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Introduction to Game Theory

1 Introduction

Most firms face competition selling their goods and services. Coca-Cola duels
with Pepsi (and a handful of small firms) in the soft-drink market. Anheuser-
Busch battles Miller and Coors, as well as a slew of smaller brewers, in the
beer market. In Japan, Kajima competes against Shimizu, Obayashi, Taisei,
and Kumagi Gumi (and a number of other builders) in the construction in-
dustry. Locally, area supermarkets and groceries are engaged in some level of
competition.

Competition among firms—indeed, just the potential for competition—can
have a serious impact on firm behavior. For instance, if Coca-Cola lowers it
price, it is probably unreasonable for it to assume that Pepsi won’t react: By
lowering its price, Coca-Cola will not only attract new cola drinkers, but it
will also lure away some of Pepsi’s customers. Unless Pepsi is willing to put
up with a loss of revenue—an unlikely scenario—it will find itself obligated to
respond to Coca-Cola’s price cut. Indeed, whatever it might do, its reaction
to Coca-Cola’s price cut will affect the value of the price cut to Coca-Cola.
Analyzing and anticipating its rival’s reaction must, therefore, play a large role
in Coca-Cola’s decision making.

In this reading, we start our study of how managers make decisions when
their firms face rivals or potential rivals. We begin with a set of tools—game
theory—that will allow us to study strategic situations in greater depth and
with more insight. Next we introduce a model of competition in which firms
compete solely on the basis of price—go “head-to-head” on price. In economics,
this model is called the Bertrand model of competition. As we will see, if the
Bertrand model describes your competitive situation, you’re not going to do
too well. For this reason, we will describe the Bertrand model as the “Bertrand
trap”—a situation that you wish to avoid being caught in. We’ll wrap up this
chapter by considering some more game theory.

2 Introduction to Game Theory

To better analyze strategic situations, economists and strategists have come to
use a set of tools known as game theory . Game theory is an extension of decision game theory

theory to situations in which there is more than one decision maker (now called
a player). player

2.1 The Prisoners’ Dilemma

The best way to introduce game theory is through an example. Figure 1 illus-
trates a “game.” Two firms, Row Inc. and ColumnCo compete to sell a product.
Each firm has a choice of strategies: It can be “aggressive” or “passive.” Ag-
gressive corresponds to behaviors such as big advertising campaigns, strong
discounting, etc. Passive corresponds to more conventional and less extreme
behaviors. The way the game is played is that both firms simultaneously select
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ColumnCo

Row Inc.

Aggressive Passive

Aggressive
$3

$3
$2

$6

Passive
$6

$2
$4

$4

Figure 1: Game between Row Inc. and ColumnCo (payoffs in millions)

their strategies. Their profits—payoffs—as a function of the chosen strategies payoffs

are shown in Figure 1. The number in the lower left corner of each cell is the
payoff to Row Inc. and the number in the upper right corner of each cell is the
payoff to ColumnCo. Hence, if Row Inc. is aggressive and ColumnCo is passive,
then Row Inc.’s profit is $6 million and ColumnCo’s profit is $2 million. The
question, now, is what strategy will each firm choose?

To answer this question, imagine that you’re the ceo of Row Inc. What
should you do if ColumnCo will be passive? If you’re aggressive, then your firm
earns $6 million; but if you’re passive, then your firm earns just $4 million.
Hence, if you think ColumnCo will be passive, you should be aggressive. But
what if you think it will be aggressive? If you’re also aggressive, then your firm
earns $3 million; but if you’re passive, then your firm earns just $2 million.
Again, you should be aggressive. We’ve just seen that, no matter what you
anticipate ColumnCo’s strategy to be, your best strategy as Row Inc.’s ceo is
to be aggressive. Hence, we would predict that Row Inc. will be aggressive.
What should we anticipate ColumnCo will do? The analysis that we did as
Row Inc.’s ceo can be repeated for ColumnCo. Given the symmetry of the
game, it should be clear that such an analysis would reveal that ColumnCo
should be aggressive no matter what it anticipates Row Inc.’s strategy will be.
In summary, then, we’ve concluded that both firms will choose the aggressive
strategy.

Essentially, this what game theory is about.1 A multiple-decision-maker
situation is described in terms of the strategies available to each decision maker
(here, “aggressive” and “passive”) and the payoffs for each decision maker as
a function of the strategies (here, the eight monetary amounts in Figure 1).
Having described the situation—or game—the next step is to solve it; that is,
make predictions as to how the players will play it (what strategies they will
choose).

Before proceeding with a more general analysis of games, we should first
analyze the outcome predicted for the game in Figure 1. Observe, first, that
if both firms are aggressive—as we’ve predicted they will be—then each makes
only $3 million in profit. If, in contrast, they were each passive, they would
make $4 million. Hence, we see that unlike single decision-maker problems,
rational play does not necessarily produce desirable outcomes with multiple

1To be 100% accurate, we should add “in normal form.”
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decision makers. Indeed, if somehow the firms could cooperate (which might
violate antitrust laws!), they would do better agreeing to be passive than being
aggressive. This illustrates the

Fundamental Rule of Competitive Strategy: Competitive strat-
Fundamental

Rule of

Competitive

Strategy
egy is like driving, not football—head-on collisions are to be avoided.

The dilemma here is that what is in each firm’s private interest is not in their
collective interest. This dilemma is so common to strategic situations that it
has a name: It’s the prisoners’ dilemma.2,3 Prisoners’

dilemma: A
game in which
the strategies
that are privately
optimal for the
players lead to
an outcome that
is not mutually
optimal.

2.2 Best Responses and Dominant Strategies

Turning, now, to a more systematic approach to game theory, let’s review how
we solved the version of the prisoners’ dilemma shown in Figure 1. For each
possible strategy of the opponent (ColumnCo in the preceding analysis), we
asked what was our best strategy if the opponent played that strategy. So we
first asked what was our best strategy if ColumnCo played passive. Since $6
million is greater than $4 million, we concluded our best strategy was aggres-
sive. In the parlance of game theory, we concluded that aggressive was our best
response to passive. That is, in a game between two players—#1 and #2—a
given strategy for #1 is a best response to a specific strategy of #2’s if #1’s
payoff from playing the given strategy is at least great as her payoff from playing
any other of her strategies if #2 plays that specific strategy. Similarly, when we
presumed ColumnCo would play aggressive(ly), we observed that $3 million is
greater than $2 million, so that aggressive was again Row Inc.’s best response
to aggressive by ColumnCo. We can extend this notion of best response to any
number of strategies and players:

Best Response: Consider a game with N players. A best response best response

for player n to the N − 1 strategies of her opponent is a strategy for
her that maximizes her payoff against these N − 1 strategies of her
opponents.

In the Row Inc. vs. ColumnCo game, aggressive was Row Inc.’s best response
to both strategies of its opponent. When a single strategy for a player is a best

2The original “story” behind the Prisoners’ Dilemma is that two prisoners are suspected in
some crime. Each is held in isolation and each is visited by the prosecutor, who informs each
prisoner of the following: If he confesses and testifies against his partner, while his partner
remains silent then he will go free and his partner will serve 10 years in jail. If they both
confess, then they will each get 6 years in jail. If he remains silent and his partner confesses,
then he gets 10 years, while his partner goes free. Finally, there is enough circumstantial
evidence to send each to jail for 2 years if they both remain silent. It can be shown that the
outcome is both confess (see Exercise 1), even though the jointly optimal outcome occurs if
they both remain silent.

3Another example is “rat racing” with fellow employees: You and a co-worker have equal
odds of being promoted if you’re both relaxed or if you’re both “hyper.” The problem is
that if one of you is hyper while the other is relaxed, the hyper one will be certain to get the
promotion. The outcome is that you’re both hyper, although jointly you’d be better of both
being relaxed. See Exercise 2.
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Ms. C

Mr. R

Northside Southside

Northside
$10, 000

$10, 000
$15, 000

$15, 000

Southside
$15, 000

$15, 000
$10, 000

$10, 000

Figure 2: Game between Mr. R and Ms. C

response to all the strategies of her opponents, then that strategy is called a
dominant strategy; formally,

Dominant strategy: A single strategy for a player that is a best dominant

strategy

response to each and every strategy of her opponents.

As the name suggests, you always want to play a dominant strategy if you have
one. In the Row Inc. vs. ColumnCo game, each player—as we’ve seen—has a
dominant strategy, namely to be aggressive.

We can now give our first method of solving games for that subset of games
in which all players have a dominant strategy: If all players have a dominant
strategy, then the solution of the game is the outcome corresponding to each
player playing her dominant strategy. This solution is known as a solution in
dominant strategies or an equilibrium in dominant strategies. Observe that

solution in

dominant

strategiesprisoners’ dilemma games always have a solution in dominant strategies.

2.3 Nash Equilibrium

Although a solution in dominant strategies seems an eminently reasonable so-
lution concept—what else would a rational player do except play the strategy
that is best regardless of his opponents’ choices of strategy—it has the drawback
that not all games have dominant strategies for all their players. As an exam-
ple of such a game, consider the game in Figure 2. Two entrepreneurs, Mr. R
and Ms. C, plan to open competing firms. There are two possible places to
open, Northside and Southside. Knowing the fundamental rule of competitive
strategy, they know that if they open at the same location competition between
them will be fiercer and, thus, profits lower. Specifically, monthly profits are
$10,000 each if they open at the same location, but $15,000 each if they open
at different locations. Observe that Mr. R’s best response to Ms. C’s strategy
of Northside is to play Southside ($15, 000 > $10, 000); but his best response
to Ms. C’s strategy of Southside is to play Northside. Mr. R, therefore, has
no dominant strategy since the best strategy for him to play varies with the
strategy he anticipates Ms. C will play. Given the symmetry of the game, it’s
readily seen that Ms. C doesn’t have a dominant strategy either.

Since we want to have a prediction of what will happen in the game depicted
in Figure 2, we need some method of solving games when players don’t have
dominant strategies. To this end, we define the concept of Nash equilibrium:
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Introduction to Game Theory

Nash Equilibrium: Consider a game with N players. A set of Nash equilibrium

strategies, one for each player, is a Nash equilibrium if, for each
player, her strategy is a best response to the N − 1 other strate-
gies in this set (i.e., to the strategies her opponents will play in this
equilibrium).

That is, the strategies chosen by the players of a game constitute a Nash equi-
librium when each player’s strategy is a best response to the strategies of the
other players. In other words, when the strategies are mutual best responses.

For example, in the game shown in Figure 2, a Nash equilibrium is Mr. R
plays Northside and Ms. C plays Southside: As we concluded above, Northside
is the best response to Ms. C’s strategy of Southside, and it is readily seen
that Southside is Ms. C’s best response to Mr. R’s strategy of Northside. As
a second example, the outcome in which both Row Inc. and ColumnCo play
aggressive(ly) is also a Nash equilibrium: The best response to aggressive is
aggressive, as we saw above. In fact, this last example is a general result:

Result: A solution in dominant strategies is also a Nash equilib-
rium.

There is, however, a drawback to using the Nash-equilibrium concept to
solve games: It sometimes admits more than one solution (prediction). To see
this, return to the game between Mr. R and Ms. C and observe that another
Nash equilibrium is for Mr. R to play Southside and Ms. C to play Northside.4

[Exercise: demonstrate this.] Fortunately, in many games of interest there is a
unique Nash equilibrium; that is, this solution concept yields a single prediction.
Moreover, for many games in which it yields multiple solutions—known as mul-
tiple equilibria—there may be other factors that allow us to make more precise multiple

equilibria

predictions. For instance, if Mr. R lives on the northside of town, while Ms. C
lives on the southside, the prediction—equilibrium—in which Mr. R opens on
the northside and Ms. C opens on the southside would likely be the better one.

Another potential drawback to any solution concept is that it may fail to
make a prediction (as, for example, solution in dominant strategies would do
for the game between Mr. R and Ms. C). Fortunately, this drawback is absent
with Nash equilibrium: Every game has at least one Nash equilibrium.5

To review, finding a Nash equilibrium is a two-step process:

1. For each player and each set of strategies of her opponents, identify that
player’s best response to that set of strategies.

2. Find a set of strategies for all players that are mutual best responses.

4Later, when we consider mixed strategies, we will see that this game also has a third Nash
equilibrium!

5To be 100% accurate, we should add “in this course.” Although one can construct weird
games that fail to have Nash equilibria, these games are primarily of mathematical, rather
than practical, interest. For more on this, consult Roger B. Myerson: Game Theory: Analysis
of Conflict, Harvard University Press, Cambridge, Mass., 1991, particularly Sections 3.12 and
3.13.
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Column Player
Left Right

Up
5

0
4

6

Row Player Middle
4

3
8

7

Down
2

6
6

5

Figure 3: Another Game

To illustrate this process, consider a third game, shown in Figure 3 (since
it’s for illustrative purposes only, we won’t bother giving it a business interpre-
tation). There are two players, Row and Column. Column has two possible
strategies: left and right. Row has three possible strategies: up, middle, and
down. Let’s find Row’s best responses first. If Column played left, then Row’s
best response is down since 6 is greater than 0 (up) or 3 (middle). To help
us keep track of best responses, we’ve underlined the 6. If Column instead
played right, then Row’s best response is middle since 7 is greater than 6 (up)
or 5 (down). Again, we’ve underlined the 7 to help us keep track of the best
responses. Now let’s find Column’s best responses. If Row played up, then
Column’s best response is left since 5 is greater than 4. If Row played middle,
then Column’s best response is right since 8 is greater than 4. Finally, if Row
played down, then Column’s best response is right since 6 is greater than 2.
That completes step one. Turning to step two, we need to find mutual best re-
sponses. Given our convention of underlining the payoff corresponding to each
best response, a set of mutual best responses will correspond to the strategies
that yield a cell with both numbers underlined. In the game in Figure 3, the
one cell with both numbers underlined corresponds to Row playing middle and
Column playing right. That is, the Nash equilibrium of this game is Row plays
middle and Column plays right.

Before going on, it’s worth asking why we think the Nash equilibrium of a
game is a good prediction of what will happen in the game. There are a number
of justifications we can give for this view:

1. A Nash equilibrium is rationalizable. By this we mean that the
players could come to play the Nash equilibrium through an introspective
process. Consider, for example, the preceding game. Column might reason
as follows: “No matter what Row thinks I’m going to do, it can never be
a best response for him to play up (observe neither of his payoffs in the
up row are underlined).6 Hence, I can rule out Row playing up. But if

6As a technical matter, we should also consider whether up could be a best response against
a mixed strategy for Column. Since we haven’t yet introduced mixed strategies—see Section
4—we can’t yet do that. If we could, however, it would turn out that up also fails to be a
best response against a mixed strategy for Column (see Exercise 3).
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Row would never play up—that is, I’m sure he’ll play middle or down—
then it’s best for me to play right, since right is my best response to both
middle and down.7 Therefore, I should play right.” Since Row knows that
Column is rational, Row would also reason in this way if he were to put
himself in Column’s shoes. Hence, he would conclude that Column would
play right. But if Column will play right, he wants to play middle and
we’ve, thus, arrived at the Nash equilibrium.

2. A Nash equilibrium is a stable solution to the game. By this
we mean that if the players knew they were supposed to play the Nash
equilibrium, then no player would want to deviate from playing his part
of the equilibrium provided he assumed that the other players would be
playing their strategies for this equilibrium (their equilibrium strategies):
By construction, if they’re playing their equilibrium strategies, then his
best response to these strategies is to play the strategy he’s supposed to
play in the equilibrium. Thus, for example, if Row and Column were told
the equilibrium of the preceding game is Row plays middle and Column
plays right and if they each believed the other would play his part of the
equilibrium, then neither Row nor Column would wish to deviate: As
shown, middle is the best response to right and right is the best response
to middle. Hence, if there’s any communication among the players before
they play, they could agree to play a Nash equilibrium since that agreement
is self-enforcing . Moreover, a Nash equilibrium is the only agreement that self-enforcing

can be self-enforcing.

3. A Nash equilibrium is often reachable by adaptive play. By this
we mean that if the players learn in a myopic fashion, they will often come
to learn to play the Nash equilibrium. For instance, in the preceding game
imagine that, today, the players play their best responses to the strategy
their opponents’ played yesterday. So, for example, if Row played up
yesterday, Column would play left today. To see how this process could
converge to a Nash equilibrium, suppose the players start with (up, right).
The next day, under this adaptive process, they would play (middle, left).
Then (down, right). Then, finally, (middle, right), the Nash equilibrium.
Since, as discussed, the Nash equilibrium is stable, once they reach it,
they’ll never leave it; that is, once the players come to learn to play the
Nash equilibrium, they will never deviate from it.

4. What else? Finally, even if Nash equilibrium isn’t a perfect prediction,
no one’s yet devised a universally better prediction. Moreover, many of
the predictions reached by employing Nash equilibrium have been borne
out either experimentally or in actual business practice.

We have so far considered only games in which the players have quite small
strategy spaces (the largest so far is Row’s in the last game, which has only

7In the parlance of game theory, right becomes a dominant strategy in the reduced game
in which we’ve deleted the up row.
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three strategies in it). Fortunately, our analysis extends to games in which the
players have larger strategy spaces. For instance, let’s consider a “race” between
two companies to develop a new product. The first firm on the market with the
product will earn V millions of dollars from it. Assume that this new product
can be patented, so that the runner-up can’t produce it at all. Hence, the
runner-up earns 0. Suppose, somewhat unrealistically, that each firm is limited
to spending no more than $1 million on research and development (R&D) and
that a firm’s probability of winning the race is

Pr {win} =
1
2

+
eo − er

2
,

where eo ×$1 million is the firm’s own expenditure on R&D and er ×$1 million
is its rival’s expenditure (by assumption, 0 ≤ e0 ≤ 1 and 0 ≤ er ≤ 1). Each
firm’s expected profit from investing is

Eπ = (Pr {win}V + Pr {lose} 0 − eo) × $1 million

=
([

1
2

+
eo − er

2

]
V − eo

)
× $1 million.

In maximizing this expression, we’re free to ignore the ×$1 million part. Observe
that the marginal benefit of an expenditure on R&D is V/2 regardless of your
rival’s expenditure. The marginal cost is 1 regardless of your rival’s expenditure.
Hence, if V/2 > 1—marginal benefit exceeds marginal cost—you want to invest
as much as possible (i.e., eo = 1). If V/2 < 1—marginal benefit is less than
marginal cost—you want to invest as little as possible (i.e., eo = 0). Since these
conclusions hold true regardless of your rival’s expenditure, they must constitute
dominant strategies for you. We can then solve the game in dominant strategies
(which is also, recall, the Nash equilibrium): If V/2 > 1, then the solution is
both firms expend $1 million on R&D. If V/2 < 1, then the solution is that
neither firm expends anything on R&D. [Were V/2 = 1, then any pair (eo, er)
would be consistent with rational play.] Note, if V/2 > 1, then this game is
very much a prisoners’ dilemma: In equilibrium, each firm’s expected profit is(

V
2 − 1

)× $1 million; whereas, if they could somehow agree that neither would
make R&D expenditures, each firm’s expected profit would be V

2 × $1 million.

3 The Bertrand Model of Competition

In this section, we introduce a simple, yet important, model of competition
among two or more firms known as the Bertrand model. Because it will help Bertrand model

motivate our later analyses of competitive strategy, it is worth being very explicit
about the assumptions that underlie this model.

3.1 Assumptions Underlying the Bertrand Model

1. Firms produce a homogenous product; that is, the product made by any
one firm is absolutely equivalent in the consumers’ minds with that made
by any other firm.

8
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2. Customers know the price being charged by each firm.

3. Customers incur no costs switching from one firm to another.

4. No cost advantages: Regardless of the units produced by one firm versus
another, they each have precisely the same marginal cost for the next unit
produced.

5. No capacity constraints: Each firm is capable of handling the entire in-
dustry on its own.

6. No future considerations: Firms do not consider possible future interac-
tions among themselves.

The consequence of the first assumption is that the only dimension on which
firms can differentiate themselves in consumers’ eyes is price. Moreover, since
customers know all prices and face no switching costs, customers will buy from
the firm charging the lowest price. If more than one firm is charging the lowest
price then we may assume that customers divide themselves equally, on average,
among those firms charging this lowest price.

In terms of notation, let Dmin denote the market demand at the lowest or
minimum price, pmin, being charged by the N firms in the industry. And let
the units demanded from firm n if it charges price pn be denoted dn. Then
assumptions 1–3 imply

dn =
{

0 if pn > pmin
1
M Dmin if pn = pmin

,

where M is the number of firms (including n) charging the lowest price. That
is, firm n sells no units if its price is not equal to the lowest price being charged;
but, if it is, then it splits the market demand at that price equally with the
other firms (if any) charging that price.

Assumption 4 implies a number of points. First, the only way the number
of units produced can have no effect on the marginal cost is if each firm has a
constant marginal cost. Moreover, this assumption requires that they each have
the same marginal cost. Let c denote this constant marginal cost. Assumption
5 implies that we don’t have to worry about a given firm reaching a capacity
limit—each firm can service every customer who comes in its door.

Finally, assumption 6 allows us to ignore the possibility that firms need to
worry about retribution from their competitors. This is either because there is
no tomorrow (firms compete once) or because firms discount future profits too
heavily for future retribution to affect their behavior today.

You might well ask at this point, “what industries are described by these
assumptions?” The answer, admittedly, is not many—these assumptions are
too extreme to be absolutely realistic. Two points, however, are worth making.
First, few industries look like this because it’s not in the interest of firms to be
in an industry such as we’ve described by these six assumptions. That is—as
we will see—firms want to avoid being in a Bertrand industry. Hence, we need

9
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to analyze this hypothetical industry to see what is they’re trying to avoid and
what strategies are available to them to avoid it. Second, a number of industries
come close enough to these assumptions that the conclusions and insights we will
develop will help us to understand these industries and the problems managers
face in them.

3.2 Equilibrium in the Bertrand Model

We now solve for the Nash equilibrium of the Bertrand game by calculating each
firm’s best response to various strategies of its rivals. First, observe that a given
firm, n, only cares about the minimum price being charged by its competitors,
p∗ (observe p∗ is the minimum price charged by the N − 1 competitors of firm
n, while pmin is the minimum price charged by all N firms; the two quantities
can, however, be the same). Let D∗ denote the market demand at this price.
Hence, this minimum price, p∗, is sufficient for summarizing the strategies of
the competitors. Assume M − 1 rivals are charging p∗. Firm n’s profits are,
then,

πn =




0 if pn > p∗
1
M D∗ × (p∗ − c) if pn = p∗
D × (pn − c) if pn < p∗

,

where D is market demand at pn, pn < p∗. That is, if firm n charges more
than the minimum being charged by its rivals, then it gets no customers and
earns zero profit. If it matches this minimum price, then it gets one-Mth of the
market demand at that price and its profit is that share of demand times the
profit per unit. Finally, if it undercuts everybody, then it gets all the demand
and its profit is that demand times profit per unit. We’ll hypothesize three
scenarios for p∗:

1. p∗ > c (where, recall, c is the constant marginal cost common to all firms);

2. p∗ < c; and

3. p∗ = c.

In the first scenario, matching p∗ yields more profits than exceeding p∗ (i.e.,
1
M D∗ × (p∗ − c) > 0). But suppose, instead, that firm n undercut p∗ by a little undercut

bit. Then pn−c would be only slightly less than p∗−c while D would be at least
as great as D∗ (demand curves, recall, slope down) and, most importantly, firm
n would get all the demand, so its profits would be greater; that is, undercutting
slightly means

D × (pn − c) >
1
M

D∗ × (p∗ − c) .

For example, suppose
D = 100, 000 − 25, 000p,

c = 1, p∗ = 2, and M − 1 = 3. Then matching would yield firm n a profit of

1
3 + 1

(100, 000 − 25, 000 × 2) × (2 − 1) = 12, 500.

10



The Bertrand Model of Competition

Suppose, however, that firm n undercut to pn = 1.95. Profit would be

(100, 000 − 25, 000 × 1.95) × (1.95 − 1) = 48, 688;

almost four-times as great. Hence, in the first scenario, the best response to a
p∗ > c is to undercut slightly (i.e., charge price p∗ − ε, where ε is some small
amount).

In the second scenario, matching or undercutting means selling to a positive
demand at a price less than cost. Hence, matching or undercutting means losing
money. On the other hand, if firm n charges more than its competitors, it gets
no customers, but it doesn’t lose money either. The best response, therefore, to
a p∗ < c is to charge any price greater than p∗.

Finally, we come to the third scenario. Since charging p∗ yields zero profits—
you’re pricing at cost—matching or charging more than your competitors are
equally good strategies; they both yield you zero profits. Were you, however,
to undercut p∗, then you would get all the demand, but since you’d then be
charging less than cost, you’d be losing money. Hence, we see that the best
response to p∗ = c is either to match or charge a higher price.

Having derived the best responses, we can now look for a situation of mutual
best responses. Observe, first, that all firms charging a price equal to marginal
cost (i.e., p = c) is a situation of mutual best responses: If all other firms are
charging c, then p∗ = c and, as we just saw, matching is a best response in this
situation. Conclusion:

Equilibrium of the Bertrand Model: A Nash equilibrium of the
Bertrand model is for all firms to charge marginal cost.

Could there be an equilibrium at another price? Well we can’t have an
equilibrium in which pmin > c. To see why, observe first that at least one firm
must be charging pmin. Hence, for any other firm,

p∗ = pmin > c.

But we know that other firm’s price must be at least pmin = p∗, which means
this firm is not playing its best response to p∗—remember the best response is
to undercut p∗ > c, not charge a price greater or equal to it! Since this firm
(at least) is not playing a best response, it can’t be a Nash equilibrium to have
pmin > c. It can also be readily shown that we can’t have a Nash equilibrium
in which pmin < c; one firm, at least, can’t be playing a best response since
it could make a greater (non-negative) profit by raising its price above pmin.
Conclusion:

Equilibrium Price in the Bertrand Model: The market price
in a Nash equilibrium of the Bertrand model is equal to marginal
cost.

In light of this last conclusion, we can conclude that

11
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Equilibrium Profit in the Bertrand Model: All firms in a
Bertrand industry must make zero economic profits.

This is why being in a Bertrand industry is undesirable and why we will refer
to being in the Bertrand model as being in the Bertrand trap. Bertrand trap

3.3 Two Ghosts

In the tale A Christmas Carol by Charles Dickens, the main character, Ebenezer
Scrooge, is visited by three ghosts. One is the Ghost of Christmas Past; one is
the Ghost of Christmas Present; and one is the Ghost of Christmas Future. The
Ghost of Christmas Present shows Scrooge what is. The Ghost of Christmas
Future shows him not what will be, but rather what could be. In our tale of
competitive strategy, game theory gets double-billing: It is both the Ghost of
Christmas Present—explaining what is and what will happen now—and the
Ghost of Christmas Future—warning us of what could transpire at some future
date if we are not careful today.

Once your firm is in the Bertrand trap, it’s too late—the only equilibrium
payoff possible for your firm is zero profit. Hence, one of the keys to competitive
strategy is to view the Bertrand model like the Ghost of Christmas Future—a
warning of what could transpire unless your firm unilaterally, or in tacit coop-
eration with its rivals, takes steps to keep your industry from being a Bertrand
industry. Much of our focus in this course will be on avoiding the trap; means
and methods of preventing competition being on the single dimension of price.

4 More Game Theory

Periodically in our analysis of strategic situations we will need to consider mixed
strategies; that is, rather than play a particular strategy with certainty, as we’ve mixed strategies

so far considered, players could randomize systematically over their strategies
(their pure strategies). Systematic randomization admittedly sounds like an pure strategies

oxymoron: What we mean is that yes, the player randomizes over what she does,
but she uses a distribution over strategies that she’s chosen systematically. Such
a systematic randomization is a mixed strategy. For example, in the game of
Figure 2 (page 4), a mixed strategy for Ms. C might be to choose the Northside
with probability 3

4 and the Southside with probability 1
4 . At first glance, such

strategies might seem weird and you might question whether they have any use.
To motivate their use, consider the following model.

4.1 The Monitoring Game

Have you ever wondered why a single security guard “watches” a whole bank
of security-camera screens and why that bank might, at any moment in time,
show the images from only a subset of the security cameras on the premises?
Why not have enough guards to watch the image from every camera all the
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Company

Thief

Watch Other Activity

Steal
$0

−$10, 000
−$975

$1000

Don’t Steal
$0

$0
$25

$0

Figure 4: Monitoring Game

time? The answer to this question can be found through an application of game
theory with mixed strategies.

To simplify the problem somewhat, imagine that there is a single security
camera and that an employee, who has other duties as well, can either watch
the screen or do his other tasks. Let the value of his other tasks be $25 per
hour. Imagine that if he is watching when a crime is committed, then he calls
the police and your company loses nothing. If he’s not watching when a crime is
committed, then your company loses $1000 worth of property. Consider also a
potential thief. If he is successful (not caught), he gets away with property worth
$1000 to him. If he’s caught, he must give back the property plus serve time in
jail. The opportunity cost of his time in jail is $10,000. Figure 4 summarizes
this game.

Observe that in this game that the best response for the thief to watch is
don’t steal and the best response to other activity (i.e., don’t watch) is steal.
For the company, the best response to steal is to have the employee watch and
the best response to don’t steal is have him do his other activity. Note that
we don’t have a pair of mutual best responses (a point underscored by the fact
that no cell in Figure 4 has both numbers underlined). Does this mean that
this game doesn’t have a Nash equilibrium? No, it means that the game doesn’t
have a Nash equilibrium in pure strategies. If we allow for mixed strategies,
however, the game does have a Nash equilibrium as we will see.

Let s be the probability that the thief steals and let w be the probability
that the employee watches. Then the company’s expected payoff from watching
is $0 and its expected payoff from the other activity is

−$975s + $25 (1 − s) .

If the company is willing to mix (i.e., use a w < 1 but > 0), then it must
like the two possible outcomes equally well: If it didn’t, then why would it
risk getting the one it liked less? Hence, if 0 < w < 1, we know that the
expected payoff from watching, $0, and the expected payoff from the other
activity, −$975s + $25 (1 − s), must be equal. That is,

−$975s + $25 (1 − s) = $0; or

s =
1
40

.

In other words, for mixing to be a best response for the company, the thief must
steal with probability 1/40.

13
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What about the thief. His expected payoff if he steals is

−$10, 000w + $1000 (1 − w) ,

while his expected payoff from not stealing is $0. Again, if he is willing to mix
(i.e., choose s = 1/40), then he must like the two possible alternatives equally
well. This implies

−$10, 000w + $1000 (1 − w) = $0; or

w =
1
11

.

In other words, for mixing to be a best response for the thief, the company must
watch with probability 1/11.

Upon first examination, you might not care for this equilibrium. Ninety-
one percent of the time that the thief steals, he gets away with it. So why
not completely deter the thief by raising the probability of monitoring to, say,
1/10? The answer is that if the thief is completely deterred from stealing why
monitor at all? That is, the best response to a deterred thief is not to monitor.
Of course, if you don’t monitor, the thief will always steal from you and he’ll
always get away with it.

This same logic also explains surprise inspections. If you always inspect,
then whomever you’re inspecting will always be performing up to standards.
But in that case, your inspections are rather wasteful. If you announce your
inspections in advance, then whomever you’re inspecting will have his or her
act together when you arrive, but will be performing sub-par every other day.
Again, your inspections are not accomplishing much. But with surprise (i.e.,
random) inspections, whomever you’re inspecting will perform up to standards
most days (which is what you want); but without you having to inspect most
days.

We can also illustrate this equilibrium graphically by plotting the best re-
sponses for each player on a common graph. Specifically, let SR be the thief’s
best response and let WR be the company’s best response, where a best response
is the probability of stealing or watching, respectively. That is, for example, the
best response SR = 0 corresponds to the pure strategy don’t steal, SR = 1
corresponds to the pure strategy steal, and 0 < SR < 1 corresponds to a mixed
strategy. From our previous analysis we have

SR =




0 if − $10, 000w + $1000 (1 − w) < $0 (i.e., w > 1
11 )

s, 0 ≤ s ≤ 1, if − $10, 000w + $1000 (1 − w) = $0 (i.e., w = 1
11 )

1 if − $10, 000w + $1000 (1 − w) > $0 (i.e., w < 1
11 )

and

WR =




0 if − $975s + $25 (1 − s) > 0 (i.e., s > 1
40 )

w, 0 ≤ w ≤ 1, if − $975s + $25 (1 − s) = $0 (i.e., s = 1
40 )

1 if − $975s + $25 (1 − s) < $0 (i.e., s > 1
40 )

.
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w

s

WR
1

1/11

0
1/40 1

SR

Figure 5: The company’s best response, WR, is the thick solid curve and the thief’s
best response, SR, is the thick dotted curve. Observe they cross at(

1
40 , 1

11

)
, which is the Nash equilibrium. [Note: scale has been altered

for illustrative purposes.]

Figure 5 illustrates these two best responses. A Nash equilibrium occurs when
we have mutual best responses; which, graphically, means where the two best
responses cross. Hence the Nash equilibrium is the crossing point, which corre-
sponds to w = 1/11 and s = 1/40.

4.2 An Entry Game

Consider the following game between two firms. Each can enter a market by
investing I. If both enter the market, then they will be Bertrand competitors
and, thus, will make zero profit (as we saw above). If just one enters, it has a
monopoly. Assume its monopoly profit is πM , where πM > I. Not entering is
free, but yields no profit. Figure 6 illustrates.

As can readily be seen, there are two Nash equilibria in pure strategies. In
one, Firm 1 enters and Firm 2 stays out. In the other, these roles are reversed.
[Exercise: Can you see why these are both Nash equilibria?] Yet these equilibria
might strike you as odd: How is it that the firms coordinate so that only one
enters? Indeed, there is a third equilibrium, in mixed strategies, that might
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Summary

Firm 2

Firm 1

Enter Stay Out

Enter
−$I

−$I
$0

$πM − $I

Stay Out
$πM − $I

$0
$0

$0

Figure 6: Entry Game

seem more likely.
To find this third equilibrium, let en be the probability that firm n decides

to enter. Firm 1’s expected profit from entering is

e2 × (−$I) + (1 − e2) × ($πM − $I) ,

while its expected profit from staying out is $0. Mixing—playing an e1 between
0 and 1—is a best response only if Firm 1 likes the two outcomes equally well;
that is, only if

e2 × (−$I) + (1 − e2) × ($πM − $I) = 0; or

e2 = 1 − I

πM
.

Reasoning in a similar fashion, it is readily shown that

e1 = 1 − I

πM
.

Hence, the third Nash equilibrium is a mixed-strategy equilibrium in which each
firm enters with probability 1 − I/πM . If we think about it, this equilibrium
makes the most sense of the three. Each firm gambles on whether to enter or
not. The probability it gambles on entering is smaller the greater is the cost of
entering, $I, ceteris paribus; while the probability it enters is greater the greater
are the monopoly profits, $πM .

We can also illustrate these equilibria by plotting the best responses (see
Exercise 7). Unlike Figure 5, this time the best responses cross three times—
at (0, 1),

(
1 − I

πM
, 1 − I

πM

)
, and at (1, 0)—corresponding to the three Nash

equilibria.

5 Summary

We introduced a set of tools, game theory, with which to more deeply under-
stand competitive strategy. In particular, we focused attention on the Bertrand
model—the Bertrand trap—that illustrates what we should expect to happen if
firms compete myopically solely on the dimension of price.
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Exercises

Key Points

• Fundamental rule of competitive strategy: Competitive strategy is like
driving, not football: Head-on collisions are to be avoided.

• Best responses and dominant strategies.

• Nash equilibrium and solution in dominant strategies.

• The Bertrand trap: Firms in a Bertrand industry make zero economic
profits.

• Game theory as the Ghosts of Christmas Present & Future.

• Mixed strategies.

6 Exercises

1. Consider the original prisoners’ dilemma (see footnote 2 on page 3). Write
the game, similar in form to Figure 1, letting x years in jail have a payoff of
−x. Let each prisoner have two strategies “confess” and remain “silent.”
Show that confess is a dominant strategy for each player. Is the outcome
of the prisoners’ dilemma a prisoners’ dilemma?

2. Consider the following game. You and a co-worker are in competition for
a promotion. Prior to the decision of who will be promoted, each of you
have two possible strategies: You can work in a relaxed fashion (w = 0)
or you can work in a hyper-active fashion (w = 1). Imagine the cost
of working (measured, e.g., in cost of time) is H × w. Imagine that the
benefit (in, e.g., net present value of increased salary) is P > H. Assume
that your probability of getting promoted is

Pr {promotion} =
1
2

+
wy − wr

2
,

where wy is how you work and wr is how your rival (co-worker) works.
The probability that your rival is promoted is one minus the probability
you’re promoted.

(a) Write this game in a form similar to Figure 1.

(b) Show that if P/2 < H, then relaxed work (w = 0) is a dominant
strategy for both workers.

(c) Show that if P/2 > H, then hyper-active work (w = 1) is a dominant
strategy for both workers.

(d) Under what circumstances are you in a prisoners’ dilemma (“rat rac-
ing”) with your co-worker?
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Column Player
Left Right

Up
5

8
4

2

Row Player Middle
4

5
3

6

Down
1

4
8

4

Figure 7: Another Game

(e) What would the Nash equilibria be if we made the level of work, w, a
continuous variable between 0 and 1? [Hint: consider the entry game
on page 8.]

3. Show that “up” in the game in Figure 3 is never a best response for
Row even against mixed strategies by Column. That is, show that his
(expected) payoff from up must be less than his expected payoff from
either middle or down for all of Column’s strategies (included her mixed
strategies).

4. In a game, a strategy, s, for a player is said to be strictly dominated if
that player has another strategy, ŝ, such that this player’s payoff is greater
playing ŝ than playing s regardless of his opponents’ strategies. Consider
the game in Figure 7. Show that “down” is a strictly dominated strategy
for Row.

5. A solution concept that lies between solution in dominant strategies and
Nash equilibrium is iterated deletion of strictly dominated strategies (idsds).
The way this works is, first, each player’s strictly dominated strategies are
deleted. In a two-player game, this corresponds to crossing out the row or
column corresponding to that strategy. What is left is considered a new
game that is like the original game except it lacks the crossed out strate-
gies. If there are any strictly dominated strategies in this game, they are
crossed out. This procedure continues until no strictly dominated strate-
gies are left. The remaining (not-crossed-out) cells are called the solution
in idsds. If there is only one remaining cell, then idsds has yielded a
unique solution.

(a) For the game in 7 show that it does not have a solution in dominant
strategies.

(b) The game does, however, have a unique solution in idsds—find it.

(c) The solution you found in the last part is also a Nash equilibrium—
verify this (i.e., check that it corresponds to mutual best responses).
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(d) [Hard] Show that a solution in idsds must always be a Nash equi-
librium.

6. Consider a variation of the Bertrand model in which market demand is
100 units if price does not exceed $5 and is 0 if it does. Consider two
competitors each of whom has a constant marginal cost of $1. Each firm
has a capacity of 50 units. Each firm can add 50 units of capacity by
paying $25.

(a) Suppose both firms have left their capacity at 50 units. Show that
the equilibrium price is $5.

(b) Suppose both firms have expanded their capacity to 100 units. Show
that the equilibrium price is $1 (hint: this is now a Bertrand trap).

(c) Suppose one firm has a capacity of 50 and the other has a capacity
of 100. Show that there cannot be a pure-strategy Nash equilibrium
in prices.

(d) What does this problem suggest about limitations on capacity as a
means of avoiding the Bertrand trap?

7. For the entry game on page 16, draw the best responses for the two firms
and show that they intersect three times. Verify that the points at which
they cross correspond to Nash equilibria of the game.
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