mY }. Suppose that mX ≤ mY . Then the equilibrium margin is

2(mY − mX). The interconnection charge affects only the relative send and receive prices,

not the equilibrium margin. The socially optimal interconnection charge satisfies pZ(t) = p∗

and rZ(t) = r∗. The first of these equalities holds if

mY + t =
2mY − α

1 + β

(where the right-hand side follows by substituting 2mX for m and 2(mY −mX) for π in (12)).

Consequently,

t =
(1 − β)mY − α

1 + β
.
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It is readily checked that this value of t also equates rZ(t) and r∗. With independent

and identically distributed message values, the socially optimal interconnection charge was

always 0. With perfectly positively correlated values, nonzero interconnection charges can

be optimal, although identical expected values for A and B (i.e., β = 1 and α = 0) again

yield bill and keep as the optimal interconnection regime.

At first glance, the dependence of the optimal value of t on mY is surprising because,

in equilibrium, no traffic is carried by network Y . The higher-cost carrier’s marginal costs

matter solely because they affect the equilibrium margin earned by the other carrier. The

larger is mY , the larger is the sum of the equilibrium values of p and r. When β �= 1, the

interconnection charge has to adjust to ensure the efficient relative levels of p and r.

6 Endogenous Network Architectures

To this point, we have taken the networks’ costs to be exogenously given. In practice, carriers

may choose among alternative technologies or invest in reducing their costs. Interconnecting

carriers also make choices with respect to where the their networks meet. These choices may

be affected by the interconnection charge, and thus incentives effects on network architecture

choices should be taken into account in setting socially optimal interconnection charges.

In this section, we explore these issues under the assumption that ωA and ωB are in-

dependently and identically distributed with common survival function S(·). Recall that,

by Propositions 4 and 8, the socially optimal interconnection fee with exogenous network

costs is t = (mY − mX)/2 for bilateral monopolists (when S ′′′(·) ≥ 0) and 0 for competing

interconnected carriers.

Suppose the carrier can make expenditures in R&D or equipment that lower its marginal

costs. With bilateral monopolists, a fall in one network’s marginal costs raises the other

carrier’s profits if t is held fixed. For example, Y earns

S(pb(mX + t))S(r)(r −mY + t) ,
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which is an decreasing function of mX . Consumers also gain from a reduction in costs because

it is partially passed through in the form of lower retail prices. Hence, a network’s private

incentives for cost reduction are lower than the social incentives. The underinvestment

problem is magnified if the interconnection charge is adjusted to the socially optimal level

that reflects the marginal cost reduction. Because t = (mY − mX)/2, a reduction in a

network’s marginal costs shifts the interconnection charge in the direction that is unfavorable

to that network. A similar disincentive effect would arise if regulation forced a network to

lower its retail prices by a large fraction of its marginal cost reduction.25 To internalize the

investment incentives, the interconnection fee would have to be adjusted in the direction

that favored the network that lowered its marginal costs. Starting from an initially optimal

interconnection charge, this change would result in the other network’s subscribers bearing

an inefficiently high proportion of the marginal message costs. Hence, there is a tradeoff

between inducing dynamic efficiency and allocative efficiency.

With competing interconnected carriers, the social benefits of cost reductions by the

lower-cost carrier fully accrue to that carrier, as long as they are not drastic (i.e., the

carrier’s post-reduction monopoly price is not less than its rival’s marginal costs). However,

cost reductions in other circumstances lead to private benefits that are lower than the social

ones. For instance, suppose the initially higher-cost carrier invests in cost reduction but

remains the higher-cost carrier. It still makes no sales in equilibrium, and thus realizes no

private benefits. However, total surplus rises because the other carrier is forced to set the

sum of its send and receive prices closer to the efficient level.

Interestingly, the level of the interconnection charge can indirectly affect cost-reduction

25A similar issue arises with consumer technology choice. When A gets a constant share of the net benefits
under any technology, she chooses the technology that maximizes total surplus. Suppose, however, that a
more costly technology generates additional benefits for A but not for B (e.g., the technology also allows A
to consume other services, such as cable television, that do not involve B.) In this case, a pricing scheme
that sets r higher for the more expensive technology in order to cover the higher marginal message cost
will tend to bias A’s choice toward that technology. In effect, B would be subsidizing A’s consumption of
the additional benefits associated with the more costly technology. (DeGraba (2000a) provides an intuitive
discussion of this issue.)
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Figure 5: Endogenous meeting of originating and terminating networks at location L.

incentives. Suppose that a carrier can reduce is marginal costs by δ(I) by investing I. For

non-drastic innovations, the lower-cost carrier’s incentives to reduce its marginal costs further

by δ are δS(p)S(r).26 Suppose that X is the lower-cost network. Recall that competition

leads to pX + rX = 2mY . Thus, the value of t that maximizes X’s investment incentives is

the one that maximizes S(p)S(r) subject to the constraint that pX +rX = 2mY . However, as

we saw in the monopoly analysis, for any given margin, the carrier’s profits are maximized

by maximizing S(p)S(r). Therefore, setting t to induce the profit-maximizing prices (given

the margin) maximizes the lower-cost carrier’s cost-reduction incentives. (Recall, this value

of t would typically be non-zero for the case SA(·) �= SB(·) because the competitive prices,

pX = mY + t and rX = mY − t, do not directly reflect the different demand conditions of A

and B.)

Now, consider the second dimension of the problem: the choice of meet point or place of

interconnection. Suppose that A is located along a line at 0 and B located at 2, and that

it costs either network µ per-unit distance to carry traffic. Suppose that A subscribes to

network X and B subscribes to network Y . Let L denote the location along the line where

one network hands off inter-network traffic to the other. Then mX = µL and mY = µ(2−L)

for a message that traverses both networks. Figure 5 illustrates the situation. Note that if

one network serves both parties and keeps the message entirely on its network, it incurs cost

mZ = 2µ.

When the interconnecting carriers are bilateral monopolists, the optimal interconnection

26A non-drastic innovation is one such that the innovator’s monopoly price remains above its rival’s
marginal cost.
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charge is t = µ(1−L). Thus, if the two carriers have to meet each other halfway, the socially

optimal interconnection charge is 0, but otherwise it could be positive or negative.

Where will networks exchange traffic? While a general analysis is beyond the scope of

this paper, there is an interesting case that arises with telephone service. A vexing policy

question has been what determines whether an entity is an end user, who pays retail prices,

or a carrier, which participates in the interconnection regime. If entities are allowed to self

designate or become carriers after meeting minimal requirements, and if the interconnection

charge is set at zero, then user A could “interconnect” with, say, network Y at point 0. A

would incur no transport costs and Y would incur costs of 2µ. In this case, it might appear

that t = µ would be socially optimal. However, A would “sell” the service to himself at cost,

while Y would mark up the charge to B. The different mark-up rules raise the same issues

as in the mixed cases discussed after Proposition 6.

Lastly, consider competing interconnected carriers. Suppose that user A subscribes to

network X and the carriers are bidding for the subscription of user B. If X wins the bidding

at price rX , it incurs costs of 2µ to carry the traffic end-to-end, and it earns pX + rX − 2µ.

If Y wins the bidding, network X earns pX − µL − t. Hence, X is willing to set rX as low

as (2 − L)µ − t to win B’s patronage. If Y loses the bidding for B’s patronage, Y earns

nothing, while, if it wins, it earns rY − (2 − L)µ + t. Hence, like X, network Y is willing to

price as low as (2 − L)µ− t to win B’s patronage, and this is the equilibrium receive price.

Similar calculations show that the equilibrium send prices are pX = pY = Lµ + t.27 Hence,

the socially optimal interconnection charge is again t = µ(1 − L).

Again, the socially optimal interconnection charge depends on L. Here, an interesting

case arises on the Internet, where major backbone service providers currently exchange traffic

at an interconnection charge of zero, a practice known in the industry as settlement-free

peering. Internet backbone carriers typically engage in “hot-potato routing,” under which

the originating network dumps traffic onto the other network as soon as it can. Hence, when

27We are assuming that X and Y also interconnect at L when X serves B and Y serves A.
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traffic flows from A to B, one would expect L to be small and a positive interconnection

charge to be socially optimal. Importantly, a positive interconnection fee is socially optimal

not because A is the “cost causer,” but because A’s network has the opportunity to dump

traffic onto the other network after a short distance. The ability to dump traffic resides

with the network originating any given packet. Hence, when packets are exchanged in both

directions as part of an Internet session, the originating network is determined on a per-

packet basis rather than simply being the network whose customer initiated the session.28

7 Conclusion

In the absence of receiver benefits, the receiver is unwilling to pay to exchange messages,

the sender of a message can be viewed as the “cost causer,” efficient pricing is purely cost

based, and efficient pricing sets the send price equal to the marginal message cost. Thus, the

receiver’s network should recover its message costs from the sender, either directly by billing

the sender or indirectly by billing the sender’s carrier. The analysis above demonstrates

how the existence of receiver benefits fundamentally changes the analysis of interconnection

charges. The receiver’s carrier can charge its subscriber, and efficient retail prices must

internalize the external effects across the two parties to a message exchange. The issue is

no longer one of recovering the terminating network’s costs from the sender. Instead, the

issue is how to apportion the combined marginal costs of a message between the sender and

receiver in an efficient way, accounting for pricing distortions due to carrier market power

and possible effects on carrier investment incentives. While the cost recovery perspective

suggests that t = mY is optimal, our analysis found that, in the presence of positive receiver

benefits, t would have this value only by coincidence. We also found that t = 0 could be

efficient.

28Pairs of major Internet backbones typically interconnect with one another at several geographically
diverse points. Whichever carrier whose user was originating a given packet would follow hot-potato routing
and dump that packet on the other network at the interconnection point closest to the originating user.
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Our analysis is based on simplifying assumptions. While the lessons drawn from our

simple model will remain, further insights into optimal pricing could be gained by examin-

ing more general cases in which sending and receiving values are stochastically dependent,

two-way calling is feasible, there is competition among differentiated carriers, and message

exchange involves more than two networks (as is the case with long-distance telephone calls

in the U.S., which typically involve an interexchange carrier and two local exchange carriers).

Appendix

Proof of Proposition 2: Let i = A and j = B (the proof when these are reversed is a

straightforward variant of the one presented here).

Lemma: Distribution ΨA dominates distribution ΨB in the sense of first-order

stochastic dominance (ΨA ≥
FSD

ΨB).

Proof: Define Z(ω) ≡ ΨA(ω) − ΨB(ω) We need to establish that Z(ω) ≤ 0 for

all ω. Because ψA(ω) < ψB(ω) for all ω < ω̂, Z(ω) < 0 for all ω ≤ ω̂. Recall

ω̄ = max supp{ωA}. Z(ω) is increasing in ω for ω ∈ (ω̂, ω̄A) and Z(ω̄A) = 0.

Consequently, Z(ω) ≤ 0 for ω ∈ (ω̂, ω̄A).

Observe that SB ≡ SA +Z. Substituting SA +Z for SB in expression (1) yields the following

expression for expected welfare:

SA(m + π − p)

∫ ∞

p

SA(ω)dω + SA(p)

∫ ∞

m+π−p

SA(ω)dω + πSA(p)SA(m + π − p)

+ Z(m + π − p)

∫ ∞

p

SA(ω)dω + SA(p)

∫ ∞

m+π−p

Z(ω)dω + πSA(p)Z(m + π − p) .

(13)

Define V (p) to equal the first line of (13). Differentiating (13) with respect to p yields:

V ′(p)−Z ′(m+π− p)

(
πSA(p) +

∫ ∞

p

SA(ω)dω

)
+S ′

A(p)

(
πZ(m + π − p) +

∫ ∞

m−p

Z(ω)dω

)
(14)
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Consider p ∈ [
m+ π− ω̂, m+π

2

]
. From Proposition 1, p = m+π

2
would maximize V (p); hence,

the first term of (14) is non-negative because p ≤ m+π
2

. From m + π − p ≤ ω̂, it follows

that −Z ′(m + π − p) ≥ 0 and, thus, the middle term is non-negative. The third term is the

product of two negative quantities and, thus, positive as well. Therefore, (14) is positive if

p ∈ [
m + π − ω̂, m+π

2

]
. Because social welfare is weakly concave in p (recall Assumption 2),

(14) must also be positive for p < m + π − ω̂ as well, which means (14) can be zero only for

p > m+π
2

. That is, A must pay a higher price than B.

Proof of Lemma 2: Each firm solves a problem of the form maxS(q)(q− k). An increase

in t raises k by dt for X and lowers it by dt for Y . The question is what happens to dq/dk

as k rises.

The first-order condition is S ′(q)(q − k) + S(q) = 0. (For future reference, note that

(q − k) = −S(q)/S ′(q).) Total differentiation of the first-order condition yields:(
S ′′(q)(q − k) + 2S ′(q)

)
dq

dk
− S ′(q) ≡ 0 .

Observe dq/dk > 0. Total differentiating this last expression yields:[(
S ′′′(q)(q − k) + 3S ′′(q)

)
dq

dk
− 2S ′′(q)

]
dq

dk
+

d2q

dk2

(
S ′′(q)(q − k) + 2S ′(q)

)
≡ 0 . (15)

Multiplying both sides of (15) by

(
S ′′(q)(q − k) + 2S ′(q)

)
and making the substitution

q − k = −S/S ′, one obtains:[
−S ′′′(q)S(q) − S ′′(q)S ′(q) +

2
(
S ′′(q)

)2
S(q)

S ′(q)

]
dq

dk
+

d2q

dk2

(
S ′′(q)(q−k)+2S ′(q)

)2

≡ 0 . (16)

The assumption S ′′′ ≥ 0 is sufficient for the term in square brackets in (16) to be negative,

which means that d2q/dk2 > 0.

Consider now minimizing p + r with respect to t. At t = (mY −mX)/2, d(p + r)/dt = 0.

If t is greater, then dp/dt > −dr/dt, so d(p+ r)/dt > 0. If t is less, then dp/dt < −dr/dt, so
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d(p + r)/dt < 0. Hence, t = (mY −mX)/2 minimizes p + r.

Proof of Proposition 7: Carrier Z’s profits are equal to

SA(pX + pY )SB(rX + rY )(pZ + rZ −mZ + γ(Z)t) (17)

where Z = X,Y and γ(Z) is equal to −1 if Z = X and 1 if Z = Y . By Assumptions 2 and

3, the first-order conditions for pZ and rZ ,

S ′
A(pX + pY )

(
pZ + rZ −mZ + γ(Z)t

)
+ SA(pX + pY ) = 0 (18)

and

S ′
B(rX + rY )

(
pZ + rZ −mZ + γ(Z)t

)
+ SB(rX + rY ) = 0 , (19)

are necessary and sufficient.

It follows immediately that pX + rX −mX − t = pY + rY −mY + t in equilibrium.

To see that the equilibrium message exchange level is independent of t, let (p0
X , p0

Y , r
0
X , r0

Y )

denote a solution to the first-order conditions when t = 0. Then straightforward calculations

show that, given any interconnection charge t∗, the prices (p0
X + t∗, p0

Y − t∗, r0
X , r0

Y ) satisfy

the corresponding first-order conditions. The resulting level of message exchange is clearly

identical to that under the original prices.

Lastly, to see that the equilibrium is unique, suppose counterfactually that there are two

equilibrium message exchange levels for t = 0. Then it must be possible to label the price

such that p1
X + p1

Y > p0
X + p0

Y or r1
X + r1

Y > r0
X + r0

Y or both. Suppose p1
X + p1

Y > p0
X + p0

Y .

(A similar logic applies if we consider receive prices.) Given that S ′
A < 0 and S ′′

A ≤ 0, the

first-order conditions for pZ imply that p1
Z + r1

Z < p0
Z + r0

Z for both carriers. Given that

S ′
B < 0 and S ′′

B ≤ 0, the first-order conditions for rZ then imply that r1
X + r1

Y > r0
X + r0

Y .

But it impossible to have p1
X + p1

Y > p0
X + p0

Y , r1
X + r1

Y > r0
X + r0

Y , and p1
Z + r1

Z < p0
Z + r0

Z

for both carriers. Therefore, the solution to the first-order conditions must be unique.
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