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Preface

These lecture notes are intended to supplement the lectures and other materials
for the first half of Economics b at the University of California, Berkeley.

A Word on Notation

Various typographic conventions are used to help guide you through these notes.
Text that looks like this is an important definition. On the screen or printed

using a color printer, such definitions should appear blue.

Notes in margins:
These denote
important
“takeaways.”

As the author is an old Fortran programmer, variables i through n inclusive
will generally stand for integer quantities, while the rest of the Roman alphabet
will be continuous variables (i.e., real numbers). The variable t will typically
be used for time, which can be either discrete or continuous.

The
�

symbol in the margin denotes a paragraph that may be hard to follow
and, thus, requires particularly close attention (not that you should read any of
these notes without paying close attention).

Vectors are typically represented through bold text (e.g., x and w are vec-
tors). Sometimes, when the focus is on the nth element of a vector x, I will write
x = (xn,x−n). The notation −n indicates the subvector formed by removing
the nth element (i.e., all elements except the nth).

Derivatives of single-variable functions are typically denoted by primes (e.g.,
f ′(x) = df(x)/dx). Table 1 summarizes some of the other mathematical nota-
tion.

xiii



xiv Preface

Symbol Meaning

∈ Element of

∀ For all

∃ There exists

· Dot (vector) multiplication (i.e.,
x · y =

∑
i xiyi)

s.t. Such that

a.e. Almost everywhere (i.e., true ev-
erywhere except, possibly, on a
set of measure zero)

×N

n=1 Xn The Cartesian product space
formed from the spaces Xn, n =
1, . . . , N

R The set of real numbers. R
n =

×n

i=1 R is the n-dimensional Eu-
clidean space. R+ are the non-
negative reals.

E The expectations operator. If X
is a random variable, then E{X}
is the expected value of X .

X\Y Set difference; that is, X\Y is
the set of elements that are in
X that are not also in Y. Note
X\Y = X ⋂Yc, where Yc is the
complement of Y.

Table 1: Some Mathematical Notation
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Purpose

If one had to distill economics down to a single-sentence description, one prob-
ably couldn’t do better than describe economics as the study of how prices are
and should be set. This portion of the Lecture Notes is primarily focused on
the normative half of that sentence, how prices should be set, although I hope
it also offers some positive insights as well.

Because I’m less concerned with how prices are set, these notes don’t consider
price setting by the Walrasian auctioneer or other competitive models. Nor is it
concerned with pricing in oligopoly. Our attention will be exclusively on pricing
by a single seller who is not constrained by competitive or strategic pressures
(e.g., a monopolist).

Now, one common way to price is to set a price, p, per unit of the good in
question. So, for instance, I might charge $10 per coffee mug. You can buy as
many or as few coffee mugs as you wish at that price. The revenue I receive is
$10 times the number of mugs you purchase. Or, more generally, at price p per
unit, the revenue from selling x units is px. Because px is the formula for a line
through the origin with slope p, such pricing is called linear pricing .

If you think about it, you’ll recognize that linear pricing is not the only type
of pricing you see. Generically, pricing in which revenue is not a linear function
of the amount sold is called nonlinear pricing .1 Examples of nonlinear pricing
would be if I gave a 10% discount if you purchased five or mugs (e.g., revenue
is $10x if x < 5 and $9x if x ≥ 5). Of if I had a “buy one mug, get one free”
promotion (e.g., revenue is $10 if x = 1 or 2, $20 if x = 3 or 4, etc.). Or if I gave
you a $3-dollar gift with each purchase (e.g., revenue is $10x−3). Alternatively,
the price per mug could depend on some other factor (e.g., I offer a weekend
discount or a senior-citizen discount). Or I could let you have mugs at $5 per
mug, but only if you buy at least $50 worth of other merchandise from my store.
Or I could pack 2 mugs in a box with a coffee maker and not allow you to buy
mugs separately at all.

1Remember in mathematics a function is linear if αf(x0)+βf(x1) = f(αx0 +βx1), where
α and β are scalars. Note, then, that a linear function from R to R is linear only if it has the
form f(x) = Ax.

3
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Buyers and Demand 1
A seller sets prices and buyers respond. To understand how they respond, we
need to know what their objectives are. If they are consumers, the standard
assumption is that they wish to maximize utility. If they are firms, the pre-
sumption is they wish to maximize profits.

Consumer Demand 1.1
In the classic approach to deriving demand,1 we maximize an individual’s utility
subject to a budget constraint; that is,

max
x

u(x)

subject to p · x ≤ I ,
(1.1)

where x is an N -dimensional vector of goods, p is the N -dimensional price
vector, and I is income. Solving this problem yields the individual’s demand
curve for each good n, x∗n(pn;p−n, I) (where the subscript −n indicates that it is
the N−1-dimensional subvector of prices other than the price of the nth good).
Unfortunately, while this analysis is fine for studying linear pricing, it is hard
to utilize for nonlinear pricing: The literature on nonlinear pricing typically
requires that the inverse of individual demand also represent the consumer’s
marginal benefit curve (i.e., the benefit the consumer derives from a marginal
unit of the good).2 Unless there are no income effects, this is not a feature of
demand curves.

For this reason, we will limit attention to quasi-linear utility . Assume that
each individual j purchases two goods. The amount of the one in which we’re
interested (i.e., the one whose pricing we’re studying) is denoted x. The amount
of the other good is denoted y. We can (and will) normalize the price of good
y to 1. We can, if we like, consider y to be the amount of consumption other
than of good x. The utility function is assumed to have the form

u(x, y) = v(x) + y . (1.2)

1As set forth, for instance, in Mas-Colell et al. (1995) or Varian (1992).

2Recall that a demand function is a function from price to quantity; that is, for any given
price, it tells us the amount the consumer wishes to purchase. Because demand curves slope
down—Giffen goods don’t exist—the demand function is invertible. Its inverse, which is a
function from quantity to price, tells us for any quantity the price at which the consumer
would be willing to purchase exactly that quantity (assuming linear pricing).

5



6 Lecture Note 1: Buyers and Demand

With two goods, we can maximize utility by first solving the constraint in (1.1)
for y, yielding y = I − px (recall y’s price is 1), and then substituting that into
the utility function to get an unconstrained maximization problem:3

max
x

v(x) − px+ I . (1.3)

Solving, we have the first-order condition

v′(x) = p . (1.4)

Observe (1.4) also defines the inverse demand curve and, as desired, we have
marginal benefit of x equal to inverse demand. If we define P (x) to be the
inverse demand curve, then we have

∫ x

0

P (t)dt =

∫ x

0

v′(t)dt

= v(x) − v(0) .

The second line is the gain in utility—benefit—the consumer obtains from ac-
quiring x. Substituting this back into (1.3) we see that utility at the utility-
maximizing quantity is equal to

∫ x

0

P (t)dt− xP (x) (1.5)

plus an additive constant, which we are free to ignore. In other words, utility,
up to an additive constant, equals the area below the inverse demand curve
and above the price of x. See Figure 1.1. You may also recall that (1.5) is the
formula for consumer surplus (cs).

Summary 1 Given quasi-linear utility, the individual’s inverse demand curve
for a good is his or her marginal benefit for that good. Moreover, his or her
utility at the utility-maximizing quantity equals (to an affine transformation)
his or her consumer surplus (i.e., the area below inverse demand and above the
price).

Another way to think about this is to consider the first unit the individual
purchases. It provides him or her (approximate) benefit v′(1) and costs him or
her p. His or her surplus or profit is, thus, v′(1) − p. For the second unit the
surplus is v′(2) − p. And so forth. Total surplus from x units, where v′(x) = p,
is, therefore,

x∑

t=1

(v′(t) − p) ;

3Well, actually, we need to be careful; there is an implicit constraint that y ≥ 0. In what
follows, we assume that this constraint doesn’t bind.
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x

$/unit

units

P(x)

inverse demand 

(P(t) = v'(t))

CS

Figure 1.1: Consumer surplus (CS) at quantity x is the area beneath inverse
demand curve (P (t)) and above inverse demand at x, P (x).

or, passing to the continuum (i.e., replacing the sum with an integral),

∫ x

0

(v′(t) − p) dt =

∫ x

0

v′(t)dt− px =

∫ x

0

P (t)dt− px .

Yet another way to think about this is to recognize that the consumer wishes
to maximize his or her surplus (or profit), which is total benefit, v(x), minus
his or her total expenditure (or cost), px. As always, the solution is found by
equating marginal benefit, v′(x), to marginal cost, p.

Bibliographic Note

One of the best treatments of the issues involved in measuring consumer surplus
can be found in Chapter 10 of Varian (1992). This is a good place to go to get
full details on the impact that income effects have on measures of consumer
welfare.

Quasi-linear utility allows us to be correct in using consumer surplus as a
measure of consumer welfare. But even if utility is not quasi-linear, the error
from using consumer surplus instead of the correct measures, compensating or
equivalent variation (see Chapter 10 of Varian), is quite small under assumptions
that are reasonable for most goods. See Willig (1976). Hence, as a general rule,
we can use consumer surplus as a welfare measure even when there’s no reason
to assume quasi-linear utility.
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Firm Demand 1.2
Consider a firm that produces F (x) units of a good using inputs x. Let the factor
prices be p and let R(·) be the revenue function. Then the firm maximizes

R
(
F (x)

)
− p · x . (1.6)

The first-order condition with respect to input xn is

R′(F (x)
) ∂F
∂xn

− pn = 0 . (1.7)

Let x∗[p] denote the set of factor demands, which is found by solving the set of
equations (1.7). Define the profit function as

π(p) = R
(
F (x∗[p])

)
− p · x∗[p] .

Utilizing the envelope theorem, it follows that

∂π

∂pn
= −x∗n(pn;p−n) . (1.8)

Consequently, integrating (1.8) with respect to the price of the nth factor, we
have

−
∫ ∞

pn

∂π(t;p−n)

∂pn
dt =

∫ ∞

pn

x∗n(t;p−n)dt . (1.9)

The right-hand side of (1.9) is just the area to the left of the factor demand
curve that’s above price pn. Equivalently, it’s the area below the inverse factor
demand curve and above price pn. The left-hand side is π(pn;p−n)−π(∞;p−n).
The term π(∞;p−n) is the firm’s profit if it doesn’t use the nth factor (which
could be zero if production is impossible without the nth factor). Hence, the
left-hand side is the increment in profits that comes from going from being
unable to purchase the nth factor to being able to purchase it at price pn. This
establishes

Proposition 1 The area beneath the factor demand curve and above a given
price for that factor is the total net benefit that a firm enjoys from being able to
purchase the factor at that given price.

In other words—as we could with quasi-linear utility—we can use the “con-
sumer” surplus that the firm gets from purchasing a factor at a given price as
the value the firm places on having access to that factor at the given price.

Observation 1 One might wonder why we have such a general result with fac-
tor demand, but we didn’t with consumer demand. The answer is that with
factor demands there are no income effects. Income effects are what keep con-
sumer surplus from capturing the consumer’s net benefit from access to a good at
its prevailing price. Quasi-linear utility eliminates income effects, which allows
us to treat consumer surplus as the right measure of value or welfare.
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Demand Aggregation 1.3
Typically, a seller sells to more than one buyer. For some forms of pricing it is
useful to know total demand as a function of price.

Consider two individuals. If, at a price of $3 per unit, individual one buys
4 units and individual two buys 7 units, then total or aggregate demand at $3
per unit is 11 units. More generally, if we have J buyers indexed by j, each
of whom has individual demand xj(p) as a function of price, p, then aggregate

demand is
∑J

j=1 xj(p) ≡ X(p).
How does aggregate consumer surplus (i.e., the area beneath aggregate de-

mand and above price) relate to individual consumer surplus? To answer this,
observe that we get the same area under demand and above price whether we
integrate with respect to quantity or price. That is, if x(p) is a demand function
and p(x) is the corresponding inverse demand, then

∫ x

0

(
p(t) − p(x)

)
dt =

∫ ∞

p

x(t)dt .

Consequently, if CS(p) is aggregate consumer surplus and csj(p) is buyer j’s
consumer surplus, then

CS(p) =

∫ ∞

p

X(t)dt

=

∫ ∞

p




J∑

j=1

xj(t)


 dt

=

J∑

j=1

(∫ ∞

p

xj(t)dt

)

=

J∑

j=1

csj(p) ;

that is, we have:

Proposition 2 Aggregate consumer surplus is the sum of individual consumer
surplus.

Additional Topics 1.4
A Continuum of Consumers

In many modeling situations, it is convenient to imagine a continuum of con-
sumers (e.g., think of each consumer having a unique “name,” which is a real
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number in the interval [0, 1]; and think of all names as being used). Rather
than thinking of the number of consumers—which would here be uncountably
infinite—we think about their measure; that is, being rather loose, a function
related to the length of the interval.

It might at first seem odd to model consumers as a continuum. One way to
think about it, however, is the following. Suppose there are J consumers. Each
consumer has demand

x(p) =

{
1 , if p ≤ v
0 , if p > v

, (1.10)

where v is a number, the properties of which will be considered shortly. The
demand function given by (1.10) is sometimes referred to as L-shaped demand
because, were one to graph it, the curve would resemble a rotated L.4 The
demand function also corresponds to the situation in which the consumer wants
at most one unit and is willing to pay up to v for it.

Assume, for each consumer, that v is a random draw from the interval [v0, v1]
according to the distribution function F : R → [0, 1]. Assume the draws are
independent. Each consumer knows the realization of his or her v prior to
making his or her purchase decision.

In this case, each consumer’s expected demand is the probability that he or
she wants the good at the given price; that is, the probability that his or her v ≥
p. That probability is 1−F (p) ≡ Σ(p). The function Σ(·) is known in probability
theory as the survival function.5 Aggregate expected demand is, therefore,
JΣ(p) (recall the consumers’ valuations, v, are independently distributed).

Observe, mathematically, this demand function would be the equivalent of
assuming that there are a continuum of consumers living on the interval [v0, v1],
each consumer corresponding to a fixed valuation, v. Assume further that the
measure of consumers on an the interval between v and v′ is JF (v′) − JF (v)
or, equivalently, JΣ(v) − JΣ(v′). As before, consumers want at most one unit
and they are willing to pay at most their valuation. Interpret demand at p as
being the measure of consumers in [p, v1]; that is,

JΣ(p) − JΣ(v1) = JΣ(p) ,

where the equality follows because Σ(·) at the end of the support of the func-
tion (the right-end of the interval) is zero. In other words, one can view the
assumption of a continuum of consumers as being shorthand for a model with
a finite number of consumers, each of whom has stochastic demand.

4Note, if one wants to get technical, the curve is really two line segments, one going from
(1, 0) to (1, v) (using the usual orientation in which price is on the vertical axis), the other
going from (0, v) to (0,∞) (the latter interval is open on both ends). If, however, one looked
at only the former interval and drew a horizontal line at the point of discontinuity, then one
gets a rotated L.

5The name has an actuarial origin. If the random variable in question is age at death,
then Σ(age) is the probability of surviving to at least that age. Admittedly, a more natural
mnemonic for the survival function would be S(·); S(p), however, is “reserved” in economics
for the supply function.
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A possible objection is that assuming a continuum of consumers on, say,
[v0, v1] with aggregate demand JΣ(p) is a deterministic specification, whereas
J consumers with random demand is a stochastic specification. In particular,
there is variance in realized demand with the latter, but not the former.6 In
many contexts, though, this is not important because other assumptions make
the price setter risk neutral.7

Demand as a Survival Function

If demand at zero price, X(0), is finite, and if limp→∞X(p) = 0, then any
demand function is a multiplicative scalar of a survival function; that is,

X(p) = X(0)Σ(p) , (1.11)

where Σ(p) ≡ X(p)/X(0). To see that Σ(·) is a survival function on R+, observe
that Σ(0) = 1, limp→∞ Σ(p) = 0, and, because demand curves slope down, Σ(·)
in non-decreasing.

Assume Σ(·) is differentiable. Let f(p) = −Σ′(p). The function f(·) is the
density function associated with the survival function Σ(·) (or, equivalently, with
the distribution function 1 − Σ(p) ≡ F (p)). In demography or actuary science,
an important concept is the death rate at a given age, which is the probability
someone that age will die within the year. Treating time continuously, the death
rate can be seen as the instantaneous probability of dying at time t conditional
on having survived to t. (Why conditional? Because you can’t die at time t
unless you’ve lived to time t.) The unconditional probability of dying at t is
f(t), the probability of surviving to t is Σ(t), hence the death rate is f(t)/Σ(t).
Outside of demographic and actuarial circles, the ratio f(t)/Σ(t) is known as
the hazard rate. Let h(t) denote the hazard rate.

In terms of demand, observe

X ′(p)

X(p)
=
X(0)Σ′(p)

X(0)Σ(p)
= −h(p) . (1.12)

In this context, h(p) is the proportion of all units demanded at price p that will
vanish if the price is increased by an arbitrarily small amount; that is, it’s the
hazard (death) rate of sales that will vanish (die) if the price is increased.

You may recall that the price elasticity of demand, ǫ, is minus one times the
percentage change in demand per a one-percentage-point change in price.8 In

6For example, if, J = 2, [v0, v1] = [0, 1], and F (v) = v on [0, 1] (uniform distribution),
then realized demand at p ∈ (0, 1) is 0 with positive probability p2, 1 with positive probability
2p(1 − p), and 2 with positive probability (1 − p)2.

7It would be incorrect to appeal to the law of large numbers and act as if J → ∞ means
realized demand tends to JΣ(p) according to some probability-theoretic convergence criterion.
If, however, there is a continuum of consumers with identical and independently distributed
demands, then it can be shown that realized demand is almost surely mean demand (see, e.g.,

Uhlig, 1996).

8Whether one multiplies or not by −1 is a matter of taste; some authors (including this
one on occasion) choose not to.
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other words

ǫ = −1 ×
(

∆X

X
× 100%

)
÷
(

∆p

p
× 100%

)
, (1.13)

where ∆ denotes “change in.” If we pass to the continuum, we see that (1.13)
can be reëxpressed as

ǫ = −dX(p)

dp
× p

X
= ph(p) , (1.14)

where the last equality follows from (1.12). In other words, price elasticity places
a monetary value on the proportion of sales lost from a price increase.

Other Relations

For future reference, let’s consider some relations among demand, the associated
hazard rate, and price elasticity. In what follows, we continue to assume X(0)
is finite and limp→∞X(p) = 0.

Lemma 1 Σ(p) = exp
(
−
∫ p
0
h(z)dz

)
.

Proof:

d log
(
Σ(p)

)

dz
=

−f(p)

Σ(p)

= −h(p) .

Solving the differential equation:

log
(
Σ(p)

)
= −

∫ p

0

h(z)dz + log
(
Σ(0)

)
︸ ︷︷ ︸

=0

.

The result follows by exponentiating both sides.

Immediate corollaries of Lemma 1 are

Corollary 1

(i) There exists a constant ξ such that

X(p) = ξ exp
(
−
∫ p

0

h(z)dz
)

= ξ exp
(
−
∫ p

0

ǫ(z)

z
dz
)

(where ǫ(p) is the price elasticity of demand at price p).

(ii) Suppose X1(p) = ζX2(p) for all p, where Xi(·) are demands and ζ is a
positive constant. Let ǫi(·) be the price-elasticity function associated with
Xi(·). Then ǫ1(p) = ǫ2(p) for all p.

(iii) Suppose ǫ(p) = pk
p+p0

, where k and p0 are positive constants. Then X(p) =

ξ(p+ p0)
−k. Observe limp0→0 ǫ(p) = k and limp0→0X(p) = ξp−k.
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Exercise: Prove Corollary 1.

Exercise: Why in Corollary 1(iii) was it necessary to assume p0 > 0?

Exercise: Verify by direct calculation (i.e., using the formula ǫ = pX ′(p)/X(p))
that a demand function of the form X(p) = ξp−k has a constant elasticity.

Lemma 2 Consumer surplus at price p, CS(p), satisfies

CS(p) = X(0)

∫ ∞

p

(b− p)f(b)db , (1.15)

where f(·) is the density function associated with Σ(·).

Proof: Recall the definition of consumer surplus is area to the left of demand
and above price:

CS(p) =

∫ ∞

p

X(b)db

= X(0)

∫ ∞

p

Σ(b)db

= X(0)

(
bΣ(b)

∣∣∣
∞

p
−
∫ ∞

p

bΣ′(b)db

)
(1.16)

= X(0)

(
−p
(
1 − F (p)

)
+

∫ ∞

p

bf(b)db

)
(1.17)

= X(0)

∫ ∞

p

(b− p)f(b)db .

Observe (1.16) follows by integration by parts.9 Expression (1.17) follows using
the relations Σ(p) = 1 − F (p) and Σ′(p) = −f(p).

The integral in (1.15) is an expected value since f(·) is a density. If we thought
of the benefit enjoyed from each unit of the good as a random variable with
distribution F (·), then the integral in (1.15) is the expected net benefit (surplus)
a given unit will yield a consumer (recalling, because he or she need not purchase,
that the net benefit function is max{b−p, 0}). The amountX(0) can be thought
of as the total number of units (given that at most X(0) units trade). So the
overall expression can be interpreted as expected (or average) surplus per item
times the total number of items.

9To get technical, I’ve slipped in the assumption that limb→∞ bΣ(b) = 0. This is innocuous
because, otherwise, consumer surplus would be infinite, which is both unrealistic and not
interesting; the latter because, then, welfare would always be maximized (assuming finite
costs) and there would, thus, be little to study.
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Exercise: Prove that if limb→∞ bX(b) > 0, then consumer surplus at any
price p is infinite. Hints: Suppose limb→∞ bX(b) = L > 0. Fix an η ∈ (0, L).
Show there is a b̄ such that X(b) ≥ L−η

b
for all b ≥ b̄. Does

∫ ∞

b̄

L− η

b
db

converge? Show the answer implies
∫∞
p
X(b)db does not converge (i.e., is infi-

nite).

A function, g(·), is log concave if log
(
g(·)
)

is a concave function.

Lemma 3 If g(·) is a positive concave function, then it is log concave.10

Proof: If g(·) were twice differentiable, then the result would follow trivially
using calculus (Exercise: do such a proof). More generally, let x0 and x1 be
two points in the domain of g(·) and define xλ = λx0+(1−λ)x1. The conclusion
follows, by the definition of concavity, if we can show

log
(
g(xλ)

)
≥ λ log

(
g(x0)

)
+ (1 − λ) log

(
g(x1)

)
(1.18)

for all λ ∈ [0, 1]. Because log(·) is order preserving, (1.18) will hold if

g(xλ) ≥ g(x0)
λg(x1)

1−λ . (1.19)

Because g(·) is concave by assumption,

g(xλ) ≥ λg(x0) + (1 − λ)g(x1) .

Expression (1.19) will, therefore, hold if

λg(x0) + (1 − λ)g(x1) ≥ g(x0)
λg(x1)

1−λ . (1.20)

Expression (1.20) follows from Pólya’s generalization of the arithmetic mean-
geometric mean inequality (see, e.g., Steele, 2004, Chapter 2),11 which states

10A stronger result can be established, namely that r
`

s(·)
´

is concave if both r(·) and s(·)
are concave and r(·) is non-decreasing. This requires more work than is warranted given what
we need.

11Pólya’s generalization is readily proved. Define A ≡
Pn

i=1 λiai. Observe that x + 1 ≤ ex

(the former is tangent to the latter at x = 0 and the latter is convex). Hence, ai
A

≤ e
ai
A

−1.

Because both sides are positive,
` ai

A

´λi ≤ e
λiai

A
−λi . We therefore have

Y

i=1n

“ ai

A

”λi ≤
Y

i=1n

e
λiai

A
−λi

= e
Pn

i

“

λiai
A

−λi

”

.

The last term simplifies to 1, so we have

Q

i=1n aλi
i

A
P

n
i=1

λi
≤ 1 .

Because the denominator on the left is just A, the result follows.
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that if a1, . . . , an ∈ R+, λ1, . . . , λn ∈ [0, 1], and
∑n

i=1 λi = 1, then

n∑

i=1

λiai ≥
n∏

i=1

aλi

i . (1.21)

Observe the converse of Lemma 3 need not hold. For instance, x2 is log concave
(2 log(x) is clearly concave in x), but x2 is not itself concave. In other words, log-
concavity is a weaker requirement than concavity. As we will see, log concavity
is often all we need for our analysis, so we gain a measure of generality by
assuming log-concavity rather than concavity.

The hazard rate is monotone if it is either everywhere non-increasing or
everywhere non-decreasing. The latter case is typically the more relevant (e.g.,
the death rate for adults increases with age) and is a property of many familiar
distributions (e.g., the uniform, the normal, the logistic, among others). When
a hazard rate is non-decreasing, we say it satisfies the monotone hazard rate
property . This is sometimes abbreviated as mhrp.

Lemma 4 A demand function is (strictly) log concave if and only if the corre-
sponding hazard rate satisfies the (strict) monotone hazard rate property.

Proof: It is sufficient for X(·) to be log concave that the first derivative of
log
(
X(·)

)
—that is,

d log
(
X(p)

)

dp
=
X ′(p)

X(p)
= −h(p)

—be non-increasing (decreasing) in p. Clearly it will be if h(·) is non-decreasing
(increasing). To prove necessity, assume X(·) is (strictly) log concave, then
−h(·) must be non-increasing (decreasing), which is to say that h(·) is non-
decreasing (increasing).

Lemma 5 If demand is log concave, then so to is consumer expenditure under
linear pricing; that is, X(·) log concave implies pX(p) is log concave for all p.

Proof: Given that log
(
pX(p)

)
≡ log(p) + log

(
X(p)

)
, the first derivative of

log
(
pX(p)

)
is

1

p
+
X ′(p)

X(p)
.

The first term is clearly decreasing in p and the second term is decreasing in p
by assumption.

Exercise: Suppose the hazard rate is a constant. Prove that pX(p) is, there-
fore, everywhere strictly log concave.
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Exercise: Prove that linear (affine) demand (e.g., X(p) = a − bp, a and b
positive constants) is log concave.

Exercise: Prove that if demand is log concave, then elasticity is increasing in
price (i.e., ǫ(·) is an increasing function).

Exercise: Prove that if price elasticity is increasing in price, then consumer
expenditure is log concave; that is, show ǫ(·) increasing implies pX(p) is log
concave for all p.



Linear Pricing 2
In this section, we consider a firm that sells all units at a constant price per
unit. If p is that price and it sells x units, then its revenue is px. Such linear
pricing is also called simple monopoly pricing .

Assume this firm incurs a cost of C(x) to produce x units. Suppose, too, that
the aggregate demand for its product is X(p) and let P (x) be the corresponding
inverse demand function. Hence, the maximum price at which it can sell x units
is P (x), which generates revenue xP (x). LetR(x) denote the firm’s revenue from
selling x units; that is, R(x) = xP (x). The firm’s profit is revenue minus cost,
R(x) − C(x). The profit-maximizing amount to sell maximizes this difference.

If we assume

∃x̄ ∈ [0,∞) such that R(x) − C(x) ≤ 0 ∀x > x̄ (lp)

and

∀x0 ∈ R+ , x→ x0 ⇒ R(x) − C(x) → R(x0) − C(x0) (continuity) , (lp)

then there must exist at least one profit-maximizing quantity.
If we strengthen (lp) by assuming

R(·) and C(·) are differentiable , (lp′)

then

R′(x) − C′(x) = 0 (2.1)

if x is profit maximizing; or, as it is sometimes written,

MR(x) = MC (x)

where MR denotes marginal revenue and MC denotes marginal cost.
In many applications, we would like (2.1) to be sufficient as well as necessary.

For (2.1) to be sufficient, the maximum cannot occur at a corner. To rule out a
corner solution assume

∃x̂ ∈ R+ such that R(x̂) − C(x̂) > 0 . (lp)

This expression says that positive profit is possible. Given that profit at the
“corners,” 0 and x̄, is zero, this rules out a corner solution. That profit at x̄ is

17
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zero follows by assumptions (lp) and (lp). That profit at 0 is zero follows
because C(0) ≡ 0 (if one is not doing an activity, then one is not forgoing
anything to do it) and there can be no revenue from selling nothing.

For (2.1) to be sufficient it must also be true that it does not define a
minimum (or an inflection point) and that there not be more than one local
maximum. The following propositions provide conditions sufficient to ensure
those conditions are met. Both propositions make use of the fact that

MR(x) = P (x) + xP ′(x) . (2.2)

Proposition 3 Maintain assumptions lp, lp′, and lp. Assume demand,
X(·), is log concave and cost, C(·), is at least weakly convex, then MR(x) =
MC(x) is sufficient as well as necessary for the profit-maximizing quantity.

Proof: Because an interior maximum exists, we know that (2.1) must hold
for at least one x. If it holds for only one x, then that x must be the global

maximum. Using the fact that ǫ = − P (x)
xP ′(X) and expression (2.2), we can write

(2.1) as

P (x)

(
1 − 1

ǫ

)
− C′(x) = 0 . (2.3)

Solving (2.3) for 1/ǫ and making the substitutions p = P
(
X(p)

)
and x = X(p),

we have
1

ǫ(p)
=
p− C′(X(p)

)

p
. (2.4)

(For future reference, note that expression (2.4) is known as the Lerner markup
rule.) We are done if we can show that only one p can solve (2.4). As noted,
at least one p must solve (2.4). If the left-hand side of (2.4) is decreasing in p
and the right-hand side increasing, then the p that solves (2.4) must be unique.
Because X(·) is log concave, price elasticity of demand, ǫ(·), is increasing (see
the exercises following Lemma 5); hence, 1/ǫ(p) is decreasing in p. To show the
right-hand side of (2.4) is increasing consider p and p′, p > p′. It is readily seen
that (2.4) is greater evaluated at p rather than p′ if

C′(X(p)
)

p
<
C′(X(p′)

)

p′
.

Given p′ < p, that will be true if C′(X(p)
)
≤ C′(X(p′)

)
. Because demand

curves are non-increasing, X(p) ≤ X(p′). Because C(·) weakly convex implies
C′(·) is non-decreasing, the result follows.

Proposition 4 Maintain assumptions lp, lp′, and lp. Suppose (i) demand
slopes down (P ′(·) < 0); (ii) inverse demand is log concave; (iii) inverse demand
and cost are at least twice differentiable; and (iv) P ′(x) < C′′(y) for all x and
all y ∈ [0, x] (i.e., cost is never “too concave”). Then MR(x) = MC(x) is
sufficient as well as necessary for the profit-maximizing quantity.
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Proof: Consider an x such that MR(x) = MC(x) (at least one exists because
there is an interior maximum). In other words, consider an x such that

xP ′(x) + P (x) − C′(x) = 0 . (2.5)

If the derivative of (2.5) is always negative evaluated at any x that solves (2.5),
then that x is a maximum. Moreover, it is the unique maximum because a func-
tion cannot have multiple (local) maxima without minima; and if the derivative
of (2.5) is always negative at any x that solves (2.5), then R(x) − C(x) has
no interior minima (recall (2.5) is also a necessary condition for x to minimize
R(x) − C(x)). Differentiating (2.5) yields

2P ′(x) + xP ′′(x) − C′′(x) = xP ′′(x) + P ′(x) + P ′(x) − C′′(x)︸ ︷︷ ︸
<0

.

It follows we’re done if xP ′′(x) + P ′(x) ≤ 0. Given that demand curves slope
down, we’re done if P ′′(x) ≤ 0. Suppose, therefore, that P ′′(x) > 0. The
assumption that P (·) is log concave implies

P (x)P ′′(x) −
(
P ′(x)

)2 ≤ 0 . (2.6)

Because cost is non-decreasing, (2.5) implies P (x) ≥ −P ′(x)x. So (2.6) implies

0 ≥ −P ′(x)xP ′′(x) −
(
P ′(x)

)2 ⇒ 0 ≥ xP ′′(x) + P ′(x) (2.7)

(recall −P ′(x) > 0).

Because demand curves slope down, P ′(x) < 0; hence, expression (2.2) im-
plies MR(x) < P (x), except at x = 0 where MR(0) = P (0). See Figure 2.1.
Why is MR(x) < P (x)? That answer is that, to sell an additional item, the
firm must lower its price (i.e., recall, P (x + ε) < P (x), ε > 0). So marginal
revenue has two components: The price received on the marginal unit, P (x),
less the revenue lost on the infra-marginal units from having to lower the price,
|xP ′(x)| (i.e., the firm gets |P ′(x)| less on each of the x infra-marginal units).

Elasticity and the Lerner
Markup Rule 2.1

We know that the revenue from selling 0 units is 0. For “sensible” demand
curves, limx→∞ xP (x) = 0 because eventually price is driven down to zero.
In between these extremes, revenue is positive. Hence, we know that revenue
must increase over some range of output and decrease over another. Revenue is
increasing if and only if

P (x) + xP ′(x) > 0 or xP ′(x) > −P (x) .
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$/unit

units

inverse demand 

(P(x))

MR

MC

xM*

P(    )xM*

Figure 2.1: Relation between inverse demand, P (x), and marginal revenue,
MR, under linear pricing; and the determination of the profit-
maximizing quantity, x∗M , and price, P (x∗M ).

Divide both sides by −P (x) to get

1 > −xP
′(x)

P (x)
=

1

ǫ
. (2.8)

Multiplying both sides of (2.8) by ǫ, we have that revenue is increasing if and
only if

ǫ > 1 . (2.9)

When ǫ satisfies (2.9), we say that demand is elastic. When demand is elastic,
revenue is increasing with units sold. If ǫ < 1, we say that demand is inelastic.
Reversing the various inequalities, it follows that, when demand is inelastic,
revenue is decreasing with units sold. The case where ǫ = 1 is called unit
elasticity .

Recall that a firm produces the number of units that equates MR to MC .
The latter is positive, which means that a profit-maximizing firm engaged in
linear pricing operates only on the elastic portion of its demand curve. This
makes intuitive sense: If it were on the inelastic portion, then, were it to produce
less, it would both raise revenue and lower cost; that is, increase profits. Hence,
it can’t maximize profits operating on the inelastic portion of demand.

Summary 2 A profit-maximizing firm engaged in linear pricing operates on
the elastic portion of its demand curve.
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Rewrite the MR(x) = MC (x) condition as

P (x) − MC (x) = −xP ′(x)

and divide both sides by P (x) to obtain

P (x) − MC (x)

P (x)
= −xP

′(x)

P (x)
=

1

ǫ
, (2.10)

Expression (2.10) is known as the Lerner markup rule.1 In English, it says that
the price markup over marginal cost, P (x)−MC (x), as a proportion of the price
is equal to 1/ǫ. Hence, the less elastic is demand (i.e., as ǫ decreases towards 1),
the greater the percentage of the price that is a markup over cost. Obviously,
the portion of the price that is a markup over cost can’t be greater than the
price itself, which again shows that the firm must operate on the elastic portion
of demand.

Welfare Analysis 2.2
Assuming that consumer surplus is the right measure of consumer welfare (e.g.,
consumers have quasi-linear utility), then total welfare is the sum of firm profits
and consumer surplus. Hence, total welfare is

xP (x) − C(x)︸ ︷︷ ︸
profit

+

∫ x

0

(P (t) − P (x))dt

︸ ︷︷ ︸
CS

= xP (x) − C(x) +

∫ x

0

P (t)dt− xP (x)

=

∫ x

0

P (t)dt− C(x) . (2.11)

Observe, first, that neither the firm’s revenue, xP (x), nor the consumers’ expen-
diture, xP (x), appear in (2.11). This is the usual rule that monetary transfers
made among agents are irrelevant to the amount of total welfare. Welfare is
determined by the allocation of the real good; that is, the benefit,

∫
P (t)dt,

that consumers obtain and the cost, C(x), that the producer incurs.

Next observe that the derivative of (2.11) is P (x) − MC (x). From (2.5) on
page 19 (i.e., from MR(x∗M ) = MC (x∗M )), recall that P (x∗M ) > MC (x∗M ), where
x∗M is the profit-maximizing quantity produced under linear pricing. This means
that linear pricing leads to too little output from the perspective of maximizing
welfare—if the firm produced more, welfare would increase.

Proposition 5 Under linear pricing, the monopolist produces too little output
from the perspective of total welfare.

1Named for the economist Abba Lerner.
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Figure 2.2: The deadweight loss from linear pricing is the shaded triangle.

If we assume—as is generally reasonable given that demand slopes down—
that demand crosses marginal cost once from above, then the welfare-maximizing
quantity satisfies

P (x) − MC (x) = 0 . (2.12)

Let x∗W be the solution to (2.12). From Proposition 5, x∗W > x∗M .
What is the welfare loss from linear pricing? It is the amount of welfare

forgone because only x∗M units are traded rather than x∗W units:

(∫ x∗

W

0

P (t)dt− C(x∗W )

)
−
(∫ x∗

M

0

P (t)dt− C(x∗M )

)

=

∫ x∗

W

x∗

M

P (t)dt− (C(x∗W ) − C(x∗M ))

=

∫ x∗

W

x∗

M

P (t)dt−
∫ x∗

W

x∗

M

MC (t)dt

=

∫ x∗

W

x∗

M

(
P (t) − MC (t)

)
dt . (2.13)

The area in (2.13) is called the deadweight loss associated with linear pricing. It
is the area beneath the demand curve and above the marginal cost curve between
x∗M and x∗W . Because P (x) and MC (x) meet at x∗W , this area is triangular (see
Figure 2.2) and, thus, the area is often called the deadweight-loss triangle.

The existence of a deadweight-loss triangle is one reason why governments
and antitrust authorities typically seek to discourage monopolization of in-
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dustries and, instead, seek to encourage competition. Competition tends to
drive price toward marginal cost, which causes output to approach the welfare-
maximizing quantity.2

We can consider the welfare loss associated with linear pricing as a motive to
change the industry structure (i.e., encourage competition). We—or the firm—
can also consider it as encouragement to change the method of pricing. The
deadweight loss is, in a sense, money left on the table. As we will see, in some
circumstances, clever pricing by the firm will allow it to pick some, if not all, of
this money up off the table.

An Example

To help make all this more concrete, consider the following example. A monopoly
has cost function C(x) = 2x; that is, MC = 2. It faces inverse demand
P (x) = 100 − x.

Marginal revenue under linear pricing is P (x) + xP ′(x), which equals 100−
x + x × (−1) = 100 − 2x.3 Equating MR with MC yields 100 − 2x = 2;
hence, x∗M = 49. The profit-maximizing price is 100 − 49 = 51.4 Profit is
revenue minus cost; that is, 51 × 49 − 2 × 49 = 2401.5 Consumer surplus is∫ 49

0
(100 − t− 51)dt = 1

2 × 492.6

Total welfare, however, is maximized by equating price and marginal cost:
P (x) = 100 − x = 2 = MC . So x∗W = 98. Deadweight loss is, thus,

∫ 98

49

(100 − t︸ ︷︷ ︸
P (x)

− 2︸︷︷︸
MC

)dt = 98t− 1

2
t2
∣∣∣∣
98

49

= 1200.5 .

As an exercise, derive the general condition for deadweight loss for affine de-
mand and constant marginal cost (i.e., under the assumptions of footnote 4).

An Application 2.3
We often find simple monopoly pricing in situations that don’t immediately ap-
pear to be linear-pricing situations. For example, suppose that a risk-neutral

2A full welfare comparison of competition versus monopoly is beyond the scope of these
notes. See, for instance, Chapters 13 and 14 of Varian (1992) for a more complete treatment.

3Exercise: Prove that if inverse demand is an affine function, then marginal revenue is
also affine with a slope that is twice as steep as inverse demand.

4Exercise: Prove that, if inverse demand is P (x) = a− bx and MC = c, a constant, then
x∗

M = a−c
2b

and P (x∗
M ) = a+c

2
.

5Exercise: Prove that profit under linear pricing is 1
b

`

a−c
2

´2
under the assumptions of

footnote 4.

6Exercise: Prove that consumer surplus under linear pricing is
(a−c)2

8b
under the assump-

tions of footnote 4.
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seller faces a single buyer. Let the seller have single item to sell (e.g., an art-
work). Let the buyer’s value for this artwork be v. The buyer knows v, but
the seller does not. All the seller knows is that v is distributed according to
the differential distribution function F (·). That is, the probability that v ≤ v̂
is F (v̂). Assume F ′(·) > 0 on the support of v. Let the seller’s value for the
good—her cost—be c. Assume F (c) < 1.

Suppose that the seller wishes to maximize her expected profit. Suppose, too,
that she makes a take-it-or-leave-it offer to the buyer; that is, the seller quotes
a price, p, at which the buyer can purchase the good if he wishes. If he doesn’t
wish to purchase at that price, he walks away and there is no trade. Clearly, the
buyer buys if and only if p ≤ v; hence, the probability of a sale, x, is given by the
formula x = 1 − F (p). The use of “x” is intentional—we can think of x as the
(expected) quantity sold at price p. Note, too, that, because the formula x =
1−F (p) relates quantity sold to price charged, it is a demand curve. Moreover,
because the probability that the buyer’s value is less than p is increasing in p,
this demand curve slopes down. Writing F (p) = 1 − x and inverting F (which
we can do because it’s monotonic), we have p = F−1(1−x) ≡ P (x). The seller’s
(expected) cost is cx, so marginal cost is c. The seller’s (expected) revenue is
xP (x). As is clear, we have a standard linear-pricing problem. Marginal revenue
is

P (x) + xP ′(x) = F−1(1 − x) + x

( −1

F ′[F−1(1 − x)]

)
.

For example, if c = 1/2 and v is distributed uniformly on [0, 1], then F (v) =
v, F ′(v) = 1, and F−1(y) = y. So MR(x) is 1 − 2x. Hence, x∗M = 1/4 and,
thus, the price the seller should ask to maximize her expected profit is 3/4.7

Note that there is a deadweight loss: Efficiency requires that the good change
hands whenever v > c; that is, in this example, when v > 1/2. But given linear
pricing, the good only changes hands when v > 3/4—in other words, half the
time the good should change hands it doesn’t.

7An alternative approach, which is somewhat more straightforward in this context, is to
solve maxp(p − c)

`

1 − F (p)
´

.
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We saw in Section 2.2 that linear pricing “leaves money on the table,” in the
sense that there are gains to trade—the deadweight loss—that are not realized.
There is money to be made if the number of units traded can be increased from
x∗M to x∗W .

Why has this money been left on the table? The answer is that trade benefits
both buyer and seller. The seller profits to the extent that the revenue received
exceeds cost and the buyer profits to the extent that the benefit enjoyed ex-
ceeds the cost. The seller, however, does not consider the positive externality
she creates for the buyer (buyers) by selling him (them) goods. The fact that
his (their) marginal benefit schedule (i.e., inverse demand) lies above his (their)
marginal cost (i.e., the price the seller charges) is irrelevant to the seller insofar
as she doesn’t capture any of this gain enjoyed by the buyer (buyers). Conse-
quently, she underprovides the good. This is the usual problem with positive
externalities: The decision maker doesn’t internalize the benefits others derive
from her action, so she does too little of it from a social perspective. In contrast,
were the action decided by a social planner seeking to maximize social welfare,
then more of the action would be taken because the social planner does consider
the externalities created. The cure to the positive externalities problem is to
change the decision maker’s incentives so she effectively faces a decision problem
that replicates the social planner’s problem.

One way to make the seller internalize the externality is to give her the
social benefit of each unit sold. Recall the marginal benefit of the the xth unit
is P (x). So let the seller get P (1) if she sells one unit, P (1) + P (2) if she sells
two, P (1) +P (2) +P (3) if she sells three, and so forth. Given that her revenue
from x units is

∫ x
0
P (t)dt, her marginal revenue schedule is P (x). Equating

marginal revenue to marginal cost, she produces x∗W , the welfare-maximizing
quantity.

In general, allowing the seller to vary price unit by unit, so as to march
down the demand curve, is impractical. But, as we will see, there are ways for
the seller to effectively duplicate marching down the demand curve. When the
seller can march down the demand curve or otherwise capture all the surplus,
she’s said to be engaging in first-degree price discrimination. This is sometimes
called perfect price discrimination.

25
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Two-Part Tariffs 3.1
Consider a seller who faces a single buyer with inverse demand p(x). Let the
seller offer a two-part tariff : The buyer pays as follows:

T (x) =

{
0 , if x = 0
px+ f if x > 0

, (3.1)

where p is price per unit and f is the entry fee, the amount the buyer must
pay to have access to any units. The scheme in (3.1) is called a two-part tariff
because there are two parts to what the buyer pays (the tariff), the unit price
and the entry fee.

The buyer will buy only if f is not set so high that he loses all his consumer
surplus. That is, he buys provided

f ≤
∫ x

0

(p(t) − p(x))dt =

∫ x

0

p(t)dt− xp(x) . (3.2)

Constraints like (3.2) are known as participation constraints or individual-
rationality ( ir) constraints. These constraints often arise in pricing schemes
or other mechanism design. They reflect that, because participation in the
scheme or mechanism is voluntary, it must be induced.

The seller’s problem is to choose x (effectively, p) and f to maximize profit
subject to (3.2); that is, maximize

f + xp(x) − C(x) (3.3)

subject to (3.2). Observe that (3.2) must bind: If it didn’t, then the seller could
raise f slightly, keeping x fixed, thereby increasing her profits without violating
the constraint. Note this means that the entry fee is set equal to the consumer
surplus that the consumer receives. Because (3.2) is binding, we can substitute
it into (3.3) to obtain the unconstrained problem:

max
x

∫ x

0

p(t)dt− xp(x) + xp(x) − C(x) .

The first-order condition is p(x) = MC (x); that is, the profit-maximizing quan-
tity is the welfare-maximizing quantity. The unit price is p(x∗W ) and the entry

fee is
∫ x∗

W

0
p(t)dt− x∗W p(x

∗
W ).

Proposition 6 A seller who sells to a single buyer with known demand does
best to offer a two-part tariff with the unit price set to equate demand and
marginal cost and the entry fee set equal to the buyer’s consumer surplus at that
unit price. Moreover, this solution maximizes welfare.

Of course, a seller rarely faces a single buyer. If, however, the buyers all
have the same demand, then a two-part tariff will also achieve efficiency and
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allow the seller to achieve the maximum possible profits. Let there be J buyers
all of whom are assumed to have the same demand curve. As before, let P (·)
denote aggregate inverse demand. The seller’s problem in designing the optimal
two-part tariff is

max
f,x

Jf + xP (x) − C(x) (3.4)

subject to consumer participation,

f ≤ csj
(
P (x)

)
, (3.5)

where csj(p) denotes the jth buyer’s consumer surplus at price p. Because the
buyers are assumed to have identical demand, the subscript j is superfluous
and constraint (3.5) is either satisfied for all buyers or it is satisfied for no
buyer. As before, (3.5) must bind, otherwise the seller could profitably raise f .
Substituting the constraint into (3.4), we have

max
x

J × cs
(
P (x)

)
+ xP (x) − C(x) ,

which, because aggregate consumer surplus is the sum of the individual surpluses
(recall Proposition 2 on page 9), can be rewritten as

max
x

∫ x

0

P (t)dt− xP (x)

︸ ︷︷ ︸
aggregate CS

+xP (x) − C(x) .

The solution is x∗W . Hence, the unit price is P (x∗W ) and the entry fee, f , is

1

J

(∫ x∗

W

0

P (t)dt− x∗WP (x∗W )

)
.

Proposition 7 A seller who sells to J buyers, all with identical demands, does
best to offer a two-part tariff with the unit price set to equate demand and
marginal cost and the entry fee set equal to 1/Jth of aggregate consumer surplus
at that unit price. This maximizes social welfare and allows the seller to capture
all of social welfare.

We see many examples of two-part tariffs in real life. A classic example is
an amusement park that charges an entry fee and a per-ride price (the latter,
sometimes, being set to zero). Another example is a price for a machine (e.g.,
a Polaroid instant camera or a punchcard sorting machine), which is a form of
entry fee, and a price for an essential input (e.g., instant film or punchcards),
which is a form of per-unit price.1 Because, in many instances, the per-unit price

1Such schemes can also be seen as a way of providing consumer credit: The price of the
capital good (e.g., camera or machine) is set lower than the profit-maximizing price (absent
liquidity constraints), with the difference being essentially a loan to the consumer that he
repays by paying more than the profit-maximizing price (absent a repayment motive) for the
ancillary good (e.g., film or punchcards).
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is set to zero, some two-part tariffs might not be immediately obvious (e.g., an
annual service fee that allows unlimited “free” service calls, a telephone calling
plan in which the user pays so much per month for unlimited “free” phone calls,
or amusement park that allows unlimited rides with paid admission).

Packaging is another way to design a two-part tariff. For instance, a grocery
Packaging: A
disguised two-part
tariff. story could create a two-part tariff in the following way. Suppose that, rather

than being sold in packages, sugar were kept in a large bin and customers could
purchase as much or as little as they liked (e.g., like fruit at most groceries or as
is actually done at “natural” groceries). Suppose that, under the optimal two-
part tariff, each consumer would buy x pounds, which would yield him surplus
of cs, which would be captured by the store using an entry fee of f = cs.
Alternatively, but equivalently, the grocery could package sugar. Each bag of
sugar would have x pounds and would cost px + cs per bag. Each consumer
would face the binary decision of whether to buy 0 pounds or x pounds. Each
consumer’s total benefit from x pounds is px+ cs, so each would just be willing
to pay px+ cs for the package of sugar. Because the entry fee is paid on every
x-pound bag, the grocery has devised a (disguised) two-part tariff that is also
arbitrage-proof. In other words, packaging—taking away consumers ability to
buy as much or as little as they wish—can represent an arbitrage-proof way of
employing a two-part tariff.

The Two-Instruments Principle

When the seller was limited to just one price parameter, p—that is, engaged in
linear pricing—she made less money than when she controlled two parameters,
p and f . One way to explain this is that a two-part tariff allows the seller to
face the social planner’s problem of maximizing welfare and, moreover, capture
all welfare. Because society can do no better than maximize welfare and the
seller can do no better than capture all of social welfare, she can’t do better
than a two-part tariff in this context.

But this begs the question of why she couldn’t do as well with a single price
parameter. Certainly, she could have maximized social welfare; all she needed
to do was set P (x) = MC (x). But the problem with that solution is there is
no way for her to capture all the surplus she generates. If she had an entry fee,
then she could use this to capture the surplus; but with linear pricing we’ve
forbidden her that instrument.

The problem with using just the unit price is that we’re asking one instru-
ment to do two jobs. One is to determine allocation. The other is to capture
surplus for the seller. Only the first has anything to do with efficiency, so the
fact that the seller uses it for a second purpose is clearly going to lead to a
distortion. If we give the seller a second instrument, the entry fee, then she has
two instruments for the two jobs and she can “allocate” each job an instrument.
This is a fairly general idea—efficiency is improved by giving the mechanism
designer more instruments—call this the two-instruments principle.
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Figure 3.1: A general analysis of a two-part tariff.

Two-Part Tariffs without Apology

It might seem that the analysis of two-part tariffs is dependent on our assump-
tion of quasi-linear utility. In fact, this is not the case. To see this, consider a
single consumer with utility u(x, y). Normalize the price of y to 1. Assume the
individual has income I. Define Y (x) to be the indifference curve that passes
through the bundle (0, I); that is, the bundle in which the consumer purchases
only the y-good. See Figure 3.1. Assume MC = c.

Consider the seller of the x good. If she imposes a two-part tariff, then she �
transforms the consumer’s budget constraint to be the union of the vertical line
segment {(0, y)|I − f ≤ y ≤ I} and the line y = (I − f) − px, x > 0. If we
define ȳ = I − f , then this budget constraint is the thick dark curve shown
in Figure 3.1. Given that the consumer can always opt to purchase none of
the x good, the consumer can’t be put below the indifference curve through
(0, I); that is, below Y (x). For a given p, the seller increases profit by raising
f , the entry fee. Hence, the seller’s goal is to set f so that this kinked budget
constraint is just tangent to the indifference Y (x). This condition is illustrated
in Figure 3.1, where the kinked budget constraint and Y (x) are tangent at x∗.
If the curves are tangent at x∗, then

−p = Y ′(x∗) . (3.6)

At x∗, the firm’s profit is
(p− c)x∗ + f (3.7)

(recall we’ve assumed MC = c). As illustrated, f = I − ȳ. In turn, ȳ =
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Y (x∗) + px∗.2 We can, thus, rewrite (3.7) as

(p− c)x∗ + I − Y (x∗) − px∗ = −Y (x∗) − cx∗ + I . (3.8)

Maximizing (3.8) with respect to x∗, we find that c = −Y ′(x∗). Substituting for
Y ′(x∗) using (3.6), we find that c = p; that is, as before, the seller maximizes
profits by setting the unit price equal to marginal cost. The entry fee is I −
(Y (x∗) + cx∗), where x∗ solves c = −Y ′(x∗). Given that MC = c, it is clear
this generalizes for multiple consumers.

Summary 3 The conclusion that the optimal two-part tariff with one consumer
or homogeneous consumers entails setting the unit price equal to marginal cost
is not dependent on the assumption of quasi-linear utility.

As a “check” on this analysis, observe that Y ′(·) is the marginal rate of
substitution (mrs). With quasi-linear utility; that is, u(x, y) = v(x)+y, the mrs

is −v′(x). So x∗ satisfies c = −(−v′(x)) = v′(x) = P (x), where the last equality
follows because, with quasi-linear utility, the consumer’s inverse demand curve
is just his marginal benefit (utility) of the good in question. This, of course,
corresponds to what we found above (recall Proposition 6).

Bibliographic Note

For more on two-part and multi-part tariffs, see Wilson (1993). Among other
topics, Wilson investigates optimal two-part tariffs with heterogeneous con-
sumers. Varian (1989) is also a useful reference.

2Because the line segment ȳ − px is tangent to Y (·) at x∗, we have ȳ − px∗ = Y (x∗).
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In real life, consumers are rarely homogenous with respect to their preferences
and, hence, demands. We wish, therefore, to extend our analysis of price dis-
crimination to accommodate heterogenous consumers.

The Notion of Type 4.1
To analyze heterogeneous consumers, imagine that we can index the consumers’
different utility functions, which here is equivalent to indexing their different
demand functions. We refer to this index as the type space, a given type being
a specific index number. All consumers of the same type have the same demand.
For example, suppose all consumers have demand of the form

x(p) =

{
1 , if p ≤ θ
0 , if p > θ

;

that is, a given consumer wants at most one unit and only if price does not
exceed θ. Suppose θ varies across consumers. In this context, θ is a consumer’s
type (index). The set of possible values that θ can take is the type space. For
instance, suppose that consumers come in one of two types, θ = 10 or θ = 15.
In this case, the type space, Θ, can be written as Θ = {10, 15}. Alternatively,
we could have a continuous type space; for instance, Θ = [a, b], a and b ∈ R+.

Consider the second example. Suppose there is a continuum of consumers
of measure J whose types are distributed uniformly over [a, b]. Consequently,
at a uniform price of p, demand is J b−p

b−a . Suppose the firm’s cost of x units is
cx; observe MC = c. As there would otherwise be no trade, assume c < b. If
the firm engaged in linear pricing, its profit-maximizing price would be

p∗ =

{
b+c
2 , if b+c

2 ≥ a

a , if b+c
2 < a

.

(Exercise: Verify.) Rather than deal with both cases, assume a < (b + c)/2.
Given this last assumption, there is no further loss of generality in normalizing
the parameters so a = 0, b = 1, and 0 ≤ c < 1.

1What happened to second-degree price discrimination? Despite the conventional ordering,
it makes more sense to cover third-degree price discrimination before second-degree price
discrimination.

31
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The firm’s profit is

πLP = J
(1 − c)2

4
. (4.1)

(Exercise: Verify.)
Suppose, instead of linear pricing, the firm knew each consumer’s type and

could base its price to that consumer on his type. Because a consumer is willing
to pay up to θ, the firm maximizes its profit by charging each consumer θ
(provided θ ≥ c). Given that the firm is capturing all the surplus, this is perfect
discrimination. The firm’s profit is

πPD = J

∫ 1

c

(θ − c)dθ = J
(1 − c)2

2
. (4.2)

Clearly, this exceeds the profit given in (4.1). Of course, we knew this would
be the case without calculating (4.2): linear pricing, because it generates a
deadweight loss and leaves some surplus in consumer hands, cannot yield the
firm as great a profit as perfect discrimination.

The example illustrates that, with heterogenous consumers, the ideal from
the firm’s perspective would be to base its prices on consumers’ types. In most
settings, however, that is infeasible. The question then becomes how closely can
the firm approximate that ideal through its pricing.

Characteristic-based
Discrimination 4.2

When a seller cannot observe consumers’ types, she has two choices. One, she
can essentially ask consumers their type; this, as we will see in the next chapter,
is what second-degree price discrimination is all about. Two, she can base
her prices on observable characteristics of the consumers, where the observable
characteristics are correlated in some way with the underlying types. This is
third-degree price discrimination.

Examples of third-degree price discrimination are pricing based on observ-
able characteristics such as age, gender, student status, geographic location, or
temporally different markets.2 The idea is that, say, student status is correlated
with willingness to pay; on average, students have a lower willingness to pay for
an event (e.g., a movie) than do working adults.

Formally, consider a seller who can discriminate on the basis of M observable
differences. Let m denote a particular characteristic (e.g., m = 1 is student and
m = 2 = M is other adult). Based on the distribution of types conditional on
m, the firm’s demand from those with characteristic m is Xm(·). Let Pm(·) be
the corresponding inverse demand. For example, suppose individual demand
is the L-shaped demand of the previous section, θ|m = 1 ∼ 1 − (1 − θ)2 on
[0, 1], and θ|m=2 ∼ θ2 (observe the second dominates the first in the sense of

2Although pricing differently at different times could also be part of second-degree price
discrimination scheme.
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first-order stochastic dominance). In this case, if Jm is the measure or number
of consumers with characteristic m, we have

X1(p) = J1(1 − p)2 and

X2(p) = J2

(
1 − p2

)
.

The seller’s problem is

max
{x1,...,xM}

M∑

m=1

xmPm(xm) − C

(
M∑

m=1

xm

)
. (4.3)

Imposing assumptions sufficient to make the first-order condition sufficient as
well as necessary (e.g., assuming (4.3) is concave), the solution is given by

Pm + xmP
′
m(xm) − MC

(
M∑

m=1

xm

)
= 0 , for m = 1, . . . ,M . (4.4)

Some observations based on conditions (4.4):

• If marginal cost is a constant (i.e., MC = c), then third-degree price
discrimination is nothing more than setting profit-maximizing linear prices
independently in M different markets.

• If marginal cost is not constant, then the markets cannot be treated inde-
pendently; how much the seller wishes to sell in one market is dependent
on how much she sells in other markets. In particular, if marginal cost
is not constant and there is a shift in demand in one market, then the
quantity sold in all markets can change.

• Marginal revenue across the M markets is the same at the optimum; that
is, if the seller found herself with one more unit of the good, it wouldn’t
matter in which market (to which group) she sold it.

Welfare Considerations 4.3
Does allowing a seller to engage in third-degree price discrimination raise or �
lower welfare. That is, if she were restricted to set a single price for all markets,
would welfare increase or decrease?

We will answer this question for the case in which MC = c and there are two
markets, m = 1, 2. Let vm(x) =

∫ x
0 pθ(t)dt; that is, vm(x) is the gross aggregate

benefit enjoyed in market m (by those in group m). Welfare is, therefore,

W (x1, x2) = v1(x1) + v2(x2) − (x1 + x2)c .

In what follows, let x∗m be the quantity traded in market θ under third-degree
price discrimination and let xUm be the quantity traded in market m if the seller
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must charge a uniform price across the two markets.3 Because demand curves
slope down, vm(·) is a concave function, which means

vm(x∗m) < vm(xUm) + v′m(xUm) · (x∗m − xUm)

= vm(xUm) + pm(xUm) · (x∗m − xUm) . (4.5)

Likewise,
vm(xUm) < vm(x∗m) + pm(x∗m) · (xUm − x∗m) . (4.6)

If we let ∆xm = x∗m − xUm, p∗m = pm(x∗m), pU = pm(xUm) (note, by assumption,
this last price is common across the markets), and ∆vm = vm(x∗m) − vm(xUm),
then we can combine (4.5) and (4.6) as

pU∆xm > ∆vm > p∗m∆xm . (4.7)

Going from a uniform price across markets to different prices (i.e., to 3rd-degree
price discrimination) changes welfare by

∆W = ∆v1 + ∆v2 − (∆x1 + ∆x2)c .

Hence, using (4.7), the change in welfare is bounded by

(pU − c)(∆x1 + ∆x2) > ∆W > (p∗1 − c)∆x1 + (p∗2 − c)∆x2 . (4.8)

Because pU − c > 0, if ∆x1 + ∆x2 ≤ 0, then switching from a single price
to third-degree price discrimination must reduce welfare. In other words, if
aggregate output falls (weakly), then welfare must be reduced. For example,
suppose that c = 0 and Xm(p) = a− bθp, then x∗m = a/2.4 Aggregate demand
across the two markets is X (p) = 2a − (b1 + b2)p and xU1 + xU2 = 2a/2. This
equals x∗1 + x∗2, so there is no increase in aggregate demand. From (4.8), we
can conclude that third-degree price discrimination results in a loss of welfare
relative to a uniform price in this case.

But third-degree price discrimination can also increase welfare. The quickest
way to see this is to suppose that, at the common monopoly price, one of the
two markets is shut out (e.g., market 1, say, has relatively little demand and no
demand at the monopoly price that the seller would set if obligated to charge
the same price in both markets). Then, if price discrimination is allowed, the
already-served market faces the same price as before—so there’s no change in
its consumption or welfare, but the unserved market can now be served, which
increases welfare in that market from zero to something positive.

3To determine xU
m, let X (p) = X1(p)+X2(p) be aggregate demand across the two markets,

and let P(x) = X−1(p) be aggregate inverse demand. Solve P(x) + xP ′(x) = c for x (i.e.,
solve for optimal aggregate production assuming one price). Call that solution x∗

M . Then

xU
m = Xm

`

P(x∗
M

)
´

.

4One can quickly verify this by maximizing profits with respect to price. Alternatively,
observe that inverse demand is

P (x) =
a

b
− x

b
.

Hence, x∗ = a/2 (see footnote 4 on page 23).
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Bibliographic Note

This discussion of welfare under third-degree price discrimination draws heavily
from Varian (1989).

Arbitrage 4.4
We have assumed, so far, in our investigation of price discrimination that arbi-
trage is impossible. That is, for instance, a single buyer can’t pay the entry fee,
then resell his purchases to other buyers, who, thus, escape the entry fee. Simi-
larly, a good purchased in a lower-price market cannot be resold in a higher-price
market.

In real life, however, arbitrage can occur. This can make utilizing nonlinear
pricing difficult; moreover, the possibility of arbitrage helps to explain why
we see nonlinear pricing in some contexts, but not others. For instance, it is
difficult to arbitrage amusement park rides to those who haven’t paid the entry
fee. But is easy to resell supermarket products. Hence, we see two-part tariffs at
amusement parks, but we typically don’t see them at supermarkets.5 Similarly,
senior-citizen discounts to a show are either handled at the door (i.e., at time
of admission), or through the use of color-coded tickets, or through some other
means to discourage seniors from reselling their tickets to their juniors.

If the seller cannot prevent arbitrage, then the separate markets collapse into
one and there is a single uniform price across the markets. The welfare con-
sequences of this are, as shown in the previous section, ambiguous. Aggregate
welfare may either be increased or decreased depending on the circumstances.
The seller, of course, is made worse off by arbitrage—given that she could, but
didn’t, choose a uniform price indicates that a uniform price yields lower profits
than third-degree price discrimination.

Capacity Constraints 4.5
Third-degree price discrimination often comes up in the context of discounts for
certain groups to some form of entertainment (e.g., a play, movie, or sporting
event). Typically, the venue for the event has limited capacity and it’s worth
considering the implication that has for third-degree price discrimination.

Consider an event for which there are two audiences (e.g., students and non-
students). Assume the (physical) marginal cost of a seat is essentially 0. The
number of seats sold if unconstrained would be x∗1 and x∗2, where x∗m solves

Pm(x) + xP ′
m(x) = MC = 0 .

5Remember, however, that packaging can be a way for supermarkets to use arbitrage-proof
two-part tariffs.
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If the capacity of the venue, K, is greater than x∗1+x∗2, then there is no problem.
As a convention, assume that P2(x

∗
2) > P1(x

∗
1) (e.g., group 1 are students and

group 2 are non-students).
Suppose, however, that K < x∗1 + x∗2. Then a different solution is called

for. It might seem, given a binding capacity constraint, that the seller would
abandon discounts (e.g., eliminate student tickets), particularly if x∗2 ≥ K (i.e.,
the seller could sell out charging just the high-paying group its monopoly price).
This view, however, is näıve, as we will see.

The seller’s problem can be written as

max
{x1,x2}

x1P1(x1) + x2P2(x2)

(recall we’re assuming no physical costs that vary with tickets sold) subject to

x1 + x2 ≤ K .

Given that we know the unconstrained problem violates the constraint, the
constraint must bind. Let λ be the Lagrange multiplier on the constraint. The
first-order conditions are, thus,

P1(x1) + x1P
′
1(x1) − λ = 0 and

P2(x2) + x2P
′
2(x2) − λ = 0 .

Observe that the marginal revenue from each group is set equal to λ, the shadow
price of the constraint. Note, too, that the two marginal revenues are equal.
This makes intuitive sense: What is the marginal cost of selling a ticket to a
group-1 customer? It’s the opportunity cost of that ticket, which is the forgone
revenue of selling it to a group-2 customer; that is, the marginal revenue of
selling to a group-2 customer.

Now we can see why the seller might not want to sell only to the high-paying
group. Suppose, by coincidence, that x∗2 = K; that is, the seller could sell out
the event at price P2(x

∗
2). She wouldn’t, however, do so because

P1(0) > 0 = P2(x
∗
2) + x∗2P

′
2(x

∗
2) ;

(the equality follows from the definition of x∗2 given that physical marginal cost
is 0). The marginal revenue of the Kth seat, if sold to a group-2 customer, is
clearly less than its marginal (opportunity) cost.

As an example, suppose that P1(x) = 40− x and P2(x) = 100− x. Suppose
K = 50. You should readily be able to verify that x∗1 = 20 and x∗2 = 50; that
is, the seller could just sell out if she set a price of $50, which would yield sales
only to group-2 customers (no group-1 customer would pay $50 for a seat). Her
(accounting) profit would be $2500. This, however, is not optimal. Equating
the marginal revenues, we have

40 − 2x1 = 100 − 2x2 . (4.9)
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Substituting the constraint, x1 = 50 − x2, into (4.9) yields

40 − 2(50 − x2) = 100 − 2x2 ; or

4x2 = 160 .

So, optimally, x2 = 40 and, thus, x1 = 10. The seller’s profit is 40 × (100 −
40) + 10 × (40 − 10) = 2700 dollars. As claimed, this amount exceeds her take
from näıvely pricing only to the group-2 customers.

While the seller’s profit is greater engaging in third-degree price discrimina-
tion (i.e., charging $30 for student tickets and $60 for regular tickets) than it
is under uniform pricing (i.e., $50 per ticket), welfare is less under third-degree
price discrimination. We know this, of course, from the discussion in Section
4.3—output hasn’t changed (it’s constrained to be 50)—so switching from uni-
form pricing to price discrimination must lower welfare. We can also see this by
considering the last 10 tickets sold. Under uniform pricing, they go to group-2
consumers, whose value for them ranges from $60 to $50 and whose aggregate

gross benefit is
∫ 50

40 (100 − t)dt = 550 dollars. Under price discrimination, they
are reserved for group-1 consumers (students), whose value for them ranges

from $40 to $30 and whose aggregate gross benefit is just
∫ 10

0
(40 − t)dt = 350

dollars. In other words, to capture more of the total surplus, the seller distorts
the allocation from those who value the tickets more to those who value them
less.
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Second-degree Price
Discrimination 5

In many contexts, a seller knows that different types or groups of consumers
have different demand, but she can’t readily identify from which group any
given buyer comes. For example, it is known that business travelers are willing
to pay more for most flights than are tourists. But it is impossible to know
whether a given flier is a business traveler or a tourist.

A well-known solution is to offer different kinds of tickets. For instance,
because business travelers don’t wish to stay over the weekend or often can’t
book much in advance, the airlines charge more for round-trip tickets that don’t
involve a Saturday-night stayover or that are purchased within a few days of
the flight (i.e., in the latter situation, there is a discount for advance purchase).
Observe an airline still can’t observe which type of traveler is which, but by
offering different kinds of service it hopes to induce revelation of which type
is which. When a firm induces different types to reveal their types for the
purpose of differential pricing, we say the firm is engaged in second-degree price
discrimination.

Restricted tickets are one example of price discrimination. They are an
example of second-degree price discrimination via quality distortions. Other
examples include:

• Different classes of service (e.g., first and second-class carriages on trains).
The classic example here is the French railroads in the 19th century, which
removed the roofs from second-class carriages to create third-class car-
riages.

• Hobbling a product. This is popular in high-tech, where, for instance, Intel
produced two versions of a chip by “brain-damaging” the state-of-the-art
chip. Another example is software, where “regular” and “pro” versions
(or “home” and “office” versions) of the same product are often sold.

• Restrictions. Saturday-night stayovers and advance-ticketing requirements
are a classic example. Another example is limited versus full memberships
at health clubs.

The other common form of second-degree price discrimination is via quantity
discounts. This is why, for instance, the liter bottle of soda is typically less
than twice as expensive as the half-liter bottle. Quantity discounts can often
be operationalized through multi-part tariffs, so many multi-part tariffs are
examples of price discrimination via quantity discounts (e.g., choices in calling
plans between say a low monthly fee, few “free” minutes, and a high per-minute

39
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charge thereafter versus a high monthly fee, more “free” minutes, and a lower
per-minute charge thereafter).

Quality Distortions 5.1
Consider an airline facing Nb business travelers and Nτ tourists on a given
round-trip route. Suppose, for convenience, that the airline’s cost of flying are
essentially all fixed costs (e.g., the fuel, aircraft depreciation, wages of a fixed -
size crew, etc.) and that the marginal costs per flier are effectively 0. Let
there be two possible kinds of round-trip tickets,1 restricted (e.g., requiring a
Saturday-night stayover) and unrestricted (e.g., no stayover requirements); let
superscripts r and u refer to these two kinds of tickets, respectively. Let κ
denote an arbitrary kind of ticket (i.e., κ ∈ {r, u}).

A type-θ flier has a valuation (gross benefit or utility) of vκθ for a κ ticket.
Assume, consistent with experience, that

• vuθ ≥ vrθ for both θ and strictly greater for business travelers. That is, fliers
prefer unrestricted tickets ceteris paribus and business travelers strictly
prefer them.

• vκb > vκτ for both κ. That is, business travelers value travel more.

Clearly, if the airline offered only one kind of ticket, it would offer unrestricted
tickets given that they cost no more to provide and they can command greater
prices. There are, then, two possible prices with one kind of ticket (i.e., when
engaged in linear pricing): (i) sell to both types, which means p = vuτ ; or (ii)
sell to business travelers only, which means p = vub . Option (i) is as good or
better than option (ii) if and only if

Nbv
u
b ≤ (Nb +Nτ )v

u
τ or, equivalently, Nb ≤

vuτ
vub − vuτ

Nτ . (5.1)

Alternatively, the airline could offer both kinds of tickets (price discriminate
via quality distortion). In this case, the restricted ticket will be intended for one
type of flier and the unrestricted ticket will be intended for the other. At some
level, which kind of ticket goes to which type of flier needs to be determined,
but experience tells us, in this context, that we should target the unrestricted
ticket to the business traveler and the restricted ticket to the tourist. Let pκ be
the price of a κ ticket.

The airline seeks to do the following:

max
{pu,pr}

Nbp
u +Nτp

r . (5.2)

It, of course, faces constraints. First, fliers need to purchase. This means that
buying the kind of ticket intended for you can’t leave you with negative consumer

1Assume all travel is round-trip.
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surplus, because, otherwise, you would do better not to buy. Hence, we have
the participation or ir constraints:

vub − pu ≥ 0 (5.3)

vrτ − pr ≥ 0 . (5.4)

But we also have an additional set of constraints because the different types
of flier need to be induced to reveal their types by purchasing the kind of ticket
intended for them. Such revelation or incentive compatibility (ic) constraints
are what distinguish second-degree price discrimination from other forms of price
discrimination. Moreover, because such constraints are a feature of screening
models, they indicate that second-degree price discrimination is a form of screen-
ing. The revelation constraints say that a flier type must do better (gain more
consumer surplus) purchasing the ticket intended for him rather than purchasing
the ticket intended for the other type:

vub − pu ≥ vrb − pr (5.5)

vrτ − pr ≥ vuτ − pu . (5.6)

To summarize, the airline’s problem is to solve (5.2) subject to (5.3)–(5.6).
This is a linear programming problem. To solve it, begin by noting that the
constraint set is empty if vuτ − vrτ > vub − vrb because, then, no price pair could
satisfy (5.5) and (5.6). Hence, let’s assume:

vuτ − vrτ ≤ vub − vrb . (5.7)

Most screening problems require an assumption like (5.7) about how the marginal
utilities are ordered across types. In many contexts, these are referred to as
single-crossing conditions because they are or can be interpreted as assump-
tions about the relative steepness of the types’ indifference curves when they
cross.

We can visualize the constraints in (pr, pu) space (i.e., the space with pr

on the horizontal axis and pu on the vertical axis). See Figure 5.1. There
are two constraints on the maximum pu: It must lie below the horizontal line
pu = vub (line ① in Figure 5.1) and it must lie below the upward-sloping line
pu = pr + vub − vrb ≡ ℓ(pr) (line ③). The former condition is just (5.3) and
the latter is (5.5). From (5.4), we know we must restrict attention to pr ≤ vrτ
(line ②). We also need to satisfy the tourist’s incentive-compatibility constraint
(5.6); that is, prices must lie above line ④. Hence the set of feasible prices is
the gray region in Figure 5.1.

Observe we know:

pu ≤ ℓ(pr) ≤ ℓ(vrτ )

= vub − (vrb − vrτ )

< vub ,
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Figure 5.1: The set of prices satisfying the four constraints, (5.3)–(5.6), is the
gray region. Line ① corresponds to constraint (5.3). Line ② corre-
sponds to constraint (5.4). Line ③ corresponds to constraint (5.5).
Line ④ corresponds to constraint (5.6).

where the last inequality follows because vκb > vκτ . From this, we see that (5.5)
is a binding constraint, while (5.3) is slack. If (5.5) is binding, it’s clear that
(5.6) is slack. Clearly, we can’t set pr = ∞, so we can conclude that (5.4) is
binding.

Summary 4 The incentive compatibility constraint (5.5) for the business trav-
eler is binding, but the participation constraint (5.3) is not. The incentive com-
patibility constraint (5.6) for the tourist is slack, but the participation constraint
(5.4) is binding.

If you think about it intuitively, it is the business traveler who wishes to
keep his type from the airline. His knowledge, that he is a business traveler, is
valuable information because he’s the one who must be induced to reveal his
information; that is, he’s the one who would have incentive to pretend to be the
low-willingness-to-pay type. Hence, it is not surprising that his revelation con-
straint is binding. Along the same lines, the tourist has no incentive to keep his
type from the airline—he would prefer the airline know he has a low willingness
to pay. Hence, his revelation constraint is not binding, only his participation
constraint is. These are general insights: The type who wishes to conceal infor-
mation (has valuable information) has a binding revelation constraint and the
type who has no need to conceal his information has just a binding participation
constraint.

As summarized above, we have just two binding constraints and two un-
known parameters, pr and pu. We can, thus, solve the maximization problem
by solving the two binding constraints. This yields pr∗ = vrτ and pu∗ = ℓ(pr∗) =
vub −

(
vrb − vrτ

)
. Note that the tourist gets no surplus, but the business traveler
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enjoys vrb − vrτ > 0 of surplus. This is a general result: The type with the
valuable information enjoys some return from having it. This is known as his
or her information rent. It is no surprise that a type whose information lacks
value does not capture any return from it.

Summary 5 The business traveler enjoys an information rent. The tourist
does not.

Under price discrimination, the airline’s profit is

Nb
(
vub −

(
vrb − vrτ

))
+Nτv

r
τ . (5.8)

It is clear that (5.8) is dominated by uniform pricing if either Nb or Nτ gets
sufficiently small relative to the other. But provided that’s not the case, then
(5.8)—that is, second-degree price discrimination—can dominate. For instance,
if vub = 500, vrb = 200, vuτ = 200, and vrτ = 100, then pr∗ = 100 and pu∗ = 400. If
Nb = 60 and Nr = 70, then the two possible uniform prices, vub and vur , yield
profits of $30,000 and $26,000, respectively; but price discrimination yields a
profit of $31,000.

Observe, too, that, in this example, going from a world of profit-maximizing
uniform pricing to second-degree price discrimination raises welfare — the tour-
ists would not get to fly under the profit-maximizing uniform price ($500), but
would with price discrimination. Given that tourists value even a restricted
ticket more than the marginal cost of flying them ($0), getting them on board
must increase welfare.

Quantity Discounts 5.2
Consider two consumer types, 1 and 2, indexed by θ. Assume the two types
occur equally in the population. Assume that each consumer has quasi-linear
utility

v(x, θ) − T ,

where x is consumption of a good and T is the payment (transfer) from the
consumer to the seller of that good. Assume the following order condition on
marginal utility

∂

∂θ

(
∂v(x, θ)

∂x

)
> 0 . (5.9)

Expression (5.9) is called a Spence-Mirrlees condition; it is a single-crossing
condition. As noted in the previous section, we often impose such an order
assumption on the steepness of the indifference curves across types. Another
way to state (5.9) is that the marginal utility of consumption is increasing in
type for all levels of consumption.

Assume, as is standard, that the reservation utility if 0 units are purchased
is the same for both types:

v(0, 1) = v(0, 2) . (5.10)
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For convenience assume a constant marginal cost, c. Given this, we can
consider the seller’s optimal strategy against a representative customer, who is,
as previously assumed, as likely to be type 1 as type 2.

In analyzing this problem, we can view the seller’s problem as one of design-
ing two “packages.” One package will have x1 units of the good and be sold for
T1 and the other will have x2 units and be sold for T2. Obviously, the xθ-unit
package is intended for the type-θ consumer. (One can think of these as being
different size bottles of soda with xθ as the number of liters in the θ bottle.)
Hence, the seller’s problem is

max
{x1,x2,T1,T2}

1

2
(T1 − cx1) +

1

2
(T2 − cx2) (5.11)

subject to participation (ir) constraints,

v(x1, 1) − T1 ≥ 0 and (5.12)

v(x2, 2) − T2 ≥ 0 , (5.13)

and subject to revelation (ic) constraints,

v(x1, 1) − T1 ≥ v(x2, 1) − T2 and (5.14)

v(x2, 2) − T2 ≥ v(x1, 2) − T1 . (5.15)

As is often true of mechanism-design problems, it is easier here to work with
net utility (in this case, consumer surplus) rather than payments. To that end,
let

Uθ = v(xθ, θ) − Tθ .

Also define

I(x) = v(x, 2) − v(x, 1)

=

∫ 2

1

∂v(x, t)

∂θ
dt .

Observe then, that

I ′(x) =

∫ 2

1

∂2v(x, t)

∂θ∂x
dt > 0 ,

where the inequality follows from the Spence-Mirrlees condition (5.9). Note,
given condition (5.10), this also implies I(x) > 0 if x > 0. The use of the
letter “I” for this function is not accidental; it is, as we will see, related to the
information rent that the type-2 consumer enjoys.

We can rewrite the constraints (5.12)–(5.15) as

U1 ≥ 0 (5.16)

U2 ≥ 0 (5.17)

U1 ≥ U2 − I(x2) and (5.18)

U2 ≥ U1 + I(x1) . (5.19)
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We can also rewrite the seller’s problem (5.11) as

max
{x1,x2,U1,U2}

1

2
(v(x1, 1) − U1 − cx1) +

1

2
(v(x2, 2) − U2 − cx2) . (5.20)

We could solve this problem by assigning four Lagrange multipliers to the
four constraints and crank through the problem. This, however, would be way
tedious and, moreover, not much help for developing intuition. So let’s use a
little logic first.

• Unless x1 = 0, one or both of (5.18) and (5.19) must bind. To see this,
suppose neither was binding. Then, since the seller’s profits are decreasing
in Uθ, she would make both U1 and U2 as small as possible, which is to
say 0. But given I(x1) > 0 if x1 > 0, this would violate (5.19).

• Observe that (5.18) and (5.19) can be combined so that I(x2) ≥ U2−U1 ≥
I(x1). Ignoring the middle term for the moment, the fact that I(·) is
increasing means that x2 ≥ x1. Moreover, if x1 > 0, then U2 − U1 ≥
I(x1) > 0. Hence U2 > 0, which means (5.17) is slack.

• Participation constraint (5.16), however, must bind at the seller’s opti-
mum. If it didn’t, then there would exist an ε > 0 such that U1 and U2

could both be reduced by ε without violating (5.16) or (5.17). Since such a
change wouldn’t change the difference in the Us, this change also wouldn’t
lead to a violation of the ic constraints, (5.18) and (5.19). But from (5.20),
lowering the Us by ε increases profit, so we’re not at an optimum if (5.16)
isn’t binding.

• We’ve established that, if x1 > 0, then (5.16) binds, (5.17) is slack, and at
least one of (5.18) and (5.19) binds. Observe that we can rewrite the ic

constraints as I(x2) ≥ U2 ≥ I(x1). The seller’s profit is greater the smaller
is U2, so it is the lower bound in this last expression that is important.
That is, (5.19) binds. Given that I(x2) ≥ I(x1), as established above,
we’re free to ignore (5.18).

So our reasoning tells us that, provided x1 > 0, we need only pay attention
to two constraints, (5.16) and (5.19). Using them to solve for U1 and U2, we
can turn the seller’s problem into the following unconstrained problem:

max
{x1,x2}

1

2
(v(x1, 1) − cx1) +

1

2
(v(x2, 2) − I(x1) − cx2) . (5.21)

The first-order conditions are:

∂v(x∗1, 1)

∂x
− I ′(x∗1) − c = 0 (5.22)

∂v(x∗2, 2)

∂x
− c = 0 . (5.23)
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Figure 5.2: The individual demands of the two types of consumers (family and
single), df (·) and ds(·), respectively, are shown. Under the ideal
third-degree price discrimination scheme, a single would buy a
package with qs units and pay an amount equal to area A (gray
area). A family would buy a package with qf units and pay an
amount equal to the sum of all the shaded areas (A, B, and G).

Note that (5.23) is the condition for maximizing welfare were the seller sell-
ing only to type-2 customers; that is, we have efficiency in the type-2 “mar-
ket.” Because, however, I ′(·) > 0, we don’t have the same efficiency vis-à-vis
type-1 customers; in the type-1 “market,” we see too little output relative to
welfare-maximizing amount. This is a standard result—efficiency at the top and
distortion at the bottom.

To make this more concrete, suppose v(x, θ) = 5(θ+ 1) ln(x+ 1) and c = 1.
Then x∗2 = 14 and x∗1 = 4. Consequently, T1 ≈ 16.1 and T2 = v(x∗2, 2)− I(x∗1) ≈
32.6. Note the quantity discount: A type-2 consumer purchases more than three
times as much, but pays only roughly twice as much as compared to a type-1
consumer.

A Graphical Approach to
Quantity Discounts 5.3

Now we consider an alternative, but ultimately equivalent, analysis of quantity
discounts.

Consider a firm that produces some product. Continue to assume the
marginal cost of production is constant, c. Suppose the population of potential
buyers is divided into families (indexed by f) and single people (indexed by s).
Let df (·) denote the demand of an individual family and let ds(·) denote the
demand of an individual single. Figure 5.2 shows the two demands. Note that,
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at any price, a family’s demand exceeds a single’s demand.
The ideal would be if the firm could engage in third -degree price discrimi-

nation by offering two different two-part tariffs to the two populations. That
is, if the firm could freely identify singles from families, it would sell to each
member of each group the quantity that equated that member’s relevant inverse
demand to cost (i.e., qs or qf in Figure 5.2 for a single or a family, respectively).
It could make the per-unit charge c and the entry fee the respective consumer
surpluses. Equivalently—and more practically—the firm could use packaging.
The package for singles would have qs units and sell for a single’s total benefit,
bs(qs). This is the area labeled A in Figure 5.2. Similarly, the family package
would have qf units and sell for a family’s total benefit of bf (qf ). This is the
sum of the three labeled areas in Figure 5.2.

The ideal is not, however, achievable. The firm cannot freely distinguish
singles from families. It must induce revelation; that is, it must devise a second -
degree scheme. Observe that the third-degree scheme won’t work as a second-
degree scheme. Although a single would still purchase a package of qs units
at bs(qs), a family would not purchase a package of qf units at bf (qf ). Why?
Well, were the family to purchase the latter package it would, by design, earn
no consumer surplus. Suppose, instead, it purchased the package intended for
singles. Its total benefit from doing so is the sum of areas A and G in Figure 5.2.
It pays bs(qs), which is just area A, so it would enjoy a surplus equal to area
G. In other words, the family would deviate from the intended package, with
qf units, which yields it no surplus, to the unintended package, with qs units,
which yields it a positive surplus equal to area G.

Observe that the firm could induce revelation—that is, get the family to buy
the intended package—if it cut the price of the qf -unit package. Specifically, if
it reduced the price to the sum of areas A and B, then a family would enjoy a
surplus equal to area G whether it purchased the qs-unit package (at price = area
A) or it purchased the intended qf -unit package (at price = area A + area B).
Area G is a family’s information rent.

Although that scheme induces revelation, it is not necessarily the profit-
maximizing scheme. To see why, consider Figure 5.3. Suppose that the firm
reduced the size of the package intended for singles. Specifically, suppose it
reduced it to q̂s units, where q̂s = qs− h. Given that it has shrunk the package,
it would need to reduce the price it charges for it. The benefit that a single would
derive from q̂s units is the area beneath its inverse demand curve between 0 and
q̂s units; that is, the area labeled A′. Note that the firm is forgoing revenues
equal to area J by doing this. But the surplus that a family could get by
purchasing a q̂s-unit package is also smaller; it is now the area labeled G′. This
means that the firm could raise the price of the qf -unit package by the area
labeled H. Regardless of which package it purchases, a family can only keep
surplus equal to area G′. In other words, by reducing the quantity sold to the
“low type” (a single), the firm reduces the information rent captured by the
“high type” (a family).

Is it worthwhile for the firm to trade area J for area H? Observe that the



48 Lecture Note 5: Second-degree Price Discrimination
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Figure 5.3: By reducing the quantity in the package intended for singles, the
firm loses revenue equal to area J, but gains revenue equal to area
H.

profit represented by area J is rather modest: While selling the additional h
units to a single adds area J in revenue it also adds ch in cost. As drawn, the
profit from the additional h units is the small triangle at the top of area J. In
contrast, area H represents pure profit—regardless of how many it intends to
sell to singles, the firm is selling qf units to each family (i.e., cqf is a sunk
expenditure with respect to how many units to sell each single). So, as drawn,
this looks like a very worthwhile trade for the firm to make.

One caveat, however: The figure only compares a single family against a
single single. What if there were lots of singles relative to families? Observe
that the total net loss of reducing the package intended for singles by h is

(area J − ch) ×Ns ,

where Ns is the number of singles in the population. The gain from reducing
that package is

area H ×Nf ,

where Nf is the number of families. If Ns is much larger than Nf , then this
reduction in package size is not worthwhile. On the other hand if the two
populations are roughly equal in size or Nf is larger, then reducing the package
for singles by more than h could be optimal.

How do we determine the amount by which to reduce the package intended
for singles (i.e., the smaller package)? That is, how do we figure out what h
should be? As usual, the answer is that we fall back on our MR = MC rule.
Consider a small expansion of the smaller package from q̂s. Because we are using
an implicit two-part tariff (packaging) on the singles, the change in revenue—
that is, marginal revenue—is the change in a single’s benefit (i.e., mbs(q̂s)) times
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the number of singles. That is,

MR(q̂s) = Nsmbs(q̂s) .

Recall that the marginal benefit schedule is inverse demand. So if we let ρs(·)
denote the inverse individual demand of a single (i.e., ρs(·) = d−1

s (·)), then we
can write

MR(q̂s) = Nsρs(q̂s) . (5.24)

What about MC ? Well, if we increase the amount in the smaller package we
incur costs from two sources. First, each additional unit raises production costs
by c. Second, we increase each family’s information rent (i.e., area H shrinks).
Observe that area H is the area between the two demand curves (thus, between
the two inverse demand curves) between q̂s and q̂s + h. This means that the
marginal reduction in area H is

ρf (q̂s) − ρs(q̂s) ,

where ρf (·) is the inverse demand of an individual family. Adding them together,
and scaling by the appropriate population sizes, we have

MC (q̂s) = Nsc+Nf
(
ρf (q̂s) − ρs(q̂s)

)
. (5.25)

Some observations:

1. Observe that if we evaluate expressions (5.24) and (5.25) at the qs shown
in Figure 5.2, we have

MR(qs) = Nsρs(qs) and

MC (qs) = Nsc+Nf
(
ρf(qs) − ρs(qs)

)
.

Subtract the second equation from the first:

MR(qs) − MC (qs) = Ns(ρs(qs) − c) −Nf
(
ρf (qs) − ρs(qs)

)

= −Nf
(
ρf (qs) − ρs(qs)

)

< 0 ,

where the second equality follows because, as seen in Figure 5.2, ρs(qs) = c
(i.e., qs is the quantity that equates inverse demand and marginal cost).
Hence, provided Nf > 0, we see that the profit-maximizing second-degree
pricing scheme sells the low type (e.g., singles) less than the welfare-
maximizing quantity (i.e., there is a deadweight loss of area J − ch). In
other words, as we saw previously, there is distortion at the bottom.

2. How do we know we want the family package to have qf units? Well,
clearly we wouldn’t want it to have more—the marginal benefit we could
capture would be less than our marginal cost. If we reduced the package
size, we would be creating deadweight loss. Furthermore, because we don’t
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have to worry about singles’ buying packages intended for families (that
incentive compatibility constraint is slack) we can’t gain by creating such
a deadweight loss (unlike with the smaller package, where the deadweight
loss is offset by the reduction in the information rent enjoyed by families).
We can summarize this as there being no distortion at the top.

3. Do we know that the profit-maximizing q̂s is positive? That is, do we
know that a solution to MR = MC exists in this situation? The answer
is no. It is possible, especially if there are a lot of families relative to
singles, that it might be profit-maximizing to set q̂s = 0; that is, sell only
one package, the qf -unit package, which only families buy. This will be
the case if MR(0) ≤ MC (0). In other words, if

Ns(ρs(0) − c) −Nf
(
ρf (0) − ρs(0)

)
≤ 0 (5.26)

4. On the other hand, it will often be the case that the profit-maximizing
q̂s is positive, in which case it will be determined by equating expressions
(5.24) and (5.25).

Extended Example

Consider a cell-phone-service provider. It faces two types of customers, those
who seldom have someone to talk to (indexed by s) and those who frequently
have someone to talked to (indexed by f). Within each population, customers
are homogeneous. The marginal cost of providing connection to a cell phone is
5 cents a minute (for convenience, all currency units are cents). A member of
the s-population has demand:

ds(p) =

{
450 − 10p , if p ≤ 45
0 , if p > 45

.

A member of the f -population has demand:

df (p) =

{
650 − 10p , if p ≤ 65
0 , if p > 65

.

There are 1,000,000 f -type consumers. There are Ns s-type consumers.
What is the profit-maximizing second-degree pricing scheme to use? How

many minutes are in each package? What are the prices?
It is clear that the f types are the high types (like families in our previous

analysis). There is no distortion at the top, so we know we sell an f type the
number of minutes that equates demand and marginal cost; that is,

q∗f = df (c) = 600 .

We need to find q∗s . To do this, we need to employ expressions (5.24) and
(5.25). They, in turn, require us to know ρs(·) and ρf (·). Considering the
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regions of positive demand, we have:

qs = 450 − 10ρs(qs) and

qf = 650 − 10ρf(qf ) ;

hence,

ρs(qs) = 45 − qs
10

and

ρf (qf ) = 65 − qf
10
.

Using expression (5.24), marginal revenue from qs is, therefore,

MR(qs) = Nsρs(qs) = Ns ×
(
45 − qs

10

)
.

Marginal cost of qs (including forgone surplus extraction from the f type) is

MC(qs) = Nsc+Nf
(
ρf (qs) − ρs(qs)

)

= 5Ns + 1, 000, 000
(
65 − qf

10
− 45 +

qf
10

)

= 5Ns + 20, 000, 000 .

Do we want to shut out the s-types altogether? Employing expression (5.26),
the answer is yes if

40Ns − 20, 000, 000 < 0 ;

that is, if

Ns < 500, 000 .

So, if Ns < 500, 000, then q∗s = 0 and the price for 600 minutes (i.e., q∗f ) is
bf(600), which is

bf (600) = Area under ρf (·) from 0 to 600

=

∫ 600

0

ρf (z)dz

=

∫ 600

0

(
65 − z

10

)
dz

= 21, 000

cents or $210.
Suppose that Ns ≥ 500, 000. Then, equating MR and MC, we have

Ns ×
(
45 − qs

10

)
= 5Ns + 20, 000, 000 ;
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hence,

q∗s = 400 − 200, 000, 000

Ns
.

The low type retains no surplus, so the price for q∗s minutes is bs(q
∗
s ), which

equals the area under ρs(·) from 0 to q∗s . This can be shown (see derivation of
bf (600) above) to be

bs(q
∗
s ) = Area under ρs(·) from 0 to q∗s

=

∫ q∗s

0

(
45 − q

10

)
dq

= 45q∗s −
q∗s

2

20
.

The price charged the f types for their 600 minutes is bf (600) less their infor-
mation rent, which is the equivalent of area G′ in Figure 5.3.

Area G′ =

∫ q∗s

0

(
65 − q

45
− 45 +

q

45

)
dq = 20q∗s .

So the price charged for 600 minutes is 21, 000− 20q∗s cents ($210 − q∗s/5).
To conclude: If Ns < 500, 000, then the firm sells only a package with 600

minutes for $210. In this case, only f types buy. If Ns ≥ 500, 000, then the
firm sells a package with 600 minutes, purchased by the f types, for 210− q∗s/5
dollars; and it also sells a package with q∗s minutes for a price of bs(q

∗
s) dollars.

For example, if Ns = 5, 000, 000, then the two plans are (i) 600 minutes for
$138; and (ii) 360 minutes for $97.20.

A General Analysis 5.4
Although presented in different ways, the various forms of second-degree price
discrimination are all examples of mechanism design. As such, they can be
modeled in a general way.

Assume there is a measure of consumers, which we can take to be one without
loss of generality. Each consumer has a type, θ, where θ ∈ [θ, θ̄]. Types are dis-
tributed according to the distribution function F : [θ, θ̄] → [0, 1]. Assume F (·)
is differentiable and denote its derivative—the associated density function—by
f(·). Assume f(θ) > 0 for all θ ∈ [θ, θ̄] (i.e., f(·) has full support).2

A consumer’s utility is u(q, θ) + y, where y is the numeraire good and q ∈
R+ is either the quantity of the other good—the good being sold by the firm
engaging in second-degree price discrimination—or the quality of that good. In
the latter case, assume the consumer buys, at most, a single unit of the good.

2A similar analysis could be carried out with a discrete type space, but not as straightfor-
wardly.
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Assume that the marginal utility from more q is increasing with type (one can
think of this as the definition of type); specifically,

∂

∂θ

∂u(q, θ)

∂q
=
∂2u(q, θ)

∂θ∂q
> 0 (5.27)

for all q and θ.3 Assume u(0, θ) is the same regardless of type; that is, u(0, θ) =
u(0, θ′) for any θ and θ′. When q is quantity, this assumption is relatively
innocuous. It could be more of an issue when q is quality—conceivably different
types could derive different utility from the lowest-quality product. A way
around that is to imagine that a product of quality 0 is the same as not buying
the product at all. It is without further loss of generality to assume u(0, θ) = 0
for all θ.

The seller incurs a cost of c(q) to produce either a package with q units in
it or a product with quality q. Assume c′(q) > 0 for all q. For each type θ, we
can consider the seller as determining a package or product, q(θ), that it will
sell for t(θ) and that only θ-type consumers will buy. Because q(θ) and t(θ)
could equal zero, there is no loss of generality in assuming all consumers “buy”
in equilibrium (i.e., we can consider those who don’t buy as “buying” q = 0 at
price of 0).

The firm’s problem then is to choose 〈q(·), t(·)〉 to maximize profit

∫ θ̄

θ

(
t(θ) − c

(
q(θ)

))
f(θ)dθ (5.28)

subject to the constraint that consumers prefer to buy rather than not buy,

u
(
q(θ), θ

)
− t(θ) ≥ 0 for all θ , (ir)

and subject to the constraint that each type of consumer buy the package or
product intended for him,

u
(
q(θ), θ

)
− t(θ) ≥ u

(
q(θ̂), θ

)
− t(θ̂) for all θ, θ̂ . (ic)

As written, this is a difficult optimization program to solve because of the
nature of the incentive-compatibility (revelation) constraints (ic). To make
progress, we need to do some analysis. Consider two types θ1 and θ2 with
θ1 < θ2. The ic constraints imply:

u
(
q(θ1), θ1

)
− t(θ1) ≥ u

(
q(θ2), θ1

)
− t(θ2) and

u
(
q(θ2), θ2

)
− t(θ2) ≥ u

(
q(θ1), θ2

)
− t(θ1) .

As is often the case in mechanism-design problems, it is easier to work with
utilities than payments. To this end, define

v(θ) = u
(
q(θ), θ

)
− t(θ) .

3Expression (5.27) is the Spence-Mirrlees or single-crossing condition for this problem.
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v(θ) is the θ-type consumer’s equilibrium utility. Observe the utility a θ-type

consumer gets from buying the product or package intended for the θ̂-type
consumer can be written as

v(θ̂) − u
(
q(θ̂), θ̂

)
+ u
(
q(θ̂), θ

)
.

We can, therefore, write the pair of inequalities above as

v(θ1) ≥ v(θ2) − u
(
q(θ2), θ2

)
+ u
(
q(θ2), θ1

)
and

v(θ2) ≥ v(θ1) − u
(
q(θ1), θ1

)
+ u
(
q(θ1), θ2

)
.

These inequalities can be combined as

∫ θ2

θ1

∂u
(
q(θ1), z

)

∂θ
dz ≤ v(θ2) − v(θ1) ≤

∫ θ2

θ1

∂u
(
q(θ2), z

)

∂θ
dz . (5.29)

Expression (5.29) has two consequences. First, ignoring the middle term, it
implies ∫ θ2

θ1

∫ q(θ2)

q(θ1)

∂2u(q, z)

∂q∂θ
dq dz ≥ 0 .

From (5.27), we know the cross-partial derivative is everywhere positive. Given
θ1 < θ2, this means the double integral can be non-negative only if q(θ1) ≤ q(θ2).
Because θ1 and θ2 are arbitrary, we can conclude that the quantity/quality
function, q(·), is non-decreasing in type. That is, if the second-degree price
discrimination scheme is incentive compatible, then lower types cannot get more
quantity/quality than higher types.

The second consequence of (5.29) is derived as follows. By fixing one end
point (i.e., θ1 or θ2) and letting the other converge towards it, we see that v(·) is
absolutely continuous with respect to the Lebesgue measure and is, thus, almost
everywhere differentiable. This derivative is

dv(θ)

dθ
=
∂u
(
q(θ), θ

)

∂θ

almost everywhere.4 Integration reveals that

v(θ) = v(θ) +

∫ θ

θ

∂u
(
q(z), z

)

∂θ
dz . (5.30)

The analysis to this point has established (i) a necessary condition for a
second-degree price discrimination scheme to be incentive compatible is that
the quality/quantity function q(·) be non-decreasing; and (ii) another necessary

4Note the important distinction between
∂u

`

q(θ),θ
´

∂θ
and

du
`

q(θ),θ
´

dθ
. The former is the

partial derivative of u with respect to to second argument evaluated at
`

q(θ), θ
´

, while the
latter is the total derivative of u.
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condition for incentive compatibility is that (5.30) hold. The latter is equivalent,
recalling the definition of v(·), to saying the payment function must satisfy

t(θ) = tL + u
(
q(θ), θ

)
−
∫ θ

θ

∂u
(
q(z), z

)

∂θ
dz , (5.31)

where tL = −v(θ) is a constant.
It turns out that (i) and (ii) are also sufficient conditions, which means,

given our initial assumptions, that we can restrict attention without loss to
pricing schemes in which q(·) is non-decreasing and t(·) is given by (5.31).

Proposition 8 Under the assumptions of this section, a second-degree price
discrimination scheme 〈q(·), t(·)〉 is incentive compatible if and only if t(·) is as
stated in expression (5.31) and q(·) is non-decreasing.

Proof: Necessity was established in the text. Consider a second-degree price-
discrimination scheme that satisfies (5.31) (equivalently, (5.30)) and has q(·)
non-decreasing. We need to establish that such a scheme induces a type-θ
consumer to prefer to purchase q(θ) at t(θ) than to pursue another option. His
utility if he purchases q(θ′) at t(θ′), θ′ > θ, is

u
(
q(θ′), θ

)
− t(θ′)

= −tL + u
(
q(θ′), θ

)
− u
(
q(θ′), θ′

)
+

∫ θ

θ

∂u
(
q(z), z

)

∂θ
dz +

∫ θ′

θ

∂u
(
q(z), z

)

∂θ
dz

= u
(
q(θ), θ

)
− t(θ) −

∫ θ′

θ

(
∂u
(
q(θ′), z

)

∂θ
− ∂u

(
q(z), z

)

∂θ

)
dz

= v(θ) −
∫ θ′

θ

∫ q(θ′)

q(z)

∂2u
(
q, z
)

∂q∂θ
dqdz ≤ v(θ) ,

where the third line follows from the second by adding and subtracting u
(
q(θ), θ

)
,

the definition of t(θ), and recognizing that

u
(
q(θ′), θ

)
− u
(
q(θ′), θ′

)
= −

∫ θ′

θ

∂u
(
q(θ′), z

)

∂θ
dz ;

the final inequality follows because q(·) is non-decreasing, so the direction of
integration in the inner integral of the fourth line is the positive direction and,
by (5.27), the function being integrated is positive. Because we established

u
(
q(θ′), θ

)
− t(θ′) ≤ v(θ) ,

we have shown that the mechanism is incentive compatible insofar as a type
θ would not choose a package/product intended for a higher type. Exercise:
finish the proof of sufficiency for the case θ′ < θ.
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In light of Proposition 8, the firm’s problem is to choose 〈q(·), t(·)〉 to max-
imize (5.28) subject to (ir) and q(·) non-decreasing with t(·) being given by
(5.31). It is again easier to work with v(·) than t(·), where v(·) is given by
(5.30). This makes the firm’s problem:

max
〈q(·),v(·)〉

∫ θ̄

θ

(
u
(
q(θ), θ

)
−
∫ θ

θ

∂u
(
q(z), z

)

∂θ
dz − v(θ)

︸ ︷︷ ︸
−v(θ)︸ ︷︷ ︸

t(θ)

−c
(
q(θ)

))
f(θ)dθ (5.32)

subject to

v(θ) ≥ 0 ∀θ (5.33)

and

q(·) non-decreasing (5.34)

Observe that

u
(
q(θ), θ

)
− c
(
q(θ)

)
≡ w

(
q(θ), θ

)

is the welfare generated by trade with a type-θ consumer. Comparing that
expression with (5.32), we see that the firm’s objective is quite different than
welfare maximization. Consequently, as will be verified below, we should not
expect the firm’s choice of a second-degree price-discrimination scheme to max-
imize welfare.

Using the above definition of w(·, ·), the firm’s objective function can be
rewritten as

∫ θ̄

θ

(
w
(
q(θ), θ

)
−
∫ θ

θ

∂u
(
q(z), z

)

∂θ
dz

)
f(θ)dθ − v(θ)

=

∫ θ̄

θ

(
w
(
q(θ), θ

)
− 1 − F (θ)

f(θ)

∂u
(
q(θ), θ

)

∂θ

)
f(θ)dθ − v(θ) , (5.35)

where the second line follows from integration by parts. The expression

1 − F (θ)

f(θ)
(5.36)

is the multiplicative inverse of the hazard rate (this inverse is sometimes called
the Mills ratio). Many distributions have the property that their hazard rate
is non-decreasing (among these distributions are the uniform, the normal, and
the exponential). If the hazard rate is non-decreasing, then expression (5.36) is
non-increasing in θ. We give a name to this property:
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Assumption 1 (MHRP) Assume the hazard rate associated with the distri-
bution of types exhibits the monotone hazard rate property, which is to say it is
a non-decreasing function.

We will assume, henceforth, that F (·) satisfies the mhrp; that is, that expression
(5.36) is non-increasing in θ.

Lemma 6 The function u(q, ·) is increasing for q > 0.

Proof: From (5.27)
∂u(q, θ′)

∂q
>
∂u(q, θ)

∂q

for all q whenever θ′ > θ. Hence,
∫ q

0

(
∂u(z, θ′)

∂q
− ∂u(z, θ)

∂q

)
dz > 0

for all q. Hence,

0 <
(
u(q, θ′) − u(q, θ)

)
−
(
u(0, θ′) − u(0, θ)

)
= u(q, θ′) − u(q, θ) ,

where the equality follows because, recall, we assumed u(0, θ) = 0 for all θ.
In light of Lemma 6, we have ∂u(q, θ)/∂θ > 0 for all q > 0. Consequently, from
(5.30), we have v(θ) ≥ v(θ) for all θ > θ. This means that if the ir constraint is
satisfied for type θ it is satisfied for all types. Because, from (5.35), the firm’s
profits are decreasing in v(θ), the firm wants to make v(θ) as small as possible.
Given the ir constraint, this means that the firm sets v(θ) = 0.

Corollary 2 Optimally, the firm sets v(θ) = 0. The ir constraint is met for
all types.

Observe this portion of the analysis reveals that the lowest type keeps no con-
sumer surplus; a result that is consistent with our analysis in earlier sections.

Having set v(θ) = 0, the firm’s problem boils down to maximizing (5.35)
subject to the constraint that q(·) be non-decreasing. In general, this is an
optimal-control problem. Fortunately, in many contexts, the problem can be
solved simply by maximizing (5.35) pointwise; that is, solve

max
q
w
(
q, θ
)
− 1 − F (θ)

f(θ)

∂u
(
q, θ
)

∂θ
. (5.37)

Provided the solutions yield a non-decreasing q(·), we’re done. Observe, except
when θ = θ̄ (and, thus, 1 − F (θ) = 0), the solution to (5.37) will not maximize
welfare. In particular, from the Spence-Mirrlees condition—that is, expression
(5.27)—we know that derivative of (5.37) lies below the derivative of w(·, θ) for
all θ < θ̄; hence, the solution to (5.37) will be less than the welfare-maximizing
solution. To conclude:

Proposition 9 The quantity/quality provided the highest type is the welfare-
maximizing amount (no distortion at the top). For all other types, however, the
quantity/quality provided is less than the welfare-maximizing amount (downward
distortion below the top).
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A quantity-discount example

Suppose that c(q) = cq, c > 0, and u(q, θ) = θ log(q + 1). Observe the welfare-
maximizing package for a type-θ consumer is (θ − c)/c. Suppose that types are
distributed uniformly from c + γ to c + γ + 1, γ ≥ 0. Observe f(θ) = 1 and
1 − F (θ) = c+ γ + 1 − θ. Expression (5.37) is, thus,

θ log(q+1)−cq−(c+γ+1−θ) log(q+1) = 2θ log(q+1)−cq−(c+γ+1) log(q+1)

The maximum is

q(θ) =

{
0 , if θ ≤ c+ γ+1

2

2θ−2c−γ−1
c

, if θ > c+ γ+1
2

.

Because q(·) is non-decreasing, this is indeed the optimum for the firm. From
(5.31) we have

t(θ) = θ log
(
q(θ) + 1

)
−
∫ θ

c+γ

log
(
q(z) + 1

)
dz

Some observations, if γ < 1, then some types are shut out of the market;
that is, the firm does not offer a package that the lowest types wish to purchase.

If we assume c = γ = 1, then all types except θ = 2 are served; the size of
their package is 2θ − 4. A type-θ consumer pays

θ − 2 +
3

2
log(2θ − 3) .

Dividing the price of each package by its quantity (i.e., calculating t(θ)/q(θ))
we get

1

2
+

3 log(2θ − 3)

4θ − 8
. (5.38)

It is readily verified that (5.38) is a decreasing function of θ; that is, there are
quantity discounts.

A quality-distortion example

Suppose that the cost of a product with quality q is q2/2. Suppose types are
distributed uniformly on [1, 2]. Finally, suppose that u(q, θ) = θq. It is readily
checked that the welfare-maximizing quality to offer a type-θ consumer is q = θ.
The firm’s problem, expression (5.37), is

max
q
θq − q2

2
− (2 − θ)q ≡ max

q
2(θ − 1)q − q2

2
.

The solution is q(θ) = 2(θ−1), which is increasing in θ and, thus, a valid solution.
Observe that type 1 is just shut out (i.e., q(1) = 0). Note there is downward
distortion, except at the top: 2(θ−1) < θ for all θ < 2 and 2(θ−1) = θ if θ = 2.
From (5.31),

t(θ) = θ
(
2(θ − 1)

)
−
∫ θ

1

2(z − 1)dz = θ2 − 1 .
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Purpose

Our purpose is to consider the problem of hidden information; that is, a game
between two economic actors, one of whom possesses mutually relevant informa-
tion that the other does not. This is a common situation: The classic example—
covered in the previous part of these lecture notes—being the “game” between
a monopolist, who doesn’t know the consumer’s willingness to pay, and the
consumer, who obviously does. Within the realm of contract theory, relevant
situations include a seller who is better informed than a buyer about the cost
of producing a specific good; an employee who alone knows the difficulty of
completing a task for his employer; a divisional manager who can conceal infor-
mation about his division’s investment opportunities from headquarters; and a
leader with better information than her followers about the value of pursuing
a given course of action. In each of these situations, having private informa-
tion gives the player possessing it a potential strategic advantage in his dealings
with the other player. For example, consider a seller who has better information
about his costs than his buyer. By behaving as if he had high costs, the seller
can seek to induce the buyer to pay him more than she would if she knew he
had low costs. That is, he has an incentive to use his superior knowledge to
capture an “information rent.” Of course, the buyer is aware of this possibility;
so, if she has the right to propose the contract between them, she will propose
a contract that works to reduce this information rent. Indeed, how the con-
tract proposer—the principal—designs contracts to mitigate the informational
disadvantage she faces will be a major focus of this part of the lecture notes.

Bibliographic Note

This part of the lecture notes draws heavily from a set of notes that I co-authored
with Bernard Caillaud.

Not surprisingly, given the many applications of the screening model, this
coverage cannot hope to be fully original. The books by Laffont and Tirole
(1993) and Salanié (1997) include similar chapters. Surveys have also appeared
in journals (e.g., Caillaud et al., 1988). Indeed, while there are idiosyncratic
aspects to the approach pursued here, the treatment is quite standard.
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The Basics of
Contractual

Screening 6
Let us begin by broadly describing the situation in which we are interested. We
shall fill in the blanks as we proceed through this reading.

• Two players are involved in a strategic relationship; that is, each player’s
well being depends on the play of the other player.

• One player is better informed (or will become better informed) than the
other; that is, he has private information about some state of nature
relevant to the relationship. As is typical in information economics, we
will refer to the player with the private information as the informed player
and the player without the private information as the uninformed player.

• Critical to the analysis of these situations is the bargaining game that
determines the contract. Call the contract proposer the principal and
call the player who receives the proposal the agent. Moreover, assume
contracts are proposed on a take-it-or-leave-it (tioli) basis: The agent’s
only choices are to accept or reject the contract proposed by the principal.
Rejection ends the relationship between the players. A key assumption
is that the principal is the uninformed player. Models like this, in which
the uninformed player proposes the contract, are referred to as screening
models. In contrast, were the informed player the contract proposer, we
would have a type of signaling model.

• A contract can be seen as setting the rules of a secondary game to be
played by the principal and the agent.

The asymmetry of information that exists in this game results because prior
experience or expertise, location, or other factors give the agent free access to
information about the state of nature; while the absence of expertise, different
experience or location, or other factors exclude the principal from this infor-
mation (make it prohibitively expensive for her to acquire it). For example,
past jobs may tell a seller how efficient he is—and thus what his costs will be—
while ignorance of these past jobs means the buyer has a less precise estimate
of what his costs will be. The reason for this asymmetry of information is taken
to be exogenous. In particular, the informed player is simply assumed to be
endowed with his information. Here, note, only one player is better informed;
that is, we are ruling out situations where each player has his or her own private
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information.1

Given this information structure, the two parties interact according to some
specified rules that constitute the extensive form of a game. In this two-person
game, the players must contract with each other to achieve some desired out-
come. In particular, there is no ability to rely on some exogenously fixed and
anonymous market mechanism. My focus will be on instances of the game where
the informed player can potentially benefit from his informational advantage
(e.g., perhaps inducing a buyer to pay more for a good than necessary because
she fears the seller is high cost). But, because the informed player doesn’t have
the first move—the uninformed player gets to propose the contract—this infor-
mational advantage is not absolute: Through her design of the contract, the
uninformed player will seek to offset the informed player’s inherent advantage.

1Put formally, the uninformed player’s information partition is coarser than the informed
player’s information partition.



The Two-type
Screening Model 7

I will begin to formalize these ideas in as simple a model as possible, namely
the two-type model. In the two-type model, the state of nature can take one of
two possible values. As is common in this literature, I will refer to the realized
state of nature as the agent’s type. As there are only two possible states, the
agent can have one of just two types.

Before proceeding, however, it needs to be emphasized that such simplicity
in modeling is not without cost. The two-type model is “treacherous,” in so
far as it may suggest conclusions that seem general, but which are not. For
example, the conclusion that we will shortly reach with this model that the
optimal contract implies distinct outcomes for distinct states of nature—a result
called separation—is not as general as it may seem. Moreover, the assumption
of two types conceals, in essence, a variety of assumptions that must be made
clear. It similarly conceals the richness of the screening problem in complex,
more realistic, relationships. Few economic prescriptions and predictions should
be reached from considering just the two-type model. Keeping this admonition
in mind, we now turn to a simple analysis of private procurement in a two-type
model.

A simple two-type screening
situation 7.1

A large retailer (the principal) wishes to purchase units of some good for resale.
Assume its size gives it all the bargaining power in its negotiations with the one
firm capable of supplying this product (the agent). Let x ∈ R+ denote the units
of this good and let r (x) denote the retailer’s revenues from x units.1 Assume
that r (·) is strictly concave and differentiable everywhere. Assume, too, that
r′ (0) > 0. (Because r (·) is a revenue function, r (0) = 0.)

The retailer is uncertain about the efficiency of the supplier. In particular,
the retailer knows an inefficient supplier has production costs of CI (x), but
an efficient supplier has production costs of CE (x). Let the retailer’s prior
belief be that the supplier is inefficient with probability f , where—reflecting its
uninformed status—0 < f < 1. The supplier, in contrast, knows its type; that
is, whether it is efficient or not.

1For convenience, assume that the retailer incurs no costs other than those associated with
acquiring the x units from the supplier. Alternatively, one could simply imagine that these
other costs have been subtracted from revenues, so that r (x) is profit gross of the cost of
purchasing the x units.
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Assume Ct (·) is increasing, everywhere differentiable, and convex for both
types, t. (Because Ct (·) is a cost function, we know Ct (0) = 0.) Consistent with
the ideas that the two types correspond to different levels of efficiency, we assume
C′
I (x) > C′

E (x) for all x > 0—the inefficient type’s marginal-cost schedule lies
above the efficient type’s. Observe, necessarily then, that CI (x) > CE (x) for
all x > 0.

The retailer and the supplier have to agree on the quantity, x, of the good
to trade and on a payment, s, for this total quantity. Please note that s is
not the per-unit price, but the payment for all x units. Profits for retailer and
supplier are, then, r(x) − s and s − Ct(x) respectively. The retailer makes a
take-it-or-leave-it offer, which the supplier must either accept or refuse. If the
supplier refuses the offer, there is no trade and each firm’s payoff from this
“transaction” is zero. This outcome, no agreement, is equivalent to agreeing to
trade 0 units for a 0 payment. Hence, it is without loss of generality to assume
that the parties must reach some agreement in equilibrium.

We begin our analysis with the benchmark case of symmetric or full infor-
mation. That is, for the moment, assume the retailer knew the supplier’s type
(i.e., f = 0 or f = 1). We may immediately characterize the Pareto optimal
allocation: xFt units are traded, where

xFt = arg max
x≥0

{r(x) − Ct(x)} .

Because the problem is otherwise uninteresting if trade is never desirable, as-
sume that r′(0) > C′

E(0) so that, with an efficient supplier at least, some trade is
desirable. Pareto optimality, also referred to as ex post efficiency , then reduces
to

r′(xFE) = C′
E(xFE) and

[
r′
(
xFI
)
− C′

I

(
xFI
)]
xFI = 0

(where we take the larger non-negative root of the second equation). As it
is optimal to produce a greater amount when marginal costs are lower, our
assumptions about C′

t (·) imply 0 ≤ xFI < xFE . In making its contract offer, the
retailer sets x = xFt and it offers a payment, sFt , no larger than necessary to
induce the supplier to accept; that is, sFt satisfies

sFt − Ct(x
F
t ) = 0.

Contracts under Incomplete
Information 7.2

This symmetric-information (benchmark) solution collapses when the retailer is
uninformed about the state of nature. To see why, suppose that the retailer
offered the supplier its choice of

〈
xFE , s

F
E

〉
or
〈
xFI , s

F
I

〉
with the expectation that

the supplier would choose the one appropriate to its type (i.e., the first contract
if it were efficient and the second if it were not). Observe that the retailer is
relying on the supplier to honestly disclose its type. Suppose, moreover, that
the true state of nature is E. By truthfully revealing that the state of nature
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is E, the supplier would just be compensated for its cost of supplying xFE units;
that is, it would earn a profit of sFE − CE(xFE) = 0. On the other hand, if the
supplier pretends to have high costs—claims the state of nature is I—it receives
compensation sFI , while incurring cost CE(xFI ) for supplying xFI units. This
yields the supplier a profit of

sFI − CE
(
xFI
)

=

CI(x
F
I ) − CE(xFI ) > 0

(recall sFI = CI
(
xFI
)
). Clearly, then, the efficient-type supplier cannot be relied

on to disclose its type honestly.
This difference or profit, CI(x

F
I )−CE(xFI ), which motivates the supplier to

lie, is called an information rent. This is a loss to the retailer but a gain to
the supplier. There is, however, an additional loss suffered by the retailer that
is not recaptured by the supplier: Lying means inefficiently little is produced;
that is, a real deadweight loss of

[
r
(
xFE
)
− CE

(
xFE
)]

−
[
r
(
xFI
)
− CE

(
xFI
)]

is suffered.
Given this analysis, it would be surprising if the retailer would be so näıve as

to rely on the supplier to freely reveal its type. In particular, we would expect
the retailer to seek a means of improving on this ex post inefficient outcome by
devising a more sophisticated contract. What kind of contracts can be offered?
Because the retailer does not know the supplier’s level of efficiency, it may want
to delegate the choice of quantity to the supplier under a payment schedule that
implicitly rewards the supplier for not pretending its costs are high when they
are truly low. This payment schedule, S(·), specifies what payment, s = S(x),
is to be paid the supplier as a function of the units, x, it chooses to supply.
Wilson (1993) provides evidence that such payment schedules are common in
real-world contracting.

If the supplier accepts such a contract, the supplier’s choice of quantity, xt,
is given by

xt ∈ arg max
x≥0

{S(x) − Ct(x)} . (7.1)

Assume for the moment that this program has a unique solution. Let ut denote
the value of this maximization program and let st = S(xt) be the supplier’s
payment under the terms of the contract. By definition,

ut = st − Ct(xt).

Observe that this means we can write the equilibrium payment, st, as

st = ut + Ct (xt) .

Define
R (·) = CI (·) − CE (·)
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as the information-rent function. Our earlier assumptions imply that R (·) is
positive for x > 0, zero for x = 0, and strictly increasing.

Revealed preference in the choice of x necessarily implies the following about
xI and xE :

uE = sE − CE(xE) ≥ sI − CE(xI) = uI +R(xI) (7.2)

uI = sI − CI(xI) ≥ sE − CI(xE) = uE −R(xE). (7.3)

These inequalities are referred by many names in the literature: incentive-
compatibility constraints, self-selection constraints, revelation constraints, and
truth-telling constraints. Regardless of name, they simply capture the require-
ment that (xI , sI) and (xE , sE) be the preferred choices for the supplier in states
I and E, respectively.

What can we conclude from expressions (7.2) and (7.3)? First, rewriting
them as

R(xI) ≤ uE − uI ≤ R(xE), (7.4)

we see that
xI ≤ xE , (7.5)

because R(·) is strictly increasing. Observe, too, that expression (7.2) implies
uE > uI (except if xI = 0, in which case we only know uE ≥ uI). Finally,
expressions (7.2) and (7.5) implies sE > sI (unless xE = xI , in which case (7.2)
and (7.3) imply sE = sI).

Of course the contract—payment schedule S (·)—must be acceptable to the
supplier, which means

uI ≥ 0; and (7.6)

uE ≥ 0 . (7.7)

If these did not both hold, then the contract would be rejected by one or the
other or both types of supplier. The constraints (7.6) and (7.7) are referred to
as the agent’s participation or individual-rationality constraints. They simply
state that, without any bargaining power, the supplier accepts a contract if and
only if accepting does not entail suffering a loss.

The retailer’s problem is to determine a price schedule S(·) that maximizes
its expected profit (“expected” because, recall, it knows only the probability
that a give type will be realized). Specifically, the retailer seeks to maximize

f × [r(xI ) − sI ] + (1 − f) × [r(xE) − sE ] ; or, equivalently,

f × [r(xI ) − CI (xI) − uI ] + (1 − f) × [r(xE) − CE (xE) − uE ] ,

where (xt, ut) are determined by the supplier’s optimization program (7.1) in
response to S(·).

Observe that only two points on the whole price schedule enter the retailer’s
objective function: (xI , sI) and (xE , sE); or, equivalently, (xI , uI) and (xE , uE).
The maximization of the principal’s objectives can be performed with respect to
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just these two points provided that we can recover a general payment schedule
afterwards such that the supplier would accept this schedule and choose the
appropriate point for its type given this schedule. For this to be possible, we
know that the self-selection constraints, (7.2) and (7.3), plus the participation
constraints, (7.6) and (7.7), must hold.

In fact, the self-selection constraints and the participation constraints on
(xI , sI) and (xE , sE) are necessary and sufficient for there to exist a payment
schedule such that the solution to (7.1) for type t is (xt, st). To prove this
assertion, let (xI , sI) and (xE , sE) satisfy those constraints and construct the
rest of the payment schedule as follows:

S(x) = 0 if 0 ≤ x < xI
= sI if xI ≤ x < xE
= sE if xE ≤ x,

when 0 < xI < xE .2 Given that Ct(·) is increasing in x, no supplier would
ever choose an x other than 0, xI , or xE (the supplier’s marginal revenue is
zero except at these three points). The participation constraints ensure that
(xt, st) is (weakly) preferable to (0, 0) and the self-selection constraints ensure
that a type-t supplier prefers (xt, st) to (xt′ , st′), t 6= t′. That is, we’ve shown
that faced with this schedule, the type-I supplier’s solution to (7.1) is (xI , sI)—
as required—and that the type-E supplier’s solution to (7.1) is (xE , sE)—as
required.

The retailer’s problem can thus be stated as

max
{xI ,xE ,uI ,uE}

f×[r(xI ) − CI (xI) − uI ]+(1−f)×[r(xE) − CE (xE) − uE ] (7.8)

subject to (7.2), (7.3), (7.6), and (7.7). Solving this problem using the standard
Lagrangean method is straightforward, albeit tedious. Because, however, such
a mechanical method provides little intuition, we pursue a different, though
equivalent, line of reasoning.

• One can check that ignoring the self-selection constraints (treating them
as not binding) leads us back to the symmetric-information arrangement;
and we know that at least one self-selection constraint is then violated.
We can, thus, conclude that in our solution to (7.8) at least one of the
self-selection constraints is binding.

• The self-selection constraint in state E implies that: uE ≥ R(xI) + uI ≥
uI . Therefore, if the supplier accepts the contract in state I, it will also
accept it in state E. We can, thus, conclude that constraint (7.7) is slack
and can be ignored.

• It is, however, the case that (7.6) must be binding at the optimum: Sup-
pose not, then we could lower both utility terms uL and uH by some

2If xI = 0, then sI = 0. If xI = xE , then sI = sE .
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ε > 0 without violating the participation constraints. Moreover, given the
two utilities have been changed by the same amount, this can’t affect the
self-selection constraints. But, from (7.8), lowering the utilities raises the
principal’s profits—which means our “optimum” wasn’t optimal.

• Using the fact that (7.6) is binding, expression (7.4)—the pair of self-
selection constraints—reduces to

R(xI) ≤ uE ≤ R(xE).

Given a pair of quality levels (xI , xE), the retailer wants to keep the
supplier’s rent as low as possible and will, therefore, choose to pay him
the smallest possible information rent; that is, we can conclude that uE =
R(xI). The self-selection constraint (7.2) is, thus, slack, provided the
necessary monotonicity condition (7.5) holds.

Plugging our findings, uI = 0 and uE = R(xI), into the retailer’s objectives
yields the following reduced program:

max
{(xI ,xE)| xI≤xE}

{f × [r(xI ) − CI(xI)] + (1 − f) × [r(xE) − CE(xE) −R(xI)]} .

The solution is

xE = xFE = argmax
x≥0

{r(x) − CE(x)} (7.9)

xI = x∗I(f) ≡ arg max
x≥0

{
r(x) − CI(x) −

1 − f

f
R(x)

}
. (7.10)

The only step left is to verify that the monotonicity condition (7.5) is satisfied
for these values. If we consider the last two terms in the maximand of (7.10)
to be cost, we see that the effective marginal cost of output from the inefficient
type is

C′
I (x) +

1 − f

f
R′ (x) > C′

I (x) > C′
E (x)

for x > 0.3 The greater the marginal-cost schedule given a fixed marginal-
revenue schedule, the less is traded; that is, it must be that x∗I(f) < xFE—the
monotonicity condition (7.5) is satisfied.

It is worth summarizing the nature and properties of the optimal price sched-
ule for the retailer to propose:

Proposition 10 The optimal (non-linear) payment schedule for the principal
induces two possible outcomes depending upon the state of nature such that:

• the supplier trades the ex post efficient quantity, xFE, when it is an efficient
producer, but trades less than the efficient quantity when it is an inefficient
producer (i.e., x∗I(f) < xFI );

3Because xF
E

> 0, this is the relevant domain of output to consider.
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• an inefficient supplier makes no profit (uI = 0), but an efficient supplier
earns an information rent of R [x∗I(f)];

• the revelation constraint is binding in state E, slack in state I;

• the participation constraint is binding in state I, slack in state E;

• x∗I(f) and R [x∗I(f)] are non-decreasing in the probability of drawing an
inefficient producer (i.e., are non-decreasing in f);

• and, finally, limf↓0 x∗I(f) = 0, limf↑1 x∗I(f) = xFI , limf↓0R [x∗I(f)] = 0,
and limf↑1R [x∗I(f)] = R(xFI ).

To see that the last two points hold, note first that the effective marginal cost
of production from an inefficient supplier,

C′
I (x) +

1 − f

f
R′ (x) ,

is falling in f . By the usual comparative statics, this means that x∗I (f) is non-
decreasing. Since R (·) is an increasing function, R [x∗I(f)] must be similarly
non-decreasing. As f ↓ 0, this effective marginal cost tends to +∞ for x > 0,
which means the optimal level of trade falls to zero. As f ↑ 1, this effective
marginal cost tends to the symmetric-information marginal cost, hence x∗I (f)
tends to the symmetric-information level, xFI .

Intuition for these results can be gained from Figure 7.1. This figure shows
one indifference curve for an inefficient (type-I) supplier and three indifference
curves for an efficient (type-E) supplier in output-payment space. The type-I
indifference curve is that type’s zero-profit curve (hence, by necessity, it passes
through the origin). Correspondingly, the lowest and darkest of the type-E
indifference curves is that type’s zero-profit curve. The faint dash-dot lines
are iso-profit curves for the retailer (to minimize clutter in the figure, they’re
sketched as straight lines, but this is not critical for what follows). Observe
that an iso-profit curve is tangent to type-I’s zero-profit indifference curve at
point A. Likewise, we have similar tangency for type-E at point B. Hence—
under symmetric information—points A and B would be the contracts offered.
Under asymmetric information, however, contract B is not incentive compatible
for type-E: Were it to lie and claim to be type-I (i.e., move to point A),
then it would be on a higher (more profitable) indifference curve (the highest
of its three curves). Under asymmetric information, an incentive compatible
pair of contracts that induce the symmetric-information levels of trade are A
and C. The problem with this solution, however, is that type-E earns a large
information rent, equal to the distance between B and C. The retailer can reduce
this rent by distorting downward the quantity asked from a type-I supplier. For
example, by lowering quantity to x∗I (f), the retailer significantly reduces the
information rent (it’s now the distance between B and E). How much distortion
in quantity the retailer will impose depends on the likelihood of the two types.
When f is small, the expected savings in information rent is large, while the
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Figure 7.1: The symmetric-information contracts, points A and B, are not in-
centive compatible. The symmetric-information quantities, xFE and
xFI , are too expensive because of the information rent (the distance
from B to C). Consequently, with asymmetric information, the prin-
cipal trades off a distortion in type-I ’s output (from xFI to x∗I(f)) to
reduce type-E’s information rent (from BC to BE).

expected cost of too-little output is small, so the downward distortion in type-
I’s output is big. Conversely, when f is large, the expected savings are small
and the expected cost is large, so the downward distortion is small. The exact
location of point D is determined by finding where the expected marginal cost
of distorting type-I’s output, f × [r′ (xI) − C′

I (xI)], just equals the expected
marginal reduction in type-E’s information rent, (1 − f) ×R′ (xI).

From Figure 7.1, it is clear that the retailer loses from being uninformed
about the supplier’s type: Point D lies on a worse iso-profit curve than does point
A and point E lies on a worse iso-profit curve than does point B.4 Put another
way, if the retailer draws a type-I supplier, then it gets a non-optimal (relative
to symmetric information) quantity of the good. While if it draws a type-E
supplier, then it pays more for the optimal quantity (again, relative to symmetric
information). Part—but only part—of the retailer’s loss is the supplier’s gain.
In expectation, the supplier’s profit has increased by (1 − f)R [x∗I (f)]. But part
of the retailer’s loss is also deadweight loss: Trading x∗I (f) units instead of xFI

4Since the retailer likes more output (in the relevant range) and smaller payments to the
supplier, its utility (profits) are greater on iso-profit curves toward the southeast of the figure
and less on iso-profit curves toward the northwest.
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units is simply inefficient. In essence, our retailer is a monopsonist and, as is
typical of monopsony, there is a deadweight loss.5 Moreover, the deadweight
loss arises here for precisely the same reason it occurs in monopsony: Like a
monopsonist, our retailer is asking the payment (price) schedule to play two
roles. First, it asking it to allocate goods and, second, it is asking it to preserve
its rents from having all the bargaining power. Since only the first role has
anything to do with allocative efficiency, giving weight to the second role can
only create allocative inefficiency. As often happens in economics, a decision
maker has one instrument—here, the payment schedule—but is asking it to
serve multiple roles. Not surprisingly then, the ultimate outcome is less than
first best (recall our discussion of the two-instruments principle page 28).

Because the first best is not achieved, it is natural to ask whether the retailer
could improve on the outcome in Proposition 10 by using some more sophisti-
cated contract? The answer is no and the proof is, as we will see later, quite
general. Whatever sophisticated contract the retailer uses, this contract will
boil down to a pair of points, (xI , sI) and (xE , sE), once it is executed; that is,
a final quantity traded and a final payment for each possible state of nature.
Consequently, whatever complicated play is induced by the contract, both par-
ties can see through it and forecast that the equilibrium outcomes correspond to
these two points. Moreover, by mimicking the strategy it would play in state t,
the supplier can generate either of the two outcomes regardless of the true state.
In addition, if it can’t profit from (xt, st) in state t, it can simply not participate.
Necessary equilibrium conditions are, then, that the supplier choose (xt, st) in
state t rather than (xt′ , st′), t 6= t′, and that it choose to participate anticipat-
ing that it will choose (xt, st) in state t. But these are precisely the revelation
and participation constraints (7.2), (7.3), (7.6), and (7.7). Therefore, whatever
the contractual arrangement, the final outcome can always be generated by a
simple (non-linear) payment schedule like the one derived above. We’ve, thus,
established that the outcome described in Proposition 10 cannot be improved
on by using more sophisticated or alternative contracts.6

Finally, note that we don’t need an entire payment schedule, S (·). In partic-
ular, there is a well-known alternative: a direct-revelation contract (mechanism).
In a direct-revelation contract, the retailer commits to pay the supplier sE for
xE or sI for xI depending on the supplier’s announcement of its type. Failure
by the supplier to announce its type (i.e., failure to announce a t̂ ∈ {E, I}) is
equivalent to the supplier rejecting the contract. Finally, if, after announcing
its type, the supplier produces a quantity other than xt̂, the supplier is pun-
ished (e.g., paid nothing). It is immediate that this direct-revelation contract is
equivalent to the optimal payment schedule derived above. It is also simpler, in

5Monopsony is a situation in which the buyer has all the market power (in contrast to
monopoly, in which the seller has all the market power).

6This is not to say that another contract couldn’t do as well. This is rather obvious: For
instance, suppose S̃ (x) = 0 for all x except xE and xI , where it equals sE or sI , respectively.
We’ve merely established that no other contract can do strictly better than the S (·) derived
in the text.
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that it only deals with the relevant part of the payment schedule. Admittedly,
it is not terribly realistic,7 but as this discussion suggests we can transform a
direct-revelation contract into a more realistic contract (indeed, we will formal-
ize this below in Proposition 12). More importantly, as we will see, in terms of
determining what is the optimal feasible outcome, there is no loss of generality
in restricting attention to direct-revelation contracts.

7Although see Gonik (1978) for a real-life example of a direct-revelation mechanism.



General Screening
Framework 8

The two-type screening model yielded strong results. But buried within it is a
lot of structure and some restrictive assumptions. If we are really to use the
screening model to understand economic relationships, we need to deepen our
understanding of the phenomena it unveils, the assumptions they require, and
the robustness of its conclusions. Our approach in this section is, thus, to start
from a very general formalization of the problem and to motivate or discuss the
assumptions necessary for making this model “work.”

A principal and an agent are involved in a relationship that can be charac-
terized by an allocation x ∈ X and a real-valued monetary transfer s ∈ S ⊂ R

between the two players. A transfer-allocation pair, (x, s), is called an outcome.
The space of possible allocations, X , can be quite general: Typically, as in our
analysis of the retailer-supplier problem, it’s a subspace of R; but it could be
another space, even a multi-dimensional one. In what follows, we assume that
outcomes are verifiable.

The agent’s information is characterized by a parameter θ ∈ Θ. As before,
we’ll refer to this information as the agent’s type. The type space, Θ, can
be very general. Typically, however, it is either a discrete set (e.g., as in the
retailer-supplier example where we had Θ = {I, E}) or a compact interval in R.
Nature draws θ from Θ according to a commonly known probability distribution.
While the agent learns the value of θ perfectly, the principal only knows that it
was drawn from the commonly known probability distribution.

Both players’ preferences are described by von Neumann-Morgenstern utility
functions, W(x, s, θ) for the principal and U(x, s, θ) for the agent, where both
are defined over X ×S×Θ. Because we interpret s as a transfer from the
principal to the agent, we assume that U increases in s, while W decreases in s.
For convenience, we assume these utility functions are smooth; more precisely,
that they are three-times continuously differentiable.1

To have a fully general treatment, we need to extend this analysis to allow
for the possibility that the actual outcome is chosen randomly from X ×S. To
this end, let σ denote a generic element of the set of probability distributions,
∆
(
X ×S

)
, over the set of possible outcomes, X ×S. We extend the utility

functions to ∆
(
X ×S

)
through the expectation operator:

W(σ, θ) ≡ Eσ [W(x, s, θ)] and U(σ, θ) ≡ Eσ [U(x, s, θ)] .

1One could relax this smoothness assumption, but the economic value of doing so is too
small to warrant time on this issue.

75



76 Lecture Note 8: General Screening Framework

Table 8.1: The Retailer-Supplier Example in our General Notation
Description General Notation Specific Value

Allocation space X R+

Transfer space S R

Outcome function σ All mass on (x, S (x))
Principal’s strategy space M {pay S (x)}
Agent’s strategy space N X = R+

By adding an element to X if necessary, we assume that there exists a no-
trade outcome (x0, 0); that is, (x0, 0) is the outcome if no agreement is reached
(e.g., in the retailer-supplier example this was (0, 0)). The values of both W
and U at this no-agreement point play an important role in what follows, so we
give them special notation:

WR(θ) ≡ W (x0, 0, θ) and UR(θ) ≡ U (x0, 0, θ) .

These will be referred to as the reservation utilities of the players (alternatively,
their individual-rationality payoffs). Obviously, an agent of type θ accepts a
contract if and only if his utility from doing is not less than UR (θ).

It is convenient, at this stage, to offer a formal and general definition of what
a contract is:

Definition 1 A contract in the static contractual screening model is a game
form, 〈M,N , σ〉, to be played by the principal and the agent, M denotes the
agent’s strategy set, N the principal’s strategy set, and σ an outcome function
that maps any pair of strategies (m,n) to a probability mapping on X ×S. That
is, σ : M×N → ∆

(
X ×S

)
.

To make this apparatus somewhat more intuitive, consider Table 8.1, which
“translates” our retailer-supplier example into this more general framework.
Observe that, in the example, the contract fixes a trivial strategy space for the
principal: She has no discretion, she simply pays S (x).2 Moreover, there is no
randomization in that example: σ simply assigns probability one to the pair
(x, S (x)). As this discussion suggests, generality in notation need not facilitate
understanding—the generality contained here is typically greater than we need.
Fortunately, we will be able to jettison much of it shortly.

A direct mechanism is a mechanism in which M = Θ; that is, the agent’s
action is limited to making announcements about his type. The physical con-
sequences of this announcement are then built into the outcome function, σ.

2We could, alternatively, expand her strategy space to S—she can attempt to pay the agent
whatever she wants. But, then, the outcome function would have to contain a punishment for
not paying the agent appropriately: That is, σ (x, s) = (x, S (x)) if s = S (x) and equals (x,∞)
if s 6= S (x) (where ∞ is shorthand for some large transfer sufficient to deter the principal
from not making the correct payment).
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For instance, as we saw at the end of the previous section, we can translate
our retailer-supplier contract into a direct mechanism: M = {E, I}, N is a
singleton (so we can drop n as an argument of σ), and

σ (m) =

{
(xI , sI) = (x∗I (f) , CI [x∗I (f)]) if m = I
(xE , sE) =

(
xFE , R [x∗I (f)] + CE

(
xFE
))

if m = E
.

A direct-revelation mechanism (alternatively, a direct truthful mechanism) is a
direct mechanism where it is an equilibrium strategy for the agent to tell the
truth: Hence, if m (·) : Θ → Θ is the agent’s strategy, we have m(θ) = θ in
equilibrium for all θ ∈ Θ. That is, for any θ and θ′ in Θ,

U(σ (m [θ]) , θ) ≥ U (σ (m [θ′]) , θ) .

Note that not every direct mechanism will be a direct-revelation mechanism.
Being truthful in equilibrium is a property of a mechanism; that is, it depends
on σ (·).

Observe that the design of a contract means choosing M, N , and σ. In
theory, the class of spaces and outcome functions is incomprehensibly large.
How can we find the optimal contract in such a large class? Indeed, given the
inherent difficulties in even characterizing such a large class, how can we ever
be sure that we’ve found the optimal contract? Fortunately, two simple, yet
subtle, results—the revelation principle and the the taxation principle—allow
us to avoid these difficulties.3 From the revelation principle, the search for on
optimal contract reduces without loss of generality to the search for the optimal
direct-revelation mechanism. Moreover, if the outcome in the direct-revelation
mechanism is a deterministic function of the agent’s announcement, then, from
the taxation principle, we may further restrict attention to a payment schedule
that is a function of the allocation x (as we did in the retailer-supplier example).

Proposition 11 (The Revelation Principle)4 For any general contract (M,
N , σ) and associated Bayesian equilibrium, there exists a direct-revelation mech-
anism such that the associated truthful Bayesian equilibrium generates the same
equilibrium outcome as the general contract.

Proof: The proof of the revelation principle is standard but informative. A
Bayesian equilibrium of the game (M,N , σ) is a pair of strategies (m(·), n).5

Let us consider the following direct mechanism: σ̂(·) = σ(m(·), n). Our claim is

3It is unfortunate that these two fundamental results are called principles, since they
are not, as their names might suggest, premises or hypotheses. They are, as we will show,
deductive results.

4The revelation principle is often attributed to Myerson (1979), although Gibbard (1973)
and Green and Laffont (1977) could be identified as earlier derivations. Suffice it to say
that the revelation principle has been independently derived a number of times and was a
well-known result before it received its name.

5Observe that the agent’s strategy can be conditioned on θ, which he knows, while the
principal’s cannot be (since she is ignorant of θ).
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that σ̂ (·) induces truth-telling (is a direct-revelation mechanism). To see this,
suppose it were not true. Then there must exist a type θ such that the agent
does better to lie—announce some θ′ 6= θ—when he is type θ. Formally, there
must exist θ and θ′ 6= θ such that

U(σ̂(θ′), θ) > U(σ̂(θ), θ).

Using the definition of σ̂(·), this means that

U(σ [m(θ′), n] , θ) > U(σ [m (θ) , n] , θ);

but this means the agent prefers to play m(θ′) instead of m(θ) in the original
mechanism against the principal’s equilibrium strategy n. This, however, can’t
be since m(·) is an equilibrium best response to n in the original game. Hence,
truthful revelation must be an optimal strategy for the agent under the con-
structed direct mechanism. Finally, when the agent truthfully reports the state
of nature in the direct truthful mechanism, the same outcome σ̂(θ) = σ(m(θ), n)
is implemented in equilibrium.

An intuitive way to see the revelation principle is imagine that before he
plays some general mechanism, the agent could delegate his play to some trust-
worthy third party. There are two equivalent ways this delegation could work.
One, the agent could tell the third party to play m. Alternatively, if the third
party knows the agent’s equilibrium strategy—the mapping m : Θ → M—
then the agent could simply reveal (announce) his type to the third party with
the understanding that the third party would choose the appropriate actions,
m (θ). But, because we can build this third party into the design of our direct-
revelation mechanism, this equivalence means that there is no loss of generality
in restricting attention to direct-revelation mechanisms.

The taxation principle requires a little more structure: It assumes that there
is a possibility of punishing the agent so as to deter him from violating the
contractual rules

Assumption 2 (Existence of a punishment) There exists an s ∈ R such
that:

sup
(x,θ)∈X×Θ

U(x, s, θ) ≤ inf
(x,s,θ)∈X×S×Θ

U(x, s, θ).

In other words, there exists a punishment so severe that the agent would always
prefer not to suffer it.

With this assumption, one can construct a payment schedule that gener-
ates the same outcome as any deterministic direct-revelation mechanism and is,
therefore, as general as any contract in this context.

Proposition 12 (The Taxation Principle) Under Assumption 2, the equi-
librium outcome under any deterministic direct-revelation mechanism, σ (·) =
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(x(·), s (·)), is also an equilibrium outcome of the game where the principal pro-
poses the payment schedule S(·) defined by

S(x) =

{
s(θ) , if θ ∈ x−1(x) (i.e., such that x = x(θ) for some θ ∈ Θ)
s, otherwise

.

Proof: Let’s first establish that S (·) is unambiguously defined: Suppose there
existed θ1 and θ2 such that

x = x(θ1) = x(θ2),

but s(θ1) 6= s(θ2). We’re then free to suppose that s(θ1) > s(θ2). Then, because
U is increasing in s,

U(x(θ1), s(θ1), θ2) > U(x(θ2), s(θ2), θ2).

But this means the agent would prefer pretending that the state of nature
is θ2 when it’s actually θ1; the mechanism would not be truthful. Hence, if
θ1, θ2 ∈ x−1 (x), we must have s (θ1) = s (θ2); that is, the payment schedule
S(·) is unambiguously defined.

Now, the agent’s problem when faced with the payment schedule S(·) is sim-
ply to choose the allocation x that maximizes U(x, S(x), θ). Given the severity
of the punishment, the agent will restrict his choice to x ∈ x(Θ). But since our
original mechanism was a direct-revelation mechanism, we know

U (x (θ) , s (θ) , θ) ≥ U (x (θ′) , s (θ′) , θ)

for all θ and θ′. So no type θ can do better than to choose x = x (θ).

The economic meaning of the taxation principle is straightforward: When
designing a contract, the principal is effectively free to focus on “realistic” com-
pensation mechanisms that pay the agent according to his achievements. Hence,
as we argued above, there is no loss of generality in our solution to the retailer-
supplier problem.

Although payment schedules involve no loss of generality and are realistic,
they are often nonlinear, which creates difficulties in working with them.6 In
particular, when looking for the optimal non-linear price schedule, one must
be able to compute the functional mapping that associates to each schedule
S(·) the action choice x(θ) that maximizes U(x, S(x), θ). Even assuming S (·)
is differentiable—which is not ideal because one should refrain from making as-
sumptions about endogenous variables—solving this problem can be difficult.
Direct-revelation mechanisms, on the other hand, allow an easier mathemati-
cal treatment of the problem using standard convex analysis: The revelation
constraints simply consist of writing θ′ = θ is a maximum of U(x(θ′), s(θ′), θ)

6Admittedly, if the derived payment schedule is sufficiently nonlinear, one could begin to
question its realism, as real-world contracts are often linear or, at worst, piecewise linear.
Although see footnote 7 on page 74 for an example of where reality “matches” theory.
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and writing that a given point is a maximum is easier that characterizing an
unknown maximum. For this reason, much of the mechanism-design literature
has focussed on direct-revelation mechanisms over optimal-payment schedules
despite the latter’s greater realism.



The Standard
Framework 9

As we’ve already hinted, the general framework introduced in the previous sec-
tion is more general than what is commonly used. In this section, we will
therefore considered a restricted framework known as the “standard” frame-
work, Much of the contractual screening literature can be placed within this
standard framework. We begin by defining this framework and contrasting it to
the more general framework introduced above. At the end of this note, I offer
less conventional views on the screening model, which require departing from
the standard framework. In order to provide a road map to the reader, I spell
out each assumption in this section and suggest what consequences would arise
from alternative assumptions.

In the standard framework, the allocation space, X , is R+.1 The type space,
Θ, is [θL, θH ] ⊂ R, where both bounds, θL and θH , are finite.2 The most critical
assumptions in going from the general framework to the standard framework in-
volve the utility functions. Henceforth, we assume they are additively separable
in the transfer and the allocation. Moreover, we assume the marginal value of
money is type independent (i.e., ∂ (∂U/∂s) /∂θ = ∂ (∂W/∂s) /∂θ = 0). These
assumptions simplify the analysis by eliminating income effects from consider-
ation. Formally, the agent’s and principal’s utility functions are

U(x, s, θ) = s+ u(x, θ) and

W(x, s, θ) = w(x, θ) − s,

respectively. Essentially for convenience, we take u(·, ·) and w (·, ·) to be three-
times continuously differentiable. The aggregate (full-information) surplus is
defined as:

Ω(x, θ) = w(x, θ) + u(x, θ).

We also assume, mainly for convenience, that

1. Some trade is desirable: For all θ ∈ (θL, θH ], ∂Ω (0, θ) /∂x > 0.

2. There can be too much of a good thing: For all θ ∈ [θL, θH ] ∃x̄ (θ)
such that Ω (x, θ) ≤ Ω (0, θ) for all x > x̄ (θ).

1That the space be bounded below at 0 is not critical—any lower bound would do. Alter-
natively, by appropriate changes to the utility functions, we could allow the allocation space
to be unbounded. Zero is simply a convenience.

2This constitutes no loss of economic (as opposed to mathematical) generality, since we
can set the bounds as far apart as we need.
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Observe these two assumptions entail that Ω (x, θ) has an interior maximum for
all θ ∈ (θL, θH ]. If the first assumption didn’t hold for at least some types, then
trade—contracting—would be pointless. Extending the desirability of trade to
almost all types saves from the bookkeeping headache of distinguishing between
types with which trade is efficient and those with which it is not. The second
assumption is just one of many ways of expressing the sensible economic idea
that, beyond some point, welfare is reduced by trading more.

Observe that the standard framework is restrictive in several potential im-
portant ways:

• The type space is restricted to be one-dimensional. In many applica-
tions, such as the retailer-supplier example, this is a natural assumption.
One can, however, conceive of applications where it doesn’t fit: Suppose,
e.g., the retailer cared about the quantity and quality of the goods re-
ceived and the supplier’s type varied on both an efficiency dimension and
a conscientiousness-of-employees dimension (the latter affecting the cost
of providing quality). Not surprisingly, restricting attention to one di-
mension is done for analytic tractability: Assuming a single dimension
make the order properties of the type space straightforward (i.e., greater
and less than are well-defined on the real line). As we will see, the order
properties of the type space are critical to our analysis.

• The set of possible allocations is one-dimensional. Again, this is sufficient
for some applications (e.g., the quantity supplied to the retailer), but not
others (e.g., when the retailer cares about both quantity and quality).
The difficulty in expanding to more than one dimension arise from diffi-
culties in capturing how the agent’s willingness to make tradeoffs among
the dimensions (including his income) varies with his type. The reader
interested in this extension should consult Rochet and Choné (1998).

• As noted, the utility functions are separable in money and allocation; the
marginal utility of income is independent of the state of nature; and the
marginal utility of income is constant, which means both players are risk
neutral with respect to gambles over money. The gains from these as-
sumptions are that we can compute the transfer function s(·) in terms of
the allocation function x(·), which means our optimization problem is a
standard optimal-control problem with a unique control, x(·). In addition,
risk neutrality insulates us from problems that exogenously imposed risk
might otherwise create (e.g., the need to worry about mutual insurance).
On the other hand, when the agent is risk averse, the ability to threaten
him with endogenously imposed risk (from the contract itself) can provide
the principal an additional tool with which to improve the ultimate allo-
cation. For a discussion of some of these issues see Edlin and Hermalin
(2000). Note we still have the flexibility to endogenously impose risk over
the allocation (the x), we discuss the desirability of doing so below. See
also Maskin (1981).
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Continuing with our development of the standard framework, we assume
that nature chooses the agent’s type, θ, according to the distribution function
F (·) : [θL, θH ] → [0, 1]. Let f (·) be the associated density function, which
we assume to be continuous and to have full support (i.e., f (θ) > 0 for all
θ ∈ [θL, θH ]). Assuming a continuum of types and a distribution without mass
points is done largely for convenience. It also generalizes our analysis from just
two types. Admittedly, we could have generalized beyond two types by allowing
for a finite number of types greater than two. The conclusions we would reach
by doing so would be economically similar to those we’ll shortly obtain with a
continuum of types.3 The benefit of going all the way to the continuum is it
allows us to employ calculus, which streamlines the analysis.

Recall that, at its most general, a direct-revelation mechanism is a mapping �
from the type space into a distribution over outcomes. Given the way that
money enters both players utility functions, we’re free to replace a distribution
over payments with an expected payment, which means we’re free to assume
that the payment is fixed deterministically by the agent’s announcement.4 What
about random-allocation mechanisms? The answer depends on the risk proper-
ties of the two players’ utilities over allocation. If we postulate that w (·, θ) and
u (·, θ) are concave for all θ ∈ [θL, θH ], then, absent incentive concerns, there
would be no reason for the principal to prefer a random-allocation mechanism;
indeed, if at least one is strictly concave (i.e., concave, but not affine), then
she would strictly prefer not to employ a random-allocation mechanism absent
incentive concerns: Her expected utility is greater with a deterministic mecha-
nism and, since the agent’s expected utility is greater, her payment to him will
be less (a benefit to her). Hence, we would only expect to see random-allocation
mechanisms if the randomness somehow relaxed the incentive concerns. Where
does this leave us? At this point, consistent with what is standardly done, we
will assume that both w (·, θ) and u (·, θ) are concave, with one at least being
strictly concave, for all θ ∈ [θL, θH ] (note this entails that Ω (·, θ), the social
surplus function, is also strictly concave). Hence, absent incentive concerns,
we’d be free to ignore random-allocation mechanisms. For the time being, we’ll
also ignore random-allocation mechanisms with incentive concerns. Later, we’ll
consider the circumstances under which this is appropriate. Since we’re ignoring
random mechanisms, we’ll henceforth write 〈x(·), s(·)〉 instead of σ (·) for the
mechanism.

Within this framework, the route that we follow consists of two steps. First,
we will characterize the set of direct-revelation contracts; that is, the set of con-
tracts 〈x(·), s(·)〉 from [θL, θH ] to R × R+ that satisfy truthful revelation. This
truthful-revelation—or incentive compatibility—condition can be expressed as:

s(θ) + u
(
x(θ), θ

)
≥ s(θ̃) + u

(
x(θ̃), θ

)
(9.1)

3See, e.g., Caillaud and Hermalin (1993), particular §3, for a finite-type-space analysis
under the standard framework.

4That is, the mechanism that maps θ to a distribution G (θ) over payments is equivalent
to a mechanism that maps θ to the deterministic payment ŝ (θ) = EG(θ) {s}.
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for all (θ, θ̃) ∈ [θL, θH ]2. After completing this first step, the second step is
identifying from within this set of incentive-compatible contracts the one that
maximizes the principal’s expected utility subject to the agent’s participation.
Whether the agent participates depends on whether his equilibrium utility ex-
ceeds his reservation utility, UR(θ). Observe that the requirement that the
agent accept the contract imposes an additional constraint on the principal
in designing the optimal contract. As before, we refer to this constraint as
the participation or individual-rationality (ir) constraint. Recall that X is as-
sumed to contain a no-trade allocation, x0, s = 0 is a feasible transfer, and
UR (θ) ≡ U (x0, 0, θ). Hence there is no loss of generality in requiring the prin-
cipal to offer a contract that is individually rational for all types (although the
“contract” for some types might be no trade).

We assume that the agent acts in the principal’s interest when he’s otherwise
indifferent. In particular, he accepts a contract when he is indifferent between
accepting and rejecting it and he tells the truth when indifferent between being
honest and lying. This is simply a necessary condition for an equilibrium to
exist and, as such, should not be deemed controversial.

In our treatment of the retailer-supplier example, we assumed that both
types of supplier had the same reservation utility (i.e., recall, UR(θ) = U(0, 0, θ)
= −Cθ(0) = 0). It is possible, however, to imagine models in which the reser-
vation utility varies with θ. For instance, suppose that an efficient supplier
could, if not employed by the retailer, market its goods directly to the ultimate
consumers (although, presumably, not as well as the retailer could). Suppose,
in fact, it would earn a profit of πE > 0 from direct marketing. Then we
would have UR (E) = πE and UR (I) = 0. A number of authors (see, e.g.,
Lewis and Sappington, 1989, Maggi and Rodriguez-Clare, 1995, and Jullien,
1996) have studied the role of such type-dependent reservation utilities in con-
tractual screening models. Type dependence can, however, greatly complicate
the analysis. We will, therefore, adopt the more standard assumption of type-
independent reservation utilities; that is, we assume—as we did in our retailer-
supplier example—that

UR(θ) = UR and WR(θ) = WR

for all θ ∈ [θL, θH ]. As a further convenience, we will interpret x = 0 as the
no-trade allocation. Observe that these last two assumptions imply

u (0, θ) = u (0, θ′) = UR and

w (0, θ) = w (0, θ′) = WR

for all θ, θ′ ∈ [θL, θH ]. Given these assumptions, we can express the agent’s
participation constraint as

s (θ) + u
(
x(θ), θ

)
≥ UR. (9.2)

Although our treatment of reservation utilities and no trade is standard, we
have, nevertheless added to the assumptions underlying the standard framework.
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At last, we can state the problem that we seek to solve: Find the optimal
contract 〈x (·) , s (·)〉 that maximizes

∫ θH

θL

(
w
(
x(θ), θ

)
− s(θ)

)
f(θ)dθ (9.3)

subject to (9.1) and (9.2) holding.
Before solving this program, it’s valuable to consider the full (symmetric)

information benchmark: Ex post efficiency corresponds to adopting the alloca-
tion

xF (θ) ∈ arg max
x∈R+

Ω(x, θ)

for each θ (recall Ω(x, θ) is the aggregate surplus from the relationship). Our
earlier assumptions ensure that Ω(·, θ) is strictly concave for each θ; so the ex
post efficient allocation is uniquely defined by the first-order condition:

∂Ω

∂x
(xF (θ), θ) =

∂w

∂x
(xF (θ), θ) +

∂u

∂x
(xF (θ), θ) = 0.

Our earlier assumptions also entail that xF (·) is uniformly bounded from above.
Observe that any sharing of the surplus can, then, be realized by the appropriate
transfer function.5 It follows that, if the principal knows θ—that is, the parties
are playing under full (symmetric) information—then the contracting game can
be easily solved: In equilibrium, the principal offers a contract

〈
xF (·), sF (·)

〉

such that the agent’s utility is exactly equal to his reservation utility; that is,

sF (θ) = UR − u(xF (θ), θ).

In other words, the principal captures the entire surplus—a consequence of
endowing her with all the bargaining power—leaving the agent at his outside
(non-participation) option.

The Spence-Mirrlees
Assumption 9.1

Before we proceed to solve (9.3), we need to introduce one more assumption.
Given this assumption’s importance, it is worth devoting a short section to it.

In order to screen types, the principal must be able to exploit differences
across the tradeoffs that different types are willing to make between money and
allocation. Otherwise a strategy, for instance, of decreasing the x expected from
the agent in exchange for slightly less pay wouldn’t work to induce one type to
reveal himself to be different than another type. Recall, for instance, because
the marginal cost of output differed between the efficient and inefficient types

5Note that this is an instance of where we’re exploiting the additive separability (lack of
income effects) assumed of the utility functions. Were there income effects, we couldn’t define
xF (·) independently of the transfers.
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in our retailer-supplier example, the buyer could design a contract to induce
revelation. Different willingness to make tradeoffs means we require that the
indifference curves of the agent in x-s space differ with his type. In fact, we
want, for any point in x-s space, that these slopes vary monotonically with
whatever natural order applies to the type space. Or, when, no natural order
applies, we want it to be possible to define an order, ≻, over the types so that
θ ≻ θ′ if and only if the slope of θ’s indifference curve is greater (alternatively
less) than the slope of θ′’s indifference at every point (x, s) ∈ X × S. Such
a monotonicity-of-indifference-curves condition is known as a Spence-Mirrlees
condition and, correspondingly, the assumption that this condition is met is
known as the Spence-Mirrlees assumption.

The slope of the indifference curve in x-s space is equal to −∂u/∂x. Hence,
we require that −∂u/∂x or, equivalently and more naturally, ∂u/∂x vary mono-
tonically in θ. Specifically, we assume:

Assumption 3 (Spence-Mirrlees) For all x ∈ X ,

∂u (x, θ)

∂x
>
∂u (x, θ′)

∂x

if θ > θ′.

That is, if θ > θ′—θ is a higher type than θ′—then −1 times the slope of type
θ’s indifference curve is, at any point, greater than −1 times the slope of type
θ′’s indifference curve. Observe that a consequence of Assumption 3 is that
a given indifference curve for one type can cross a given indifference curve of
another type at most once. For this reason, the Spence-Mirrlees Assumption is
sometimes called a single-crossing condition. Figure 9.1 illustrates.

Lemma 7 Assuming (as we are) that u(·, ·) is at least twice differentiable in
both arguments, then the Spence-Mirrlees assumption (Assumption refass:S-M1)
is equivalent to assuming

∂2u(x, θ)

∂θ∂x
> 0 . (9.4)

Proof: As a differentiable function cannot be everywhere increasing unless its
derivative is positive, the fact that the Spence-Mirrlees assumption implies (9.4)
is obvious. To go the other way, observe (9.4) implies

0 <

∫ θ

θ′

∂2u(x, t)

∂θ∂x
dt

= u(x, θ) − u(x, θ′) , (9.5)

where (9.5) follows from the fundamental theorem of calculus.
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A

B

C

Indifference curve
for high type

Indifference curve
for low type

D

Figure 9.1: The Spence-Mirrlees Assumption: Through any point (e.g., A or
B), the indifference curve through that point for the high type cross
the indifference curve through that point for the low point from
above.

Before leaving the Spence-Mirrlees assumption, it is important to under-
stand that the Spence-Mirrlees assumption is an assumption about order. Con-
sequently, differentiability of u with respect to either x or θ is not necessary.
Nor, in fact, is it necessary that U be additively separable as we’ve been assum-
ing. At its most general, then, we can state the Spence-Mirrlees assumption
as

Assumption 3′ (generalized Spence-Mirrlees): There exists an order ≻θ
on the type space, Θ, such that if θ ≻θ θ′ and x ≻x x′ (where ≻x completely
orders X ), then the implication

U(x, s, θ′) ≥ U(x′, s′, θ′) =⇒ U(x, s, θ) > U(x′, s′, θ)

is valid.

This generalized Spence-Mirrlees assumption states that we can order the types
so that if a low type (under this order) prefers, at least weakly, an outcome with
more x (with “more” being defined by the order ≻x) than a second outcome,
then a higher type must strictly prefer the first outcome to the second. Figure
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9.1 illustrates: Since the low type prefers point C to A (weakly), the high
type must strictly prefer C to A, which the figure confirms. Similarly, since
the low type prefers C to B (strictly), the high type must also strictly prefer
C to B, which the figure likewise confirms. See Milgrom and Shannon (1994)
for a more complete discussion of the relationship between Assumption 3 and
Assumption 3′.

As suggested at beginning of this section, a consequence of the Spence-
Mirrlees assumption is that it is possible to separate any two types; by which
we mean it is possible to find two outcomes (x1, s1) and (x2, s2) such that a
type-θ1 agent prefers (x1, s1) to (x2, s2), but a type-θ2 agent has the opposite
preferences. For instance, in Figure 9.1, let point A be (x1, s1) and let D be
(x2, s2). If θ2 is the high type and θ1 is the low type, then it is clear that given
the choice between A and D, θ1 would select A and θ2 would select D; that is,
this pair of contracts separates the two types. Or, for example, back in Figure
7.1, contracts D and E separate the inefficient and efficient types of supplier.

Characterizing the
Incentive-Compatible

Contracts 9.2
Our approach to solving the principal’s problem (9.3) is a two-step one. First,
we will find a convenient characterization of the set of incentive-compatible
mechanisms (i.e., those that satisfy (9.1)). This is our objective here. Later, we
will search from within this set for those that maximize (9.3) subject to (9.2).

Within the standard framework it is relatively straightforward to derive the
necessary conditions implied by the self-selection constraints. Our approach
is standard (see, e.g., Myerson, 1979, among others). Consider any direct-
revelation mechanism 〈x (·) , s (·)〉 and consider any pair of types, θ1 and θ2,
with θ1 < θ2. Direct revelation implies, among other things, that type θ1 won’t
wish to pretend to be type θ2 and vice versa. Hence,

s(θ1) + u [x(θ1), θ1] ≥ s(θ2) + u [x(θ2), θ1] and

s(θ2) + u [x(θ2), θ2] ≥ s(θ1) + u [x(θ1), θ2] .

As is often the case in this literature, it is easier to work with utilities than
payments. To this end, define

v(θ) = s(θ) + u [x(θ), θ] .

Observe that v (θ) is the type-θ agent’s equilibrium utility. The above pair of
inequalities can then be written as:

v (θ1) ≥ v (θ2) − u [x (θ2) , θ2] + u [x (θ2) , θ1] and

v (θ2) ≥ v (θ1) − u [x(θ1), θ1] + u [x(θ1), θ2] .
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Or, combining these two inequalities, as

∫ θ2

θ1

∂u [x(θ1), θ]

∂θ
dθ ≤ v(θ2) − v(θ1) ≤

∫ θ2

θ1

∂u [x(θ2), θ]

∂θ
dθ. (9.6)

This double inequality has two consequences. First, ignoring the middle
term, it implies

∫ θ2

θ1

∫ x(θ2)

x(θ1)

∂2u

∂x∂θ
(x, θ)dxdθ ≥ 0.

The Spence-Mirrlees assumption means the integrand is positive. Given θ1 < θ2,
this means the integral can be non-negative only if x(θ1) ≤ x(θ2). Since this is
true for any θ1 < θ2, we may conclude that the allocation function x(·) is non-
decreasing. Note that this necessarily implies that x(·) is almost everywhere
continuous.

The second consequence of (9.6) is as follows: By fixing one end point and
letting the other converge towards it, we see that v(·) is absolutely continuous
with respect to Lebesgue measure and is, thus, almost everywhere differen-
tiable.6 This derivative is

dv (θ)

dθ
=
∂u(x(θ), θ)

∂θ

almost everywhere.7 Consequently, one can express equilibrium utility as

v(θ) = v(θL) +

∫ θ

θL

∂u

∂θ
(x(t), t)dt. (9.7)

Expression (9.7) and the monotonicity of the allocation function x(·) are,
thus, necessary properties of a direct-revelation mechanism. In particular, we’ve
just proved that a necessary condition for an allocation function x (·) to be
implementable is that

s(θ) = vL − u(x(θ), θ) +

∫ θ

θL

∂u

∂θ
(x(t), t)dt.

where vL is an arbitrary constant.

It turns out that these properties are also sufficient :

6To be precise, one should make assumptions to ensure that ∂u(x(·), ·)/∂θ is integrable on
Θ. This can be done by requiring that X be bounded or that ∂u(·, ·)/∂θ be bounded on X ×Θ.
Both assumptions are natural in most economic settings and simply extend the assumptions
that bound xF (·). Henceforth, we assume ∂u/∂θ is bounded.

7Note the important difference between
∂u[x(θ),θ]

∂θ
and

du[x(θ),θ]
dθ

. The former is the partial

derivative of u with respect to its second argument evaluated at (x (θ) , θ), while the latter is
the total derivative of u.



90 Lecture Note 9: The Standard Framework

Proposition 13 (Characterization) Within the standard framework and un-
der Assumption 3 (Spence-Mirrlees), a direct mechanism 〈x (·) , s (·)〉 is truthful
if and only if there exists a real number vL such that:

s(θ) = vL − u(x(θ), θ) +

∫ θ

θL

∂u

∂θ
(x(t), t)dt (9.8)

and x(·) is non-decreasing. (9.9)

Consequently, an allocation function x(·) is implementable if and only if it is
non-decreasing.

Proof: Since we established necessity in the text, we need only prove sufficiency
here. Let 〈x (·) , s (·)〉 satisfy (9.8) and (9.9). Consider the agent’s utility when
the state of nature is θ, but he claims that it is θ′ > θ:

s(θ′) + u(x(θ′), θ) =

s(θ′)
︷ ︸︸ ︷

vL − u (x (θ′) , θ′) +

∫ θ′

θL

∂u

∂θ
(x(t), t)dt +u(x(θ′), θ)

= vL − u (x (θ) , θ) +

∫ θ

θL

∂u

∂θ
(x(t), t)dt

︸ ︷︷ ︸
s(θ)

+u(x(θ), θ) (9.10)

+ [u(x(θ′), θ) − u (x (θ′) , θ′)] +

[∫ θ′

θL

∂u

∂θ
(x(t), t)dt −

∫ θ

θL

∂u

∂θ
(x(t), t)dt

]

(9.11)

= v (θ) +

∫ θ′

θ

[
∂u

∂θ
(x(t), t) − ∂u

∂θ
(x (θ′) , t)

]
dt

Where the second equality (beginning of (9.10)) derives from adding and sub-
tracting s(θ). In the last line, the first term, v (θ), is (9.10) and the second term,
the integral, is (9.11). Since we’ve assumed (9.9), x(t) ≤ x(θ′) for t ∈ [θ, θ′].
Moreover, A1 implies ∂u/∂θ is increasing in x. Hence, the integral in the last
line is non-positive; which means we may conclude

s(θ′) + u(x(θ′), θ) ≤ v (θ) .

That is, under this mechanism, the agent does better to tell the truth than
exaggerate his type. An analogous analysis can be used for θ′ < θ (i.e., to show
the agent does better to tell the truth than understate his type). Therefore, the
revelation constraints hold and the mechanism is indeed truthful.

This characterization result is, now, a well-known result and can be found,
implicitly at least, in almost every mechanism design paper. Given its impor-
tance, it is worth understanding how our assumptions drive this result. In par-
ticular, we wish to call attention to the fact that neither the necessity of (9.7)
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nor (9.8) depends on the Spence-Mirrlees assumption. The Spence-Mirrlees
assumption’s role is to establish (i) that a monotonic allocation function is nec-
essary and (ii) that, if x (·) is monotonic, then (9.8) is sufficient to ensure a
truth-telling equilibrium.

This discussion also demonstrates a point that was implicit in our earlier

discussion of the Spence-Mirrlees assumption: What is critical is not that ∂2u
∂θ∂x

be positive, but rather that it keep a constant sign over the relevant domain.
If, instead of being positive, this cross-partial derivative were negative every-
where, then our analysis would remain valid, except that it would give us the
inverse monotonicity condition: x(·) would need to be non-increasing in type.
But with a simple change of the definition of type, θ̃ = −θ, we’re back to our
original framework. Because, as argued above, the definition of type is some-
what arbitrary, we see that our conclusion of a non-decreasing x (·) is simply
a consequence of the assumption that different types of agent have different
marginal rates of substitution between money and allocation and that an order-
ing of these marginal rates of substitution by type is invariant to which point
in X × S we’re considering.

What if the Spence-Mirrlees assumption is violated (e.g., ∂2u
∂x∂θ

changes sign)?
As our discussion indicates, although we still have necessary conditions concern-
ing incentive-compatible mechanisms, we no longer have any reason to expect
x (·) to be monotonic. Moreover—and more critically if we hope to characterize
the set of incentive-compatible mechanisms—we have no sufficiency results. It
is not surprising, therefore, that little progress has been made on the problem
of designing optimal contracts when the Spence-Mirrlees condition fails.

Optimization in the Standard
Framework 9.3

The previous analysis has given us, within the standard framework at least, a
complete characterization of the space of possible (incentive-compatible) con-
tracts. We can now concentrate on the principal’s problem of designing an
optimal contract.

Finding the optimal direct-revelation mechanism for the principal means
maximizing the principal’s expected utility over the set of mechanisms that in-
duce truthful revelation of the agent’s type and full participation. From page 84,
the participation constraint is (9.2); while, from the previous section, truthful
revelation is equivalent to (9.8) and (9.9).8 We can, thus, express the principal’s
problem as

max
x(·),s(·)

∫ θH

θL

[w(x(θ), θ) − s(θ)] f(θ)dθ

subject to (9.2), (9.8), and (9.9).

8Assuming Assumption 3 holds, which we will do henceforth.
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Once again, it’s more convenient to work with v(·) than s (·). Observe that

w [x (θ) , θ] − s (θ) = w [x (θ) , θ] − v (θ) + u [x (θ) , θ]

= Ω(x(θ), θ) − v(θ).

Moreover, (9.8) can be used to compute v(θ) using only x(·) and a number vL.
Hence, we’re free to write the principal’s problem as

∫ θH

θL

[w(x(θ), θ) − s(θ)] f(θ)dθ =

∫ θH

θL

[Ω(x(θ), θ) − v(θ)] f(θ)dθ

=

∫ θH

θL

[
Ω(x(θ), θ) −

∫ θ

θL

∂u

∂θ
(x(t), t)dt

]
f(θ)dθ − vL.

Integration by parts implies

−
∫ θH

θL

[∫ θ

θL

∂u

∂θ
(x(t), t)dt

]
f(θ)dθ = −

∫ θH

θL

[1 − F (θ)]
∂u

∂θ
(x(θ), θ)dθ,

which allows us to further transform the principal’s objective function:

∫ θH

θL

[w(x(θ), θ) − s(θ)] f(θ)dθ

=

∫ θH

θL

[
Ω (x (θ) , θ) − 1 − F (θ)

f (θ)

∂u

∂θ
(x (θ) , θ)

]
f (θ) dθ − vL.

Observation 2 From this last expression, we can see that it is unreasonable to
expect to achieve the first best: The principal’s objective function differs from
the first-best objective function, max Eθ {Ω (x (θ) , θ)}, by

−
∫ θH

θL

[1 − F (θ)]
∂u [x (θ) , θ]

∂θ
dθ.

Consequently, because the principal wishes to maximize something other than
expected social surplus and the principal proposes the contract, we can’t expect
the contract to maximize social surplus.

Define

Σ(x, θ) ≡ Ω(x, θ) − [1 − F (θ)]

f(θ)

∂u

∂θ
(x, θ).

Observe that our earlier assumptions ensure that Σ(x, θ) is bounded and at least
twice-differentiable. We will refer to Σ (x, θ) as the virtual surplus (this follows
Jullien, 1996).9

9Guesnerie and Laffont (1984) and Caillaud et al. (1988) use the term surrogate welfare

function.
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The principal’s problem can now be restated in a tractable and compact
form:

max
x(·),vL

{∫ θH

θL

Σ(x(θ), θ)f(θ)dθ − vL

}
(9.12)

subject to vL +

∫ θ

θL

∂u

∂θ
(x(t), t)dt ≥ UR

and x(·) is non-decreasing.

Although this problem is solvable, we will focus on only a special (but widely
employed) case. Specifically, we make three additional assumptions:

1. For all x, ∂u/∂θ ≥ 0 (i.e., utility is non-decreasing in type);

2. Σ (·, θ) is strictly quasi-concave for all θ ∈ [θL, θH ]; and

3. ∂Σ/∂x is non-decreasing in θ for all x.

What are the consequences of these assumptions? The first entails that the
participation constraint holds for all types if it holds for the lowest type, θL.
Consequently, we can ignore this constraint for all but the lowest type. More-
over, for this type, the constraint reduces to vL ≥ UR. Since vL is a direct
transfer to the agent without incentive effects, we know the principal will set it
as low as possible. That is, we can conclude that, optimally, vL = UR. Note, too,
this means the participation constraint is binding for the lowest type (similarly
to what we saw in the retailer-supplier example). To summarize:

Lemma 8 If utility is non-decreasing in type for all allocations (i.e., ∂u/∂θ ≥ 0
for all x), then (i) vL = UR; (ii) the participation constraint is binding for the
lowest type, θL; and (iii) the participation constraint holds trivially for all higher
types (i.e., for θ > θL).

In light of this lemma, we can be emboldened to try the following solu-
tion technique for (9.12): Ignore the monotonicity constraint and see if the
unconstrained problem yields a monotonic solution. The solution to the un-
constrained problem, x∗ (·), is to solve (9.12) pointwise; that is, to set x∗ (θ) =
X (θ), where

X (θ) ≡ argmax
x

Σ (x, θ) .

Note that the second assumption means X (·) is uniquely defined. Finally, the
third assumption—the marginal-benefit schedule, ∂Σ/∂x, is non-decreasing in
θ—means the point at which ∂Σ (x, θ) /∂x crosses zero is non-decreasing in θ.
But this point is X (θ); hence, monotonicity is ensured. To conclude:

Proposition 14 If

• for all x, ∂u/∂θ ≥ 0;
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• Σ (·, θ) is strictly quasi-concave; and

• ∂Σ/∂x is non-decreasing in θ;

then the solution to (9.12) is x∗ (θ) = X (θ) and vL = UR.

How does the solution in Proposition 14 compare to the full-information
benchmark? The answer is given by the following corollaries:

Corollary 3 x∗ (θ) < xF (θ) for all θ ∈ [θL, θH) and x∗ (θH) = xF (θH).

Proof: At x = xF (θ),

∂Σ

∂x
= −1 − F (θ)

f (θ)
× ∂2u

∂x∂θ
.

Since (i) 1 − F (θ) > 0 (except for θ = θH) and (ii) the cross-partial deriva-
tive is strictly positive by A1, the right-hand side is negative for all θ, except
θH . Consequently, since Σ (·, θ) is strictly quasi-concave, we can conclude that
x∗ (θ) < xF (θ) for all θ ∈ [θL, θH). For θ = θH , we’ve just seen that

∂Σ
[
xF (θH) , θH

]

∂x
= 0;

hence, the strict quasi-concavity of Σ (·, θH) ensures that xF (θH) is the maxi-
mum.

Corollary 4 v′ (θ) ≥ 0 and v (θL) = UR.

Proof: We’ve already established the second conclusion. The first follows since

v (θ) = vL +

∫ θ

θL

∂u

∂θ
(x(t), t)dt;

so

v′ (θ) =
∂u

∂θ
[x (θ) , θ] ≥ 0

by the first assumption.

In much of the literature, the three additional assumptions supporting Propo-
sition 14 hold, so Proposition 14 and its corollaries might be deemed the “stan-
dard solution” to the contractual screening problem within the standard frame-
work. These conclusions are sometimes summarized as

Observation 3 Under the standard solution, there’s a downward distortion in
allocation (relative to full information) for all types but the highest, the lowest
type earns no information rent, but higher types may.

Observe the “may” at the end of the last remark becomes a “do” if ∂u [X (θ) , θ] /∂θ >
0 for all θ > θL.10

10There are, of course, many assumptions that will change the “may” to a “do.”
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The Retailer-Supplier
Example Revisited 9.4

Before returning to our fairly abstract analysis of contractual screening, let’s
consider an extension of our earlier retailer-supplier example. Specifically, let’s
imagine that there are a continuum of efficiency types, which we normalize to
be the interval [1, 2]. Instead of Ct (x), write the supplier’s cost function as
C (x, θ), and suppose that

∂2C

∂θ∂x
< 0; (9.13)

that is, higher (more efficient) types have lower marginal costs. Because

u (x, θ) = −C (x, θ) ,

(9.13) implies that the Spence-Mirrlees assumption is met (recall Lemma 7). In
addition to these assumptions, maintain all the assumptions from our earlier
model. In particular, we assume the revenue function, r (·), is concave and
bounded. Hence, because C (·, θ) is strictly convex,

lim
x→∞

Ω (x, θ) = −∞ for all θ.

Assume, too, that ∂Ω (0, θ) /∂x > 0 for all θ; i.e., xF (θ) > 0 for all θ. It is read-
ily checked that all the assumptions of the standard framework are, therefore,
satisfied.

Since C (·, θ) is a cost function, we necessarily have C (0, θ) = 0 for all θ.
Combined with (9.13), this entails that C (x, θ) > C (x, θ′) if θ < θ′.11 Hence,
we may conclude

∂u

∂θ
(x, θ) > 0. (9.14)

Observe that

Σ (x, θ) = r (x) − C (x, θ) − 1 − F (θ)

f (θ)

[−∂C
∂θ

]
.

Hence,
∂Σ (x, θ)

∂x
= r′ (x) − ∂C

∂x
− 1 − F (θ)

f (θ)

[−∂2C

∂x∂θ

]
.

It is clear, therefore, that to take advantage of Proposition 14, we need to know
something about the shape of ∂C (·, θ) /∂θ (e.g., is it at least quasi-concave)

11Proof: The initial condition, C (0, t) = 0 for all t ∈ [1, 2], means we can write

C
`

x, θ′
´

− C (x, θ) =

Z x

0

Z θ′

θ

∂2C

∂θ∂x
dθdx;

the result follows from (9.13).
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and how the Mills ratio12 and the cross-partial derivative change with respect
to θ. To this end, let’s impose two frequently made assumptions:

• C (x, θ) = β (θ) c (x), where β (·) is positive, strictly decreasing, and con-
vex—higher types have lower marginal costs, but this marginal cost ad-
vantage may be less pronounced when moving up from one high type to
another than it is when moving up from one low type to another. The
function c (·) is strictly increasing, strictly convex, and c (0) = 0.

• Let M (θ) denote the Mills ratio. Assume M ′ (θ) ≤ 1. Observe this is our
usual monotone hazard rate property.

Given these assumptions, we may conclude that Σ (·, θ) is globally strictly con-
cave and that

∂2Σ (x, θ)

∂θ∂x
= −β′ (θ) c′ (x) +M ′ (θ)β′ (θ) c′ (x) +M (θ)β′′ (θ) c′ (x)

∝ β′ (θ) [M ′ (θ) − 1] +M (θ) β′′ (θ) ≥ 0.

That is, we may conclude that Σ (·, θ) admits a unique maximum, which is
non-decreasing with type. Combined with (9.14), this means we can apply
Proposition 14.

For example, suppose r (x) = x, β (θ) = 1/θ, c (x) = x2/2, and F (θ) = θ−1
(i.e., the uniform distribution on [1, 2]). Both bullet points are met, so we can
apply Proposition 14. This yields x∗ (θ) = X (θ), where

X (θ) solves 1 − x

θ
− (2 − θ)

x

θ2
= 0;

or X (θ) =
1

2
θ2.

From Proposition 14, we may set vL = UR, which is zero in this model. Noting
that ∂u/∂θ = x2/2θ2, we thus have

v (θ) = 0 +

∫ θ

θL

x∗(t)2

2t2
dt

=

∫ θ

1

t2

8
dt

=
1

24
θ3 − 1

24
.

12The Mills ratio is the ratio of a survival function (here, 1 − F (θ)) to its density function
(here, f (θ)). Because the Mills ratio is the inverse of the hazard rate, it is also known as the
inverse hazard rate (this formal distinction between the inverse and “regular” hazard rate is
not always respected by economic theorists).
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Hence, the transfer function is

s (θ) = v (θ) − u (x (θ) , θ)

=
1

24
θ3 − 1

24
+
θ3

8

=
θ3

6
− 1

24
.

Observe that

x∗ (θ) =
1

2
θ2 < θ = xF (θ)

for all θ < 2; that x∗ (2) = 2 = xF (2); that v (1) = 0; and that v (θ) > 0 for all
θ > 1—all consistent with the corollaries to Proposition 14.

Finally, although there’s no need to do it, we can check that the incentive-
compability constraints are indeed satisfied by the mechanism

〈
1
2θ

2, 1
6θ

3 − 1
24

〉
:

max
θ̂

s(θ̂) − β(θ)c
(
x∗(θ̂)

)
= max

θ̂

1

6
θ̂3 − 1

24
−

[
1
2 θ̂

2
]2

2θ

=⇒ θ̂2

2
− θ̂3

2θ
= 0.

Clearly, θ̂ = θ satisfies the first-order condition (since the program is clearly
concave, the second-order conditions are also met).

By the taxation principle (Proposition 12), an alternative to this direct-
revelation contract is a payment schedule. Noting that x∗−1 (x) =

√
2x, an

optimal payment schedule, S (x), is

S (x) =

{
s
[
x∗−1 (x)

]
= x3/2

√
2

3 − 1
24 for x ∈

[
1
2 , 2
]

0 for x /∈
[

1
2 , 2
] .
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The
Hidden-Knowledge

Model 10
In this lecture, we consider a model that, at first, seems quite different than con-
tractual screening, but which ultimately shares many similarities to it. In par-
ticular, we consider the hidden-knowledge model. In this model, unlike above,
the principal and agent are symmetrically informed at the time they enter into
a contractual arrangement. After contracting, the agent acquires private infor-
mation (his hidden knowledge). As an example, suppose the principal employs
the agent to do some task—for instance, build a well on the principal’s farm—
initially, both parties could be symmetrically informed about the difficulty of
the task (e.g., the likely composition of the rock and soil, how deep the water
is, etc.). However, once the agent starts, he may acquire information about how
hard the task really is (e.g., he alone gains information that better predicts the
depth of the water).

This well-digging example reflects a general problem. In many employment
situations, the technological, organizational, market, and other conditions that
an employee will face will become known to him only after he’s been employed
by the firm. This information will affect how difficult his job is, and, thus, his
utility. Similarly, think of two firms that want to engage in a specific trade
(e.g., a parts manufacturer and an automobile manufacturer who contract for
the former to supply parts meeting the latter’s unique specifications). Before the
contract is signed, the supplier may not know much about the cost of producing
the specific asset and the buyer may have little knowledge about the prospects
of selling the good to downstream consumers. These pieces of information will
flow in during the relationship—but after contracting—and once again a hidden-
knowledge framework is more appropriate for studying such a situation.

This difference in timing is reflected in the participation constraint for this
problem. When considering a contract, 〈x (·) , s (·)〉 , the agent compares his
expected utility if he accepts the contract,

E {u(θ)} = E {s(θ) + u [x(θ), θ]} ,

to his expected utility if he refuses the contract; that is, to UaR ≡ E {UR(θ)}.
Acceptation or refusal of the contract cannot depend upon the, as yet, unrealized
state of nature: Unlike the screening model, the participation decision is not
contingent on type.

Why is this distinction so important? Because it turns out that, at least in
the standard framework, the hidden-knowledge model has an extremely simple
solution. To see this, we invoke the assumptions of the standard framework,
including the Spence-Mirrlees assumption. In addition, we assume—consistent
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with the assumptions of the standard framework—that ∂Ω/∂x is non-decreasing
in θ. Consequently, we know the first-best allocation, xF (·), is non-decreasing.
We can then be sure from Proposition 13 that there exists a transfer function,
ŝF (·), such that

〈
xF (·) , ŝF (·)

〉
is a direct-revelation mechanism.1 Note that

because ŝF (·) is defined by (9.8), it is defined up to a constant that can be
chosen by the principal to ensure the agent meets his participation constraint.
In particular, it can be chosen so that the agent’s expected utility equals his
non-participation expected utility:

∫ θH

θL

[
ŝF (θ) + u

(
xF (θ), θ

)]
f(θ)dθ =

∫ θH

θL

UR(θ)f(θ)dθ.

With this mechanism, the principal’s expected utility becomes:
∫ θH

θL

[
w(xF (θ), θ) − ŝF (θ)

]
f(θ)dθ =

∫ θH

θL

[
Ω(xF (θ), θ) − UR(θ)

]
f(θ)dθ

=

∫ θH

θL

Ω(xF (θ), θ)f (θ) dθ − UaR.

Given that the ex post efficient allocation—that is, xF (·)—maximizes the in-
tegrand in the last integral, the principal obtains the highest possible expected
utility with this mechanism. Hence,

〈
xF (·) , ŝF (·)

〉
is optimal and we see, there-

fore, that the first-best allocation will be achieved with hidden-knowledge, in
contrast to the less desirable equilibrium of the screening model:

Proposition 15 In a hidden-knowledge model, in which the agent fully com-
mits to the contract before learning his type, which satisfies the assumptions of
the standard framework, and in which ∂Ω/∂x is non-decreasing in θ, then the
equilibrium allocation is the ex post efficient allocation.

To gain intuition for this result, return to our two-type example from Lec-
ture Note 7, but suppose now that the agent doesn’t learn his type until after
contracting with the principal. Observe that we can reduce the agent’s informa-
tion rent on average by paying him less than his full-information payment if he
announces he is the low type (i.e., type I) and more than his full-information
payment if he announces he is the high type (i.e., type E): Now set the payments
to be

ŝFI = CI
(
xFI
)
− γ; and

ŝFE = CE
(
xFE
)

+ η.

Since the agent doesn’t learn his type until after contracting, the participation
constraint is

f ×
(
ŝFI − CI

(
xFI
))

+ (1 − f) ×
(
ŝFE − CE

(
xFE
))

= −fγ + (1 − f) η

≥ 0.

1The transfer function ŝF (·) is a priori different from the full-information transfer func-
tion, sF (·), because the latter is not subject to revelation constraints.
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We also need direct revelation, which, for type I, means

ŝFI − CI
(
xFI
)
≥ ŝFE − CI

(
xFE
)
; or

−γ ≥ η +
[
CE
(
xFE
)
− CI

(
xFE
)]

.

Treating these two constraints as equalities, we can solve for γ and η:

η = f ×
[
CI
(
xFE
)
− CE

(
xFE
)]

; and

γ = (1 − f) ×
[
CI
(
xFE
)
− CE

(
xFE
)]

.

Provided these also satisfy type E’s revelation constraint, we’re done. But they
do, since

ŝFE − CI
(
xFE
)

= η

= −γ + CI
(
xFE
)
− CE

(
xFE
)

> −γ + CI
(
xFI
)
− CE

(
xFI
)

= ŝFI − CE
(
xFI
)

(the inequality follows because, recall, CI (·) − CE (·) is increasing).
Note the phrase “in which the agent fully commits to the contract” that

constitutes one of the assumptions in Proposition 15. Why this assumption?
Well suppose that, after learning his type, the agent could quit (a reasonable
assumption if the agent is a person who enjoys legal protections against slavery).
If his payoff would be less than UR (θ) if he played out the contract, he would
do better to quit.2 To keep the agent from quitting, the principal would have
to design the contract so that the agent’s equilibrium utility was not less than
UR (θ) for all θ. But then this is just the screening model again! In other
words, the hidden-knowledge model reverts to the screening model—with all
the usual conclusions of that model—if the agent is free to quit (in the parlance
of the literature, if interim participation constraints must be met). Even if anti-
slavery protections don’t apply (e.g., the agent is a firm), interim participation
could still matter; for instance, in the last example, if γ is too big, then the
agent may not have the financial resources to pay it (it would bankrupt him).
Alternatively, in nations with an English law tradition, γ could be perceived
as a penalty, and in many instances the courts will refuse to enforce contracts
that call for one party to pay a penalty to another. In short, because interim
participation constraints are often a feature of the real world, many situations
that might seem to fit the hidden-knowledge model will ultimately prove to be
screening-model problems instead.

2Observe we’re assuming that UR (·) doesn’t change—in particular, doesn’t diminish—after
the agent signs the contract; that is, his outside option remains the same over time.
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Multiple Agents and
Implementation 11

Our study of mechanism design has so far restricted attention to the case of one
principal and one agent (this is true even of our analysis of second-degree price
discrimination because, as seen in Section 5.2, the analysis can be done in terms
of a single representative consumer). In this lecture note, I turn to situations
with multiple agents. Moreover, the focus will be on situations—such as public
goods problems—in which the agents must play the mechanism (e.g., because
they are citizens of the state). Such problems are known as implementation
problems.

Public Choice Problems 11.1
Societies frequently face the problem of making public choices. For instance,
how many miles of highway to build, how many acres to set aside for park land,
or how many tons of pollution to permit. Because everyone in the society is
affected by these choices, they are known as public-choice problems.

As an ideal, suppose there were a benevolent social planner, a person or
agency that sought to choose the best solution to the public-choice problem. Of
course, “best solution” begs the question of what criterion the social planner
should use to choose among possible allocations. Because the social planner
is benevolent, we presume she seeks to maximize some social welfare measure.
This measure, W , is assumed to be a function of the public choice variable,
a ∈ A, that aggregates in some form the preferences of the N agents, where
agent n’s preferences are captured by his type, τn ∈ Tn.

Each agent has a utility un(a, pn|τn), where pn ∈ R is the amount of the
private consumption good (effectively, money) transferred to the nth agent.
Observe pn > 0 means money is being transferred to agent n, while pn < 0
means money is being transferred from agent n.

For example, each agent could have the utility function

un(a, pn|τn) = τna−
a2

2
+ pn (11.1)
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and the social planner could seek to maximize

W =

N∑

n=1

(
un(a, pn|τn) − pn

)

=

N∑

n=1

(
τna−

a2

2

)
; (11.2)

that is, the social planner seeks to maximize the sum of the utilities of the
agents less the social cost of paying them transfers (given quasi-linear utility for
all citizens, this cost is just the value of the transfer).

The standard assumption is that {un(·)}Nn=1 is common knowledge, but that
τn is the private information of agent n. The joint distribution function for τ =
(τ1, . . . , τN ) is, however, common knowledge. In other words, while everyone
knows the functional forms of the utility functions and the distribution of types,
the realization of a given agent’s type is known only to him. Let

τ = (τ1, . . . , τn) ∈ T = T1 × · · · × Tn .

Mechanisms 11.2
At its most general, a mechanism can be defined as follows:

Definition 2 A mechanism for N agents is

• a collection of N message spaces {Mn}Nn=1;

• rules concerning the order in which messages are sent and who hears what
messages when (i.e., an extensive form); and

• a mapping σ : ×N

n=1 Mn → A× R
N .

For future reference, define M = ×N

n=1 Mn. Let m = (m1, . . . ,mN) denote
an element of M. Observe that σ can be decomposed into N + 1 functions:
σ(m) =

(
A(m), P1(m), . . . , PN (m)

)
, where A : M → A and Pn : M → R.

Observe that a mechanism is a game to be played by the N agents. It defines
actions, the Mn; it defines an extensive form; and it defines results, which
determine payoffs (i.e., agent n’s payoff if m is played is un

(
A(m), Pn(m)|τn)

if he’s type τn). Typically, the extensive form is simultaneous announcements;
that is, each agent sends his message without observing the messages sent by the
other agents. We will, in fact, restrict attention to simultaneous-announcement
mechanisms in what follows.

Assumption 4 Mechanisms are simultaneous-announcement mechanisms.
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When, as will be the case shortly, attention is restricted to dominant-strategy
mechanisms, this assumption will, ultimately, not matter; but assuming it now
simplifies the discussion.

A strategy for an agent is a mapping from what he knows, which, in light
of Assumption 4, can be summarized by his type, τn, into his message space,
Mn. That is, if Mn is the set of all functions from Tn into Mn, then a strategy
is the selection of an element, mn(·), from Mn.

A solution concept is the rule for solving the game defined by the mechanism.
Common solution concepts are dominant strategy (to be explored in the next
section) and Bayesian Nash (to be explored in Section 11.7). Observe that
the choice of the solution concept is part of the design of the mechanism—a
mechanism is designed to be solved according to a specified concept.

Dominant-Strategy
Mechanisms 11.3

A strategy for agent n is a dominant strategy if agent n wishes to play it
regardless of what messages the other agents will send; that is, m∗

n(·) is a
dominant strategy for agent n if, for each τn ∈ Tn and every m−n ∈×j 6=nMj ,

un
(
A
[
m∗
n(τn),m−n

]
, Pn

[
m∗
n(τn),m−n

]∣∣τn
)
≥

un
(
A
[
mn,m−n

]
, Pn

[
mn,m−n

]∣∣τn
)
∀mn ∈ Mn . (11.3)

If all agents have a dominant strategy, then the mechanism has a solution in
dominant strategies:

Definition 3 A mechanism has a solution in dominant strategies if each agent
n has a dominant strategy given that mechanism; that is, for each n, there
exists a mapping m∗

n(·) : Tn → Mn such that (11.3) holds for all τn ∈ Tn and
all m−n ∈×j 6=nMj. A mechanism with a solution in dominant strategies is a
dominant-strategy mechanism.

Observe that because agents are playing dominant strategies, it doesn’t mat-
ter whether a given agent knows the announcements of the other agents when he
chooses his announcement or not. That is, these dominant strategy mechanisms
are robust to relaxing the assumption that announcements are simultaneous.

The Revelation Principle 11.4
In the single-principal-single-agent model, we saw that attention could be re-
stricted, without loss of generality, to direct-revelation mechanisms (see Lec-
ture 8, particularly Proposition 11). Hence, rather than trying to work with ar-
bitrary classes of message spaces, attention could be limited to messages spaces
that were the same as the type space (i.e., the agent made announcements as to
his type). The same result—the revelation principle—holds with many agents.
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To be formal, recall that a mechanism is a direct mechanism if Mn = Tn for
all n; that is, a mechanism is direct if the space of possible messages is limited
to announcements about type.

Define Eσ,k : T → M to be the set of messages (the message profile) sent in
the equilibrium of mechanism σ as a function of the realized type profile, where
equilibrium is defined by the solution concept (“koncept”) k. So, for instance,
if the solution concept is dominant strategy (i.e., k = ds), then Eσ,DS(τ ) is the
set of m∗ that represent a dominant-strategy solution to the mechanism σ when
the realized profile of types is τ .

Definition 4 A direct mechanism σ is a direct-revelation mechanism under
solution concept k if τ ∈ Eσ,k(τ ) for all τ ∈ Θ. That is, if all agents telling the
truth is always an equilibrium under solution concept k.

Note, to be a solution under a solution concept, it cannot be that an agent
does better by deviating from his part of that solution; that is, there cannot
be profitable unilateral deviations. To avoid unduly complicating the notation,
we will limit attention in what follows to solution concepts that have solutions
in pure-strategies.1 Because, under some solution concepts, each agent n needs
to calculate the expected value of his utility over the other agents types, τ−n,
conditional on his own type, τn, define Un(a, pn|τn) to be that expected utility;
that is,

Un(a, pn|τn) ≡ E{τ−n∈T−n}
{
un(a, pn|τn)

∣∣τn
}
.

With this apparatus in hand, we can now state and prove the revelation
principle for multiple-agent mechanisms.

Proposition 16 (The Revelation Principle) Let σ be a mechanism under
solution concept k and let Aσ,k(·) and Pσ,k(·) be, respectively, the equilibrium
allocation and transfer vector as a function of the agents’ types. Then there
exists a direct-revelation mechanism, ψ, with a solution under concept k such
that Aσ,k(τ ) = Aψ,k(τ ) and Pσ,k(τ ) = Pψ,k(τ ) for all type profiles τ ∈ T .
That is, given that the class of mechanisms has been restricted to being solvable
under concept k, there is no further loss of generality in restricting attention to
direct-revelation mechanisms solvable under k.

Proof: Let σ be the simultaneous-announcement mechanism M1×· · ·×MN ≡
M, A : M → A, and P : M → R

N . Let m∗(·) be a solution under k. Observe
this implies

Un

(
A
(
m∗
n(τn),m∗

−n(τ−n)
)
, Pn

(
m∗
n(τn),m

∗
−n(τ−n)

)∣∣∣∣τn
)

≥

Un

(
A
(
mn,m

∗
−n(τ−n)

)
, Pn

(
mn,m

∗
−n(τ−n)

)∣∣∣∣τn
)

∀mn ∈ Mn . (11.4)

1Extending the analysis to permit mixed-strategies is straightforward. Note, however, that
in practice most mechanisms are designed to be solvable in pure strategies.
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Consider the direct mechanism ψ defined by P̃ : T → R
N and Ã : T → A,

where P̃(τ ) ≡ P(m∗[τ ]) and Ã(τ ) ≡ A(m∗[τ ]). Clearly, the equivalence of
the allocation and payments under ψ and σ follows if ψ is a direct-revelation
mechanism. So, to complete the proof, we need to establish that ψ is a direct-
revelation mechanism with a solution under k. To this end, suppose ψ were not
a direct-revelation mechanism with a solution under k. Then there must exist
an agent n and a type τn for that agent such that there is a τ̂n ∈ Tn for which
the following is true:

Un

(
Ã(τ̂n, τ−n), P̃n(τ̂n, τ−n)

∣∣τn
)
> Un

(
Ã(τn, τ−n), P̃n(τn, τ−n)

∣∣τn
)
. (11.5)

But substituting for the tilde-functions in (11.5) yields

Un
(
A
[
m∗
n(τ̂n),m∗

−n(τ−n)
]
, Pn

[
m∗
n(τ̂n),m

∗
−n(τ−n)

]∣∣τn
)
>

U
(
A
[
m∗
n(τn),m∗

−n(τ−n)
]
, Pn

[
m∗
n(τn),m∗

−n(τ−n)
]∣∣τn

)
. (11.6)

But expression (11.6) contradicts (11.4). In other words, expression (11.6) en-
tails that a type τn agent n does better to send the message m∗

n(τ̂n) than he
does by sending the message m∗

n(τn); which, in turn, contradicts the fact that
m∗
n(·) is a solution under concept k.

Groves-Clarke Mechanisms 11.5
Recall the public-goods problem laid out on page 103; that is, where the agents’
utilities and social welfare function are defined by (11.1) and (11.2), respectively.
Assume Tn = (0, T ), where T > 0. From (11.2), social welfare—given τ—is
simply a function of a. Moreover, it is a globally concave function. This latter
observation means that the first-order condition for maximizing W(a),

W ′(a) =

N∑

n=1

(τn − a) = 0 , (11.7)

is sufficient, as well as necessary. Observe that the solution to (11.7) is

a∗(τ ) =

∑N
n=1 τn
N

. (11.8)

The social planner’s objective is, thus, to devise a mechanism that implements
a∗(·).

In this section, we restrict attention to dominant-strategy mechanisms. More-
over, the Revelation Principle (Proposition 16) allows us to restrict attention
to direct-revelation mechanisms without any loss of generality. That is, in our
direct-revelation mechanism, we would like A(τ ) = a∗(τ ) for all τ ∈ T ≡
(0, T )N .
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To implement such an A(·), we need to find transfer functions (i.e., Pn(·))
such that truth-telling is a dominant strategy given that the allocation function
is A(·). That is, P : (0, T )N → R

N needs to satisfy

τn ∈ argmax
τ̂n

τnA(τ̂n, τ−n) −
1

2
A(τ̂n, τ−n)

2 + Pn(τ̂n, τ−n) (11.9)

for all n and all τ ∈ (0, 1)N (recall expression (11.3) above). That is, telling the
truth, τ̂n = τn, has to be dominant strategy (i.e., maximize utility) regardless
of the other agents’ announcements, τ−n.

Let us hypothesize that there exists a differentiable Pn(·) function for each
agent n that solves (11.9) and, moreover, makes the right-hand side of (11.9)
globally concave (so that first-order conditions are sufficient as well as neces-
sary). We will, of course, need to verify later that our solution makes (11.9)
globally concave. Differentiating the right-hand side of (11.9) with respect to
τ̂n and evaluating at τ̂n = τn, we must have the following first-order condition
met for all n and all τ ∈ (0, T )N :

(
τn −A(τn, τ−n)

) ∂A
∂τn

+
∂Pn
∂τn

≡ 0 . (11.10)

Observe that (11.10) is an identity, which means that we can consider Pn de-
fined by that differential equation. To get a closed-form solution for Pn requires
solving the differential equation. As written, this would seem a difficult dif-
ferential equation because of the first τn in (11.10); that is, for an arbitrary
function A(·), we wouldn’t know how to integrate τn × ∂A/∂τn.

2 To simplify
this differential equation, observe that we can use the social planner’s first-order
condition, expression (11.7), to substitute out

(
τn −A(τn, τ−n)

)
. This yields:

∂Pn
∂τn

=
∂A

∂τn

∑

j 6=n

(
τj −A(τn, τ−n)) . (11.11)

The differential equation (11.11) has the solution:

Pn(τ ) =
∑

j 6=n

(
τjA(τ ) − A(τ )2

2

)
+ hn(τ−n) , (11.12)

where hn(τ−n) is a constant of integration with respect to τn (i.e., it can depend
on the other agents’ announcements, but not n’s). Observe, from (11.12), that
agent n’s payment equals the sum of all the other agents’ utilities (gross of
monetary transfers). Looking back at (11.9), this means that each agent faces
the same maximization program that the social planner would face if she knew
all the agents’ types. From above, we know this program is globally concave;
hence, our use of (11.10) instead of (11.9) was valid. Moreover, having the

2In the specific example under consideration, we can, of course, do it because ∂A/∂τn is a
constant.
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payment to each agent equal, gross of any constants of integration, the sum of
the utilities of the other agents is a general feature of this class of mechanisms.
This generality has earned this class of mechanisms a name: Groves-Clarke
mechanisms (sometimes just Groves mechanisms).

More generally, we can prove the following result:

Proposition 17 (Groves-Clarke Mechanism) Consider a public-goods prob-
lem with N agents. Let the preferences of agent n be described by the quasi-linear
(additively separable) utility function vn(a|τn) + pn, where a is the level of the
public good (a ∈ R+), pn is agent n’s allocation (payment) of the transferable
good (money), and τn ∈ Tn is agent n’s type. Assume, for all τ ∈ T , there
exists a finite value a∗(τ ) that solves

max
a∈R+

N∑

n=1

vn(a|τn) . (11.13)

Then this a∗(·) can be implemented by the following direct-revelation dominant-
strategy mechanism:

A(τ ) = a∗(τ ) and Pn(τ ) =
∑

j 6=n
vj
(
A(τ )|τj

)
+ hn(τ−n) ,

where the hn(·) are arbitrary functions from T−n → R.

Proof: We need to establish that the mechanism implements a∗(·) via truth-
telling as a dominant strategy. Because we’ve limited attention to dominant
strategies, it must be that each agent n, regardless of the realized τn ∈ Tn, wants
to tell the truth for any τ−n ∈ T−n. Hence, each agent n must find that truth
telling, announcing τn, yields at least as much utility as announcing τ̂n 6= τn, for
any τ̂n ∈ Tn and all τ−n ∈ T−n. We’ll establish this by contradiction. Suppose
there were an n such that, for a realization τn ∈ Tn and τ−n ∈ T−n, there exists
a lie τ̂n ∈ Tn such that

vn
(
A(τ̂n, τ−n)|τn

)
+ Pn(τ̂n, τ−n) > vn

(
A(τn, τ−n)|τn

)
+ Pn(τn, τ−n) .

Substituting for Pn, this entails

N∑

j=1

vn
(
A(τ̂n, τ−n)|τj

)
>

N∑

j=1

vn
(
A(τn, τ−n)|τj

)
. (11.14)

Expression (11.14) can hold only if A(τ̂n, τ−n) 6= A(τn, τ−n). Recall the latter
term is a∗(τn, τ−n), while the former term is some other a; but, then, (11.14)
yields

N∑

j=1

vn(a|τj) >
N∑

j=1

vn
(
a∗(τn, τ−n)|τj

)
. (11.15)

Expression (11.15), however, contradicts that a∗(τn, τ−n) maximizes (11.13).
So, by contradiction, we’ve established that truth-telling is a dominant strategy
under this mechanism.
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Budget Balancing 11.6
As seen, public-goods problems are readily solved by Groves-Clarke mechanisms.
There is, however, a fly in the ointment. We might wish for the mechanism to
exhibit budget balancing ; specifically, we might wish for

N∑

n=1

Pn(τ ) = 0 (11.16)

for all τ ∈ T . The reason for such a wish is that we might worry about a
mechanism that either allowed the social planner to pocket money (i.e., one in

which
∑N

n=1 Pn(τ ) < 0 for some τ ) or in which she had to contribute money

(i.e., one in which
∑N
n=1 Pn(τ ) > 0 for some τ ). In the first case, what does it

mean for the social planner (government) to pocket money? Presumably, any
extra funds will be used by the government for some purpose, which would,
then, affect the agents’ utilities and, thus, their incentives in the mechanism.
Alternatively, the planner could simply burn any extra funds; but, in many
contexts, it is difficult to imagine that the planner’s commitment to burn funds
is credible—the society in question would, presumably, insist on renegotiating
and making use of the extra funds (including rebating them to the agents).
But this, too, would distort incentives. Having the planner contribute money
(i.e.,

∑
Pn > 0) can also be unrealistic—from where does the social planner get

these extra funds? If she gets them by reallocating funds from other government
projects, that will affect citizens’ utilities and, thus, incentives. If she levies a
tax to generate the funds, then that will clearly affect incentives. Bottom line:
there are contexts in which attention needs to be restricted to balanced-budget
mechanisms.

Unfortunately, Groves-Clarke mechanisms are generically unbalanced; that
is, (11.16) cannot be made to hold for all realizations of τ . This can be estab-
lished fairly generally—see Laffont and Maskin (1980)—but here it will suffice
to consider an example. Recall the public-goods example with which we began
the last section. Maintain all the assumptions, but fix N = 2. From the analysis
in the previous section, the Groves-Clarke mechanism is

A(τ ) =
τ1 + τ2

2
and Pn(τ ) = τ−nA(τ ) − A(τ )2

2
+ hn(τ−n)

=
3τ2

−n + 2τnτ−n − τ2
n

8
+ hn(τ−n) .

Adding P1 and P2 yields

P1(τ ) + P2(τ ) =
τ2
1 + τ1τ2 + τ2

2

4
+ h1(τ2) + h2(τ1) .

In general, this sum is not zero; that is, the mechanism is unbalanced. To verify
this—that is, to show P1(τ ) +P2(τ ) 6= 0 for some τ ∈ T —suppose that it were
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balanced. Then P1(τ ) + P2(τ ) ≡ 0. Because this is an identity, the derivative
of this sum with respect to τ1 is always zero; that is,

2τ1 + τ2
4

+ h′2(τ1) ≡ 0 . (11.17)

But (11.17) entails that h2(·) is a function of τ2, which it cannot be. So, by
contradiction, it follows that P1(τ ) + P2(τ ) 6= 0 for some τ ∈ T .

Bayesian Mechanisms 11.7
In part because Groves-Clarke mechanisms are generically unbalanced, econ-
omists have sought to devise other mechanisms that are balanced. To do so,
however, means we must use a less restrictive solution concept than solution
in dominant strategies. Here we use the solution concept Bayesian Nash—the
agents must play mutual best responses given their expectations of others’ types
and strategies.

To begin, recall our now familiar example in which

un(a, pn|τn) = τna−
a2

2
+ pn and W(a) =

N∑

n=1

(
τna−

a2

2

)
.

Recall that a∗(τ ) = 1
N

∑N
n=1 τn. Assume that Tn = (0, T ) where 0 < T ≤ ∞.

Assume, critically, that the τn are independently distributed on (0, T ). For
convenience, assume that they have identical distributions as well. Consistent
with our earlier analysis, the realization of τn is agent n’s private information,
while the distribution of τn is common knowledge.

Consider the following direct-revelation mechanism:3 A(τ ) = a∗(τ ) and
the payment (transfer) vector P(τ ) ≡

(
P1(τ ), . . . , PN (τ )

)
, where the latter is

defined by

Pn(τ ) = ρn(τn) − 1

N − 1

∑

j 6=n
ρj(τj) . (11.18)

Summing the Pns reveals that they sum to zero for all τ ; that is, the mechanism
is balanced by construction. To find the functions ρn(·), we use the fact that
they must be incentive compatible with truth telling in a Bayesian equilibrium;
that is,

τn ∈ argmax
τ̂n∈(0,T )

Eτ−n




τnA(τ̂n, τ−n) −
A(τ̂n, τ−n)2

2
+ ρn(τ̂n) − 1

N − 1

∑

j 6=n
ρj(τj)




 .

Observe that it is expected utility because each agent is playing a best response
to the presumed truth telling of the other agents. In other words, we have a

3From Proposition 16 there is no loss of generality in restricting attention to direct-
revelation mechanisms.
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Bayesian Nash equilibrium if truth telling by each agent n is a best response to
truth telling by the other agents.

Let’s conjecture that the above maximization program is globally concave
in τ̂n, so that we can replace it with its corresponding first-order condition (we
will verify global concavity at the end of this derivation):

Eτ−n

{(
τn −A(τ̂n, τ−n)

) ∂A
∂τ̂n

+ ρ′n(τn)

}
= 0 . (11.19)

The function ρ′n(τn) is independent of τ−n and, hence, can be passed through
the expectations operator. In addition, from the social planner’s first-order
condition (11.7) on page 107,

Eτ−n

{(
τn −A(τn, τ−n)

) ∂A
∂τn

}
= −Eτ−n




∑

j 6=n

(
τj −A(τn, τ−n)

) ∂A
∂τn



 .

Using these two insights, we can rearrange (11.19) to become

ρ′n(τn) = Eτ−n





∑

j 6=n

(
τj −A(τn, τ−n)

) ∂A
∂τn




 .

Solving this differential equation (i.e., integrating through the expectations op-
erator and reversing the chain rule) yields:

ρn(τn) = Eτ−n





∑

j 6=n

(
τjA(τ ) − 1

2
A(τ )2

)



+ hn , (11.20)

where hn is an arbitrary constant of integration that does not depend on the
agents’ announcements. Observe, ignoring hn, that ρn(τn) equals the expecta-
tion of the sum of the other agents’ utilities (gross of transfers). This means
that, in expectation, each agent faces the same maximization problem as the so-
cial planner would if she knew the agents’ types. Because we know this problem
is globally concave, we’ve, thus, verified that we were justified in replacing agent
n’s incentive compatibility constraint with the corresponding first-order condi-
tion. We also obtain a nice interpretation: Because the transfer function puts
each agent on the socially desired margin with respect to his own maximization
problem, each agent is induced to act in the public good.

We can generalize this conclusion:

Proposition 18 (Bayesian Mechanism) Consider a public-goods problem
with N agents. Let the preferences of agent n be described by the quasi-linear
(additively separable) utility function vn(a|τn) + pn, where a is the level of the
public good (a ∈ R+), pn is agent n’s allocation (payment) of the transferable
good (money), and τn ∈ Tn is agent n’s type. Assume that the types are dis-
tributed independently of each other (i.e., knowledge of τn yields agent n no
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additional information about τj, j 6= n, than he had prior to the realization of
τn). Assume, for all τ ∈ T , there exists a finite value a∗(τ ) that solves

max
a∈R+

N∑

n=1

vn(a|τn) . (11.21)

Then this a∗(·) can be implemented by the following direct-revelation Bayesian
mechanism:

A(τ ) = a∗(τ ) and Pn(τ ) = ρn(τn) − 1

N − 1

∑

j 6=n
ρj(τj) ,

where

ρn(τn) = Eτ−n




∑

j 6=n
vj
(
A(τ )|τj

)


+ hn ,

where hn is an arbitrary constant.

Proof: We need to establish that the mechanism implements a∗(·) via truth-
telling as a Bayesian Nash equilibrium. This means each agent n must find
that truth telling, announcing τn, yields at least as much utility as announcing
τ̂n 6= τn, for any τ̂n ∈ Tn given that he believes the other agents will tell the
truth. We’ll establish this by contradiction. Suppose there were an n such that,
for a realization τn ∈ Tn, there exists a lie τ̂n ∈ Tn such that

Eτ−n

{
vn
(
A(τ̂n, τ−n)|τn

)
+ Pn(τ̂n, τ−n)

}
>

Eτ−n

{
vn
(
A(τn, τ−n)|τn

)
+ Pn(τn, τ−n)

}
.

Substituting for Pn and canceling like terms, this entails4

Eτ−n





N∑

j=1

vn
(
A(τ̂n, τ−n)|τj

)


 > Eτ−n





N∑

j=1

vn
(
A(τn, τ−n)|τj

)


 . (11.22)

Expression (11.22) can hold only if A(τ̂n, τ−n) 6= A(τn, τ−n) for at least one
realization of (τ̂n, τ−n) and τ . Recall the latter term is a∗(τn, τ−n), while the
former term is some other a; but, then, (11.22) implies

N∑

j=1

vn(a|τj) >
N∑

j=1

vn
(
a∗(τn, τ−n)|τj

)
(11.23)

for at least one realization of τ . Expression (11.23), however, contradicts that
a∗(τn, τ−n) maximizes (11.21) for all τ . So, by contradiction, we’ve established
that truth-telling is a best response to truth-telling by the other agents; that
is, the Bayesian Nash equilibrium of this mechanism implements a∗(τ ) for all
τ ∈ T .

4Recall E
˘

E{X}
¯

= E{X}.
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Purpose

A common economic occurrence is the following: Two parties, principal and
agent, are in a situation—typically of their choosing—in which actions by the
agent impose an externality on the principal. Not surprisingly, the principal
will want to influence the agent’s actions. This influence will often take the
form of a contract that has the principal compensating the agent contingent on
either his actions or the consequences of his actions. Table 2 lists some examples
of situations like this. Note that, in many of these examples, the principal is
buying a good or service from the agent. That is, many buyer-seller relationships
naturally fit into the principal-agent framework. This part of the notes covers
the basic tools and results of agency theory.

Table 2: Examples of Moral-Hazard Problems
Principal Agent Problem Solution

Employer Employee Induce employee to take
actions that increase
employer’s profits, but
which he finds personally
costly.

Base employee’s
compensation on employer’s
profits.

Plaintiff Attorney Induce attorney to expend
costly effort to increase
plaintiff’s chances of
prevailing at trial.

Make attorney’s fee
contingent on damages
awarded plaintiff.

Homeowner Contractor Induce contractor to
complete work (e.g.,
remodel kitchen) on time.

Give contractor bonus for
completing job on time.

Landlord Tenant Induce tenant to make
investments (e.g., in time or
money) that preserve or
enhance property’s value to
the landlord.

Pay the tenant a fraction of
the increased value (e.g.,
share-cropping contract).
Alternatively, make tenant
post deposit to be forfeited
if value declines too much.

To an extent, the principal-agent problem finds its root in the early literature
on insurance. There, the concern was that someone who insures an asset might
then fail to maintain the asset properly (e.g., park his car in a bad neighbor-
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hood). Typically, such behavior was either unobservable by the insurance com-
pany or too difficult to contract against directly; hence, the insurance contract
could not be directly contingent on such behavior. But because this behavior—
known as moral hazard—imposes an externality on the insurance company (in
this case, a negative one), insurance companies were eager to develop contracts
that guarded against it. So, for example, many insurance contracts have de-
ductibles—the first k dollars of damage must be paid by the insured rather than
the insurance company. Because the insured now has $k at risk, he’ll think
twice about parking in a bad neighborhood. That is, the insurance contract
is designed to mitigate the externality that the agent—the insured—imposes
on the principal—the insurance company. Although principal-agent analysis is
more general than this, the name “moral hazard” has stuck and, so, the types
of problems considered here are often referred to as moral-hazard problems. A
more descriptive name, which is also used in the literature, is hidden-action
problems.

Bibliographic Note

This part of the lecture notes draws heavily from a set of notes that I co-authored
with Bernard Caillaud.



The Moral-Hazard
Setting 12

We begin with a general picture of the situation we wish to analyze.

1. Two players are in an economic relationship characterized by the following
two features: First, the actions of one player, the agent, affect the well-
being of the other player, the principal. Second, the players can agree
ex ante to a reward schedule by which the principal pays the agent.1

The reward schedule represents an enforceable contract (i.e., if there is a
dispute about whether a player has lived up to the terms of the contract,
then a court or similar body can adjudicate the dispute).

2. The agent’s action is hidden; that is, he knows what action he has taken
but the principal does not directly observe his action. (Although we will
consider, as a benchmark, the situation in which the action can be con-
tracted on directly.) Moreover, the agent has complete discretion in choos-
ing his action from some set of feasible actions.2

3. The actions determine, usually stochastically, some performance measures.
In many models, these are identical to the benefits received by the princi-
pal, although in some contexts the two are distinct. The reward schedule
is a function of (at least some) of these performance variables. In partic-
ular, the reward schedule can be a function of the verifiable performance
measures.3

4. The structure of the situation is common knowledge between the players.

For example, consider a salesperson who has discretion over the amount of
time or effort he expends promoting his company’s products. Many of these
actions are unobservable by his company. The company can, however, measure
in a verifiable way the number of orders or revenue he generates. Because these
measures are, presumably, correlated with his actions (i.e., the harder he works,
the more sales he generates on average), it may make sense for the company to

1Although we typically think in terms positive payments, in many applications payments
could be negative; that is, the principal fines or otherwise punishes the agent.

2Typically, this set is assumed to be exogenous to the relationship. One could, however,
imagine situations in which the principal has some control over this set ex ante (e.g., she
decides what tools the agent will have available).

3Information is verifiable if it can be observed perfectly (i.e., without error) by third parties
who might be called upon to adjudicate a dispute between principal and agent.
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base his pay on his sales—put him on commission—to induce him to expend
the appropriate level of effort.

Here, we will also be imposing some additional structure on the situation:

• The players are symmetrically informed at the time they agree to a reward
schedule.

• Bargaining is take-it-or-leave-it (tioli): The principal proposes a contract
(reward schedule), which the agent either accepts or rejects. If he rejects
it, the game ends and the players receive their reservation utilities (their
expected utilities from pursuing their next best alternatives). If he accepts,
then both parties are bound by the contract.

• Contracts cannot be renegotiated.

• Once the contract has been agreed to, the only player to take further
actions is the agent.

• The game is played once. In particular, there is only one period in which
the agent takes actions and the agent completes his actions before any
performance measures are realized.

All of these are common assumptions and, indeed, might be taken to constitute
part of the “standard” principal-agent model.

The link between actions and performance can be seen as follows. Perfor-
mance is a random variable and its probability distribution depends on the ac-
tions taken by the agent. So, for instance, a salesperson’s efforts could increase
his average (expected) sales, but he still faces upside risk (e.g., an economic
boom in his sales region) and downside risk (e.g., introduction of a rival prod-
uct). Because the performance measure is only stochastically related to the
action, it is generally impossible to infer perfectly the action from the realiza-
tion of the performance measure. That is, the performance measure does not,
generally, reveal the agent’s action—it remains “hidden” despite observing the
performance measure.

The link between actions and performance can also be viewed in a indirect
way in terms of a state-space model. Performance is a function of the agent’s
actions and of the state of nature; that is, a parameter (scalar or vector) that
describe the economic environment (e.g., the economic conditions in the sales-
person’s territory). In this view, the agent takes his action before knowing the
state of nature. Typically, we assume that the state of nature is not observ-
able to the principal. If she could observe it, then she could perfectly infer the
agent’s action by inverting from realized performance. In this model, it is not
important whether the agent later observes the state of nature or not, given he
could deduce it from his observation of his performance and his knowledge of
his actions.

There is a strong assumption of physical causality in this setting, namely
that actions by the agent determine performances. Moreover, the process is
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viewed as a static production process: There are neither dynamics nor feed-
back. In particular, the contract governs one period of production and the
game between principal and agent encompasses only this period. In addition,
when choosing his actions, the agent’s information is identical to the principal’s.
Specifically, he cannot adjust his actions as the performance measures are real-
ized. The sequentiality between actions and performance is strict: First actions
are completed and, only then, is performance realized.
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Basic Two-Action
Model 13

We start with the simplest principal-agent model. Admittedly, it is so simple
that a number of the issues one would like to understand about contracting
under moral hazard disappear. On the other hand, many issues remain and, for
pedagogical purposes at least, it is a good place to start.1

The Two-action Model 13.1
Consider a salesperson, who will be the agent in this model and who works for a
manufacturer, the principal. The manufacturer’s problem is to design incentives
for the salesperson to expend effort promoting the manufacturer’s product to
consumers.

Let x denote the level of sales that the salesperson reaches within the period
under consideration. This level of sales depends upon many demand parameters
that are beyond the salesperson’s control; but, critically, they also depend upon
the salesperson’s effort—the more effort the salesperson expends, the more con-
sumers will buy in expectation. Specifically, suppose that when the salesperson
does not expend effort, sales are distributed according to distribution function
F0(·) on R+.2 When he does expend effort, sales are distributed F1(·). Observe
effort, here, is a binary choice. Consistent with the story we’ve told so far, we
want sales to be greater, in expectation, if the salesperson has expended effort;
that is, assume3

E1{x} ≡
∫ ∞

0

xdF1 (x) >

∫ +∞

0

xdF0(x)dx ≡ E0{x} . (13.1)

Having the salesperson expend effort is sales-enhancing, but it is also costly
for the salesperson. Expending effort causes him disutility C compared to no

1But the pedagogical value of this section should not lead us to forget caution. And caution
is indeed necessary as the model oversimplifies reality to a point that it delivers conclusions
that have no match in a more general framework. One could say that the two-action model
is tailored so as to fit with näıve intuition and to lead to the desired results without allowing
us to see fully the (implicit) assumptions on which we are relying.

2Treating the set of “possible” sales as [0,∞) is without loss of generality, because the
boundedness of sales can be captured by assuming F (x ≥ x̄) = 0 for some x̄ < ∞.

3Observe that this notation covers both the case in which Fa (·) is a differentiable distri-
bution function or a discrete distribution function.

123



124 Lecture Note 13: Basic Two-Action Model

effort. The salesperson has discretion: He can incur a personal cost of C and
boosts sales by choosing action a = 1 (expending effort), or he can expend
no effort, action a = 0, which causes him no disutility but does not stimulate
demand either. Like most individuals, the salesperson is sensitive to variations
in his income; specifically, his preferences over income exhibit risk aversion.
Assume, too, that his utility exhibits additive separability in money and action.
Specifically, let his utility be

U(s, x, a) = u(s) − aC,

where s is a payment from the manufacturer and u(·) is strictly increasing
and concave (the salesperson—agent—prefers more money to less and is risk
averse). Of course, the salesperson could also simply choose not to work for the
manufacturer. This would yield him an expected level of utility equal to UR.
The quantity UR is the salesperson’s reservation utility .

The manufacturer is a large risk-neutral company that cares about the sales
realized on the local market net of the salesperson’s remuneration or share of the
sales. Hence, the manufacturer’s preferences are captured by the utility (profit)
function:

W (s, x, a) = x− s.

Assume the manufacturer’s size yields it all the bargaining power in its negoti-
ations with the salesperson.

Suppose, as a benchmark, that the manufacturer could observe and establish
whether the salesperson had expended effort. We will refer to this benchmark
as the full or perfect information case. Then the manufacturer could use a
contract that is contingent on the salesperson’s effort, a. Moreover, because
the salesperson is risk averse, while the manufacturer is risk neutral, it is most
efficient for the manufacturer to absorb all risk. Hence, in this benchmark case,
the salesperson’s compensation would not depend on the realization of sales,
but only on the salesperson’s effort. The contract would then be of the form:

s =

{
s0 if a = 0
s1 if a = 1

.

If the manufacturer wants the salesperson to expend effort (i.e., choose a = 1),
then it must choose s0 and s1 to satisfy two conditions. First, conditional on
accepting the contract, the salesperson must prefer to invest; that is,

u (s1) − C ≥ u (s0) . (ic)

A constraint like this is known as an incentive compatibility constraint (conven-
tionally abbreviated ic): Taking the desired action must maximize the agent’s
expected utility. Second, conditional on the fact that he will be induced to ex-
pend effort, he must prefer to sign the contract than to forgo employment with
the manufacturer; that is,

u (s1) − C ≥ UR . (ir)
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A constraint like this is known as an individual rationality constraint (conven-
tionally abbreviated ir). The ir constraint is also referred to as a participation
constraint. Moreover, in selecting s0 and s1, the manufacturer wants to maxi-
mize its profits conditional on gaining acceptance of the contract and inducing
a = 1. That is, it wishes to solve

max
s0,s1

E1{x} − s1

subject to the constraints (ic) and (ir). If we postulate that

u (s0) < UR and

u (s1) − C = UR (13.2)

both have solutions within the domain of u(·), then the solution to the man-
ufacturer’s problem is straightforward: s1 solves (13.2) and s0 is a solution to
u(s) < UR. It is readily seen that this solution satisfies the constraints. More-
over, because u (·) is strictly increasing, there is no smaller payment that the
manufacturer could give the salesperson and still have him accept the contract.
This contract is known as a forcing contract.4 For future reference, let sF1 be
the solution to (13.2). Observe that sF1 = u−1(UR + C), where u−1(·) is the
inverse of the function u(·).

Another option for the manufacturer is, of course, not to bother inducing the
salesperson to expend effort promoting the product. There are many contracts
that would accomplish this goal, although the most “natural” is perhaps a non-
contingent contract: s0 = s1. Given that the manufacturer doesn’t seek to
induce investment, there is no IC constraint—the salesperson inherently prefers
not to invest—and the only constraint is the IR constraint:

u (s0) ≥ UR.

The expected-profit-maximizing (cost-minimizing) payment is then the smallest
payment satisfying this expression. Given that u (·) is increasing, this entails
s0 = u−1 (UR). We will refer to this value of s0 as sF0 .

4�
The solution to the manufacturer’s maximization problem depends on the domain and

range of the utility function u (·). Let D, an interval in R, be the domain and R be the
range. Let s be inf D (i.e., the greatest lower bound of D) and let s̄ be supD (i.e., the
least upper bound of D). As shorthand for lims↓s u(s) and lims↑s̄ u(s), we’ll write u(s) and
u(s̄) respectively. If u(s) − C < UR for all s ≤ s̄, then no contract exists that satisfies (ir).
In this case, the best the manufacturer could hope to do is implement a = 0. Similarly, if
u(s̄) − C < u(s), then no contract exists that satisfies (ic). The manufacturer would have
to be satisfied with implementing a = 0. Hence, a = 1 can be implemented if and only if
u(s̄)−C > max{UR, u(s)}. Assuming this condition is met, a solution is s0 ↓ s and s1 solving

u(s) − C ≥ max{UR, u(s)}.

Generally, conditions are imposed on u(·) such that a solution exists to u(s) < UR and (13.2).
Henceforth, we will assume that these conditions have, indeed, been imposed. For an example
of an analysis that considers bounds on D that are more binding, see Sappington (1983).
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The manufacturer’s expected profit conditional on inducing a under the op-
timal contract for inducing a is Ea [x]− sFa . The manufacturer will, thus, prefer
to induce a = 1 if

E1 [x] − sF1 > E0 [x] − sF0 .

In what follows, we will assume that this condition is met: That is, in our
benchmark case of verifiable action, the manufacturer prefers to induce effort
than not to.

Observe the steps taken in solving this benchmark case: First, for each
possible action we solved for the optimal contract that induces that action. Then
we calculated the expected profits for each possible action assuming the optimal
contract. The action that is induced is, then, the one that yields the largest
expected profit. This two-step process for solving for the optimal contract is
frequently used in contract theory, as we will see.

The Optimal Incentive
Contract 13.2

Now, we return to the case of interest: The salesperson’s (agent’s) action is hid-
den. Consequently, the manufacturer cannot make its payment contingent on
whether the salesperson expends effort. The only verifiable variable is perfor-
mance, as reflected by realized sales, x. A contract, then, is a function mapping
sales into compensation for the salesperson: s = S(x). Facing such a contract,
the salesperson then freely chooses the action that maximizes his expected util-
ity. Consequently, the salesperson chooses action a = 1 if and only if:5

E1 [u(S(x))] − C ≥ E0 [u(S(x))] . (ic′)

If this inequality is violated, the salesperson will simply not expend effort. Ob-
serve that this is the incentive compatibility (ic) constraint in this case.

The game we analyze is in fact a simple Stackelberg game, where the man-
ufacturer is the first mover—it chooses the payment schedule—to which it is
committed; and the salesperson is the second mover—choosing his action in
response to the payment schedule. The solution to

max
a

Ea [u (S (x))] − aC

5�
We assume, when indifferent among a group of actions, that the agent chooses from

that group the action that the principal prefers. This assumption, although often troubling to
those new to agency theory, is not truly a problem. Recall that the agency problem is a game.
Consistent with game theory, we’re looking for an equilibrium of this game; i.e., a situation
in which players are playing mutual best responses and in which they correctly anticipate
the best responses of their opponents. Were the agent to behave differently when indifferent,
then we wouldn’t have an equilibrium because the principal would vary her strategy—offer a
different contract—so as to break this indifference. Moreover, it can be shown that in many
models the only equilibrium has the property that the agent chooses among his best responses
(the actions among which he is indifferent given the contract) the one most preferred by the
principal.
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(with ties going to the manufacturer) gives the salesperson’s equilibrium choice
of action by the agent as a function of the payment function S(·). Solving this
contracting problem then requires us to understand what kind of contract the
manufacturer could and will offer.

Observe first that if she were to offer the fixed-payment contract S (x) = sF0
for all x, then, as above, the agent would accept the contract and not bother
to expend effort. Among all contracts that induce the agent to choose action
a = 0 in equilibrium, this is clearly the cheapest one for the manufacturer.
The fixed-payment contract set at sF1 will, however, no longer work given the
hidden-action problem: Since the salesperson gains sF1 whatever his efforts, he
will choose the action that has lesser cost for him, a = 0. It is in fact immediate
that any fixed-payment contract, which would be optimal if the only concern
were efficient risk-sharing, will induce an agent to choose his least costly action.
Given that it is desirable, at least in the benchmark full-information case, for
the salesperson to expend effort selling the product, it seems plausible that the
manufacturer will try to induce effort even though—as we’ve just seen—that
must entail the inefficient (relative to the first best) allocation of risk to the
salesperson.

We now face two separate questions. First, conditional on the manufacturer’s
wanting the salesperson to expend effort, what is the optimal—least-expected-
cost—contract for the manufacturer to offer? Second, are the manufacturer’s
expected profits greater doing this than not inducing the salesperson to expend
effort (i.e., greater than the expected profits from offering the fixed-payment
contract S (x) = sF0 )?

As in the benchmark case, not only must the contract give the salesperson
an incentive to acquire information (i.e., meet the ic constraint), it must also
be individually rational:

E1 [u(S(x))] − C ≥ UR. (ir′)

The optimal contract is then the solution to the following program:

max
S(·)

E1 [x− S(x)] (13.3)

subject to (ic
′
) and (ir

′
).

The next few sections will consider the solution to (13.3) under a number of
different assumptions about the distribution functions Fa (·).

Two assumptions on u (·), in addition to those already given, that will be
common to these analyses are:

1. The domain of u (·) is (s,∞), s ≥ −∞.6

2. lims↓s u (s) = −∞ and lims↑∞ u (s) = ∞.

6Since its domain is an open interval and it is concave, u (·) is continuous everywhere on
its domain (see van Tiel, 1984, p. 5).
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An example of a function satisfying all the assumptions on u (·) is log (·) with
s = 0. For the most part, these assumptions are for convenience and are more
restrictive than we need (for instance, many of our results will also hold if
u (s) =

√
x, although this fails the second assumption). Some consequences of

these and our earlier assumptions are

• u (·) is invertible (a consequence of its strict monotonicity). Let u−1 (·)
denote its inverse.

• The domain of u−1 (·) is R (a consequence of the last two assumptions).

• u−1 (·) is continuous, strictly increasing, and convex (a consequence of the
continuity of u (·), its concavity, and that it is strictly increasing).

Two-outcome Model 13.3
Imagine that there are only two possible realizations of sales, high and low,
denoted respectively by xH and xL, with xH > xL. Assume that

Fa (xL) = 1 − qa,

where q ∈ (0, 1)is a known constant.
A contract is sH = S (xH) and sL = S (xL). We can, thus, write program

(13.3) as
max
sH ,sL

q (xH − sH) + (1 − q) (xL − sL)

subject to

qu (sH) + (1 − q)u (sL) − C ≥ 0 · u (sH) + 1 · u (sL) (ic)

and
qu (sH) + (1 − q)u (sL) − C ≥ UR (ir)

We could solve this problem mechanically using the usual techniques for max-
imizing a function subject to constraints, but it is far easier, here, to use a
little intuition. To begin, we need to determine which constraints are binding.
Is ic binding? Well, suppose it were not. Then the problem would simply be
one of optimal risk sharing, because, by supposition, the incentive problem no
longer binds. But we know optimal risk sharing entails sH = sL; that is, a
fixed-payment contract.7 As we saw above, however, a fixed-payment contract

7The proof is straightforward if u (·) is differentiable: Let λ be the Lagrange multiplier on
(ir). The first-order conditions with respect to sL and sH are

1 − q − λ (1 − q) u′ (sL) = 0

and
q − λqu′ (sH) = 0,

respectively. Solving, it is clear that sL = sH . The proof when u (·) is not (everywhere)
differentiable is only slightly harder and is left to the reader.
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cannot satisfy ic:
u (s) − C < u (s) .

Hence, ic must be binding.
What about ir? Is it binding? Suppose it were not (i.e., it were a strict

inequality) and let s∗L and s∗H be the optimal contract. Then there must exist
an ε > 0 such that

q −
(
u (s∗H) − ε

)
+ (1 − q)

(
u (s∗L) − ε

)
− C ≥ UR.

Let s̃n = u−1
(
u (s∗n) − ε

)
, n ∈ {L,H}. Clearly, s̃n < s∗n for both n, so that the

{s̃n} contract costs the manufacturer less than the {s∗n} contract; or, equiva-
lently, the {s̃n} contract yields the manufacturer greater expected profits than
the {s∗n} contract. Moreover, the {s̃n} contract satisfies ic:

qu (s̃H) + (1 − q) u (s̃L) − C = q
(
u (s∗H) − ε

)
+ (1 − q)

(
u (s∗L) − ε

)
− C

= qu (s∗H) + (1 − q)u (s∗L) − C − ε

≥ 0 · u (s∗H) + 1 · u (s∗L) − ε ({s∗n} satisfies ic)

= u (s̃L) .

But this means that {s̃n} satisfies both constraints and yields greater expected
profits, which contradicts the optimality of {s∗n}. Therefore, by contradiction,
we may conclude that ir is also binding under the optimal contract for inducing
a = 1.

We’re now in a situation where the two constraints must bind at the optimal
contract. But, given we have only two unknown variables, sH and sL, this means
we can solve for the optimal contract merely by solving the constraints. Doing
so yields

ŝH = u−1

(
UR +

1

q
C

)
and ŝL = u−1 (UR) . (13.4)

Observe that the payments vary with the state (as we knew they must because
fixed payments fail the ic constraint).

Recall that were the saleperson’s action verifiable, the contract would be
S (x) = sF1 = u−1 (UR + C). Rewriting (13.4) we see that

ŝH = u−1

(
u
(
sF1
)

+
1 − q

q
C

)
and ŝL = u−1

(
u
(
sF1
)
− C

)
;

that is, one payment is above the payment under full information, while the other
is below the payment under full information. Moreover, the expected payment
to the salesperson is greater than sF1 :

qŝH + (1 − q) ŝL = qu−1
(
u
(
sF1
)

+ 1−q
q
C
)

+ (1 − q)u−1
(
u
(
sF1
)
− C

)

≥ u−1
(
q
(
u
(
sF1
)

+ 1−q
q
C
)

+ (1 − q)
(
u
(
sF1
)
− C

))
(13.5)

= u−1
(
u
(
sF1
) )

= sF1 ;
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where the inequality follows from Jensen’s inequality.8 Provided the agent is
strictly risk averse, the above inequality is strict: Inducing the agent to choose
a = 1 costs strictly more in expectation when the principal cannot verify the
agent’s action.

Before proceeding, it is worth considering why the manufacturer (principal)
suffers from its inability to verify the salesperson’s (agent’s) action (i.e., from the
existence of a hidden-action problem). Ceteris paribus, the salesperson prefers
a = 0 to a = 1 because expending effort is personally costly to him. Hence, when
the manufacturer wishes to induce a = 1, its interests and the salesperson’s are
not aligned. To align their interests, the manufacturer must offer the salesperson
incentives to choose a = 1. The problem is that the manufacturer cannot
directly tie these incentives to the variable in which it is interested, namely the
action itself. Rather, it must tie these incentives to sales, which are imperfectly
correlated with action. These incentives, therefore, expose the agent to risk.
We know, relative to the first best, that this is inefficient. Someone must bear
the cost of this inefficiency. Because the bargaining game always yields the
salesperson the same expected utility (i.e., ir is always binding), the cost of
this inefficiency must, thus, be borne by the manufacturer.

Another way to view this last point is that because the agent is exposed to
risk, which he dislikes, he must be compensated. This compensation takes the
form of a higher expected payment.

To begin to appreciate the importance of the hidden-action problem, observe
that

lim
q↑1

qŝH + (1 − q) ŝL = lim
q↑1

ŝH

= u−1
(
u
(
sF1
) )

= sF1 .

Hence, when q = 1, there is effectively no hidden-action problem: Low sales, xL,
constitute proof that the salesperson failed to invest, because Pr{x = xL|a =
1} = 0 in that case. The manufacturer is, thus, free to punish the salesperson for
low sales in whatever manner it sees fit; thereby deterring a = 0. But because
there is no risk when a = 1, the manufacturer does not have to compensate
the salesperson for bearing risk and can, thus, satisfy the ir constraint paying
the same compensation as under full information. When q = 1, we have what
is known as a shifting support.9 We will consider shifting supports in greater

8Jensen’s inequality for convex functions states that if g (·) is convex function, then
E {g (X)} ≥ g (EX), where X is a random variable whose support is an interval of R and
E is the expectations operator with respect to X (see, e.g., van Tiel, 1984, p. 11, for a proof).
If g (·) is strictly convex and the distribution of X is not degenerate (i.e., does not concentrate
all mass on one point), then the inequality is strict. For concave functions, the inequalities
are reversed.

9The support of distribution G over random variable X, sometimes denoted supp {X}, is
the set of x’s such that for all ε > 0,

G (x) − G (x − ε) > 0.
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depth later.
To see the importance of the salesperson’s risk aversion, note that were the

salesperson risk neutral, then the inequality in (13.5) would, instead, be an
equality and the expected wage paid the salesperson would equal the wage paid
under full information. Given that the manufacturer is risk neutral by assump-
tion, it would be indifferent between an expected wage of sF1 and paying sF1 with
certainty: There would be no loss, relative to full information, of overcoming
the hidden-action problem by basing compensation on sales. It is important to
note, however, that assuming a risk-neutral agent does not obviate the need to
pay contingent compensation (i.e., we still need sH > sL)—as can be seen by
checking the ic constraint; agent risk neutrality only means that the principal
suffers no loss from the fact that the agent’s action is hidden.

We can also analyze this version of the model graphically. A graphical
treatment is facilitated by switching from compensation space to utility space;
that is, rather than put sL and sH on the axes, we put uL ≡ u (sL) and uH ≡
u (sH) on the axes. With this change of variables, program (13.3) becomes:

max
uL,uH

q
(
xH − u−1 (uH)

)
+ (1 − q)

(
xL − u−1 (uL)

)

subject to

quH + (1 − q)uL − C ≥ uL and (ic′′)

quH + (1 − q)uL − C ≥ UR (ir′′)

Observe that, in this space, the salesperson’s indifference curves are straight
lines, with lines farther from the origin corresponding to greater expected util-
ity. The manufacturer’s iso-expected-profit curves are concave relative to the
origin, with curves closer to the origin corresponding to greater expected profit.
Figure 13.1 illustrates. Note that in Figure 13.1 the salesperson’s indifference
curves and the manufacturer’s iso-expected-profit curves are tangent only at
the 45◦ line, a well-known result from the insurance literature.10 This shows,
graphically, why efficiency (in a first-best sense) requires that the agent not bear
risk.

We can re-express (ic′′) as

uH ≥ uL +
C

q
. (13.6)

Loosely speaking, it is the set of x’s that have positive probability of occurring.

10 Proof: Let φ (·) = u−1 (·). Then the mrs for the manufacturer is

− (1 − q) φ′ (uL)

qφ′ (uH)
;

whereas the mrs for the salesperson is

− (1 − q)

q
.

Since φ (·) is strictly convex, φ′ (u) = φ′ (v) only if u = v; that is, the mrs’s of the appropriate
iso-curves can be tangent only on the 45◦ line.
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45°

uL

uH

Retailer's 
indifference 
curves. His 
expected utility 
increases as 
curves shift out.

Manufacturer's 
iso-expected-
profit curves. Its 
expected profit 
increases as 
curves shift in.

Figure 13.1: Indifference curves in utility space for the manufacturer (principal)
and salesperson (agent).

Hence, the set of contracts that are incentive compatible lie on or above a line
above, but parallel, to the 45◦ line. Graphically, we now see that an incentive-
compatible contract requires that we abandon non-contingent contracts. Fig-
ure 13.2 shows the space of incentive-compatible contracts.

The set of individually rational contracts are those that lie on or above the
line defined by (ir′′). This is also illustrated in Figure 13.2. The intersection
of these two regions then constitutes the set of feasible contracts for inducing
the salesperson to choose a = 1. Observe that the lowest iso-expected-profit
curve—corresponding to the largest expected profit—that intersects this set is
the one that passes through the “corner” of the set—consistent with our earlier
conclusion that both constraints are binding at the optimal contract.

Lastly, let’s consider the variable q. We can interpret q as representing the
correlation—or, more accurately, the informativeness—of sales to the action
taken. At first glance, it might seem odd to be worried about the informa-
tiveness of sales since, in equilibrium, the principal can accurately predict the
agent’s choice of action from the structure of the game and her knowledge of the
contract. But that’s not the point: The principal is forced to design a contract
that pays the agent based on performance measures that are informative about
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Individually 
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contracts
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Optimal
contract

Figure 13.2: The set of feasible contracts.

the variable upon which she would truly like to contract, namely his action.
The more informative these performance measures are—loosely, the more cor-
related they are with action—the closer the principal is getting to the ideal of
contracting on the agent’s action.

In light of this discussion it wouldn’t be surprising if the manufacturer’s
expected profit under the optimal contract for inducing a = 1 increases as q
increases. Clearly its expected revenue,

qxH + (1 − q)xL,

is increasing in q. Hence, it is sufficient to show merely that its expected cost,

qŝH + (1 − q) ŝL,

is non-increasing in q. To do so, it is convenient to work in terms of utility
(i.e., uH and uL) rather than directly with compensation. Let q1 and q2 be two
distinct values of q, with q1 < q2. Let

{
u1
n

}
be the optimal contract (expressed

in utility terms) when q = q1.
Define a = q1/q2 and define

ũH = au1
H + (1 − a)u1

L and

ũL = u1
L.
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Let us now see that {ũn} satisfies both the ir and ic constraints when q = q2.
Observe first that

q2ũH + (1 − q2) ũL = aq2u
1
H +

(
(1 − a)q2 + 1 − q2

)
u1
L

= q1u
1
H + (1 − q1)u

1
L .

Given that
{
u1
n

}
satisfies ir and ic when q = q1, it follows, by transitivity, that

{ũn} solves ir and ic when q = q2. We need, now, simply show that

q2u
−1 (ũH) + (1 − q2)u

−1 (ũL) ≤ q1u
−1
(
u1
H

)
+ (1 − q1)u

−1
(
u1
L

)
.

To do this, observe that

u−1 (ũH) ≤ au−1
(
u1
H

)
+ (1 − a)u−1

(
u1
L

)
and

u−1 (ũL) ≤ u−1
(
u1
L

)
,

by Jensen’s inequality (recall u−1 (·) is convex). Hence we have

q2u
−1 (ũH) + (1 − q2) u

−1 (ũL) ≤ q2

(
au−1

(
u1
H

)
+ (1 − a)u−1

(
u1
L

) )

+ (1 − q2)u
−1
(
u1
L

)

= q1u
−1
(
u1
H

)
+ (1 − q1)u

−1
(
u1
L

)
.

In other words, the manufacturer’s expected cost is no greater when q = q2 as
when q = q1—as was to be shown.

Summary: Although we’ve considered the simplest of agency models in this
section, there are, nevertheless, some general lessons that come from this. First,
the optimal contract for inducing an action other than the action that the agent
finds least costly requires a contract that is fully contingent on the performance
measure. This is a consequence of the action being unobservable to the principal,
not the agent’s risk aversion. When, however, the agent is risk averse, then the
principal’s expected cost of solving the hidden-action problem is greater than it
would be in the benchmark full-information case: Exposing the agent to risk is
inefficient (relative to the first best) and the cost of this inefficiency is borne by
the principal. The size of this cost depends on how good an approximation the
performance measure is for the variable upon which the principal really desires
to contract, the agent’s action. The better an approximation (statistic) it is, the
lower is the principal’s expected cost. If, as here, that shift also raises expected
revenue, then a more accurate approximation means greater expected profits.
It is also worth pointing out that one result, which might seem as though it
should be general, is not: Namely, the result that compensation is increasing
with performance (e.g., ŝH > ŝL). Although this is true when there are only two
possible realizations of the performance measure (as we’ve proved), this result
does not hold generally when there are more than two possible realizations.
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Multiple-outcomes Model 13.4
Now we assume that there are multiple possible outcomes, including, possibly,
an infinite number. Without loss of generality, we may assume the set of possible
sales levels is (0,∞), given that impossible levels in this range can be assigned
zero probability. We will also assume, henceforth, that u (·) exhibits strict risk
aversion (i.e., is strictly concave).

Recall that our problem is to solve program (13.3), on page 127. In this
context, we can rewrite the problem as

max
S(·)

∫ ∞

0

(x− S (x)) dF1 (x)

subject to

∫ ∞

0

u [S (x)] dF1 (x) − C ≥ UR and (13.7)

∫ ∞

0

u [S (x)] dF1 (x) − C ≥
∫ ∞

0

u [S (x)] dF0 (x) , (13.8)

which are the ir and ic constraints, respectively. In what follows, we assume
that there is a well-defined density function, fa (·), associated with Fa (·) for
both a. For instance, if Fa (·) is differentiable everywhere, then fa (·) = F ′

a (·)
and the

∫
dFa (x) notation could be replaced with

∫
fa (x) dx. Alternatively,

the possible outcomes could be discrete, x = x1, . . . , xN , in which case

fa (x̂) = Fa (x̂) − lim
x↑x̂

Fa (x)

and the
∫
dFa (x) notation could be replaced with

∑N
n=1 fa (xn).

We solve the above program using standard Kuhn-Tucker techniques. Let
µ be the (non-negative) Lagrange multiplier on the incentive constraint and
let λ be the (non-negative) Lagrange multiplier on the individual rationality
constraint. The Lagrangian of the problem is, thus,

L(S(·), λ, µ) =

∫ +∞

0

[x− S(x)] dF1(x) + λ

(∫ +∞

0

u(S(x))dF1(x) − C

)

+ µ

(∫ +∞

0

u(S(x))dF1(x) −
∫ +∞

0

u(S(x))dF0(x) − C

)
.

The necessary first-order conditions are λ ≥ 0, µ ≥ 0, (13.7), (13.8),

u′ [S(x)]

(
λ+ µ

[
1 − f0(x)

f1(x)

])
− 1 = 0, (13.9)

λ > 0 ⇒
∫ +∞

0

u(S(x))dF1(x) = C + UR, and
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µ > 0 ⇒
∫ +∞

0

u(S(x))dF1(x) −
∫ +∞

0

u(S(x))dF0(x) = C.

From our previous reasoning, we already know that the ic constraint is
binding. To see this again, observe that if it were not (i.e., µ = 0), then (13.9)
would reduce to u′ [S (x)] = 1/λ for all x; that is, a fixed payment.11 But we
know a fixed-payment contract is not incentive compatible. It is also immediate
that the participation constraint must be satisfied as an equality; otherwise, the
manufacturer could reduce the payment schedule, thereby increasing her profits,
in a manner that preserved the incentive constraint (i.e., replace S∗ (x) with
S̃ (x), where S̃ (x) = u−1 (u [S∗ (x)] − ε)).

Note that the necessary conditions above are also sufficient given the as-
sumed concavity of u(·). At every point where it is maximized with respect to
s, (

λ+ µ

[
1 − f0(x)

f1(x)

])

must be positive—observe it equals

1

u′ (s)
> 0

—so the second derivative with respect to s must, therefore, be negative.
The least-cost contract inducing a = 1 therefore corresponds to a payment

schedule S(·) that varies with the level of sales in a non-trivial way given by
(13.9). That expression might look complicated, but its interpretation is central
to the model and easy to follow. Observe, in particular, that because u′ (·)
is a decreasing function (u (·), recall, is strictly concave), S (x) is positively
correlated with

λ+ µ

[
1 − f0(x)

f1(x)

]
;

that is, the larger (smaller) is this term, the larger (smaller) is S (x).
The reward for a given level of sales x depends upon the likelihood ratio

r(x) ≡ f0(x)

f1(x)

of the probability that sales are x when action a = 0 is taken relative to that
probability when action a = 1 is taken.12 This ratio has a clear statistical
meaning: It measures how more likely it is that the distribution from which sales
have been determined is F0(·) rather than F1(·). When r(x) is high, observing
sales equal to x allows the manufacturer to draw a statistical inference that it

11Note that we’ve again established the result that, absent an incentive problem, a risk-
neutral player should absorb all the risk when trading with a risk-averse player.

12Technically, if Fa (·) is differentiable (i.e., fa (·) is a probability density function), then
the likelihood ratio can be interpreted as the probability that sales lie in (x, x + dx) when
a = 0 divided by the probability of sales lying in that interval when a = 1.
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is much more likely that the distribution of sales was actually F0(.); that is, the
salesperson did not expend effort promoting the product. In this case,

λ+ µ

[
1 − f0(x)

f1(x)

]

is small (but necessarily positive) and S(x) must also be small as well. When
r(x) is small, the manufacturer should feel rather confident that the salesperson
expended effort and it should, then, optimally reward him highly. That is,
sales levels that are relatively more likely when the agent has behaved in the
desired manner result in larger payments to the agent than sales levels that are
relatively rare when the agent has behaved in the desired manner.

The minimum-cost incentive contract that induces the costly action a =
1 in essence commits the principal (manufacturer) to behave like a Bayesian
statistician who holds some diffuse prior over which action the agent has taken:13

She should use the observation of sales to revise her beliefs about what action
the agent took and she should reward the agent more for outcomes that cause
her to revise upward her beliefs that he took the desired action and she should
reward him less (punish him) for outcomes that cause a downward revision in
her beliefs.14 As a consequence, the payment schedule is connected to sales only
through their statistical content (the relative differences in the densities), not
through their accounting properties. In particular, there is now no reason to
believe that higher sales (larger x) should be rewarded more than lower sales.

As an example of non-monotonic compensation, suppose that there are three
possible sales levels: low, medium, and high (xL, xM , and xH , respectively).
Suppose, in addition, that

fa (x) =






1
3 , if x = xL
2−a
6 , if x = xM

2+a
6 , if x = xH

.

Then

λ+ µ

[
1 − f0(x)

f1(x)

]
=






λ, if x = xL

λ− µ, if x = xM

λ+ µ
3 , if x = xH

.

Hence, low sales are rewarded more than medium sales—low sales are unin-
formative about the salesperson’s action, whereas medium sales suggest that
the salesperson has not expended effort. Admittedly, non-monotonic compen-
sation is rarely, if ever, observed in real life. We will see below what additional
properties are required, in this model, to ensure monotonic compensation.

13A diffuse prior is one that assigns positive probability to each possible action.

14Of course, as a rational player of the game, the principal can infer that, if the contract
is incentive compatible, the agent will have taken the desired action. Thus, there is not, in
some sense, a real inference problem. Rather the issue is that, to be incentive compatible, the
principal must commit to act as if there were an inference problem.
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Note, somewhat implicit in our analysis to this point, is an assumption that
f1 (x) > 0 except, possibly, on a subset of x that are impossible (have zero
measure). Without this assumption, (13.9) would entail division by zero, which
is, of course, not permitted. If, however, we let f1 (·) go to zero on some subset
of x that had positive measure under F0 (·), then we see that µ must also tend
to zero because

λ+ µ

[
1 − f0(x)

f1(x)

]

must be positive. In essence, then, the shadow price (cost) of the incentive
constraint vanishes as f1 (·) goes to zero. This makes perfect sense: Were f1 (·)
zero on some subset of x that could occur (had positive measure) under F0 (·),
then the occurrence of any x in this subset, X0, would be proof that the agent
had failed to take the desired action. We can use this, then, to design a contract
that induces a = 1, but which costs the principal no more than the optimal full-
information fixed-payment contract S (x) = sF1 . That is, the incentive problem
ceases to be costly; so, not surprisingly, its shadow cost is zero.

To see how we can construct such a contract when f1 (x) = 0 for all x ∈ X0,
let

S (x) =

{
s+ ε, if x ∈ X0

sF1 , if x /∈ X0
,

where ε > 0 is arbitrarily small (s, recall, is the greatest lower bound of the
domain of u (·)). Then

∫ +∞

0

u(S(x))dF1(x) = u
(
sF1
)

and

∫ +∞

0

u(S(x))dF0(x) =

∫

X0

u (s+ ε) dF0 (x) +

∫

R+\X0

u
(
sF1
)
dF0 (x)

= u (s+ ε)F0 (X0) + u
(
sF1
)
(1 − F0 (X0)) .

From the last expression, it’s clear that
∫ +∞
0 u(S(x))dF0(x) → −∞ as ε → 0;

hence, the ic constraint is met trivially. By the definition of sF1 , ir is also met.
That is, this contract implements a = 1 at full-information cost. Again, as we
saw in the two-outcome model, having a shifting support (i.e., the property
that F0 (X0) > 0 = F1 (X0)) allows us to implement the desired action at full-
information cost.

To conclude this section, we need to answer one final question. Does the
manufacturer prefer to induce a = 1 or a = 0 given the “high” cost of the
former? The manufacturer’s choice can be viewed as follows: Either it imposes
the fixed-payment contract sF0 , which induces action a = 0, or it imposes the
contract S(·) that has been derived above, which induces action a = 1. The
expected-profit-maximizing choice results from the simple comparison of these
two contracts; that is, the manufacturer imposes the incentive contract S(·) if
and only if:

E0 [x] − sF0 < E1 [x] − E1 [S(x)] (13.10)
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The right-hand side of this inequality corresponds to the value of the maxi-
mization program (13.3). Given that the incentive constraint is binding in this
program, this value is strictly smaller than the value of the same program with-
out the incentive constraint; hence, just as we saw in the two-outcome case, the
value is smaller than full-information profits, E1 [x] − sF1 . Observe, therefore,
that it is possible that

E1 [x] − sF1 > E0 [x] − sF0 > E1 [x] − E1 [S(x)] :

Under full information the principal would induce a = 1, but not if there’s a
hidden-action problem. In other words, imperfect observability of the agent’s
action imposes a cost on the principal that may induce her to distort the action
that she induces the agent to take.

Monotonicity of the Optimal
Contract 13.5

Let us suppose that (13.10) is, indeed, satisfied so that the contract S(·) de-
rived above is the optimal contract. Can we exhibit additional and meaningful
assumptions that would imply interesting properties of the optimal contract?

We begin with monotonicity, the idea that greater sales should mean greater
compensation for the salesperson. As we saw above (page 137), there is no
guarantee in the multiple-outcome model that this property should hold every-
where. From (13.9), it does hold if and only if the likelihood ratio, r (x), is not
decreasing and increasing at least somewhere. As this is an important property,
it has a name:

Definition 5 The likelihood ratio r (x) = f0 (x) /f1 (x) satisfies the monotone
likelihood ratio property(mlrp) if r (·) is non-increasing almost everywhere and
strictly decreasing on at least some set of x’s that occur with positive probability
given action a = 1.

The mlrp states that the greater is the outcome (i.e., x), the greater the relative
probability of x given a = 1 than given a = 0.15 In other words, under mlrp,
better outcomes are more likely when the salesperson expends effort than when
he doesn’t. To summarize:

Proposition 19 In the model of this section, if the likelihood ratio, r (·), satis-
fies the monotone likelihood ratio property, then the salesperson’s compensation,
S (·), under the optimal incentive contract for inducing him to expend effort
(i.e., to choose a = 1) is non-decreasing everywhere.

15Technically, if fa (x) = F ′
a (x), then we should say “the greater the relative probability of

an x̂ ∈ (x, x + dx) given a = 1 than given a = 0.”
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In fact, because we know that S (·) can’t be constant—a fixed-payment contract
is not incentive compatible for inducing a = 1—we can conclude that S (·) must,
therefore, be increasing over some set of x.16

Is mlrp a reasonable assumption? To some extent is simply a strengthening
of our assumption that E1 [x] > E0 [x], given it can readily be shown that mlrp

implies E1 [x] > E0 [x].17 Moreover, many standard distributions satisfy mlrp.
But it quite easy to exhibit meaningful distributions that do not. For instance,
consider our example above (page 137). We could model these distributions as
the consequence of a two-stage stochastic phenomenon: With probability 1/3,
a second new product is successfully introduced that eliminates the demand for
the manufacturer’s product (i.e., xL = 0). With probability 2/3, this second
product is not successfully introduced and it is “business as usual,” with sales
being more likely to be xM if the salesperson doesn’t expend effort and more
likely to be xH if he does. These “compound” distributions do not satisfy mlrp.
In such a situation, mlrp is not acceptable and the optimal reward schedule is
not monotonic, as we saw.

Although there has been a lot of discussion in the literature on the mono-
tonicity issue, it may be overemphasized. If we return to the economic reality
that the mathematics seeks to capture, the discussion relies on the assumption
that a payment schedule with the feature that the salesperson is penalized for
increasing sales in some range does not actual induce a new agency problem.
For instance, if the good is perishable or costly to ship, it might be possible for
the salesperson to pretend, when sales are xM , that they are xL (if the allegedly

16�
Even if mlrp does not hold, r (·) must be decreasing over some measurable range. To see

this, suppose it were not true; that is, suppose that r(·) is almost everywhere non-decreasing
under distribution F1(·). Note this entails that x and r(x) are non-negatively correlated under
F1(·). To make the exposition easier, suppose for the purpose of this aside that fa(·) = F ′

a (·).
Then

E1

»

f0(x)

f1(x)

–

=

Z ∞

0

„

f0(x)

f1(x)

«

f1(x)dx =

Z ∞

0
f0(x)dx = 1

Because x and r(x) are non-negatively correlated, we thus have

Z ∞

0
x[r(x) − E1{r(x)}]f1(x)dx ≥ 0.

Substituting, this implies

0 ≤
Z ∞

0
x[

f0(x)

f1(x)
− 1]f1(x)dx =

Z ∞

0
xf0(x)dx −

Z ∞

0
xf1(x)dx = E0[x] − E1[x].

But this contradicts our assumption that investing (a = 1) yields greater expected revenues
than does not investing (a = 0). Hence, by contradiction it must be that r(·) is decreasing over
some measurable range. But then this means that S(·) is increasing over some measurable
range. However, without mlrp, we can’t conclude that it’s not also decreasing over some other
measurable range.

Conclusion: If E0[x] < E1[x], then S(·) is increasing over some set of x that has positive

probability of occurring given action a = 1 even if mlrp does not hold.

17This can most readily be seen from the previous footnote: Simply assume that r (·) satisfies
mlrp, which implies x and r (x) are negatively correlated. Then, following the remaining steps,
it quickly falls out that E1 [x] > E0 [x].
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unsold amount of the good cannot be returned). That is, a non-monotonic
incentive scheme could introduce a new agency problem of making sure the
salesperson reports his sales honestly. Of course, if the manufacturer can verify
the salesperson’s inventory, a non-monotonic scheme might be possible. But
think of another situation where the problem is to provide a worker (the agent)
incentives to produces units of output; isn’t it natural, then, to think that the
worker could very well stop his production at xL or destroy his extra produc-
tion xM − xL? Think of yet another situation where the problem is to provide
incentives to a manager; aren’t there many ways to spend money in a hardly
detectable way so as to make profits look smaller than what they actually are?
In short, the point is that if the agent can freely and secretly diminish his per-
formance, then it makes no sense for the principal to have a reward schedule
that is decreasing with performance over some range. In other words, there is
often an economic justification for monotonicity even when mlrp doesn’t hold.

Informativeness of the
Performance Measure 13.6

Now, we again explore the question of the informativeness of the performance
measures used by the principal. To understand the issue, suppose that the man-
ufacturer in our example can also observe the sales of another of its products
sold by the salesperson. Let y denote these sales of the other good. These sales
are, in part, also random, affected by forces outside the parties’ control; but also,
possibly, determined by how much effort the salesperson expends promoting the
first product. For example, consumers could consider the two goods comple-
ments (or substitutes). Sales y will then co-vary positively (or negatively) with
sales x. Alternatively, both goods could be normal goods, so that sales of y
could then convey information about general market conditions (the incomes
of the customers). Of course, it could also be that the demand for the second
product is wholly unrelated to the demand for the first; in which case sales y
would be insensitive to the salesperson’s action.

Let f0(x, y) and f1(x, y) denote the joint probability densities of sales x and
y for action a = 0 and a = 1. An incentive contract can now be a function
of both performance variables; that is, s = S(x, y). It is immediate that the
same approach as before carries through and yields the following optimality
condition:18

u′ [S(x, y)]

(
λ+ µ

[
1 − f0(x, y)

f1(x, y)

])
− 1 = 0. (13.11)

When is it optimal to make compensation a function of y as well as of x?

18Although we use the same letters for the Lagrange multipliers, it should be clear that
their values at the optimum are not related to their values in the previous, one-performance-
measure, contracting problem.
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The answer is straightforward: When the likelihood ratio,

r(x, y) =
f0(x, y)

f1(x, y)
,

actually depends upon y. Conversely, when the likelihood ratio is independent
of y, then there is no gain from contracting on y to induce a = 1; indeed, it
would be sub-optimal in this case because such a compensation scheme would
fail to satisfy (13.11). The likelihood ratio is independent of y if and only if the
following holds: There exist three functions h(·, ·), g0(·), and g1(·) such that, for
all (x, y),

fa(x, y) = h(x, y)ga(x). (13.12)

Sufficiency is obvious (divide f0 (x, y) by f1 (x, y) and observe the ratio,
g0(x)/g1(x), is independent of y). Necessity is also straightforward: Set h(x, y) =
f1(x, y), g1(x) = 1, and g0(x) = r(x). This condition of multiplicative separa-
bility, (13.12), has a well-established meaning in statistics: If (13.12) holds, then
x is a sufficient statistic for the action a given data (x, y). In words, were we
trying to infer a, our inference would be just as good if we observed only x as
it would be if we observed the pair (x, y). That is, conditional on knowing x, y
is uninformative about a.

This conclusion is, therefore, quite intuitive, once we recall that the value
of performance measures to our contracting property rests solely on their sta-
tistical properties. The optimal contract should be based on all performance
measures that convey information about the agent’s decision; but it is not de-
sirable to include performance measures that are statistically redundant with
other measures. As a corollary, there is no gain from considering ex post random
contracts (e.g., a contract that based rewards on x+η, where η is some random
variable—noise—distributed independently of a that is added to x).19 As a
second corollary, if the principal could freely eliminate noise in the performance
measure—that is, switch from observing x + η to observing x—she would do
better (at least weakly).

Conclusions from the
Two-action Model 13.7

It may be worth summing up all the conclusions we have reached within the
two-action model in a proposition:

Proposition 20 If the agent is strictly risk averse, there is no shifting support,
and the principal seeks to implement the costly action (i.e., a = 1), then the
principal’s expected profits are smaller than under full (perfect) information.
In some instances, this reduction in expected profits may lead the principal to
implement the “free” action (i.e., a = 0).

19Ex ante random contracts may, however, be of some value, as explained later.
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• When (13.10) holds, the reward schedule imposes some risk on the risk-
averse agent: Performances that are more likely when the agent takes the
correct action a = 1 are rewarded more than performances that are more
likely under a = 0.

• Under mlrp (or when the agent can destroy output), the optimal reward
schedule is non-decreasing in performance.

• The optimal reward schedule depends only upon performance measures that
are sufficient statistics for the agent’s action.

To conclude, allow me to stress the two major themes that I would like
the reader to remember from this section. First, imperfect information implies
that the contractual reward designed by the principal should perform two tasks:
Share the risks involved in the relationship and provide incentives to induce the
agent to undertake the desired action. Except in trivial cases (e.g., a risk-neutral
agent or a shifting support), these two goals are in conflict. Consequently,
the optimal contract may induce an inefficient action and a Pareto suboptimal
sharing of risk.20 Second, the optimal reward schedule establishes a link between
rewards and performances that depends upon the statistical properties of the
performance measures with respect to the agent’s action.
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determine, separately, the optimal contracts for implementing a = 0 and a = 1,
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source for the sufficient-statistic result. Finally, the expression

1

u′ [S (x)]
= λ+ µ

[
1 − f0(x)

f1(x)

]
,

which played such an important part in our analysis, is frequently referred to
as the modified Borch sharing rule, in honor of Borch (1968), who worked out
the rules for optimal risk sharing absent a moral-hazard problem (hence, the
adjective “modified”).

20Think of this as yet another example of the two-instruments principle.
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General Framework 14
As we’ve just seen, the two-action model yields strong results. But the model
incorporates a lot of structure and it relies on strong assumptions. Consequently,
it’s hard to understand which findings are robust and which are merely artifacts
of an overly simple formalization. The basic ideas behind the incentive model
are quite deep and it is worthwhile, therefore, to consider whether and how they
generalize in less constrained situations.

Our approach is to propose a very general framework that captures the
situation described in the opening section. Such generality comes at the cost of
tractability, so we will again find ourselves making specific assumptions. But
doing so, we will try to motivate the assumptions we have to make and discuss
their relevance or underline how strong they are.

The situation of incentive contracting under hidden action or imperfect mon-
itoring involves:

• a principal;

• an agent;

• a set of possible actions, A, from which the agent chooses (we take A to
be exogenously determined here);

• a set of verifiable signals or performance measures, X ;

• a set of benefits, B, for the principal that are affected by the agent’s action
(possibly stochastically);

• rules (functions, distributions, or some combination) that relate elements
of A, X , and B;

• preferences for the principal and agent; and

• a bargaining game that establishes the contract between principal and
agent (here, recall, we’ve fixed the bargaining game as the principal makes
a take-it-or-leave-it offer, so that the only element of the bargaining game
of interest here is the agent’s reservation utility, UR).1

1We could also worry about whether the principal wants to participate—even make a take-
it-or-leave-it offer—but because our focus is on the contract design and its execution, stages
of the game not reached if she doesn’t wish to participate, we will not explicitly consider this
issue here.

145
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In many settings, including the one explored above, the principal’s benefit is
the same as the verifiable performance measure (i.e., b = x). But this need not
be the case. We could, for instance, imagine that there is a function mapping
the elements of A onto B. For example, the agent’s action could be fixing
the “true” quality of a product produced for the principal. This quality is also,
then, the principal’s benefit (i.e., b = a). The only verifiable measure of quality,
however, is some noisy (i.e., stochastic) measure of true quality (e.g., x = a+η,
where η is some randomly determined distortion). As yet another possibility,
the benchmark case of full information entails X = X ′ × A, where X ′ is some
set of performance measures other than the action.

We need to impose some structure on X and B and their relationship to A:
We take X to be a Euclidean vector space and we let dF (·|a) denote the prob-
ability measure over X conditional on a. Similarly, we take B to be a Euclidean
vector space and we let dG (·, ·|a) denote the joint probability measure over B
and X conditional on a (when b ≡ x, we will write dF (·|a) instead of dG (·, ·|a)).
This structure is rich enough to encompass the possibilities enumerated in the
previous paragraph (and more).

Although we could capture the preferences of the principal and agent without
assuming the validity of the expected-utility approach to decision-making under
uncertainty (we could, for instance, take as primitives the indifference curves
shown in Figures 13.1 and 13.2), this approach has not been taken in the lit-
erature.2 Instead, the expected-utility approach is assumed to be valid and we
let W (s, x, b) and U(s, x, a) denote the respective von Neumann-Morgenstern
utilities of the principal and of the agent, where s denotes the transfer from the
principal to the agent (to principal from agent if s < 0).

In this situation, the obvious contract is a function that maps X into R. We
define such a contract as

Definition 6 A simple incentive contract is a reward schedule S : X → R that
determines the level of reward s = S(x) to be decided as a function of the realized
performance level x.

There is admittedly no other verifiable variable that can be used to write
more elaborate contracts. There is, however, the possibility of creating verifiable
variables, by having one or the other or both players take verifiable actions from
some specified action spaces. Consistent with the mechanism-design approach,
the most natural interpretation of these new variables are that they are public
announcements made by the players; but nothing that follows requires this
interpretation. For example, suppose both parties have to report to the third
party charged with enforcing the contract their observation of x, or the agent

2Given some well-documented deficiencies in expected-utility theory (see, e.g., Epstein,
1992; Rabin, 1997), this might, at first, seem somewhat surprising. However, as Epstein, §2.5,
notes many of the predictions of expected-utility theory are robust to relaxing some of the
more stringent assumptions that support it (e.g., such as the independence axiom). Given the
tractability of the expected-utility theory combined with the general empirical support for the
predictions of agency theory, the gain from sticking with expected-utility theory would seem
to outweigh the losses, if any, associated with that theory.
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must report which action he has chosen. We could even let the principal make
a “good faith” report of what action she believes the agent took, although
this creates its own moral-hazard problem because, in most circumstances, the
principal could gain ex post by claiming she believes the agent’s action was
unacceptable. It turns out, as we will show momentarily, that there is nothing
to be gained by considering such elaborate contracts; that is, there is no such
contract that can improve over the optimal simple contract.

To see this, let us suppose that a contract determines a normal-form game to
be played by both players after the agent has taken his action.3,4 In particular,
suppose the agent takes an action h ∈ H after choosing his action, but prior to
the realization of x; that he takes an actionm ∈ M after the realization of x; and
that the principal also takes an action n ∈ N after x has been realized. One or
more of these sets could, but need not, contain a single element, a “null” action.
We assume that the actions in these sets are costless—if we show that costless
elaboration does no better than simple contracts, then costly elaboration also
cannot do better than simple contracts. Finally, let the agent’s compensation
under this elaborate contract be: s = S̃(x, h,m, n). We can now establish the
following:

Proposition 21 (Simple contracts are sufficient) For any general contract〈
H,M,N , S̃ (·)

〉
and associated (perfect Bayesian) equilibrium, there exists a

simple contract S(·) that yields the same equilibrium outcome.

Proof: Consider a (perfect Bayesian) equilibrium of the original contract, in-
volving strategies (a∗, h∗ (·) ,m∗(·, ·)) for the agent, where h∗ (a) and m∗ (a, x)
describe the agent’s choice within H and M after he’s taken action a and per-
formance x has been observed. Similarly, n∗(x) gives the principal’s choice of
action as a function of the observed performance. Let us now consider the simple
contract defined as follows: For all x ∈ X ,

S(x) ≡ S̃(x, h∗ (a∗) ,m∗(x, a∗), n∗(x)).

Suppose that, facing this contract, the agent chooses an action a different from
a∗. This implies that:

∫

X
U(S(x), x, a)dF (x|a) >

∫

X
U(S(x), x, a∗)dF (x|a∗),

3Note this may require that there be some way that the parties can verify that the agent
has taken an action. This may simply be the passage of time: The agent must take his action
before a certain date. Alternatively, there could be a verifiable signal that the agent has acted
(but which does not reveal how he’s acted).

4Considering a extensive-form game with the various steps just considered would not alter
the reasoning that follows; so, we avoid these unnecessary details by restricting attention to
a normal-form game.
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or, using the definition of S(·),
∫

X
U
[
S̃(x, h∗ (a∗) ,m∗(x, a∗), n∗(x)), x, a

]
dF (x|a) >

∫

X
U
[
S̃(x, h∗ (a∗) ,m∗(x, a∗), n∗(x)), x, a∗

]
dF (x|a∗).

Because, in the equilibrium of the normal-form game that commences after the
agent chooses his action, h∗ (·) and m∗(·, ·) must satisfy the following inequality:

∫

X
U
[
S̃(x, h∗ (a) ,m∗(x, a), n∗(x)), x, a

]
dF (x|a) ≥

∫

X
U
[
S̃(x, h∗ (a∗) ,m∗(x, a∗), n∗(x)), x, a

]
dF (x|a),

it follows that
∫

X
U
[
S̃(x, h∗ (a) ,m∗(x, a), n∗(x)), x, a

]
dF (x|a) >

∫

X
U
[
S̃(x, h∗ (a∗) ,m∗(x, a∗), n∗(x)), x, a∗

]
dF (x|a∗).

This contradicts the fact the a∗ is an equilibrium action in the game defined
by the original contract. Hence, the simple contract S(·) gives rise to the same
action choice, and therefore the same distribution of outcomes than the more
complicated contract.

As a consequence, there is no need to consider sophisticated announcement
mechanisms in this setting, at least in the simple situation we have described.
The style in which we proved Proposition 21 should be familiar. In particular, it
was how we proved the Revelation Principle (Proposition 11 and Theorem 16).

The contracting problem under imperfect information can now easily be
stated. The principal, having the bargaining power in the negotiation process,
simply has to choose a (simple) contract, S(·), so as to maximize her expected
utility from the relationship given two constraints. First, the contract S(·)
induces the agent to choose an action that maximizes his expected utility (i.e.,
the ic constraint must be met). Second, given the contract and the action it
will induce, the agent must receive an expected utility at least as great as his
reservation utility (i.e., the ir constraint must be met). In this general setting,
the ic constraint can be stated as the action induced, a, must satisfy

a ∈ argmax
a′

∫

X
U(S(x), x, a′)dF (x|a′). (14.1)

Observe that choosing S(·) amounts to choosing a as well, at least when there
exists a unique optimal choice for the agent. To take care of the possibility of
multiple optima for the agent, one can simply imagine that the principal chooses
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a pair (S(·), a) subject to the incentive constraint (14.1). The ir constraint takes
the simple form:

max
a′

∫

X
U(S(x), x, a′)dF (x|a′) ≥ UR. (14.2)

The principal’s problem is, thus,

max
(S(·),a)

∫

X
W (S(x), x, b)dG(b, x|a) (14.3)

s.t. (14.1) and (14.2).

Observe, as we did in Lecture Note 13, it is perfectly permissible to solve this
maximization program in two steps. First, for each action a, find the expected-
profit-maximizing contract that implements action a subject to the ic and ir

constraints; this amounts to solving a similar program, taking action a as fixed:

max
S(.)

∫

X
W (S(x), x, b)dG(b, x|a) (14.4)

s.t. (14.1) and (14.2).

Second, optimize the principal’s objectives with respect to the action to imple-
ment; if we let Sa(·) denote the expected-profit-maximizing contract for imple-
menting a, this second step consists of:

max
a∈A

∫

X
W (Sa(x), x, b)dG(b, x|a).

In this more general framework, it’s worth revisiting the full-information
benchmark. Before doing that, however, it is worth assuming that the domain
of U (·, x, a) is sufficiently broad:

• Existence of a punishment: There exists some sP in the domain of
U (·, x, a) such that, for all a ∈ A,

∫

X
U(sP , x, a)dF (x|a) < UR .

• Existence of a sufficient reward: There exists some sR in the do-
main of U (·, x, a) such that, for all a ∈ A,

∫

X
U(sR, x, a)dF (x|a) ≥ UR .

In light of the second assumption, we can always satisfy (14.2) for any action a
(there is no guarantee, however, that we can also satisfy (14.1)).

With these two assumptions in hand, suppose that we’re in the full-infor-
mation case; that is, X = X ′ ×A (note X ′ could be a single-element space, so



150 Lecture Note 14: General Framework

that we’re also allowing for the possibility that, effectively, the only performance
measure is the action itself). In the full-information case, the principal can rely
on forcing contracts ; that is, contracts that effectively leave the agent with no
choice over the action he chooses. Hence, writing (x′, a) for an element of X , a
forcing contract for implementing â is

S(x′, a) = sP if a 6= â

= SF (x′) if a = â,

where SF (·) satisfies (14.2). Given that SF (x′) = sR satisfies (14.2) by as-
sumption, we know that we can find an SF (·) function that satisfies (14.2).
In equilibrium, the agent will choose to sign the contract—the ir constraint is
met—and he will take action â since this is his only possibility for getting at
least his reservation utility. Forcing contracts are very powerful because they
transform the contracting problem into a simple ex ante Pareto computation
program:

max
(S(·),a)

∫

X
W (S(x), x, b)dG(b, x|a) (14.5)

s.t. (14.2),

where only the agent’s participation constraint matters. This ex ante Pareto
program determines the efficient risk-sharing arrangement for the full-infor-
mation optimal action, as well as the full-information optimal action itself. Its
solution characterizes the optimal contract under perfect information.

At this point, we’ve gone about as far as we can go without imposing more
structure on the problem. The next couple of Lecture Notes consider more
structured variations of the problem.
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In this Lecture Note, we will assume A, the set of possible actions, is finite with
J elements. Likewise, the set of possible verifiable performance measures, X , is
also taken to be finite with N elements, indexed by n (although, at the end of
this section, we’ll discuss the case where X = R). Given the world is, in reality,
finite, this is the most general version of the principal-agent model (although
not necessarily the most analytically tractable).1

We will assume that the agent’s utility is additively separable between pay-
ments and action. Moreover, it is not, directly, dependent on performance.
Hence,

U (s, x, a) = u (s) − c(a);

where u : S → R maps some subset S of R into R and c : A → R maps the
action space into R. As before, we assume that S = (s,∞), where u (s) → −∞
as s ↓ s. Observe that this assumption entails the existence of a punishment,
sP , as described in the previous section. We further assume that u (·) is strictly
monotonic and concave (at least weakly). Typically, we will assume that u (·)
is, in fact, strictly concave, implying the agent is risk averse. Note, that the
monotonicity of u (·) implies that the inverse function u−1 (·) exists and, since
u (S) = R, is defined for all u ∈ R.

We assume, now, that B ⊂ R and that the principal’s utility is a function
only of the difference between her benefit, b, and her payment to the agent; that
is,

W (s, x, b) = w (b − s) ,

where w (·) is assumed to be strictly increasing and concave. In fact, in most
applications—particularly most applications of interest in the study of strategy
and organization—it is reasonable to assume that the principal is risk neutral.
We will maintain that assumption here (the reader interested in the case of a
risk-averse principal should consult Holmström, 1979, among other work). In
what follows, let B (a) = E {b|a}.

In addition to being discrete, we assume that there exists some partial order
on X (i.e., to give meaning to the idea of “better” or “worse” performance) and

1Limitations on measurement—of both inputs and outputs—make the world discrete. For
instance, effort, measured as time on the job, can take only discrete values because only
discrete intervals of time can be measured. Similarly, output, measured as volume, can take
only discrete values because only discrete intervals of volume can be measured. Because the
world is also bounded—each of us is allotted only so much time and there are only so many
atoms in the universe (under current cosmological theories)—it follows that the world is finite.
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that, with respect to this partial order, X is a chain (i.e., if � is the partial
order on X , then x � x′ or x′ � x for any two elements, x and x′ in X ). Because
identical signals are irrelevant, we may also suppose that no two elements of X
are the same (i.e., x ≺ x′ or x′ ≺ x for any two elements in X ). The most
natural interpretation is that X is a subset of distinct real numbers—different
“performance scores”—with ≤ as the partial order. Given these assumptions,
we can write X = {x1, . . . , xN}, where xm ≺ xn if m < n. Likewise the
distribution function F (x|a) gives, for each x, the probability that an x′ � x
is realized conditional on action a. The corresponding density function is then
defined by

f (xn|a) =

{
F (x1|a) if n = 1
F (xn|a) − F (xn−1|a) if n > 1

.

In much of what follows, it will be convenient to write fn (a) for f (xn|a). It
will also be convenient to write the density as a vector:

f (a) = (f1 (a) , . . . , fN (a)) .

The “Two-step” Approach 15.1
As we have done already in Lecture Note 13, we will pursue a two-step approach
to solving the principal-agent problem:

Step 1: For each a ∈ A, the principal determines whether it can be imple-
mented. Let AI denote the set of implementable actions. For each a ∈ AI ,
the principal determines the least-cost contract for implementing a sub-
ject to the ic and ir constraints. Let C (a) denote the principal’s expected
cost (expected payment) of implementing a under this least-cost contract.

Step 2: The principal then determines the solution to the maximization prob-
lem

max
a∈AI

B (a) − C (a) .

If a∗ is the solution to this maximization problem, the principal offers the
least-cost contract for implementing a∗.

Note that this two-step process is analogous to a standard production prob-
lem, in which a firm, first, solves its cost-minimization problems to determine
the least-cost way of producing any given amount of output (i.e., derives its
cost function); and, then, it produces the amount of output that maximizes the
difference between revenues (benefits) and cost. As with production problems,
the first step is generally the harder step.

The full-information benchmark

As before, we consider as a benchmark the case where the principal can observe
and verify the agent’s action. Consequently, as we discussed at the end of
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Lecture Note 14, the principal can implement any action â that she wants using
a forcing contract: The contract punishes the agent sufficiently for choosing
actions a 6= â that he would never choose any action other than â; and the
contract rewards the agent sufficiently for choosing â that he is just willing to
sign the principal’s contract. This last condition can be stated formally as

u (ŝ) − c (â) = UR, (irF )

where ŝ is what the agent is paid if he chooses action â. Solving this last
expression for ŝ yields

ŝ = u−1 [UR + c (â)] ≡ CF (â) .

The function CF (·) gives the cost, under full information, of implementing
actions.

The hidden-action problem

Now, and henceforth, we assume that a hidden-action problem exists. Conse-
quently, the only feasible contracts are those that make the agent’s compensation
contingent on the verifiable performance measure. Let s (x) denote the payment
made to the agent under such a contract if x is realized. It will prove convenient
to write sn for s (xn) and to consider the compensation vector s = (s1, . . . , sN).
The optimal—expected-cost-minimizing—contract for implementing â (assum-
ing it can be implemented) is the contract that solves the following program:2

min
s

f (â) · s

subject to
N∑

n=1

fn (â)u (sn) − c (â) ≥ UR

(the ir constraint) and

â ∈ max
a

N∑

n=1

fn (a)u (sn) − c (a)

(the ic constraint—see (14.1)). Observe that an equivalent statement of the ic

constraint is

N∑

n=1

fn (â)u (sn) − c (â) ≥
N∑

n=1

fn (a)u (sn) − c (a) ∀a ∈ A.

As we’ve seen above, it is often easier to work in terms of utility payments
than in terms of monetary payments. Specifically, because u (·) is invertible,

2Observe, given the separability between the principal’s benefit and cost, minimizing her
expected wage payment is equivalent to maximizing her expected profit.
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we can express a contract as an N -dimensional vector of contingent utilities,
u = (u1, . . . , uN ), where un = u (sn). Using this “trick,” the principal’s program
becomes

min
u

N∑

n=1

fn (â)u−1 (un) (15.1)

subject to
f (â) · u− c (â) ≥ UR (ir)

and
f (â) · u − c (â) ≥ f (a) · u− c (a) ∀a ∈ A. (ic)

Definition 7 An action â is implementable if there exists at least one contract
solving ( ir) and ( ic).

A key result is the following:

Proposition 22 If â is implementable, then there exists a contract that imple-
ments â and satisfies ( ir) as an equality. Moreover, ( ir) is met as an equality
(i.e., is binding) under the optimal contract for implementing â.

Proof: Suppose not: Let u be a contract that implements â and suppose that

f (â) · u − c (â) > UR.

Define
ε = f (â) · u− c (â) − UR.

By assumption, ε > 0. Consider a new contract, ũ, where ũn = un − ε. By
construction, this new contract satisfies (ir). Moreover, because

f (a) · ũ = f (a) · u − ε,

for all a ∈ A, this new contract also satisfies (ic). Observe, too, that this new
contract is superior to u: It satisfies the contracts, while costing the principal
less. Hence, a contract cannot be optimal unless (ir) is an equality under it.

In light of this proposition, it follows that an action â can be implemented
if there is a contract u that solves the following system:

f (â) · u − c (â) = UR (15.2)

and

f (a) · u − c (a) ≤ UR ∀a ∈ A\ {â} (15.3)

(where (15.3) follows from (ic) and (15.2)). We are now in position to establish
the following proposition:
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Proposition 23 Action â is implementable if and only if there is no strategy
for the agent that induces the same density over signals as â and which costs
the agent less, in terms of expected disutility, than â (where “strategy” refers to
mixed, as well as, pure strategies).

Proof: Let j = 1, . . . , J − 1 index the elements in A other than â. Then the
system (15.2) and (15.3) can be written as J + 1 inequalities:

f (â) · u ≤ UR + c (â)
[−f (â)] · u ≤ −UR − c (â)
f (a1) · u ≤ UR + c (a1)

...
f (aJ−1) · u ≤ UR + c (aJ−1)

By a well-known result in convex analysis (see, e.g., Rockafellar, 1970, page 198),
there is a u that solves this system if and only if there is no vector

µ = (µ̂+, µ̂−, µ1, . . . , µJ−1) ≥ 0J+1

(where 0K is a K-dimensional vector of zeros) such that

µ̂+f (â) + µ̂− [−f (â)] +

J−1∑

j=1

µjf (aj) = 0N (15.4)

and

µ̂+ [UR + c (â)] + µ̂− [−UR − c (â)] +
J−1∑

j=1

µj [UR + c (aj)] < 0. (15.5)

Observe that if such a µ exists, then (15.5) entails that not all elements can be
zero. Define µ∗ = µ̂+−µ̂−. By post-multiplying (15.4) by 1N (anN -dimensional
vector of ones), we see that

µ∗ +

J−1∑

j=1

µj = 0. (15.6)

Equation (15.6) implies that µ∗ < 0. Define σj = µj/ (−µ∗). By construction
each σj ≥ 0 (with at least some being strictly greater than 0) and, from (15.6),∑J−1
j=1 σj = 1. Hence, we can interpret these σj as probabilities and, thus, as a

mixed strategy over the elements of A\ {â}. Finally, observe that if we divide
both sides of (15.4) and (15.5) by −µ∗ and rearrange, we can see that (15.4)
and (15.5) are equivalent to

f (â) =
J−1∑

j=1

σjf (aj) (15.7)
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and

c (â) >
J−1∑

j=1

σjc (aj) ; (15.8)

that is, there is a contract u that solves the above system of inequalities if
and only if there is no (mixed) strategy that induces the same density over the
performance measures as â (i.e., (15.7)) and that has lower expected cost (i.e.,
(15.8)).

The truth of the necessity condition (only if part) of Proposition 23 is
straightforward: Were there such a strategy—one that always produced the
same expected utility over money as â, but which cost the agent less than â—
then it would clearly be impossible to implement â as a pure strategy. What
is less obvious is the sufficiency (if part) of the proposition. Intuitively, if the
density over the performance measure induced by â is distinct from the density
induced by any other strategy, then the performance measure is informative
with respect to determining whether â was the agent’s strategy or whether he
played a different strategy. Because the range of u (·) is unbounded, even a
small amount of information can be exploited to implement â by rewarding the
agent for performance that is relatively more likely to occur when he plays the
strategy â, or by punishing him for performance that is relatively unlikely to
occur when he plays the strategy â, or both .3 Of course, even if there are other
strategies that induce the same density as â, â is still implementable if the agent
finds these other strategies more costly than â.

Before solving the principal’s problem (Step 1, page 152), it’s worth con-
sidering, and then dismissing, two “pathological” cases. The first is the ability
to implement least-cost actions at their full-information cost. The second is
the ability to implement any action at its full-information cost when there is a
shifting support (of the right kind).

Definition 8 An action ã is a least-cost action if ã ∈ argmina∈A c (a). That
is, ã is a least-cost action if the agent’s disutility from choosing any other action
is at least as great as his disutility from choosing ã.

Proposition 24 If ã is a least-cost action, then it is implementable at its full-
information cost.

3�
We can formalize this notion of informationally distinct as follows: The condition that

no strategy duplicate the density over performance measures induced by â is equivalent to
saying that there is no density (strategy) (σ1, . . . , σJ−1) over the other J − 1 elements of A
such that

f(â) =

J−1
X

j=1

σj f(aj).

Mathematically, that’s equivalent to saying that f(â) is not a convex combination of
{f(a)}a∈A\{â}; or, equivalently that f(â) is not in the convex hull of {f(a)|a 6= â}. See
Hermalin and Katz (1991) for more on this “convex-hull” condition and its interpretation.
Finally, from Proposition 23, the condition that f(â) not be in the convex hull of {f(a)|a 6= â}
is sufficient for â to be implementable.
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Proof: Consider the fixed-payment contract that pays the agent un = UR +
c (ã) for all n. This contract clearly satisfies (ir) and, because c (ã) ≤ c (a) for
all a ∈ A, it also satisfies (ic). The cost of this contract to the principal is
u−1 [UR + c (ã)] = CF (ã), the full-information cost.

Of course, there is nothing surprising to Proposition 24: When the principal
wishes to implement a least-cost action, her interests and the agent’s are per-
fectly aligned; that is, there is no agency problem. Consequently, it is not
surprising that the full-information outcome obtains.

Definition 9 There is a meaningful shifting support associated with action ã
if there exists a subset of X , X0, such that F (X0|a) > 0 = F (X0|ã) for all
actions a such that c (a) < c (ã).

Proposition 25 Let there be a meaningful shifting support associated with ac-
tion ã. Then action ã is implementable at its full-information cost.

Proof: Fix some arbitrarily small ε > 0 and define uP = u (s+ ε). Consider
the contract u that sets um = uP if xm ∈ X0 (where X0 is defined above) and
that sets un = UR + c (ã) if xn /∈ X0. It follows that f (ã) · u = UR + c (ã); that
f (a) · u → −∞ as ε ↓ 0 for a such that c (a) < c (ã); and that

f (a) · u − c (a) ≤ UR + c (ã) − c (a) ≤ f (ã) · u − c (ã)

for a such that c (a) ≥ c (ã). Consequently, this contract satisfies (ir) and (ic).
Moreover, the equilibrium cost of this contract to the principal is u−1 [UR + c (ã)],
the full-information cost.

Intuitively, when there is a meaningful shifting support, observing an x ∈ X0

is proof that the agent took an action other than ã. Because the principal has
this proof, she can punish the agent as severely as she wishes when such an x
appears (in particular, she doesn’t have to worry about how this punishment
changes the risk faced by the agent, given the agent is never in jeopardy of
suffering this punishment if he takes the desired action, ã).4 Moreover, such a
draconian punishment will deter the agent from taking an action that induces
a positive probability of suffering the punishment. In effect, such actions have
been dropped from the original game, leaving ã as a least-cost action of the new

4It is worth noting that this argument relies on being able to punish the agent sufficiently
in the case of an x ∈ X0. Whether the use of such punishments is really feasible could,
in some contexts, rely on assumptions that are overly strong. First, that the agent hasn’t
(or can contractually waive) protections against severe punishments. For example, in the
English common-law tradition, this is generally not true; moreover, courts in these countries
are generally loath to enforce contractual clauses that are deemed to be penalties. Second,
that the agent has faith in his understanding of the distributions (i.e., he is sure that taking
action ã guarantees that an x ∈ X0 won’t occur). Third, that the agent has faith in his own
rationality; that is, in particular, he is sufficiently confident that won’t make a mistake (i.e.,
choose an a such that F (X0|a) > 0).
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game. It follows, then, from Proposition 24, that ã can be implemented at its
full-information cost.

It is worth noting that the full-information benchmark is just a special case
of Proposition 25, in which the support of f (a) lies on a separate plane, X ′×{a},
for each action a.

Typically, it is assumed that the action the principal wishes to implement
is neither a least-cost action, nor has a meaningful shifting support associated
with it. Henceforth, we will assume that the action that principal wishes to
implement, â, is not a least-cost action (i.e., ∃a ∈ A such that c (a) < c (â)).
Moreover, we will rule out all shifting supports by assuming that fn (a) > 0 for
all n and all a.

We now consider the whether there is a solution to Step 1 when there is no
shifting support and the action to be implemented is not a least-cost action.
That is, we ask the question: If â is implementable is there an optimal contract
for implementing it? We divide the analysis into two cases: u (·) affine (risk
neutral) and u (·) strictly concave (risk averse).

Proposition 26 Assume u (·) is affine and that â is implementable. Then â is
implementable at its full-information cost.

Proof: Let u solve (ir) and (ic). From Proposition 22, we may assume that
(ir) is binding. Then, because u (·) and, thus, u−1 (·) are affine:

N∑

n=1

fn (â)u−1 (un) = u−1

(
N∑

n=1

fn (â) un

)
= u−1 [UR + c (â)] ,

where the last inequality follows from the fact that (ir) is binding.

Note, given that we can’t do better than implement an action at full-information
cost, this proposition also tells us that, with a risk-neutral agent, an optimal
contract exists for inducing any implementable action. The hidden-action prob-
lem (the lack of full information) is potentially costly to the principal for two
reasons. First, it may mean a desired action is not implementable. Second, even
if it is implementable, it may be implementable at a higher cost. Proposition
26 tells us that this second source of cost must be due solely to the agent’s risk
aversion; an insight consistent with those derived earlier.

In fact, if we’re willing to assume that the principal’s benefit is alienable—
that is, she can sell the rights to receive it to the agent—and that the agent
is risk neutral, then we can implement the optimal full-information action, a∗

(i.e., the solution to Step 2 under full information) at full-information cost. In
other words, we can achieve the complete full-information solution in this case:

Proposition 27 (Selling the store) Assume that u (·) is affine and that the
principal’s benefit is alienable. Then the principal can achieve the same expected
utility with a hidden-action problem as she could under full information.
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Proof: Under full information, the principal would induce a∗ where

a∗ ∈ argmax
a∈A

B (a) − CF (a) .

Define
t∗ = B (a∗) − CF (a∗) .

Suppose the principal offers to sell the right to her benefit to the agent for t∗. If
the agent accepts, then the principal will enjoy the same utility she would have
enjoyed under full information. Will the agent accept? Note that because u (·)
is affine, there is no loss of generality in assuming it is the identity function. If
he accepts, he faces the problem

max
a∈A

∫

B
(b− t∗) dG (b|a) − c (a) .

This is equivalent to

max
a∈A

B (a) − c (a) − B (a∗) + c (a∗) + UR; or to

max
a∈A

B (a) − [c (a) + UR] −B (a∗) + c (a∗) + 2UR.

Because B (a)− [c (a) + UR] = B (a)−CF (a), rational play by the agent condi-
tional on accepting means his utility will be UR; which also means he’ll accept.

People often dismiss the case where the agent is risk neutral by claiming that
there is no agency problem because the principal could “sell the store (produc-
tive asset)” to the agent. As this last proposition makes clear, such a conclusion
relies critically on the ability to literally sell the asset; that is, if the principal’s
benefit is not alienable, then this conclusion might not hold.5 In other words, it
is not solely the agent’s risk aversion that causes problems with a hidden action.

Corollary 5 Assume that u (·) is affine and that the principal’s benefit equals
the performance measure (i.e., B = X and G (·|a) = F (·|a)). Then the principal
can achieve the same expected utility with a hidden-action problem as she could
under full information.

Proof: Left to the reader. (Hint: Let s (x) = x− t, where t is a constant.)

Now we turn our attention to the case where u (·) is strictly concave (the
agent is risk averse). Observe (i) this entails that u−1 (·) is strictly convex; (ii),
because S is an open interval, that u (·) is continuous; and (iii) that u−1 (·) is
continuous.

5To see this, suppose the benefit is unalienable. Assume, too, that A = {1/4, 1/2, 3/4},
X = {1, 2}, c (a) =

√
a, f2 (a) = a, UR = 0, and B (a) = 4−4

`

a − 1
2

´2
. Then it is readily seen

that a∗ = 1/2. However, from Proposition 23, a∗ is not implementable, so the full-information
outcome is unobtainable when the action is hidden (even though the agent is risk neutral).
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Proposition 28 Assume that u (·) is strictly concave. If â is implementable,
then there exists a unique contract that implements â at minimum expected cost.

Proof: Existence.6 Define�

Ω (u) =

N∑

n=1

fn (â)u−1 (un) . (15.9)

The strict convexity and continuity of u−1 (·) implies that Ω (·) is also a strictly
convex and continuous function. Observe that the principal’s problem is to
choose u to minimize Ω (u) subject to (ir) and (ic). Let U be the set of contracts
that satisfy (ir) and (ic) (by assumption, U is not empty). Were U closed
and bounded, then a solution to the principal’s problem would certainly exist
because Ω (·) is a continuous real-valued function.7 Unfortunately, U is not
bounded (although it is closed given that all the inequalities in (ir) and (ic) are
weak inequalities). Fortunately, we can artificially bound U by showing that any
solution outside some bound is inferior to a solution inside the bound. Consider
any contract u0 ∈ U and consider the contract u∗, where u∗n = UR + c (â). Let
UIR be the set of contracts that satisfy (ir). Note that U ⊂ UIR. Note, too,
that both U and UIR are convex sets. Because Ω (·) has a minimum on UIR,
namely u∗, the set

V ≡
{
u ∈ UIR|Ω (u) ≤ Ω

(
u0
)}

is closed, bounded, and convex.8 By construction, U∩V is non-empty; moreover,
for any u1 ∈ U ∩V and any u2 ∈ U\V , Ω

(
u2
)
> Ω

(
u1
)
. Consequently, nothing

is lost be limiting the search for an optimal contract to U ∩ V . The set U ∩ V
is closed and bounded and Ω (·) is continuous, hence it follows that an optimal
contract must exist.

Uniqueness. Suppose the optimal contract, u, were not unique. That is,
there exists another contract ũ such that Ω (u) = Ω (ũ) (where Ω (·) is defined
by (15.9)). It is readily seen that if these two contracts each satisfy both the
(ir) and (ic) constraints, then any convex combination of them must as well
(i.e., both are elements of U , which is convex). That is, the contract

uλ ≡ λu + (1 − λ) ũ,

λ ∈ (0, 1) must be feasible (i.e., satisfy (ir) and (ic)). Because Ω (·) is strictly
convex, Jensen’s inequality implies

Ω (uλ) < λΩ (u) + (1 − λ)Ω (ũ) = Ω (u) .

6The existence portion of this proof is somewhat involved mathematically and can be
omitted without affecting later comprehension of the material.

7This is a well-known result from analysis (see, e.g., Fleming, 1977, page 49).

8The convexity of V follows because Ω (·) is a convex function and UIR is a convex set.
That V is closed follows given UIR is also closed. To see that V is bounded, recognize that, as
one “moves away” from u∗—while staying in UIR—Ω (u) increases. Because Ω (·) is convex,
any such movement away from u∗ must eventually (i.e., for finite u) lead to a Ω (u) > Ω

`

u0
´

(convex functions are unbounded above). Hence V is bounded.
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But this contradicts the optimality of u. By contradiction, uniqueness is estab-
lished.

Having concluded that a solution to Step 1 exists, we can—at last—calculate
what it is. From Proposition 26, the problem is trivial if u (·) is affine, so we will
consider only the case in which u (·) is strictly concave. The principal’s problem
is a standard nonlinear programming problem: Minimize a convex function
(i.e.,

∑N
n=1 fn (â)u−1 (un)) subject to J constraints (one individual rationality

constraint and J−1 incentive compatibility constraints, one for each action other
than â). If we further assume, as we do henceforth, that u (·) is differentiable,
then the standard Lagrange-multiplier techniques can be employed. Specifically,
let λ be the Lagrange multiplier on the ir constraint and let µj be the Lagrange
multiplier on the ic constraint between â and aj , where j = 1, . . . , J−1 indexes
the elements of A other than â. It is readily seen that the first-order condition
with respect to the contract are

fn (â)

u′ [u−1 (un)]
− λfn (â) −

J−1∑

j=1

µj [fn (â) − fn (aj)] = 0; n = 1, . . . , N .

We’ve already seen (Proposition 22) that the ir constraint binds, hence λ > 0.
Because â is not a least-cost action and there is no shifting support, it is readily
shown that at least one ic constraint binds (i.e., ∃j such that µj > 0). It’s
convenient to rewrite the first-order condition as

1

u′ [u−1 (un)]
= λ+

J−1∑

j=1

µj

(
1 − fn (aj)

fn (â)

)
; n = 1, . . . , N . (15.10)

Note the resemblance between (15.10) and (13.9) in Section 13.4. The difference
is that, now, we have more than one Lagrange multiplier on the actions (as
we now have more than two actions). In particular, we can give a similar
interpretation to the likelihood ratios, fn (aj) /fn (â), that we had in that earlier
section; with the caveat that we now must consider more than one action.

Properties of the Optimal
Contract 15.2

Having solved for the optimal contract, we can now examine its properties. In
particular, we will consider three questions:

1. Under what conditions does the expected cost of implementing an action
under the optimal contract for the hidden-action problem exceed the full-
information cost of implementing that action?

2. Recall the performance measures, x, constitute distinct elements of a
chain. Under what conditions is the agent’s compensation increasing with
the value of the signal (i.e., when does x ≺ x′ imply s (x) ≤ s (x′))?
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3. Consider two principal-agent models that are identical except that the
information structure (i.e., {f (a) |a ∈ A}) in one is more informative than
the information structure in the other. How do the costs of implementing
actions vary between these two models.

The answer to the first question is given by

Proposition 29 Consider a hidden-information problem. Assume there is no
shifting support (i.e., fn (a) > 0 for all n and all a). Assume, too, that u (·) is
strictly concave. If â is not a least-cost action, then it cannot be implemented
at its full-information cost.

Proof: If â is not implementable, then the result is obvious; hence, we’ll assume
â is implementable. Define UIR to be the set of all contracts that satisfy the
ir constraint for â. Let u∗ be the contract in which u∗n = UR + c (â) for all n.
Note u∗ ∈ UIR. Finally define,

Ω (u) =

N∑

n=1

fn (â)u−1 (un) .

Because u (·) is strictly concave, the principal’s expected cost if the agent chooses
â under contract u, Ω (u), is a strictly convex function of u. By Jensen’s in-
equality and the fact that there is no shifting support, Ω (·), therefore, has a
unique minimum in UIR, namely u∗. Clearly, Ω (u∗) = CF (â). The result,
then, follows if we can show that u∗ is not incentive compatible. Given that â
is not a least-cost action, there exists an a such that c (â) > c (a). But

f (a) · u∗ − c (a) = UR + c (â) − c (a) > UR = f (â) · u∗ − c (â) ;

that is, u∗ is not incentive compatible.

Note the elements that go into this proposition if â is implementable: There
must be an agency problem—mis-alignment of interests (i.e., â is not least cost);
there must, in fact, be a significant hidden-action problem (i.e., no shifting
support); and the agent must be risk averse. We saw earlier that without any one
of these elements, an implementable action is implementable at full-information
cost (Propositions 24–26); that is, each element is individually necessary for
cost to increase when we go from full information to a hidden action. This last
proposition shows, inter alia, that they are collectively sufficient for the cost to
increase.

Next we turn to the second question. We already know from our analysis of
the two-action model that the assumptions we have so far made are insufficient
for us to conclude that compensation will be monotonic. From our analysis
of that model, we might expect that we need some monotone likelihood ratio
property. In particular, we assume

MLRP: Assume there is no shifting support. Then the monotone likelihood
ratio property is said to hold if, for any a and â in A, c (a) ≤ c (â) implies that
fn (a) /fn (â) is nonincreasing in n.
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Intuitively, mlrp is the condition that actions that the agent finds more costly
be more likely to produce better performance.

Unlike the two-action case, however, mlrp is not sufficient for us to obtain
monotone compensation (see Grossman and Hart, 1983, for an example in which
mlrp is satisfied but compensation is non-monotone). We need an additional
assumption:

CDFP: The agency problem satisfies the concavity of distribution function
property if, for any a, a′, and â in A,

c (â) = λc (a) + (1 − λ) c (a′) ∃λ ∈ (0, 1)

implies that F (·|â) first-order stochastically dominates λF (·|a)+(1 − λ)F (·|a′).9

Another way to state the cdfp is that the distribution over performance is
better—more likely to produce high signals—if the agent plays a pure strategy
than it is if he plays any mixed strategy over two actions when that mixed
strategy has the same expected disutility as the pure strategy.

We can now answer the second question:

Proposition 30 Assume there is no shifting support, that u (·) is strictly con-
cave and differentiable, and that mlrp and cdfp are met. Then the optimal
contract given the hidden-action problem satisfies s1 ≤ · · · ≤ sN .

Proof: Let â be the action the principal wishes to implement. If â is a least-
cost action, then the result follows from Proposition 24; hence assume that â
is not a least-cost action. Let A′ = {a|c (a) ≤ c (â)}; that is, A′ is the set
of actions that cause the agent less disutility than â. Consider the principal’s
problem of implementing â under the assumption that the space of contracts is
A′. By mlrp, fn (a) /fn (â) is nonincreasing in n for all a ∈ A′, so it follows
from (15.10) that s1 ≤ · · · ≤ sN under the optimal contract for this restricted
problem. The result then follows if we can show that this contract remains
optimal when we expand A′ to A—adding actions cannot reduce the cost of
implementing â, hence we are done if we can show that the optimal contract
for the restricted problem is incentive compatible in the unrestricted problem.
That is, if there is no a, c (a) > c (â), such that

f (a) · u − c (a) > f (â) · u − c (â) , (15.11)

where u = (u (s1) , . . . , u (sN )). As demonstrated in the proof of Proposition 29,
the incentive compatibility constraint between â and at least one a′ ∈ A′,
c (a′) < c (â), is binding; i.e.,

f (a′) · u − c (a′) = f (â) · u − c (â) . (15.12)

9Recall that distribution G (·) first-order stochastically dominates distribution H (·) if
G (z) ≤ H (z) for all z and strictly less than for some z.
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Because c (â) ∈ (c (a′) , c (a)), there exists a λ ∈ (0, 1) such that c (â) = (1 − λ) c (a′)+
λc (a). Using cdfp and the fact that u (s1) ≤ · · · ≤ u (sN ), we have

f (â) · u− c (â) ≥ (1 − λ) f (a′) · u + λf (a) · u − c (â)

= (1 − λ) [f (a′) · u− c (a′)] + λ [f (a) · u − c (a)] .

But this and (15.12) are inconsistent with (15.11); that is, (15.11) cannot hold,
as was required.

Lastly, we come to question 3. An information structure for a principal-
agent problem is F ≡ {f (a) |a ∈ A}. A principal-agent problem can, then, be
summarized as P = 〈A,X ,F, B (·) , c (·) , u (·) , UR〉.

Proposition 31 Consider two principal-agent problems that are identical ex-
cept for their information structures (i.e., consider

P1 =
〈
A,X ,F1, B (·) , c (·) , u (·) , UR

〉

and
P2 =

〈
A,X ,F2, B (·) , c (·) , u (·) , UR

〉
).

Suppose there exists a stochastic transformation matrix Q (i.e., a garbling)10

such that f2 (a) = Qf1 (a) for all a ∈ A, where f i (a) denotes an element of
Fi. Then, for all a ∈ A, the principal’s expected cost of optimally implementing
action a in the first principal-agent problem, P1, is not greater than her expected
cost of optimally implementing a in the second principal-agent problem, P2.

Proof: Fix a. If a is not implementable in P2, then the result follows im-�
mediately. Suppose, then, that a is implementable in P2 and let u2 be the
optimal contract for implementing a in that problem. Consider the contract
u1 = Q⊤u2.11 We will show that u1 implements a in P1. Because

f1 (a)
⊤

u1 = f1 (a)
⊤

Q⊤u2 = f2 (a)
⊤

u2,

the fact that u2 satisfies ir and ic in P2 can readily be shown to imply that u1

satisfies ir and ic in P1. The principal’s cost of optimally implementing a in P1

is no greater than her cost of implementing a in P1 using u1. By construction,
u1
n = q⊤

·nu
2, where q·n is the nth column of Q. Because sin = u−1

(
uin
)

and
u−1 (·) is convex, it follows from Jensen’s Inequality that

s1n ≤
N∑

m=1

qmns
2
m

10A stochastic transformation matrix, sometimes referred to as a garbling, is a matrix in
which each column is a probability density (i.e., has non-negative elements that sum to one).

11For this proof it is necessary to distinguish between row vectors and column vectors, as
well as transposes of matrices. All vectors should be assumed to be column vectors. To make
a vector x a row vector, we write x⊤. Observe that H⊤, where H is a matrix, is the transpose
of H. Observe that x⊤y is the dot-product of x and y (what we’ve been writing as x · y).
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(recall q·n is a probability vector). Consequently,

N∑

n=1

f1
n (a) s1n ≤

N∑

n=1

f1
n (a)

N∑

m=1

qmns
2
m =

N∑

m=1

f2
n (a) s2n.

The result follows.

Proposition 31 states that if two principal-agent problems are the same,
except that they have different information structures, where the information
structure of the first problem is more informative than the information structure
of the second problem (in the sense of Blackwell’s Theorem), then the principal’s
expected cost of optimally implementing any action is no greater in the first
problem than in the second problem. By strengthening the assumptions slightly,
we can, in fact, conclude that the principal’s expected cost is strictly less in the
first problem. In other words, making the signal more informative about the
agent’s action makes the principal better off. This is consistent with our earlier
findings that (i) the value of the performance measures is solely their statistical
properties as correlates of the agent’s action; and (ii) the better correlates—
technically, the more informative—they are, the lower the cost of the hidden-
action problem.

It is worth observing that Proposition 31 implies that the optimal incentive
scheme never entails paying the agent with lotteries over money (i.e., randomly
mapping the realized performance levels via weights Q into payments).

A Continuous Performance
Measure 15.3

Suppose that X were a real interval—which, without loss of generality, we can
take to be R—rather than a discrete space and suppose, too, that F (x|a) were
a continuous and differentiable function with corresponding probability density
function f (x|a). How would this change our analysis? By one measure, the
answer is not much. Only three of our proofs rely on the assumption that X is
finite; namely the proofs of Propositions 23, 28 (and, there, only the existence
part),12 and 31. Moreover, the last of the three can fairly readily be extended to
the continuous case. Admittedly, it is troubling not to have general conditions
for implementability and existence of an optimal contract, but in many specific
situations we can, nevertheless, determine the optimal contract.13

12Where our existence proof “falls down” when X is continuous is that our proof relies on
the fact that a continuous function from R

N → R has a minimum on a closed and bounded
set. But, here, the contract space is no longer a subset of R

N , but rather the space of all
functions from X → R; and there is no general result guaranteeing the existence of a minimum
in this case.

13Page (1987) considers conditions for existence in this case (actually he also allows for
A to be a continuous space). Most of the assumptions are technical, but not likely to be
considered controversial. Arguably a problematic assumption in Page is that the space of
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With X = R, the principal’s problem—the equivalent of (15.1)—becomes

min
u(x)

∫ ∞

−∞
u−1 [u (x)] f (x|â) dx

subject to

∫ ∞

−∞
u (x) f (x|â) dx − c (â) ≥ UR; and

∫ ∞

−∞
u (x) f (x|â) dx − c (â) ≥

∫ ∞

−∞
u (x) f (x|a) dx− c (a) ∀a ∈ A.

We know the problem is trivial if there is a shifting support, so assume the
support of x, supp {x}, is invariant with respect to a.14 Assuming an optimal
contract exists to implement â, that contract must satisfy the modified Borch
sharing rule:

1

u′ [u−1 (u (x))]
= λ+

J−1∑

j=1

µj

[
1 − f (x|aj)

f (x|â)

]
for almost every x ∈ supp {x} .

Observe that this is just a variation on (13.9) or (15.10).

Bibliographic Note

Much of the analysis in this section has been drawn from Grossman and Hart
(1983). In particular, they deserve credit for Propositions 22, 26, and 28–31
(although, here and there, we’ve made slight modifications to the statements or
proofs). Proposition 23 is based on Hermalin and Katz (1991). The rest of the
analysis represent well-known results.

possible contracts is constrained; that is, assumptions are imposed on an endogenous feature
of the model, the contracts. In particular, if S is the space of permitted contracts, then there
exist L and M ∈ R such that L ≤ s (x) ≤ M for all s (·) ∈ S and all x ∈ X . Moreover,
S is closed under the topology of pointwise convergence. On the other hand, it could be
argued that range of real-life contracts must be bounded: Legal and other constraints on
what payments the parties can make effectively limit the space of contracts to some set of
bounded functions.

14That is,
{x|f (x|a) > 0} =

˘

x|f
`

x|a′
´

> 0
¯

for all a and a′ in A.



Continuous Action
Space 16

So far, we’ve limited attention to finite action spaces. Realistic though this may
be, it can serve to limit the tractability of many models, particularly when we
need to assume the action space is large. A large action space can be prob-
lematic for two, related, reasons. First, under the two-step approach, we are
obligated to solve for the optimal contract for each a ∈ A (or at least each
a ∈ AI) then, letting C (a) be the expected cost of inducing action a under its
corresponding optimal contact, we next maximize B (a)−C (a)—expected ben-
efit net expected cost. If A is large, then this is clearly a time-consuming and
potentially impractical method for solving the principal-agent problem. The
second reason a large action space can be impractical is because it can mean
many constraints in the optimization program involved with finding the optimal
contract for a given action (recall, e.g., that we had J − 1 constraints—one for
each action other than the given action). Again, this raises issues about the
practicality of solving the problem.

These problems suggest that we would like a technique that allows us to
solve program (14.3) on page 149,

max
(S(·),a)

∫

X
W (S(x), x, b)dG(b, x|a) (16.1)

subject to

a ∈ arg max
a′

∫

X
U(S(x), x, a′)dF (x|a′) (16.2)

and

max
a′

∫

X
U(S(x), x, a′)dF (x|a′) ≥ UR,

directly, in a one-step procedure. Generally, to make such a maximization pro-
gram tractable, we would take A to be a compact and continuous space (e.g., a
closed interval on R), and employ standard programming techniques. A number
of complications arise, however, if we take such an approach.

Most of these complications have to do with how we treat the ic constraint,
expression (16.2). To make life simpler, suppose that A = [a, ā] ⊂ R, X = R,
that F (·|a) is differentiable and, moreover, that the expression in (16.2) is itself
differentiable for all a ∈ A. Then, a natural approach would be to observe that
if a ∈ (a, ā) maximizes that expression, it must necessarily be the solution to
the first-order condition to (16.2):

∫

X
(Ua [S (x) , x, a] f (x|a) + U [S (x) , x, a] fa (x|a)) dx = 0 (16.3)

167
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(where subscripts denote partial derivatives). Conversely, if we knew that the
second -order condition was also met, (16.3) would be equivalent to (16.2) and we
could use it instead of (16.2)—at least locally. Unhappily, we don’t, in general,
know (i) that the second-order conditions is met and (ii) that, even if it is, the a
solving (16.3) is a global rather than merely local maximum. For many modeling
problems in economics, we would avoid these headaches by simply assuming that
(16.2) is globally strictly concave in a, which would ensure both the second-order
condition and the fact that an a solving (16.3) is a global maximum. We can’t,
however, do that here: The concavity of (16.2) will, in general, depend on S (x);
but since S (·) is endogenous, we can’t make assumptions about it. If, then, we
want to substitute (16.3) for (16.2), we need to look for other ways to ensure
that (16.3) describes a global maximum.

An additional complication arises with whether (16.1) also satisfies the prop-
erties that would allow us to conclude from first-order conditions that a global
maximum has, indeed, been reached. Fortunately, in many problems, this issue
is less severe because we typically impose the functional form

W (S (x) , x, b) = x− S (x) ,

which gives the problem sufficient structure to allow us to validate a “first-order
approach.”

In the rest of this section, we develop a simple model in which a first-order
approach is valid.

The First-order Approach with
a Spanning Condition 16.1

Assume, henceforth, that A = [a, ā] ⊂ R, X = [x, x̄] ⊂ R, and that F (·|a) is
differentiable. Let f (·|a) be the associated probability density function for each
a ∈ A. We further assume that

1. U (S (x) , x, a) = u [S (x)] − a;

2. u (·) is strictly increasing and strictly concave;

3. the domain of u (·) is (s,∞), lims↓s u (s) = −∞, and lims↑∞ u (s) = ∞;

4. f (x|a) > 0 for all x ∈ X and for all a ∈ A (i.e., there is no shifting
support);

5. F (x|a) = γ (a)FH (x) + (1 − γ (a))FL (x) and f (x|a) = γ (a) fH (x) +
(1 − γ (a)) fL (x) for all x and a, where γ : A → [0, 1] and FH (·) and
FL (·) are distribution functions on X ;

6. γ (·) is strictly increasing, strictly concave, and twice differentiable; and

7. fL (x) /fH (x) satisfies the mlrp (i.e., fL (x) /fH (x) is non-increasing in
x and there exist x′ and x′′ in X , x′ < x′′, such that fL (x′) /fH (x′) >
fL (x′′) /fH (x′′)).
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Observe Assumptions 5–7 allow us, inter alia, to assume that c (a) = a without
loss of generality. Assumption 5 is known as a spanning condition.

In what follows, the following result will be critical:

Lemma 9 FH (·) dominates FL (·) in the sense of first-order stochastic domi-
nance.

Proof: We need to show FH (x) ≤ FL (x) for all x ∈ X and strictly less for
some x. To this end, define

∆ (z) =

∫ z

x

[fH (x) − fL (x)] dx.

We wish to show that ∆ (z) ≤ 0 for all z ∈ X and strictly less for some z.
Observe that

∆ (z) =

∫ z

x

[
1 − fL (x)

fH (x)

]
fH (x) dx.

Let

δ (x) = 1 − fL (x)

fH (x)
.

By mlrp, δ (·) is non-decreasing everywhere and increases at one x at least.
Because ∆ (x̄) = 0, fH (·) > 0, x̄ − x > 0, and δ (·) is not constant, it follows
that δ (·) must be negative on some sub-interval of X and positive on some
other. Because δ (·) is non-decreasing, there must, therefore, exist an x̂ ∈ (x, x̄)
such that

δ (x) ≤ 0 for all x < x̂ (and strictly less for x < x < x′ ≤ x̂, for some x′); and

δ (x) ≥ 0 for all x > x̂ (and strictly greater for x̄ > x > x′′ ≥ x̂, for some x′′).

For z ≤ x̂, this implies that ∆ (z) < 0—it is the integral of a quantity that is
negative over some range of the integral and never positive anywhere on that
range. Finally, consider, z ∈ (x̂, x̄). ∆′ (z) = δ (z) fH (z) ≥ 0 for all z in that
interval. Hence, because ∆ (x̂) < 0 and ∆ (x̄) = 0, it must be that ∆ (z) ≤ 0 for
all z ∈ (x̂, x̄). We’ve just shown that ∆ (z) ≤ 0 for all z ∈ X and strictly less
for some z, which yields the result.

A consequence of this Lemma is that if φ (·) is an increasing function, then

∫ x̄

x

φ (x) [fH (x) − fL (x)] dx > 0. (16.4)

It follows, then, that if S (·) (and, thus, u [S (x)]) is increasing, then (16.2) is
globally concave in a. To see this, observe

∫

X
U(S(x), x, a)dF (x|a) =

∫ x̄

x

u [S (x)] [γ (a) fH (x) + (1 − γ (a)) fL (x)] dx− a;
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so we have

d

da

∫

X
U(S(x), x, a)dF (x|a) =

∫ x̄

x

u [S (x)] [fH (x) − fL (x)] γ′ (a) dx > 0

by (16.4) and the assumption that γ′ (·) > 0. Moreover,

d2

da2

∫

X
U(S(x), x, a)dF (x|a) =

∫ x̄

x

u [S (x)] [fH (x) − fL (x)] γ′′ (a) dx < 0

by (16.4) and the assumption that γ′′ (·) < 0. To summarize:

Corollary 6 If S (·) is increasing, then the agent’s choice-of-action problem is
globally concave. That is, we’re free to substitute

∫ x̄

x

u [S (x)] [fH (x) − fL (x)] γ′ (a) dx = 0 (16.5)

for (16.2).

We’ll now proceed as follows. We’ll suppose that S (·) is increasing and we’ll
solve the principal’s problem. Of course, when we’re done, we’ll have to double
check that our solution indeed yields an increasing S (·). It will, but if it didn’t,
then our approach would be invalid. The principal’s problem is

max
S(·),a

∫ x̄

x

[x− S (x)] f (x|a) dx

subject to (16.5) and the ir constraint,

∫ x̄

x

u [S (x)] f (x|a) dx − a ≥ UR.

As we’ve shown many times now, this last constraint must be binding; so we
have a classic constrained optimization program. Letting λ be the Lagrange
multiplier on the ir constraint and letting µ be the Lagrange multiplier on
(16.5), we obtain the first-order conditions:

−f (x|a) + µu′ [S (x)] [fH (x) − fL (x)] γ′ (a) + λu′ [S (x)] f (x|a) = 0

differentiating by S (x); and

∫ x̄

x

[x− S (x)] [fH (x) − fL (x)] γ′ (a) dx

+µ

∫ x̄

x

u [S (x)] [fH (x) − fL (x)] γ′′ (a) dx (16.6)

= 0
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differentiating by a (there’s no λ expression in the second condition because,
by (16.5), the derivative of the ir constraint with respect to a is zero). We can
rearrange the first condition into our familiar modified Borch sharing rule:

1

u′ [S (x)]
= λ+ µ

[fH (x) − fL (x)] γ′ (a)

γ (a) fH (x) + (1 − γ (a)) fL (x)

= λ+ µ
[1 − r (x)] γ′ (a)

γ (a) [1 − r (x)] + r (x)
,

where r (x) = fL (x) /fH (x). Recall that 1/u′ [·] is an increasing function; hence,
to test whether S (·) is indeed increasing, we need to see whether the right-hand
side is decreasing in r (x) since r (·) is decreasing. Straightforward calculations
reveal that the derivative of the right-hand side with respect to r(x) is

−γ′ (a)
(r (x) + (1 − r (x)) γ (a))

2 < 0.

We’ve therefore shown that S (·) is indeed increasing as required; that is, our
use of (16.5) for (16.2) was valid.

Observe, from (16.6), that, because the agent’s second-order condition is
met, the first line in (16.6) must be positive; that is,

∫ x̄

x

[x− S (x)] [fH (x) − fL (x)] dx > 0.

But this implies that, for this S (·), the principal’s problem is globally concave
in a:

d2

da2

∫ x̄

x

[x− S (x)] f (x|a) dx =

∫ x̄

x

[x− S (x)] [fH (x) − fL (x)] γ′′ (a) dx < 0.

Moreover, for any S (·), the principal’s problem is (trivially) concave in S (·).
Hence, we may conclude that the first-order approach is, indeed, valid for this
problem.

Admittedly, the spanning condition is a fairly stringent condition; although
it does have an economic interpretation. Suppose there are two distributions
from which the performance measure could be drawn, “favorable” (i.e., FH (·))
and “unfavorable” (i.e., FL (·)). The harder—higher a—the agent chooses, the
greater the probability, γ (a), that the performance measure will be drawn from
the favorable distribution. For instance, suppose there are two types of potential
customers, those who tend to buy a lot—the H type—and those who tend not
to buy much—the L type. By investing more effort, a, in learning his territory,
the salesperson (agent) increases the probability that he will sell to H types
rather than L types.

Bibliographic Note

The first papers to use the first-order approach were Holmström (1979) and
Shavell (1979). Grossman and Hart (1983) was, in large part, a response to the
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potential invalidity of the first-order approach. Our analysis under the spanning
condition draws, in part, from Hart and Holmström (1987).
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