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Abstract

A seller can make investments that affect a tradable asset’s future
returns. The potential buyer of the asset cannot observe the seller’s
investment prior to trade, nor does he receive any signal of it, nor
can he verify it in anyway after trade. Despite this severe moral
hazard problem, this paper shows the seller will invest with positive
probability in equilibrium and that trade will occur with positive
probability. The outcome of the game is sensitive to the distribu-
tion of bargaining power between the parties, with a holdup prob-
lem existing if the buyer has the bargaining power. A consequence
of the holdup problem is surplus-reducing distortions in investment
level. Perhaps counterintuitively, in many situations, this distortion
involves an increase in the expected amount invested vis-à-vis the
situation without holdup.
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Introduction 1

1 Introduction

Google has acquired over 80 companies, most of them small startups.1 Microsoft
has acquired over 130 firms, again mostly small startups.2 In fact, acquisition
by a large firm is a common “exit strategy” for startup firms. This phenomenon,
in which a startup firm is created with the possible objective of being acquired
later, is an example of a more general economic situation in which one actor
(e.g., a homebuilder, an inventor, or the owner/entrepreneur of a small firm)
invests in an asset (a new house, a new product, the firm, respectively) that she
may ultimately wish to sell to another actor (e.g., a homeowner, a large firm).
Trade, if it occurs, does so before the value of the asset is fully known.3 Indeed,
in this paper, the limiting case of no information being revealed is considered.4

Moreover, the return to the asset is greater in the potential buyer’s hands than
it is if it remains in the seller’s hands. Critically, the distribution of returns to
either actor depends on the seller’s initial investment. Because the buyer cannot
observe the seller’s investment, a moral hazard problem exists; in particular, an
equilibrium in which the seller invests a fixed amount and trade always occurs
cannot exist because sure-to-happen trade destroys the seller’s incentives to
invest ex ante. On the other hand, if no trade is anticipated, the seller will
invest for her own benefit; but then it would be incredible that trade wouldn’t
occur if the opportunity to trade later arose. The questions are then to what
extent does the seller invest, with what frequency is there exchange, and what
mechanism might the parties employ to facilitate exchange? That is, how is this
endogenous lemons problem resolved?5

In some cases, a possible mechanism might be a revenue-sharing contract.
However, one can conceive of contexts in which the returns generated by the
asset are unverifiable, indeed even unobservable to the seller after trade. For
instance, a large firm could use accounting tricks to obscure the returns ul-
timately generated by the purchased invention or small firm.6 Or the returns
could be private benefits (e.g., the seller is a home builder, the buyer a would-be
home owner). Furthermore, the reason the asset is more valuable in the buyer’s

1Author’s count based on publicly available information.

2Author’s count based on publicly available information.

3Many startups have negligible track records as mature, established firms. For example,
like⋆com was acquired by Google just three years, nine months, and 15 days after its founding.

4An earlier version of this paper considered extensions that allowed for partial information
revelation; details available from author upon request.

5The assumption that the quality of the good/asset to be traded depends on the seller’s
investment distinguishes the analysis here from the traditional analysis of lemons markets
(Akerlof, 1970) in which the quality of the seller’s good/asset is determined exogenously.

6This, for example, was alleged in the case of Celador versus Disney. Celador claimed
that Disney employed various accounting devices to cheat it out of revenues due it under a
revenue-sharing contract connected with Celador’s “Who Wants to Be a Millionaire” show.
At the time of this writing, Celador has been awarded $270 million after six years of litigation,
but Disney plans to appeal. Source: New York Times, July 8, 2010, “Disney Is Told to Pay
$270 million in ‘Millionaire’ Suit” by Brian Stelter and Brooks Barnes.
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hands could be because of subsequent investments made by the buyer and,
thus, a revenue-sharing agreement may be sub-optimal because of the disincen-
tive effect it has on the buyer’s investments. Hence, it seems worth considering
contexts in which revenue-sharing contracts are infeasible; that is, in which the
seller’s payment cannot be tied to the realized return from the asset. This is
the situation considered in this paper.7

This paper is concerned primarily with the case in which the buyer and seller
meet only once the seller has invested. Consequently, no contract is in force at
the time the seller invests. Despite the absence of any contract, the lemons
problem, an inability to contract on returns, and, in some circumstances, a
holdup problem, it is shown that equilibria exist in which there is both seller
investment and trade with positive probability (Propositions 2, 5, and 7). More-
over, fixing the relevant circumstances, these equilibria are essentially unique
(Propositions 6 and 7).

When no contract governs the relation between buyer and seller prior to
the seller’s investment, the outcome of the game between them depends on the
allocation of bargaining power. Here, two extremes are considered: either the
buyer can make a take-it-or-leave-it offer to the seller or the seller can make
such an offer to the buyer. When the buyer has all the bargaining power, a
holdup problem also arises.8 As will be shown, the threat of holdup can lead to
either more investment in expectation or less investment in expectation vis-à-
vis the situation without holdup; that is, the situation when the seller has the
bargaining power. Even though investment can be greater when holdup is an
issue, the combined welfare of the two parties will be lower.

The reason welfare is lower is that, to avoid being held up, the seller must
randomize over her investment levels. In contrast, when she has the bargaining
power, she can just play the optimal level of investment given the constraints
imposed by the moral hazard problem. That the first equilibrium involves mix-
ing by the investing party is reminiscent of the results in Gul (2001), González
(2004), and Lau (2008), which also consider holdup in the context of unobserv-
able investment. There are, however, a number of differences between this paper
and those earlier ones. The principal difference being that in the Gul, Lau, and
González papers, the investing party invests solely for her own benefit, whereas

7It is also assumed that the parties cannot agree to a sale in which the buyer has the right
to return the asset to the seller in exchange for his money back. In many of the motivating
examples listed above, such money-back guarantees would be problematic because of seller
limited liability (e.g., the inventor spends her payout before the acquiring firm determines
whether it wishes to invoke the money-back guarantee) or opportunism by the buyer (e.g.,
the buyer can strategically delay invocation until he learns additional information about ex-
pected returns or the buyer can use the money-back guarantee to effectively steal the seller’s
intellectual property). More subtly, nothing in the following analysis actually requires the
buyer to observe the seller’s investment even after taking possession because, on the equilib-
rium path, he perfectly infers what it must have been. Hence, being able to put the asset back
to the seller could be worthless per se because the buyer never actually observes the seller’s
investment even after taking possession.

8For classic analyses of the holdup problem, see Williamson (1976), Tirole (1986), and
Klein (1988).
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here the non-investing party is a direct beneficiary and, in a first-best world,
would be the sole beneficiary.9 Beyond being a situation of direct interest,
considering cooperative investment—and hence the moral-hazard problem that
ensues—makes possible the conclusion that the problem of holdup is not that
it necessarily reduces investment, but that it distorts investment away from the
optimal level. In this earlier literature, the upper limit of investment levels over
which the investing party mixes proves to be the optimal investment level ab-
sent a holdup problem; hence, the expected amount of investment is necessarily
less than this optimal amount. In contrast, as noted above, here the possibility
arises that the investing party invests more than the optimal amount; not only
with positive probability, but also possibly in expectation. In essence, here the
problem of holdup is shown to possibly be one of over-investment rather than
underinvestment vis-à-vis the optimal level.

Introducing a moral hazard problem (making investment cooperative) has
the added benefit of making the situation in which the investing party has the
bargaining power interesting. In those earlier articles, that case was of little
interest (and, hence, not considered) because the first best would clearly be
achieved. Here, in contrast, granting the investing party the bargaining power
will never lead to the first best. Indeed, potentially, even the second best might
not be achieved, despite the investing party’s having the bargaining power,
unless her strategy space is defined broadly.

Because the buyer is a direct beneficiary of the seller’s investment, which he
cannot observe, the situation considered here is also reminiscent of a hidden-
action principal-agent problem. In particular, there is a connection between the
problem considered here and renegotiation in agency as considered by Fudenberg
and Tirole (1990) and Ma (1994). Similar to Fudenberg and Tirole’s results,
this paper finds that when the principal (buyer) has the bargaining power, the
agent (seller) must mix in equilibrium; and, similar to Ma’s results, this paper
finds that when the agent (seller) has the bargaining power, the agent need not
mix in equilibrium. Again, differences exist between this paper and this earlier
literature, an obvious one being the contracting technology. In the principal-
agent setting, it is possible to fix endogenously how the agent’s payoff varies with
some verifiable measure equal to or correlated with the return the agent’s action
generates. That is impossible here because there is no verifiable measure of the
returns generated; that is, here, the contract space is much more limited.10

As the analysis below shows, the seller will have incentives to invest only if

9In Gul and Lau, a buyer makes investments that increase the value of a good to him if he
should subsequently acquire it from the seller. In González, a seller makes investments that
lower her cost of producing the units the buyer acquires from her. Observe, in this paper, the
investment by the investing party is, in part, “cooperative” in the sense of Che and Hausch
(1999).

10Another difference with the earlier agency literature is that, there, the parties could
contract prior to the agent’s action. Here, in essence, the parties are restricted to a prior
“contract” in which the agent’s compensation is simply the return the agent generates. Be-
cause this prior “contract” is set exogenously, the renegotiation-proofness principle does not
apply.
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there is a positive probability along the equilibrium path that she will end up in
possession of the asset; that is, there must be a positive probability of no trade.
That a possibility of no trade is needed as an incentive device bears similar-
ity to the solution of double moral hazard problems considered by Demski and
Sappington (1991) and subsequent authors. In Demski and Sappington’s paper,
it is impossible to contract directly on the seller’s investment, so the threat of
leaving her with the asset should she invest too little can provide her incen-
tives. For these incentives to work, however, the buyer must observe the seller’s
investment. As noted, here the buyer cannot observe the seller’s investment.
Hence, here, the incentive to invest comes from the fact the seller may wind up
with the asset, whereas, in this other literature, the seller’s incentive to invest
comes from a desire to avoid winding up with the asset. Indeed, in this other
literature, the seller never winds up with the asset on the equilibrium path.

The model is introduced in the next section. Section 3 verifies that no pure-
strategy equilibrium can exist when the buyer has the bargaining power. It
is also shown there that there cannot be a pure-strategy equilibrium in which
the seller invests a positive amount. The second-best solution is described. In
Section 4, it is shown that the second best is an equilibrium of a game in which
the seller can propose exchange, on a take-it-or-leave-it basis, at a price of her
choosing. Within the context of such games, however, the second-best outcome
is not the unique equilibrium. It can be made the unique equilibrium, however,
if the concept of an offer is expanded to encompass the offering of a trading
mechanism. Section 5 characterizes the properties that a mechanism offered
post investment must satisfy in equilibrium. Section 6 solves the game for the
situation in which the buyer makes a take-it-or-leave-it offer of a mechanism
after investment and the one in which the seller does. The two situations are
contrasted. Because the former situation means a holdup problem exists, one
might expect there to be less investment when the buyer has the bargaining
power than when the seller does. Counterintuitively, this proves not to be true
in many circumstances. Section 7 briefly considers contracting in advance of the
seller’s investment. Section 8 provides additional discussion and conclusions.

2 Model

There are two risk-neutral parties, a seller and a buyer. The seller owns an asset
(an invention, small firm, etc.) in which she can invest. Let I ∈ [0,∞) denote
her investment. After investing, an opportunity arises in which the seller can
sell the asset to a buyer. To motivate trade, assume the buyer, if he acquires the
asset, can take a subsequent action, b ∈ B ⊂ R+, that affects the asset’s return
(to him at least). Assume 0 ∈ B (the buyer has the option “not to act”) and
B \ {0} 6= ∅ (not acting is not the buyer’s only option). Finally, the asset yields
a return, r, to its then owner, where the return depends on investments made in
it. Note the realization of r occurs after the point at which exchange can occur.
The payoffs to the buyer and seller—ignoring transfers—are, respectively,

UB =

{
0 , if no exchange
r − b , if exchange

and US =

{
r − I , if no exchange
−I , if exchange

,
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where “exchange” means ownership of the asset passes to the buyer. Not sur-
prisingly, the buyer takes no action if there isn’t exchange.

Given investment I and action b, the return r has an expected value R(I, b).
The following assumption is maintained throughout the analysis:

{ass:basic}

Assumption 1. The expected return function, R : R+×B → R, has the
following properties:

(i) For all b ∈ B, R(·, b) : R+ → R is a twice continuously differentiable,
strictly increasing, and strictly concave function (the latter two conditions
state that expected return is increasing in the seller’s investment, but that
there is diminishing marginal return to that investment);

(ii) Infinite investment by the seller is never collectively optimal: For any
b ∈ B, there exists an Ī(b) < ∞ such that ∂R(I, b)/∂I < 1 if I > Ī(b);

(iii) Zero investment is not privately optimal for the seller if she is certain to
retain ownership: ∂R(0, 0)/∂I > 1; and

(iv) The buyer strictly prefers to take action if he obtains ownership of an
asset in which the seller has invested a positive amount: For any I ∈ R+,
argmaxb∈B R(I, b)− b exists and, if I > 0, it is a subset of B \ {0}.

Define V (I) = maxb∈B R(I, b)− b. Finally, assume:

(v) The parties’ collective welfare is never maximized by zero investment by
the seller and there exists a positive investment level that maximizes their
collective welfare: An I∗ > 0 exists such that V (I∗) − I∗ ≥ V (I) − I for
all I ≥ 0 and V (I∗)− I∗ > V (0).

Among other implications, Assumption 1(v) rules out a situation wherein it is
more efficient to have the seller skip investing and to let the buyer make all the
enhancements to return.

Observe the buyer’s value for the asset is increasing in the seller’s investment:
{lemma:V-increasing}

Lemma 1. The function V (·) is an increasing function.

Proof: Let b(I) denote a solution to maxb∈B R(I, b)− b. Consider I ′ > I ′′. By
revealed preference and Assumption 1(i):

V (I ′) = R
(
I ′, b(I ′)

)
− b(I ′) ≥ R

(
I ′, b(I ′′)

)
− b(I ′′)

> R
(
I ′′, b(I ′′)

)
− b(I ′′) = V (I ′′) .

The expected return to the seller if she retains ownership is R(I, 0). From
Assumption 1(iv), V (I) > R(I, 0) for all I > 0; that is, the asset is always
more valuable in the buyer’s hands than the seller’s given seller investment. No
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assumption is made here as to whether the asset is or isn’t more valuable in the
buyer’s hands absent such investment.11

Were there no possibility of later trade (i.e., under autarky), the seller would
choose a level of investment to solve

max
I

R(I, 0)− I .

Assumptions 1(i)–(iii) ensure that this program has a unique, interior solution.
Let Î denote the solution; that is, the level of investment the seller would choose
were later trade infeasible.

Throughout, the solution concept is perfect Bayesian equilibrium.

3 Preliminary Analysis
{sect:Prelim}

Consider a situation in which no contract exists between buyer and seller at the
time the seller invests. Buyer and seller meet after the seller’s investment and a
means of exchange is then established. At the time they meet, the buyer knows
or learns only that expected return is generated by the function R(·, ·) (the
seller of course knows that function when she makes her investment decision).
As noted above, the buyer does not observe the seller’s investment, nor does he
receive any signal about it.

Although there are many possible bargaining games that could be consid-
ered, attention is limited here to take-it-or-leave-it (tioli) bargaining. That is,
either the buyer or the seller has the ability to make a tioli offer to the other,
where an offer consists of a contract or mechanism for the parties to play.

Similar to other settings of this nature, essentially no pure-strategy equilib-
rium can exist (see, e.g., Gul for a discussion):

{prop:NoEfficiency}

Proposition 1. If the buyer has the ability to make a take-it-or-leave-it offer
to the seller, then no pure-strategy equilibrium exists. The same is true if the
seller can make a take-it-or-leave-it offer unless welfare given exchange and no
investment exceeds the maximum possible welfare given no exchange (i.e., unless
V (0) ≥ R(Î , 0)− Î).

Proof: The proof is by contradiction; that is, the supposition of a pure-strategy
equilibrium is shown to lead to a contradiction. If the seller is playing the strat-
egy of investing I, then the asset is worth R(I, 0) to her and V (I) to the buyer.
These, respectively, are the price, p, set when the buyer or seller is the one able
to make a tioli offer. Suppose I > 0. Because p − I < p, it follows that the
seller would do better to deviate to I = 0. Suppose I = 0. If the buyer makes
the tioli offer, the seller’s profit is R(0, 0) − 0. But, because Î > 0 uniquely
maximizes R(I, 0) − I, the seller would do better to deviate (i.e., invest and

11This represents a minor difference between the situation of Gul (2001) and Lau (2008)
and the model here: As Gul noted, the existence of an equilibrium with a positive probability
of investment in the Gul or Lau setting depends on trade being valuable even in the absence
of investment. Here, in contrast, investment occurs with positive probability in equilibrium
regardless of whether trade is valuable absent investment or is valueless absent investment.
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retain ownership). If the seller makes the tioli offer, the price is V (0). It is
readily seen that a pure-strategy equilibrium exists in this case if and only if
V (0) ≥ R(Î , 0)− Î.

An immediate corollary is
{corr:NoFirstBest}

Corollary 1. The first-best outcome is not attainable as an equilibrium.

Proof: The first best requires I∗ > 0 be played as a pure strategy and trade
always occur in equilibrium. No such pure-strategy equilibrium exists.

What about the second best? As demonstrated by Proposition 1, there is
a tradeoff between trading efficiently and providing the seller investment incen-
tives. Letting x denote the probability of trade and p the price paid the seller
if trade occurs,12 the problem of welfare maximization can be written as

max
{x,I,p}

xV (I) + (1− x)R(I, 0)− I (1) {eq:2ndBest}

subject to

I ∈ argmax
I

xp+ (1− x)R(I, 0)− I , (2) {eq:2ndBestIC}

V (I) ≥ p , (3) {eq:2ndBestBIR}

and

R(Î , 0)− Î ≤ xp+ (1 − x)R(I, 0)− I . (4) {eq:2ndBestSIR}

Constraint (2) follows from the moral-hazard problem and reflects that the
seller’s investment choice must be incentive compatible. Constraints (3) and (4)
are the participation constraints of the buyer and seller, respectively.

Assumption 1 implies that (2) is globally concave in I with an interior solu-
tion. Hence, we are free to replace it with the corresponding first-order condition
(1 − x)∂R(I, 0)/∂I − 1 = 0. This, in turn, implicitly defines the probability of
trade as

1−
(
∂R(I, 0)

∂I

)−1

. (5) {eq:2ndBestTradeProb}

Note that probability is zero if I = Î. Because probabilities must lie in [0, 1],
there is no loss in restricting attention to I ∈ [0, Î]. Substituting this func-
tion for x in the expression of welfare, expression (1), the constrained welfare-
maximization program becomes

max
I∈[0,Î]

(
1−

(
∂R(I, 0)

∂I

)−1
)
V (I) +

(
∂R(I, 0)

∂I

)−1

R(I, 0)− I . (6) {eq:2ndBest-sub}

12Because, recall, I is the seller’s hidden information, neither p nor x can be directly con-
tingent on it.
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Because the domain is compact and the function to be maximized continuous,
(6) must have at least one solution. Let M equal the maximized value of (6).

By Assumption 1(iii), the probability of trade given by (5) is bounded away
from 1. As such the analysis has, to this point, ignored the possibility of having
the seller invest nothing and trading with certainty. This course of action is
collectively optimal if V (0) ≥ M. Reflecting this, define

S =

{
M , if M > V (0)
V (0) , if M ≤ V (0)

as maximum second-best surplus. Let IM denote the set of positive investment
levels that could be constrained welfare maximizing (i.e., that maximize (6)).
A second-best level of investment can, then, be defined as

Is =

{
I ∈ IM , if M > V (0)
0 , if M ≤ V (0)

.

We have so far ignored the participation constraints. This is without loss:
Together the participation constraints imply that a necessary condition for a
second-best optimum with a positive probability of trade is that maximized so-
cial welfare with trade exceed social welfare under autarky. Because the analysis
allows for the possibility that Î ∈ IM, this condition is met. Furthermore, it
is readily seen that if S > R(Î , 0) − Î, then (3) and (4) will be satisfied by
p = V (Is) (among, possibly, other prices).

4 The Seller Has All Bargaining Power: Achieving

the Second Best
{sect:SBP-2ndBest}

Suppose the seller possesses all the bargaining power; that is, she can make
the buyer a tioli offer. In this case, an equilibrium in which the second-best
outcome is reached exists:

{prop:SellerTIOLIprice}

Proposition 2. If the seller makes take-it-or-leave-it offers to the buyer, then
there exists a perfect Bayesian equilibrium that achieves the second best. Specif-
ically, the seller invests at a second-best level (i.e., Is) with certainty and offers
the buyer, on a take-it-or-leave-it basis, the asset for a price just equal to the
buyer’s willingness to pay (i.e., equal to V (Is)). The buyer plays the mixed
strategy by which he accepts the seller’s offer with probability x, given by

x =





1 , if Is = 0

1−
(

∂R(Is,0)
∂I

)−1

, if Is > 0
,

and rejects it with probability 1−x. The buyer believes an offer at any price less
than V (Is) means the seller has invested nothing, he believes a price of V (Is)
means the seller has invested Is, and he believes an offer at any price greater
than V (Is) means the seller has invested no more than Is.
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Proof: Given his beliefs, the buyer is indifferent between accepting and reject-
ing an offer at price V (Is). Hence, he is willing to mix. Given the probabilities
with which the buyer mixes if offered the asset at price V (Is), the seller’s unique
profit-maximizing level of investment given she intends to offer the asset at price
V (Is) is Is: Assumption 1(i) guarantees that (2) has a unique solution for any
given x. Hence, the unique I that solves the first-order condition

(
∂R(Is, 0)

∂I

)−1
∂R(I, 0)

∂I
− 1 = 0

is I = Is. It remains to be verified that the seller does not wish to deviate with
respect to investment and price given the buyer’s beliefs. From Lemma 1, the
buyer, given his beliefs, will reject any price greater than V (Is) or in the interval(
V (0), V (Is)

)
. Because the seller’s expected payoff is S if she invests Is and sets

a price of V (Is), she prefers, at least weakly, that course of action to autarky.
Hence, she cannot gain by offering a price in

(
V (0), V (Is)

)
∪
(
V (Is),∞

)
regard-

less of what she invests. By construction, xV (0) + (1 − x)R(I, 0) − I ≤ S for
all x ∈ [0, 1] and I; so the seller cannot gain vis-à-vis her equilibrium payoff by
setting a price of V (0) regardless of what she invests.

It is worth commenting on the similarity between the equilibrium in Propo-
sition 2 and that derived by Fong (2005) for a credence-good problem. Both
have the feature that, along some paths, the buyer mixes between accepting and
rejecting and this plays a role in inducing the desired behavior from the seller.
In Fong’s paper, the desired behavior is truthful revelation of the seller’s exoge-
nously determined type (her diagnosis of the problem suffered by the buyer).
Here, the desired behavior is inducing investment from the seller. Given the
buyer’s beliefs, there is no scope for the seller to misrepresent her investment;
the sole purpose of the buyer’s mixing is to provide investment incentives.

Although it is the second-best equilibrium, the Proposition 2 equilibrium
is not unique: Other equilibria can be constructed by varying the buyer’s
beliefs. For example, if there is a second-best level of investment that lies
strictly between no investment and the autarky level (i.e., 0 < Is < Î) and wel-
fare given that level of investment is strictly greater than under autarky (i.e.,

S > R(Î , 0)− Î), then, by continuity, there exists an Ĩ near Is such that welfare

if the seller invests Ĩ and trade occurs with probability 1−
(
∂R(Ĩ , 0)/∂I

)−1
also

exceeds welfare given autarky. Along the lines of Proposition 2, one can con-
struct a perfect Bayesian equilibrium in which the buyer expects to be offered

the asset for V (Ĩ), accepts such an offer with probability 1 −
(
∂R(Ĩ , 0)/∂I

)−1
,

and believes a lower price indicates I = 0 and a higher price indicates I ≤ Ĩ.
Given these beliefs and the buyer’s resulting best responses, it is readily shown

that the seller’s best response is to invest Ĩ and offer the asset at price V (Ĩ).
The possibility of such sub-optimal equilibria can be eliminated, however, by

allowing the seller a richer strategy space. In particular, one can conceive of the
seller offering not just a price, but an entire mechanism. Because a mechanism
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is also what the buyer would offer if he had the bargaining power, the next
section is given to investigating mechanisms in this context.

5 Mechanism Design
{sect:MechDesign}

After the seller has sunk her investment, a means of arranging trade is a mech-
anism.

5.1 Characterization

In light of the revelation principle, attention can be restricted to direct-revelation
mechanisms. Because the seller is the only actor with private information, a
mechanism must induce her to reveal that information.

Although it is natural to think of the seller’s information as the amount she
has invested, I, it proves easier to work with the transformation of investment,
R(I, 0); that is, in what follows, the seller’s type is her expected return if she
retains ownership. By Assumption 1(i), R(·, 0) is a strictly increasing function.
It hence has an inverse: Let ι(·) denote that inverse; that is, ι

(
R(I, 0)

)
≡ I.

Assumption 1(i) entails that ι(·) is twice continuously differentiable, strictly
increasing, and strictly convex. Observe we are, therefore, free to act as if
the seller chooses her expected return, R, should no trade occur, since this is
equivalent to assuming she chooses investment ι(R).

The seller’s type could be any R in the range of R(·, 0). As will be seen,
however, there is no loss in restricting attention to

R ≡ [R, R̄] ⊆ [R(0, 0), R(Î, 0)] .

To economize on notation, henceforth, let R◦ = R(0, 0) and R̂ = R(Î , 0). A
mechanism is, then, a pair

〈
x(·), t(·)

〉
, where x : R → [0, 1] is the probability

that ownership of the asset is transferred to the buyer; and t : R → R is the
transfer (payment) to the seller.

Let
U(R) =

(
1− x(R)

)
R+ t(R) (7) {eq:defUR}

denote the seller’s utility if she truthfully announces her type (note, at this
point, her investment is sunk). Following standard methods (see Appendix for
details), it can be shown that

{prop:MechNec_and_Suff}

Proposition 3. Necessary conditions for a mechanism to induce truth-telling
are (i) that the probability of trade, x(·), be non-increasing in seller type and
(ii) that the seller’s utility as a function of her type be given by

U(R) = Ū −
∫ R̄

R

(
1− x(z)

)
dz , (8) {eq:SolvedDiffEQ}

where Ū is a constant (R̄, recall, is supR).
Moreover, any mechanism in which x(·) is non-increasing and expression (8)

holds induces truth-telling (i.e., conditions (i) and (ii) are also sufficient).
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5.2 Consequences

The analysis of the previous subsection establishes the following results.
Anticipating the mechanism to be played, the seller is willing to invest ι(R)

if and only if it maximizes U(R)− ι(R). It follows:
{prop:EqProbTrade}

Proposition 4. If ι(R) > 0 is a level of investment chosen by the seller with
positive probability in equilibrium, then the subsequent probability of trade given
that investment is 1− ι′(R).

Proof: By supposition, the seller chooses R with positive probability in equi-
librium, hence R ∈ R. Consequently, R must satisfy the first-order condition

0 = U ′(R)− ι′(R) = 1− x(R)− ι′(R) . (9) {eq:R-FOC}

The result follows.

Immediate corollaries are

Corollary 2. If trade always occurs in equilibrium, then the seller invests noth-
ing.

Corollary 3. There is no equilibrium in which the seller invests more than her
autarky level of investment, Î.

The analysis to this point implies that there is no loss of generality in as-
suming the space of seller types, R, is [R◦, R̂]. This does not mean that the

seller necessarily plays all R in [R◦, R̂] with positive probability, rather that the
mechanism can accommodate all such R.

6 Equilibrium
{sect:Equilibrium}

6.1 The Buyer Has All the Bargaining Power

Suppose the buyer offers a mechanism to the seller on tioli basis. In equilib-
rium, any mechanism offered by the buyer and acceptable to the seller must
yield the seller at least what she would have achieved under autarky.

{lemma:Boundary}

Lemma 2. On the equilibrium path, the seller’s expected utility must be at least
her autarky level of utility, R̂− ι(R̂).

Proof: A course of action available to the seller is to invest ι(R̂) and decline to

trade. This would yield her R̂− ι(R̂). Hence, any strategy played in equilibrium
by the seller other than this must do at least as well.

In what follows, assume the seller’s strategy, F : (R, R̄], is differentiable.
Denote the derivative by f(R). Assume f(R) > 0 for all R ∈ (R, R̄]. I show
these assumptions are consistent with an equilibrium below. Because the seller
never invests more than R̂, R̄ ≤ R̂.
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Expression (9) must hold for any R > R◦ that the seller chooses with positive
probability. In light of Lemma 2 and f(R) > 0, it further follows that

U(R)− ι(R) = Ū − ι(R̄) ≥ R̂− ι(R̂) (10) {eq:SellerIR}

for all R ∈ (R, R̄], where the equality follows from (8) and Proposition 4. As it
is the buyer who makes the tioli offer, (10) is binding.

The buyer chooses x(·) and Ū to maximize his expected net return,

∫ R̄

R


x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R− Ū +

∫ R̄

R

(
1− x(z)

)
dz

︸ ︷︷ ︸
=−t(R)


 dF (R) . (11) {eq:BuyerEUtility1}

Using integration by parts, this expression becomes:

− Ū +

(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R+

∫ R̄

R

(
1− x(z)

)
dz

)
F (R)

+

∫ R̄

R

(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R+

F (R)−F (R)

f(R)

(
1− x(R)

))
f(R)dR

= −Ū +
(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R
)
F (R)

+

∫ R̄

R

(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R+

F (R)

f(R)

(
1− x(R)

))
f(R)dR . (12) {eq:BuyerEqUtility}

From Proposition 4, if the seller plays an R > R ≥ R◦ with positive prob-
ability, then x(R) must be 1 − ι′(R). Differentiating, pointwise, the buyer’s
expected utility, expression (12), with respect to the probability of trade for
R > R, reveals that consistency with both Proposition 4 (the seller is willing to
mix) and optimization by the buyer is met if and only if

F (R)

f(R)
= V

(
ι(R)

)
− R , (13) {eq:ReverseHazard}

because, then, the buyer is indifferent as to his choice of x(·) and might as well
choose x(·) to be consistent with the seller mixing (i.e., such that x(·) = 1−ι′(·)).

Using (13), we can rewrite the buyer’s expected utility, expression (12), as

(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R
)
F (R)− Ū +

∫ R̄

R

(
F (R) +Rf(R)

)
dR

= R̄− Ū +
(
V
(
ι(R)

)
−R

)
F (R)x(R) ,
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where the equality follows by “undoing” the product rule of differentiation.
Recalling that the seller’s participation constraint binds, this last expression
and (10) imply the buyer’s expected utility is

(
V
(
ι(R)

)
−R

)
F (R)x(R) + R̄ − ι(R̄)−

(
R̂− ι(R̂)

)
.

Because R̂ uniquely maximizes R − ι(R), the buyer’s expected utility cannot
exceed

(
V (ι(R)) − R

)
F (R)x(R). Given the buyer could deviate from offering

the mechanism and simply make a tioli offer to buy at price R, which would
net him expected profit

(
V (ι(R))−R

)
F (R), it follows that his expected utility

cannot be less than
(
V (ι(R)) − R

)
F (R). It further follows that he offers this

mechanism in equilibrium exists only if R̄ = R̂ and, if F (R) > 0, x(R) = 1.
We are now in position to establish:

{prop:BuyerTIOLI-continuous}

Proposition 5. There exists a subgame-perfect equilibrium of the game in which
the buyer makes the seller a take-it-or-leave-it offer in which the seller plays a
mixed strategy whereby she chooses R ∈ [R◦, R̂] according to the distribution
function

F (R) = exp

(
−
∫ R̂

R

1

V
(
ι(z)

)
− z

dz

)
(14) {eq:FR-buyerTIOLI}

and the buyer offers the mechanism
〈
x(·), t(·)

〉
such that

x(R) =

{
1 , if R = R◦

1− ι′(R) , if R > R◦

and
t(R) = R̂− ι(R̂) + ι(R)−

(
1− x(R)

)
R . (15) {eq:UR-buyerTIOLI}

Proof: Expression (14) solves the differential equation (13). By Assump-
tion 1(iv), V

(
ι(z)

)
− z > 0 for z > R◦. So if R > R◦, then

∫ R̂

R

1

V
(
ι(z)

)
− z

dz < ∞ ;

hence, F (R) > 0. This implies x(R) = 1. But x(R) = 1 is inconsistent with
Proposition 4 if R > R◦. Consequently, then, R = R◦. Expression (15) follows
from Proposition 3 because 1−x(R) = ι′(R). The remainder of this proposition
was established in the text that preceded its statement.

As an example, suppose that R(I, b) = γ
(
1 +

√
I
)(
1 +

√
b
)
and B = R+,

where γ ∈ (0, 2). Straightforward calculations reveal:

I∗ =
γ2

(2− γ)2
; Î =

γ2

4
; ι(R) =

(R− γ)2

γ2
; and V

(
ι(R)

)
−R =

R2

4
.
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The Proposition 5 equilibrium will thus be characterized by

F (R) = exp

(
− 4

R

)
exp

(
8

γ(2 + γ)

)
; x(R) = 1− 2(R− γ)

γ2
;

and t(R) = 1 +
1

4
γ(4 + γ)− R2

γ2
.

Expected welfare is

1

4
γ

(
4 + γ + γ exp

(
− 4

2 + γ

))
.

This exceeds welfare given autarky by

γ2

4
exp

(
− 4

2 + γ

)
.

First-best welfare is 2γ
2−γ

. For instance, if γ = 1, first-best welfare is 2, equilib-
rium welfare is approximately 1.3159, and welfare under autarky is 1.25. The
equilibrium probability of exchange does not have a convenient closed-form so-
lution. If γ = 1, that probability is approximately .6017.

Is the equilibrium in Proposition 5 unique? Within a broad class of possible
strategies, the answer is yes.

{def:PiecewiseAC}

Definition 1. A mixed strategy for the seller, F : [R, R̄] ⊆ [R◦, R̂] → [0, 1], is
piecewise absolutely continuous if, for a finite sequence R1 < · · · < RN , F (·) is
absolutely continuous on all segments (Rn, Rn+1), n = 0, . . . , N , where R0 ≡ R
and RN+1 ≡ R̄ and discontinuous at each Rn, n = 1, . . . , N .13

Because a constant function is absolutely continuous, observe that mixed strate-
gies in which the seller mixes over a discrete set of investment levels are included
in this definition. The strategy in Proposition 5 is also an element of the set of
strategies defined in Definition 1 (for it, N = 1 and R0 = R1 = R◦). Moreover,
it is the only strategy within this set that can be played in equilibrium:

{prop:BuyerTIOLI-unique}

Proposition 6. For the game in which the buyer makes the seller a take-it-or-
leave-it offer and the seller is limited to piecewise absolutely continuous strate-
gies, the equilibrium in Proposition 5 is unique.

The proof can be found in the appendix.

6.2 The Seller Has All the Bargaining Power
{sect:SellerTIOLI}

Suppose, now, it is the seller who makes a tioli offer. The focus will be on
showing there is a unique equilibrium in which the seller invests at a second-
best level, Is, with certainty. Because the problem is of little interest if 0 or the

13If F (·) were not discontinuous at an Rn, then there is nothing special about that Rn

insofar as F (·) will be absolutely continuous on (Rn−1, Rn+1).
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autarky investment level, Î, is second best, attention is restricted to the case in
which neither 0 nor Î is second best (formally, S > V (0) and Î /∈ IM).

In equilibrium, the buyer must correctly anticipate the seller’s strategy; that
is, the distribution of seller types. A potential issue is whether, similar to the
situation in Section 4, “undesired” equilibria can be supported by allowing the
buyer to hold certain beliefs (e.g., as in that earlier section, where by believing

the seller invests Ĩ 6= Is, the buyer “forces” an equilibrium in which an amount
other than the second-best level of investment occurs).

When the seller offers a mechanism, the buyer’s beliefs are essentially ir-
relevant given common knowledge of rationality. To establish this—in fact to
establish the seller will invest a second-best level Is—consider the mechanism:

x(R) = 1− ι′(Rs) and t(R) =
(
1− ι′(Rs)

)
V (Is) , (16) {eq:SellerMechanism}

where Rs = R(Is, 0). This mechanism is readily seen to satisfy Proposition 3.
If the seller knew the mechanism in (16) were certain to be played (she will

offer it and the buyer will accept), then the seller would choose the second-
best investment level with certainty. This is readily verified by considering her
utility-maximization program

max
R

U(R)− ι(R) ≡ max
R

(
1− ι′(Rs)

)
V (Is) + ι′(Rs)R− ι(R) .

Upon seeing the mechanism given by (16), the buyer can only reason as
follows: “The seller expects me to accept, in which case she must have invested
Is; she expects me to reject, in which case she must have invested Î; or she
expects me to mix, in which case she must have invested

argmax
R

αU(R) + (1− α)R − ι(R) , (17) {eq:AlphaMax}

where α is the probability with which she expects me to accept.”
{lemma:Accept}

Lemma 3. For all probabilities of acceptance, α ∈ [0, 1], the program (17) has

a unique solution and that solution lies in [Rs, R̂].

Proof: Substituting, the program can be written as

max
R

α
(
1− ι′(Rs)

)
V (Is) +

(
1− α

(
1− ι′(Rs)

))
R− ι(R) . (18) {eq:AlphaMax2}

Given 1−α
(
1− ι′(Rs)

)
> 0, uniqueness follows from Assumption 1(i). If α = 0,

the solution is R̂. If α = 1, the solution is Rs. Because the cross-partial deriva-
tive of (18) with respect to R and α is −

(
1− ι′(Rs)

)
< 0, it follows from usual

comparative statics that the solution to (18) (equivalently, (17)) is decreasing

in α, from which it follows the solution to (17) lies in [Rs, R̂] for α ∈ [0, 1].

The buyer’s expected payoff if he accepts the mechanism and the seller has
chosen R is (

1− ι′(Rs)
)

︸ ︷︷ ︸
x(R)

V
(
ι(R)

)
−
(
1− ι′(Rs)

)
V (Is))

︸ ︷︷ ︸
t(R)

.
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By Lemma 1 this payoff is non-negative for all R ∈ [Rs, R̂]. Hence, invoking
Lemma 3, it follows that regardless of what the buyer believes the seller’s expec-
tations are about his accepting the mechanism, the buyer does best to accept.
The following can now be established:

{prop:SellerTIOLImech}

Proposition 7. If the seller can offer the buyer a mechanism on a take-it-or-
leave-it basis, then, in a perfect Bayesian equilibrium, the seller must invest at
a second-best level (Is) and she must capture all the expected surplus.

Proof: The preceding text showed that if the seller offers (16), the buyer will
accept. Given acceptance, it was shown that the seller does best to invest Is.
Consequently, the seller’s expected payoff is

(
1− ι′(Rs)

)
V (Is) + ι′(Rs)Rs − ι(Rs) = S .

Because the seller is capturing all the possible surplus, there cannot be an equi-
librium in which she does better. Since she can capture all the surplus by
investing Is and offering the mechanism given by (16), she would never be will-
ing to offer a mechanism that gave her less.

6.3 Comparison of Equilibria

When the seller has the ability to make a tioli offer, the second best is achieved.
When it is the buyer who makes a tioli offer, the seller must mix on the equilib-
rium path. Consider an incentive compatible choice of R under the mechanism
offered by the buyer. Welfare given that R is

(
1− ι′(R)

)
V
(
ι(R)

)
+ ι′(R)R − ι(R) .

This is the same maximand as in (6). It follows, therefore, that unless almost
every ι(R) ∈ [0, Î] is a second-best level of investment, mixing by the seller
will result in her investing a non-second-best level with positive probability.
Consequently, expected welfare when the buyer has the bargaining power will
be less than when the seller has it.

Intuitively, regardless of who makes the offer, there is a moral hazard prob-
lem. Hence, the first best is never possible (see Corollary 1). The situation is
further exacerbated when the buyer has the bargaining power because of holdup:
If the buyer knew precisely how much the seller had invested, he would capture
all gains to trade. Hence, the only way the seller can retain some of the gains
to trade is if the buyer is uncertain about how much she has invested; that is,
the seller must play a mixed strategy. Because the seller mixes over investment
levels other than those that are second-best optimal, the holdup problem further
reduces welfare.

Given this discussion, one might expect that the seller’s investment would be
lower, on average, when the buyer has the bargaining power than when the seller
does. This, however, need not be the case. Recall the previously used example
with γ = 1. Calculations reveal that expected investment is approximately .0687



Equilibrium 17

under the mechanism the buyer offers, which exceeds the value of second-best
investment, which is approximately .0662. These calculations do not, though,
reveal a universal truth: Using the same example, but with γ = 3/2, ι(Rs) ≈
.1551, whereas expected investment when the buyer has the bargaining power
is approximately .1270.

The analysis indicates, therefore, that the problem with holdup is not neces-
sarily that it reduces investment relative to a no-holdup benchmark so much as
it distorts investment vis-à-vis that benchmark.14 The desire to avoid holdup
(to realize some gains from trade) can induce the seller to over-invest as well as
to underinvest.

A general characterization of when the holdup problem will lead to over ver-
sus underinvestment relative to the second-best investment level is not practical
give the many “moving parts” in the general setup. However, for an important
class of situations, a characterization is manageable and arguably instructive.
Specifically, make the assumption—common in the literature—that the buyer’s
expected return, should he take possession, be additively separable in seller
investment and his own action; that is, suppose

R(I, b) = R(I, 0) + v(b) , (19) {eq:AddSeparable}

where v(·) : B → R+. Define

g = max
b∈B

v(b)− b .

Assume that v(·) is such that Assumption 1(iv) still holds. Consequently, g,
the gain to trade, is a non-negative constant.15 Observe that, in this class of
situations, V (I) = R(I, 0) + g and, hence, V (0) ≥ R◦.

Because ι(·) is strictly convex (Assumption 1), ι′′(·) ≥ 0. To keep the analysis
in the remainder of this section straightforward, it is convenient to strengthen
this to assuming this second derivative is bounded away from zero:

{ass:bounded}

Assumption 2. For all R ≥ R◦, ι′′(R) ≥ η > 0, η a positive constant.

Welfare is
R+ x(R)g − ι(R) . (20) {eq:2ndBestWelfare-gain}

Where, taking into account the moral hazard problem,

x(R) =

{
1 , if R = R◦

1− ι′(R) , if R > R◦
.

Given that the component of surplus that does not depend on trade, R− ι(R),
is bounded, intuition suggests that, for g large enough, but finite, welfare, ex-
pression (20), is maximized by R = R◦; that is, if the gains from trade are

14Williamson (1976) made a related observation that holdup could distort the kinds of
investment made.

15One example would be v(b) = 2
√
gb and B = R+. Note the example introduced after

Proposition 5 (i.e., in which R(I, b) = γ
(

1 +
√
I
)(

1 +
√
b
)

) does not belong to this class.
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great enough, then trade should occur with certainty and the second-best level
of investment should, thus, be zero. Formally, we have:

{lemma:IS-continuous-in-g}

Lemma 4. Suppose that buyer’s expected return is additively separable in his
action and the seller’s investment (i.e., it is given by expression (19)). Then
there is a finite ḡ > 0 such that the second-best level of investment, Is, is positive
but decreasing in the gains to trade, g, for g ∈ [0, ḡ) and is zero for g ≥ ḡ.

The proof can be found in the appendix.
For g finite, it follows, from expression (14), that

F (R) = exp

(
R− R̂

g

)
=⇒ f(R) =

1

g
exp

(
R − R̂

g

)
> 0 (21) {eq:F-gain}

for all R. Hence, ∫ R̂

R◦

ι(R)f(R)dR > ι(R◦) = 0 (22) {eq:ExpectedInvestment-gain}

given that ι(·) is increasing. The previous analysis of g large enough and ex-
pression (22) together yield:

Proposition 8. Suppose that buyer’s expected return is additively separable in
his own action and the seller’s investment (i.e., expression (19) holds). Then, if
the gain from trade, g, is sufficiently large, the equilibrium expected level of in-
vestment when the buyer has the bargaining power is greater than the equilibrium
expected level of investment when the seller has the bargaining power.

Intuitively, when the gain from trade (i.e., g) is large, efficiency dictates that
trade be likely to occur.16 Given the moral hazard problem, this means the
corresponding level of investment, Is, be small. Because the seller will capture
the gains from trade when she has the bargaining power, she internalizes this,
leading to an equilibrium in which she invests little and trade is likely. When
she doesn’t have the bargaining power, she doesn’t internalize this. Instead,
her objective is to capture as much surplus as she can by avoiding, to the
extent possible, being held up by the buyer. She does so by mixing over her
investment. If Is is small enough, it will necessarily be less than her expected
level of investment given that she mixes over all investment levels up to the
autarky level (i.e., she mixes over [0, Î]).

What about the opposite extreme, when g is small (near zero)? As g ↓ 0, the

solution to (20) tends to R̂; that is, limg↓0 I
s = Î, the maximum possible level

of investment given the moral hazard problem. Intuitively, when the gain to

16The astute reader might object that the analysis has only really dealt with g so large that
efficiency dictates that trade occur with certainty and, thus, Is = 0. Appealing to continuous
functions could be problematic because there is no guarantee that Is is continuous in g at
g = ḡ. If, however, ι′(R◦) = 0—as would be true if ι(R) = R2/2—then it is continuous
at g = ḡ and one can appeal to continuity to conclude that, for g large enough, expected
investment when the buyer has the bargaining power is greater than when the seller does even
when, in the latter, Is > 0.
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trade is small, inducing investment is more important than trading efficiently,
so the second-best level of investment tends toward the level that maximizes
welfare when trade is infeasible. Given the seller captures all the surplus when
she has the bargaining power, she internalizes all this, leading to an equilibrium
in which she invests a lot and trade is unlikely. As before, when she doesn’t
have the bargaining power, she doesn’t internalize this; her investment strategy
is motivated by her desire to avoid being held-up. This leads her to mix, which
means putting positive weight on relatively low investment levels. This would
seem to suggest that when the gains to trade are small, investment is greater
when the seller has the bargaining power than it is (in expectation) when the
buyer has the bargaining power.

There is, however, a critical caveat to that last intuitive argument. Expres-
sion (21) entails ∂F (R)/∂g > 0; hence, the distribution over R when g is small
first-order stochastically dominates the distribution when g is larger. Because
ι(·) is an increasing function, the expected investment level when the buyer has
the bargaining power increases as the gains to trade decrease. Two questions
arise: Do we know this expected investment level either (i) does not converge to
Î as g ↓ 0 or (ii), if it does so converge, does it do so sufficiently slowly as g falls
that it does not always exceed Is? Unfortunately for the intuitive argument,
the expected level does converge to Î as g ↓ 0.

{lemma:converge}

Lemma 5. Suppose that buyer’s expected return is additively separable in his
own action and the seller’s investment (i.e., it is given by expression (19)). The
expected level of investment when the buyer can make a tioli offer converges
to the autarky level, Î, as the gains to trade, g, go to zero.

The proof can be found in the appendix.
What about the second question, labeled (ii) above? Consider the following

example: ι(R) = R2/2. It is readily verified that R◦ = 0, R̂ = 1, ḡ = 1 and, for
g ≤ ḡ, Rs = 1 − g. Expected R in the equilibrium in which the buyer makes a
tioli offer is readily shown to be

E{R} = 1−
(
1− exp(−1/g)

)
g > 1− g = Rs

for all g ∈ (0, ḡ]. Because ι(·) is convex, it follows that

E
{
ι(R)} ≥ ι

(
E{R}

)
> ι(Rs)

for all g ∈ (0, ḡ]. That is, if ι(R) = R2/2, then the expected level of investment
when the buyer has the bargaining power always exceeds the level of investment
when the seller has the bargaining power, except in the limit when there are no
gains to trade, at which point they are equal.17

In fact, it is an open question whether this questionable intuition is ever
correct. For instance, it can be shown that if ι′′′(·) exists and is everywhere

17Of course when there are no gains to trade, there is no point to either party offering to
trade; that is, regardless of who has the bargaining power, the equilibrium corresponds to the
autarky outcome.
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non-positive, then E{R} > Rs for all g > 0 (details available upon request),
from which it again follows that the expected level of investment must be greater
when the buyer makes a tioli offer than when the seller does. Although, more
generally, I have been unable to prove that the intuition is always false (i.e.,
I have been unable to prove that investment is always greater in expectation
when the buyer can make a tioli offer), I have similarly been unable to find a
counter-example.18

Summary. Suppose that buyer’s expected return is additively separable in his
own action and the seller’s investment (i.e., it is given by expression (19)).
For a wide array of investment functions, ι(·), the equilibrium expected level
of investment is greater, despite the holdup problem, when the buyer has the
bargaining power than when the seller has it.

It bears remembering that this last conclusion assumes additive separabil-
ity. When, as was true of the example following Proposition 5, there is comple-
mentarity between the seller’s investment and the buyer’s action, it is clearly
possible, as was shown at the beginning of this subsection, for investment to be
greater in expectation when the seller possesses the bargaining power.

7 Pre-Trade Contracting
{sect:Contracts}

In contrast to the situation considered so far, suppose now the parties could
contract prior to the seller’s investment. In essence, a principal (the buyer) is
hiring an agent (the seller) to invest on his behalf. The agent could, for example,
be an independent contractor or a research scientist.

The moral hazard problem remains, so ultimate ownership of returns must
still be stochastic for the investing party to have incentives to invest. But
because the parties bargain over the contract under full information, it is rea-
sonable to presume that they agree to a contract that achieves the second best:

{prop:FixedTcontract}

Proposition 9. Suppose buyer and seller can enter into a contract prior to the
seller’s investing. Then they will agree to a second-best contract that fixes the
probability of exchange at x, with x being given by

x =

{
1 , if Is = 0 (equivalently, if Rs = R◦)

1− ι′
(
R(Is, 0)

)
, if Is > 0 (equivalently, if Rs > R◦)

,

and that fixes a non-contingent transfer from buyer to seller of T ,

Is − (1 − x)R(Is, 0) +R(Î , 0)− Î ≤ T ≤ xV (Is) . (23) {eq:bigT}

18Among examples considered, expected investment is greater when the buyer makes a tioli

offer if ι(R) = ζR3, ζ > 0, or if ι(R) = β
(

exp(ξR) − κ
)

, β ∈ (0, 1) and 1

βξ
> κ > 1 (details

available upon request).
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That T exist that satisfy (23) follows because, as was shown earlier in Section 3,
p exist that satisfy expressions (3) and (4).19

Observe the second-best contract requires the principal to leave the asset
(e.g., research project) in the agent’s hands with positive probability. Possible
real-world examples of such a situation are when engineers from Xerox Parc left
to found companies (e.g., Metaphor Computing Systems and Adobe) that built
on research done at Xerox Parc. Although ex post such departures may have
raised questions about the wisdom of Xerox’s management, ex ante committing
to the possibility of such departures could have been necessary to induce the
engineers to expend effort in the first place.20

Unlike some similar settings (e.g., Che and Hausch, 1999), the level of ef-
ficiency that can be achieved does not depend on whether the parties are or
aren’t able to commit not to renegotiate the contract. The effect of any lack of
commitment is solely on the contractually set transfer price. Specifically, if the
agent has invested Is, then the principal is tempted to renegotiate by offering
the agent R(Is) in return for certain exchange. Were the agent to anticipate
this, then the agent’s investment incentives would evaporate. It follows, there-
fore, if the principal cannot commit not to make a subsequent offer, then the
parties are limited to the following version of the Proposition 9 contract:

{prop:RP-FixedTContract}

Proposition 10. Suppose buyer and seller can enter into a contract prior to the
seller’s investing. Suppose, however, that the buyer cannot commit not to make
subsequent offers to the agent. Then they will agree to a second-best contract that
gives the buyer the right to take possession of the asset in exchange for paying
the agent V (Is). This contract fixes a non-contingent transfer from buyer to
seller of T ′,

Is − ι′(Rs)Rs −
(
1− ι′(Rs)

)
V (Is) +R(Î , 0)− Î ≤ T ′ ≤ 0 . (24) {eq:bigTprime}

In equilibrium, the buyer will choose to take possession with probability 1−ι′(Rs).

(Recall Rs = R(Is, 0).) The proof is similar to that of Proposition 2 and, so,
omitted.

8 Discussion and Conclusions
{sect:Conclusion}

This paper has shown that it is possible to induce a seller to invest, with positive
probability, in an asset to be traded, with positive probability, even when the
potential buyer cannot observe the seller’s investment. The critical assumption

19This analysis is predicated on the ability of the seller, should the parties not agree to a
contract, to invest subsequently on her own behalf. If, instead, an agreement with the buyer
is necessary for any investment to occur, then the range of possible T s is

Is − (1− x)R(Is, 0) ≤ T ≤ xV (Is) .

A similar caveat applies to Proposition 10.

20I do not wish to suggest this the only possible—or even the most plausible—explanation
for what occurred at Xerox Parc.
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is that the seller expects some return from the asset if trade fails to occur. For
this reason, it is possible to overcome, partially, the moral hazard problem that
exists given that the seller is otherwise investing on behalf of the buyer. The
seller has the maximum incentive to invest when trade is certain not to occur.
The provision of this maximum incentive is not, in general, optimal because,
given investment by the seller, there are gains to trade: the tradable asset is more
valuable in the buyer’s hands than the seller’s. A tradeoff thus exists between
the provision of incentives ex ante and achieving efficiency ex post . This paper
has shown how this tradeoff can be managed to achieve a second-best outcome.

In addition to the applications noted above (e.g., the sale of startups to
established firms), the model has bearing on various used-goods markets. For
example, if the quality of a used car is largely a function of how well its current
owner has maintained it (a form of investment), then this paper offers insights
into the used-car market beyond those found in Akerlof (1970). Such insights
could, in turn, shed light on certain institutional practices; for instance, when
the “seller” (lessee) has the right to force a “sale” (return a leased car), then
the “buyer” (lessor) will have to ensure proper “investment” (require regularly
scheduled maintenance). Conversely, if the seller (owner) is less certain of her
ability to sell her car quickly (a consequence, perhaps, of a change in macroe-
conomic conditions), her efforts at maintenance could increase. It is possible
that an analysis of a used-good market, in which maintenance investment is
important, could serve as means to test, in part, the model presented here.21

Despite the model’s complexity, it is possible that a variant of it could lend
itself to experimental testing. In particular, the analysis of Section 4 may be
testable, although the experimentalist would need to be sensitive to psycholog-
ical factors such as concerns for fairness (e.g., buyers may view an attempt by
a seller to leave them with no surplus—setting the price at V (Is)—as unfair
and, thus, always refuse to trade). Nonetheless, if the experimentalist found
evidence that sellers systematically invested less than the autarky level and the
probability of sale was significantly less than one, then such findings could be
seen as consistent with the model.

There are also open theoretical questions. One stems from the fact that
the solutions proposed above rely on there being a positive probability of an
inefficient allocation ex post ; that is, unless there is a positive probability of
the asset remaining in the seller’s hands, which is ex post inefficient, there is
no means of inducing the seller to invest. One question, then, is why, when
the mechanism has left the seller in possession of the asset, don’t the parties
renegotiate to an efficient allocation?

This is a question that applies to much of the literature on mechanism design
and trade under asymmetric information.22 In settings in which the uninformed
player (and only the uninformed player) can make repeated offers and the un-

21As a possible test, if automobile resale possibilities fall for some exogenous reason (e.g.,
change in licensing fees), do expenditures on maintenance supplies (oil, filters, etc.) rise?

22Among the earlier cited papers, for instance, this question applies to both Fudenberg and
Tirole (1990) and Demski and Sappington (1991).
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informed player’s value of trade is independent of investment (as in Gul, 2001,
or Lau, 2008), a Coase-Conjecture-like result can be shown to hold, with trade
occurring with probability one on the equilibrium path. Moreover, in Gul and
Lau, the investing party retains incentives to invest. In contrast, for the prob-
lem considered here, if the bargaining game were to yield trade with probability
one, then the seller’s investment will never be directly beneficial to her and she
can, thus, have no incentive to invest.

On the other hand, it may be possible for the parties to commit to their
take-it-or-leave-it offers; for instance, by developing reputations not to continue
negotiations. For example, some divorce lawyers—known as “bombers”—have
developed reputations for sticking to their take-it-or-leave-it offers. A company
that sought to provide its engineers and scientists incentives along the lines of
Proposition 9 would necessarily have to develop a reputation to let the engineers
and scientists walk away with positive probability.

It could also be that there is a relatively narrow window in which exchange
can occur. If each round of negotiation takes non-negligible time, then the
seller could end up with the asset because the parties simply run out of time to
bargain. Unlike bargaining under symmetric information, in which bargaining
is typically reached in a single round, with asymmetric information there can be
multiple rounds of bargaining on the equilibrium path (see, e.g., Spier, 1992).
Modeling such bargaining games is beyond the scope of the present paper, but it
seems reasonable to predict that such models will again find a tradeoff between
ex ante incentives and ex post efficiency.

In the model considered here, the motive for trade is that the buyer is able
to take a further action that raises the return from the asset. Other rationales
for trade could also exist: For instance, the returns generated by the asset
are idiosyncratic to the owner and the buyer’s distribution of returns given
any investment level dominate the seller’s distribution according to a stochastic
order such as first-order stochastic dominance. In fact, this motivation is simply
an alternative interpretation of the analysis above: Let the buyer’s “action,” b,
be 0 or 1, with the latter simply indicating possession.23

Another motivation for trade could be different risk tolerances. For instance,
the seller, as an individual entrepreneur, could be risk averse, whereas the large
company that might buy her out could be risk neutral. Assuming a risk-averse
seller complicates the analysis because the units of the parties’ payoffs are no
longer the same (the buyer’s remains money, but the seller’s is now utils). In
addition, the seller will now care about the riskiness of the returns as well as
their expected value, which means she could be making investment decisions
on two margins: risk and return (e.g., if returns were distributed normally, she
would be concerned with both mean and variance). An analysis of the problem
with differing attitudes toward risk remains a topic for future research.

Another open questions is when will investment given a holdup problem
exceed, in expectation, investment absent a holdup problem? When the gains

23Under this alternative interpretation, the buyer’s expected utility would be R(I, 1) rather
than R(I, 1)− 1; it is readily seen that change has no effect on the analysis above.
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to trade are independent of the amount invested, one is led to conjecture that
expected investment is greater with holdup than without. In contrast, at least
from examples, the existence of strong complementarities between the seller’s
investment and the buyer’s subsequent action could lead to settings in which
investment is greater absent a holdup problem. {A}

Appendix A: Proofs not Given in Text
{app:A}

Proof of Proposition 3: The proof builds on the following two lemmas:
{lemma:x-nonincreasing}

Lemma A.1. If the mechanism induces truth-telling (is incentive compatible),
then the probability of trade, x(·), is non-increasing in the seller’s type (level of
investment).

Proof: By the revelation principle, there is no loss in restricting attention to
equilibria in which the seller’s best response is to announce her type truthfully.
Hence, for R′ 6= R,

U(R) ≥
(
1− x(R′)

)
R+ t(R′) = U(R′) +

(
1− x(R′)

)
(R−R′) , (25) {eq:RP-RnotRprime}

where the equality follows from (7). The same logic implies (25) also holds with
R and R′ interchanged. Expression (25) and its “interchanged version” together
imply:

(
1− x(R)

)
(R −R′) ≥ U(R)− U(R′) ≥

(
1− x(R′)

)
(R −R′) (26) {eq:Pinch}

By considering R > R′, the lemma is immediate from (26). �

{lemma:U-convex}

Lemma A.2. If the mechanism induces truth-telling, then U(·) is a convex
function.

Proof: Pick R and R′ in R and a λ ∈ (0, 1). Define Rλ = λR + (1 − λ)R′.
Truth-telling implies

λU(R) ≥ λU(Rλ) + λ
(
1− x(Rλ)

)
(R −Rλ) and (27) {eq:UR-lambda}

(1− λ)U(R′) ≥ (1− λ)U(Rλ) + (1− λ)
(
1− x(Rλ)

)
(R′ −Rλ) . (28) {eq:URp-lambda}

Adding (27) and (28) yields:

λU(R) + (1− λ)U(R′) ≥ U(Rλ) +
(
1− x(Rλ)

) (
λR + (1− λ)R′ −Rλ

)
︸ ︷︷ ︸

=0

.

The result follows. �

Condition (i) of Proposition 3 follows from Lemma A.1. Convex functions
are absolutely continuous (see, e.g., van Tiel, 1984, p. 5). Every absolutely
continuous function is the integral of its derivative (see, e.g., Yeh, 2006, Theorem



Appendix: Proofs 25

13.17, p. 283). By dividing (26) by R−R′ and taking the limit as that difference
goes to zero, it follows that U ′(R) = 1 − x(R) almost everywhere. Expression
(8) follows.

Finally, to establish the sufficiency of conditions (i) and (ii), suppose the
seller’s type is R and consider any R′ < R. We wish to verify (25):

U(R)− U(R′) =

∫ R

R′

(
1− x(z)

)
dz ≥

∫ R

R′

(
1− x(R′)

)
dz =

(
1− x(R′)

)
(R−R′) ,

where the first equality follows from (8) and the inequality follows because x(·)
is non-increasing. Expression (25) follows. The case R′ > R is proved similarly
and, so, omitted for the sake of brevity.

Proof of Proposition 6: As a distribution, F (·) is right continuous (i.e.,
limR↓Rn

F (R) = F (Rn)). Define F (R−
n ) = limR↑Rn

F (R). Because F (·) is non-
decreasing, each point of discontinuity is a jump up. Note F (R−

0 ) = 0 and
F (Rn)−F (R−

n ) > 0 for all Rn. This last point implies that the seller plays each
Rn with positive probability; hence, by Proposition 4, x(Rn) = 1− ι′(Rn).

Using Fubini’s Theorem expression (11) can be rewritten as

− Ū +

∫ R̄

R0

(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R
)
dF (R)

+

N∑

n=0

(
(
F (Rn)− F (R−

n )
) ∫ R̄

Rn

(
1− x(z)

)
dz

+
(
F (R−

n+1)− F (Rn)
) ∫ R̄

Rn+1

(
1− x(z)

)
dz

+

∫ Rn+1

Rn

(
F (R)− F (Rn)

)(
1− x(R)

)
dR

)
.

Canceling like terms, this expression becomes

− Ū +

∫ R̄

R0

(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R
)
dF (R)

+

N∑

n=0

∫ Rn+1

Rn

F (R)
(
1− x(R)

)
dR . (29) {eq:AppBuyUtil}

Because F (·) is absolutely continuous on each segment, it is differentiable almost
everywhere on each segment; moreover, it is the integral of its derivative. Denote
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its derivative by f(·). Expression (29) can thus be rewritten as

− Ū +

N∑

n=0

(
(
F (Rn)− F (R−

n )
)(

x(Rn)V
(
ι(Rn)

)
+
(
1− x(Rn)

)
Rn

)

+

∫ Rn+1

Rn

(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R
)
f(R)dR+

∫ Rn+1

Rn

F (R)
(
1− x(R)

)
dR

)
.

Some consequences of this last expression are:

1. If F (R0) > 0, then x(R0) = 1 because the buyer offers a mechanism
that maximizes his expected utility. If x(R0) = 1, then R0 = R◦ by
Proposition 4.

{step:no-flats}

2. Suppose ι(R′) and ι(R′′) are two possible investment levels in equilibrium,
R′ < R′′. I claim F (R′) < F (R′′). Proof: note it must hold if R′ <
Rn ≤ R′′ for some Rn; hence, suppose Rn ≤ R′ < R′′ < Rn+1 for some
n = 0, . . . , N . If F (R′) = F (R′′), then f(·) equals zero almost everywhere.
Consequently, x(R), R ∈ (R′, R′′), enters the buyer’s expected utility
expression only in the integral

∫ R′′

R′

F (R)
(
1− x(R)

)
dR = F (R′)

∫ R′′

R′

(
1− x(R)

)
dR .

Buyer expected utility maximization then implies x(R) = x(R′′) for R ∈
(R′, R′′] (recall x(·) must be non-increasing). Because ι(R′′) is in the set
of investments over which the seller mixes, Proposition 4 implies x(R′′) =
1− ι′(R′′). But then

U ′(R)− ι′(R) = 1− x′(R′′)− ι′(R) = ι′(R′′)− ι′(R) > 0

for all R ∈ (R′, R′′) (recall ι(·) is convex). Hence,

(
U(R̃)− ι(R̃)

)
−
(
U(R′)− ι(R′)

)
=

∫ R̃

R′

(
U ′(R)− ι′(R)

)
dR > 0

for any R̃ ∈ (R′, R′′]; therefore, the seller would never play R′, a con-
tradiction. Observe, inter alia, this proof extends to show there is no
equilibrium in which the seller mixes over a finite number of investment
levels (let R′ = Rn and R′′ = Rn+1, but work with F (R−

n+1) to show

F (Rn) 6= F (R−
n+1)).

3. Suppose ι(R′) and ι(R′′) are two possible investment levels in equilibrium,
R′ < R′′. I claim F (R′) < F (R̃) < F (R′′) for all R̃ ∈ (R′, R′′). The claim
is true, from the previous result, for all R̃ ∈ [Rm, Rn) if

R′ < Rm < Rn < R′′ .
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Hence, without loss, restrict attention to Rn ≤ R′ < R′′ < Rn+1 for
some n = 0, . . . , N . Suppose, first, that F (R′) = F (R̃). Let Z =
sup

{
R
∣∣F (R) = F (R′)

}
. Because Z < R′′ < Rn+1, F (·) is continuous

at Z, hence F (Z) = F (R′). Because F (·) increases at Z, Z must be a
possible play of the seller. But then we have a contradiction of step 2.
Hence, F (R′) < F (R̃). Suppose F (R′′) = F (R̃). Let I = inf

{
R
∣∣F (R) =

F (R′′)
}
. It follows that F (·) is continuous at I, hence F (I) = F (R′′).

Because F (·) increases at I, I must be a possible play of the seller. But
then we have a contradiction of step 2.

{step:1-iotaprime}

4. The previous two steps establish that F (·) is everywhere increasing, thus
f(R) > 0 for almost every R. Hence, almost every R is possible, thus
x(R) = 1−ι′(R) almost everywhere. In fact, because x(·) is non-increasing
and ι′(·) continuous, x(R) = 1− ι′(R) everywhere on (R, R̄].

5. I claim F (Rn) > F (R−
n ) is impossible in equilibrium for Rn > R. Proof:

suppose not and pick ε such that Rn−1 < Rn − ε < Rn. Define Rε =
Rn − ε. Suppose the buyer deviated from offering a mechanism with
x(R) = 1− ι′(R) to offering the following

x̃(R) =

{
x(R) , if R /∈ [Rε, Rn]
x(Rε) , if R ∈ [Rε, Rn]

.

The change in the buyer’s expected utility would be

(
F (Rn)− F (R−

n )
)(
x(Rε)− x(Rn)

)(
V
(
ι(Rn)

)
−Rn

)

+

∫ Rn

Rε

(
x(Rε)− x(R)

)(
V
(
ι(R)

)
−R− F (R)

f(R)

)
f(R)dR . (30) {eq:NoJumps1}

Because the buyer cannot wish to deviate, (30) must be negative for all
such ε. The first line of (30) is positive. Hence, the integral is negative
for all ε. This implies

V
(
ι(R)

)
−R − F (R)

f(R)
< 0 (31) {eq:NoJumps2}

almost everywhere in some neighborhood (Rn−δ, Rn). Define Rδ = Rn−δ.
Consider, instead, a deviation in which the buyer offers

x̂(R) =

{
x(R) , if R /∈ [Rδ, Rn]
x(Rn) , if R ∈ [Rδ, Rn]

.

The change in the buyer’s expected utility would be
∫ Rn

Rδ

(
x(Rn)− x(R)

)(
V
(
ι(R)

)
−R − F (R)

f(R)

)
f(R)dR .

But this is positive by (31), so the buyer would wish to deviate. Reductio
ad absurdum, there is no equilibrium in which F (Rn) > F (R−

n ) for Rn >
R.
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6. It has been established that the buyer’s equilibrium expected utility can
be written as (12). Rewrite that expression as

R̄− Ū +
(
x(R)V

(
ι(R)

)
+
(
1− x(R)

)
R
)
F (R)

+

∫ R̄

R

x(R)

((
V
(
ι(R)

)
−R

)
f(R)− F (R)

)
dR . (32) {eq:X-factored}

7. Following step 4, let x(R) = 1 − ι′(R) for R ∈ (R, R̄]. Because the buyer
must offer x(·) in equilibrium, the buyer cannot prefer to offer x(R) − ε,
ε > 0, for all R ∈ (R′, R̄) for any R′ ∈ (R, R̄). Hence, from (32),

∫ R̄

R′

((
V
(
ι(R)

)
−R

)
f(R)− F (R)

)
dR ≥ 0 . (33) {eq:NoDownProbs}

Suppose (33) were a strict inequality on a set of R > R′ of positive measure
for some R′. Then the buyer would do better to deviate to

x̃(R) =

{
x(R) , if R < R′

x(R′) , if R > R′ .

This last claim can be established by integrating by parts the change in
the buyer’s expected utility from this deviation:

(
x(R′)− x(R))

∫ R̄

R

((
V
(
ι(z)

)
− z
)
f(z)− F (z)

)
dz

∣∣∣∣∣

R̄

R′

+

∫ R̄

R′

(∫ R̄

R

((
V
(
ι(z)

)
− z
)
f(z)− F (z)

)
dz

)

︸ ︷︷ ︸
A

(
− x′(R)

)
︸ ︷︷ ︸

B

dR . (34) {eq:AB-integrate_by_parts}

The first line of (34) is zero, term A is positive because (33) is positive for
a positive measure of R > R′, and term B is positive because −x′(R) =
ι′′(R) and ι(·) is convex. Hence, (34) is positive, implying the buyer would
wish to deviate. Reductio ad absurdum, (33) is zero for almost every
R′. Because integrals are continuous, (33) is zero for all R′. Hence, the
function of R′ defined by the integral in (33) is constant, so its derivative,

−
(
V
(
ι(R′)

)
−R′

)
f(R) + F (R′) = 0 , (35) {eq:DiffEqAgain}

almost everywhere.

Expression (35) repeats the differential equation (13), so the seller’s strategy
must satisfy (13). The text preceding Proposition 5 showed that if the seller’s

strategy satisfied (13), then R̄ = R̂ in equilibrium. Because F (R̂) = 1, the
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differential equation has a unique solution, given by (14).

Proof of Lemma 4: Restricting x(R) = 1 − ι′(R), the first-order condition
for maximizing (20) is

1− ι′(R)− ι′′(R)g





≤ 0 , if R = R◦

= 0 , if R ∈ (R◦, R̂)

≥ 0 , if R = R̂

. (36) {eq:IS-cont1}

Consider

g ∈
(
0,

1− ι′(R◦)

ι′′(R◦)

)
.

Because 1 ≥ 1 − ι′(R◦) > 0 and, from Assumption 2, ι′′(R◦) > 0, the upper
limit of that interval is a positive, finite amount. It is readily seen that only
an R ∈ (R◦, R̂) can satisfy (36) if g is in that interval. Moreover, for any such

g, the lefthand side of (36) is positive for R = R◦ and negative for R = R̂.

Because the functions are continuous, there is thus an R ∈ (R◦, R̂) that solves
(36) for any g in that interval. Hence, from the implicit function theorem that
the second-best welfare-maximizing value of R (i.e., Rs) is continuous in g for g
in that interval; that is, Is is continuous in g for g in that interval. It is readily
seen that continuity extends to the end points. Hence, Is is continuous in g for

g ∈
[
0,

1− ι′(R◦)

ι′′(R◦)

]
. (37) {eq:IS-cont2}

{claim:1}

Claim 1. Restricting x(R) = 1 − ι′(R), the R that maximizes (20), R∗(g), is
decreasing in g for g in the interval given by (37).

Proof of Claim: Because the cross-partial derivative of (20) with respect to
R and g, R > R◦, is −ι′′(R) < 0, the usual comparative statics imply that the
R that maximizes (20) is non-increasing in g. To see it is strictly decreasing,
consider g0 and g1 in the interval (37), where g0 < g1. The same R cannot
satisfy the first-order condition for these two values of g because, otherwise, we
would have the contradiction:

0 = 1− ι′(R)− ι′′(R)g0 > 1− ι′(R)− ι′′(R)g1 = 0 .

�

Define g∗ to be the upper limit of the interval in (37). Observe

R̂− ι(R̂) > R◦ + 0

and

R◦ +
(
1− ι′(R◦)

)
g∗ ≤ R◦ + g∗ .
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The first expression states that, if g = 0, I = Î is welfare superior to no
investment and certain trade. Hence, from earlier analysis and Claim 1, Is = Î
when g = 0. The second expression states that no investment and certain trade

is welfare superior to no investment and trade with probability
(
1 − ι′(R◦)

)
,

which, from previous analysis and Claim 1, is in turn superior to any positive
investment and corresponding probability of trade. By continuity, there must
therefore exist a ḡ ∈ (0, g∗] such that

R∗(ḡ) +
(
1− ι′

(
R∗(ḡ)

))
ḡ − ι

(
R∗(ḡ)

)
= R◦ + ḡ .

Invoking the envelope theorem

d

dg

(
R∗(g) +

(
1− ι′

(
R∗(g)

))
g − ι

(
R∗(g)

))
=
(
1− ι′

(
R∗(g)

))
< 1 .

Hence, for any g < ḡ it must be welfare superior to invest ι
(
R∗(g)

)
and trade

with the corresponding probability than to not invest and trade with certainty.
That Is is decreasing in g for g ∈ [0, ḡ) follows from Claim 1 because ι(·) is

a strictly increasing function.

Proof of Lemma 5: Let E{·} denote the expectation operator on R given

the seller’s strategy when the buyer makes a tioli offer. Because R ≤ R̂ and
ι(·) is increasing,

E
{
ι(R)

}
≤ ι(R̂) (38) {eq:Converge1}

for all g > 0. Because ι(·) is a strictly convex function, Jensen’s inequality
implies

ι
(
E{R}

)
≤ E

{
ι(R)

}
(39) {eq:Jensens}

with the inequality being strict as long as F (·) is not degenerate. Given (38),

(39), and the fact that ι(·) is continuous, the result follows if limg↓0 E{R} = R̂.
Observe

E{R} =

∫ R̂

R◦

R
1

g
exp

(
R − R̂

g

)
dR = R̂− g + (g −R◦) exp

(
R◦ − R̂

g

)
,

which clearly converges to R̂ as g ↓ 0.
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