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1 Introduction

Game theory is a mathematical system for analyzing and predicting how humans behave

in strategic situations. Standard equilibrium analyses assume all players: 1) form beliefs

based on analysis of what others might do (strategic thinking); 2) choose a best response

given those beliefs (optimization); 3) adjust best responses and beliefs until they are

mutually consistent (equilibrium).

It is widely-accepted that not every player behaves rationally in complex situations,

so assumptions (1) and (2) are sometimes violated. For explaining consumer choices

and other decisions, rationality may still be an adequate approximation even if a modest

percentage of players violate the theory. But game theory is di®erent. Players' fates

are intertwined. The presence of players who do not think strategically or optimize can

therefore change what rational players should do. As a result, what a population of

players is likely to do when some are not thinking strategically and optimizing can only

be predicted by an analysis which uses the tools of (1)-(3) but accounts for bounded

rationality as well, preferably in a precise way.2

It is also unlikely that equilibrium (3) is reached instantaneously in one-shot games.

The idea of instant equilibration is so unnatural that perhaps an equilibrium should not

be thought of as a prediction which is vulnerable to falsi¯cation at all. Instead, it should

be thought of as the limiting outcome of an unspeci¯ed learning or evolutionary process

that unfolds over time.3 In this view, equilibrium is the end of the story of how strategic

thinking, optimization, and equilibration (or learning) work, not the beginning (one-shot)

or the middle (equilibration).

This paper has three goals. First we develop an index of bounded rationality which

measures players' steps of thinking and uses one parameter to specify how heterogeneous a

population of players is. Coupled with best response, this index makes a unique prediction

of behavior in any one-shot game. Second, we develop a learning algorithm (called

Functional Experience-Weighted Attraction Learning (fEWA)) to compute the path of

2Our models are related to important concepts like rationalizability, which weakens the mutual con-

sistency requirement, and behavior of ¯nite automata. The di®erence is that we work with simple

parametric forms and concentrate on ¯tting them to data.
3In his thesis proposing a concept of equilibrium, Nash himself suggested equilibrium might arise

from some \mass action" which adapted over time. Taking up Nash's implicit suggestion, later analyses

¯lled in details of where evolutionary dynamics lead (see Weibull, 1995; Mailath, 1998).
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equilibration. The algorithm generalizes both ¯ctitious play and reinforcement models

and has shown greater empirical predictive power than those models in many games

(adjusting for complexity, of course). Consequently, fEWA can serve as an empirical

device for ¯nding the behavioral resting point as a function of the initial conditions.

Third, we show how the index of bounded rationality and the learning algorithm can be

used to understand repeated game behaviors such as reputation building and strategic

teaching.

Our approach is guided by three stylistic principles: Precision; generality; and em-

pirical discipline. The ¯rst two are standard desiderata in game theory; the third is a

cornerstone in experimental economics.

Precision: Because game theory predictions are sharp, it is not hard to spot likely

deviations and counterexamples. Until recently, most of the experimental literature con-

sisted of documenting deviations (or successes) and presenting a simple model, usually

specialized to the game at hand. The hard part is to distill the deviations into an al-

ternative theory that is similarly precise as standard theory and can be widely applied.

We favor speci¯cations that use one or two free parameters to express crucial elements

of behavioral °exibility because people are di®erent. We also prefer to let data, rather

than our intuition, specify parameter values.4

Generality: Much of the power of equilibrium analyses, and their widespread use,

comes from the fact that the same principles can be applied to many di®erent games,

using the universal language of mathematics. Widespread use of the language creates a

dialogue that sharpens theory and cumulates worldwide knowhow. Behavioral models of

games are also meant to be general, in the sense that the same models can be applied

to many games with minimal customization. The insistence on generality is common in

economics, but is not universal. Many researchers in psychology believe that behavior

is so context-speci¯c that it is impossible to have a common theory that applies to all

contexts. Our view is that we can't know whether general theories fail until they are

broadly applied. Showing that customized models of di®erent games ¯t well does not

mean there isn't a general theory waiting to be discovered that is even better.

4While great triumphs of economic theory come from parameter-free models (e.g., Nash equilibrium),

relying on a small number of free parameters is more typical in economic modeling. For example, nothing

in the theory of intertemporal choice pins a discount factor ± to a specī c value. But if a wide range

of phenomena are consistent with a value like .95, then as economists we are comfortable working with

such a value despite the fact that it does not emerge from axioms or deeper principles.
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It is noteworthy that in the search for generality, the models we describe below are

typically ¯t to dozens of di®erent data sets, rather than one or two. The number of

subject-periods used when games are pooled is usually several thousand. This doesn't

mean the results are conclusive or unshakeable. It just illustrates what we mean by a

general model.

Empirical discipline: Our approach is heavily disciplined by data. Because game

theory is about people (and groups of people) thinking about what other people and

groups will do, it is unlikely that pure logic alone will tell us what they will happen.5

As the physicist Murray Gell-Mann said, `Think how hard physics would be if particles

could think.' It is even harder if we don't watch what `particles' do when interacting.

Our insistence on empirical discipline is shared by others, past and present. Von

Neumann and Morgenstern (1944) thought that

the empirical background of economic science is de¯nitely inadequate...it

would have been absurd in physics to expect Kepler and Newton without

Tycho Brahe,{ and there is no reason to hope for an easier development in

economics

Fifty years later Eric Van Damme (1999) thought the same:

Without having a broad set of facts on which to theorize, there is a certain

danger of spending too much time on models that are mathematically ele-

gant, yet have little connection to actual behavior. At present our empirical

knowledge is inadequate and it is an interesting question why game theorists

have not turned more frequently to psychologists for information about the

learning and information processes used by humans.

The data we use to inform theory are experimental because game-theoretic predictions

are notoriously sensitive to what players know, when they move, and what their payo®s

are. Laboratory environments provide crucial control of all these variables (see Crawford,

1997). As in other lab sciences, the idea is to use lab control to sort out which theories

5As Thomas Schelling (1960, p. 164) wrote \One cannot, without empirical evidence, deduce what

understandings can be perceived in a nonzero-sum game of maneuver any more than one can prove, by

purely formal deduction, that a particular joke is bound to be funny."
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work well and which don't, then later use them to help understand patterns in naturally-

occurring data. In this respect, behavioral game theory resembles data-driven ¯elds

like labor economics or ¯nance more than analytical game theory. The large body of

experimental data accumulated over the last couple of decades (and particularly the last

¯ve years; see Camerer, 2002) is a treasure trove which can be used to sort out which

simple parametric models ¯t well.

While the primary goal of behavioral game theory models is to make accurate pre-

dictions when equilibrium concepts do not, it can also circumvent two central problems

in game theory: Re¯nement and selection. Because we replace the strict best-response

(optimization) assumption with stochastic better-response, all possible paths are part of

a (statistical) equilibrium. As a result, there is no need to apply subgame perfection or

propose belief re¯nements (to update beliefs after zero-probability events where Bayes'

rule is helpless). Furthermore, with plausible parameter values the thinking and learning

models often solve the long-standing problem of selecting one of several Nash equilibria,

in a statistical sense, because the models make a unimodal statistical prediction rather

than predicting multiple modes. Therefore, while the thinking-steps model generalizes

the concept of equilibrium, it can also be more precise (in a statistical sense) when

equilibrium is imprecise (cf. Lucas, 1986).6

We make three remarks before proceeding. First, while we do believe the thinking,

learning and teaching models in this paper do a good job of explaining some experimental

regularity parsimoniously, lots of other models are being actively explored.7 The models

in this paper illustrate what most other models also strive to explain, and how they are

6Lucas (1986) makes a similar point in macroeconomic models. Rational expectations often yields

indeterminacy whereas adaptive expectations pins down a dynamic path. Lucas writes (p. S421): \The

issue involves a question concerning how collections of people behave in a speci¯c situation. Economic

theory does not resolve the question...It is hard to see what can advance the discussion short of assembling

a collection of people, putting them in the situation of interest, and observing what they do."
7Quantal response equilibrium (QRE), a statistical generalization of Nash, almost always explains the

direction of deviations from Nash and should replace Nash as the static benchmark that other models

are routinely compared to (see Goeree and Holt, in press. Stahl and Wilson (1995), Capra (1999) and

Goeree and Holt (1999b) have models of limited thinking in one-shot games which are similar to ours.

There are many learning models. fEWA generalizes some of them (though reinforcement with payo®

variability adjustment is di®erent; see Erev, Bereby-Meyer, and Roth, 1999). Other approaches include

rule learning (Stahl, 1996, 2000), and earlier AI tools like genetic algorithms or genetic programming to

\breed" rules. Finally, there are no alternative models of strategic teaching that we know of but this is

an important area others should look at.
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evaluated.

The second remark is that these behavioral models are shaped by data from game

experiments, but are intended for eventual use in areas of economics where game the-

ory has been applied successfully. We will return to a list of potential applications in

the conclusion, but to whet the reader's appetite here is a preview. Limited thinking

models might be useful in explaining price bubbles, speculation and betting, competition

neglect in business strategy, simplicity of incentive contracts, and persistence of nominal

shocks in macroeconomics. Learning might be helpful for explaining evolution of pricing,

institutions and industry structure. Teaching can be applied to repeated contracting,

industrial organization, trust-building, and policymakers setting in°ation rates.

The third remark is about how to read this long paper. The second and third sec-

tions, on learning and teaching, are based on published research and an unpublished

paper introducing the one-parameter functional (fEWA) approach. The ¯rst section, on

thinking, is new and more tentative. We put all three in one paper to show the ambitions

of behavioral game theory{ to explain observed regularity in many di®erent games with

only a few parameters that codify behavioral intuitions and principles.

2 A thinking model and bounded rationality mea-

sure

The thinking model is designed to predict behavior in one-shot games and also to provide

initial conditions for models of learning.

We begin with notation. Strategies have numerical attractions that determine the

probabilities of choosing di®erent strategies through a logistic response function. For

player i, there are mi strategies (indexed by j) which have initial attractions denoted

Aji (0). Denote i's jth strategy by sji, chosen strategies by i and other players (denoted

¡i) in period t as si(t) and s¡i(t), and player i's payo®s of choosing sji by ¼i(s
j
i ; s¡i(t)).

A logit response rule is used to map attractions into probabilities:

P ji (t+ 1) =
e ¢̧A

j
i (t)

Pmi
k=1 e

¸¢Aki (t)
(2.1)
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where ¸ is the response sensitivity.8

We model thinking by characterizing the number of steps of iterated thinking that

subjects do, and their decision rules.9 In the thinking-steps model some players, using

zero steps of thinking, do not reason strategically at all. (Think of these players as

being fatigued, clueless, overwhelmed, uncooperative, or simply more willing to make a

random guess in the ¯rst period of a game and learn from subsequent experience than

to think hard before learning.) We assume that zero-step players randomize equally over

all strategies.

Players who do one step of thinking do reason strategically. What exactly do they

do? We assume they are \overcon¯dent"{ though they use one step, they believe others

are all using zero steps. Proceeding inductively, players who use K steps think all others

use zero to K ¡ 1 steps.

It is useful to ask why the number of steps of thinking might be limited. One answer

comes from psychology. Steps of thinking strain \working memory", where items are

stored while being processed. Loosely speaking, working memory is a hard constraint.

For example, most people can remember only about 5-9 digits when shown a long list of

digits (though there are reliable individual di®erences, correlated with reasoning ability).

The strategic question \If she thinks he anticipates what she will do what should she

do?" is an example of a recursive \embedded sentence" of the sort that is known to strain

working memory and produce inference and recall mistakes.10

Reasoning about others might also be limited because players are not certain about

another player's payo®s or degree of rationality. Why should they be? After all, adherence

to optimization and instant equilibration is a matter of personal taste or skill. But

whether other players do the same is a guess about the world (and iterating further, a

guess about the contents of another player's brain or a ¯rm's boardroom activity).

8Note the timing convention{ attractions are de¯ned before a period of play; so the initial attractions

A
j
i (0) determine choices in period 1, and so forth.

9This concept was ¯rst studied by Stahl and Wilson (1995) and Nagel (1995), and later by Ho,

Camerer and Weigelt (1998). See also Sonsino, Erev and Gilat (2000).
10Embedded sentences are those in which subject-object clauses are separated by other subject-object

clauses. A classic example is \The mouse that the cat that the dog chased bit ran away". To answer the

question \Who got bit?" the reader must keep in mind \the mouse" while processing the fact that the

cat was chased by the dog. Limited working memory leads to frequent mistakes in recalling the contents

of such sentences or answering questions about them (Christiansen and Chater, 1999). This notation

makes it easier: \The mouse that [the cat that [the dog fchasedg] bit] ran away".
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The key challenge in thinking steps models is pinning down the frequencies of players

using di®erent numbers of thinking steps. We assume those frequencies have a Poisson

distribution with mean and standard deviation ¿ (the frequency of level K types is

f(K) = e¡¿ ¿K

K!
). Then ¿ is an index of bounded rationality.

The Poisson distribution has three appealing properties: It has only one free parame-

ter (¿); since Poisson is discrete it generates \spikes" in predicted distributions re°ecting

individual heterogeneity (other approaches do not11); and for sensible ¿ values the fre-

quency of step types is similar to the frequencies estimated in earlier studies (see Stahl

and Wilson (1995); Ho, Camerer and Weigelt (1998); and Nagel et al., 1999). Figure 1

shows four Poisson distributions with di®erent ¿ values. Note that there are substantial

frequencies of steps 0-3 for ¿ around one or two. There are also very few higher-step

types, which is plausible if the limit on working memory has an upper bound.

Modeling heterogeneity is important because it allows the possibility that not every

player is rational. The few studies that have looked carefully found fairly reliable indi-

vidual di®erences, because a subject's step level or decision rule is fairly stable across

games (Stahl and Wilson, 1995; Costa-Gomes et al., 2001). Including heterogeneity can

also improve learning models by starting them o® with enough persistent variation across

people to match the variation we see across actual people.

To make the model precise, assume players know the absolute frequencies of players

at lower levels from the Poisson distribution. But since they do not imagine higher-

step types there is missing probability. They must adjust their beliefs by allocating the

missing probability in order to compute sensible expected payo®s to guide choices. We

assume players divide the correct relative proportions of lower-step types by
PK¡1
c=1 f(c)

11A natural competitor to the thinking-steps model for explaining one-shot games is quantal response

equilibrium (QRE; see McKelvey and Palfrey, 1995, 1998; Goeree and Holt, 1999a). Weiszacker (2000)

suggests an asymmetric version which is equivalent to a thinking steps model in which one type thinks

others are more random than she is. More cognitive alternatives are the theory of thinking trees due to

Capra (1999) and the theory of \noisy introspection" due to Goeree and Holt (1999b). In Capra's model

players introspect until their choices match those of players whose choices they anticipate. In Goeree

and Holt's theory players use an iterated quantal response function with a response sensitivity parameter

equal to ¸=tn where n is the discrete iteration step. When t is very large, their model corresponds to

one in which all players do one step and think others do zero. When t = 1 the model is QRE. All these

models generate unimodal distributions so they need to be expanded to accommodate heterogeneity.

Further work should try to distinguish di®erent models or investigate whether they are similar enough

to be close modeling substitutes.
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so the adjusted frequencies maintain the same relative proportions but add up to one.

Given this assumption, players using K > 0 steps are assumed to compute expected

payo®s given their adjusted beliefs, and use those attractions to determine choice prob-

abilities according to

Aji (0jK) =
m¡iX

h=1

¼i(s
j
i ; s

h
¡i) ¢ f

K¡1X

c=0

[
f(c)

PK¡1
c=0 f(c)

¢ Ph¡i(1jc)]g (2.2)

where Aji (0jK) and P li (1jc)) are the attraction of level K in period 0 and the predicted

choice probability of lower level c in period 1.

As a benchmark we also ¯t quantal response equilibrium (QRE), de¯ned by

Aji (0jK) =
m¡iX

h=1

¼i(s
j
i ; s

h
¡i) ¢ Ph¡i(1) (2.3)

P ji (1) =
e¸¢A

j
i (0)

Pmi
h=1 e

¢̧Ahi (0)
(2.4)

When ¸ goes to in¯nity QRE converges to Nash equilibrium. QRE is closely related to a

thinking-steps model in which K-step types are \self-aware" and believe there are other

K-step types, and ¿ goes to in¯nity.

2.1 Fitting the model

As a ¯rst pass the thinking-steps model was ¯t to data from three studies in which

players made decisions in matrix games once each without feedback (a total of 2558

subject-games).12 Within each of the three data sets, a common ¸ was used, and best-

¯tting ¿ values were estimated both separately for each game, and ¯xed across games

(maximizing log likelihood).

Table 1 reports ¿ values for each game separately, common ¿ and ¸ from the thinking

steps model, and measures of ¯t for the thinking model and QRE{ the log likelihood LL

(which can be used to compare models) and the mean of the squared deviations (MSD)

between predicted and actual frequencies.

12The data are 48 subjects playing 12 symmetric 3x3 games (Stahl and Wilson, 1995), 187 subjects

playing 8 2x2 asymmetric matrix games (Cooper and Van Huyck, 2001) and 36 sub jects playing 13

asymmetric games ranging from 2x2 to 4x2 (Costa-Gomes, Crawford and Broseta, 2001).
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Table 1: Estimates of thinking model ¿ and ¯t statistics, 3 matrix game experiments

Stahl and Cooper Costa-Gomes

Wilson (1995a) Van Huyck (2001) et al. (2001)

game-speci¯c ¿ estimates

Game 1 18.34 1.14 2.17

Game 2 2.26 1.04 2.21

Game 3 1.99 0.00 2.22

Game 4 4.56 1.25 1.44

Game 5 5.53 0.53 1.81

Game 6 1.70 0.80 1.58

Game 7 5.55 1.17 1.08

Game 8 2.03 1.75 1.94

Game 9 1.79 1.88

Game 10 8.79 2.66

Game 11 7.33 1.34

Game 12 21.46 2.30

Game 13 2.36

common ¿ 8.44 0.81 2.22

common ¸ 9.06 190.58 15.76

¯t statistics (thinking steps model)

MSD (pooled) 0.0257 0.0135 0.0063

LL (pooled) -1115 -1739 -555

¯t statistics (QRE)

MSD (QRE) 0.0327 0.0269 0.0079

LL (QRE) -1176 -1838 -599

Note: In Costa-Gomes et al. the games are labeled as 2b 2x2,3a 2x2, 3b 2x2, 4b 3x2, 4c

3x2, 5b 3x2, 8b 3x2, 9a 4x2, 4a 2x3, 4d 2x3, 6b 2x3, 7b 2x3, 9b 2x4.
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QRE ¯ts a little worse than the thinking model in all three data sets.13 This is a big

clue that an overcon¯dence speci¯cation is more realistic than one with self-awareness.

Estimated values of ¿ are quite variable in the Stahl and Wilson data but fairly

consistent in the others.14 In the latter two sets of data, estimates are clustered around

one and two, respectively. Imposing a common ¿ across games only reduces ¯t very

slightly (even in the Stahl and Wilson game15.) The fact that the cross-game estimates

are the most consistent in the Costa-Gomes et al. games, which have the most structural

variation among them, is also encouraging.

Furthermore, while the values of ¸ we estimate are often quite large, the overall

frequencies the model predicts are close to the data. That means that a near-best-

response model with a mixture of thinking steps can ¯t a little better than a QRE model

which assumes stochastic response but has only one \type'. The heterogeneity may

therefore enable modelers to use best- response calculation and still make probabilistic

predictions, which is enormously helpful analytically.

Figures 2 and 3 show how accurately the thinking steps and Nash models ¯t the data

from the three matrix-game data sets. In each Figure, each data point is a separate

strategy from each of the games. Figure 2 shows that the data and ¯ts are reasonably

good. Figure 3 shows that the Nash predictions (which are often zero or one, pure

equilibria, are reasonably accurate though not as close as the thinking-model predictions).

Since ¿ is consistently around 1-2, the thinking model with a single ¿ could be an adequate

approximation to ¯rst-period behavior in many di®erent games. To see how far the

model can take us, we investigated it in two other classes of games{ games with mixed

equilibria, and binary entry games. The next section describes results from entry games

(see Appendix for details on mixed games).

13While the common-¿ models have one more free parameter than QRE, any reasonable information

criterion penalizing the LL would select the thinking model.
14When ¸ is set to 100 the ¿ estimates become very regular, around two, which suggests that the

variation in estimates is due to poor identī cation in these games.
15The di®erences in LL across game-specī c and common ¿ are .5, 49.1, 9.4. These are marginally

signi¯cant (except for Cooper-Van Huyck).
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2.2 Market entry games

Consider binary entry games in which there is capacity c (expressed as a fraction of the

number of entrants). Each of many entrants decides simultaneously whether to enter or

not. If an entrant thinks that fewer than c% will enter she will enter; if she thinks more

than c% will enter she stays out.

There are three regularities in many experiments based on entry games like this

one (see Ochs, 1999; Seale and Rapoport, 1999; Camerer, 2002, chapter 7): (1) Entry

rates across di®erent capacities c are closely correlated with entry rates predicted by

(asymmetric) pure equilibria or symmetric mixed equilibria; (2) players slightly over-

enter at low capacities and under-enter at high capacities; and (3) many players use

noisy cuto® rules in which they stay out for most capacities below some cuto® c¤ and

enter for most higher capacities.

Let's apply the thinking model with best response. Step zero's enter half the time.

This means that when c < :5 one step thinkers stay out and when c > :5 they enter.

Players doing two steps of thinking believe the fraction of zero steppers is f(0)=(f(0) +

f(1)) = 1=(1 + ¿ ). Therefore, they enter only if c > :5 and c > :5+¿
1+¿ , or when c < :5

and c > :5
1+¿ . To make this more concrete, suppose ¿ = 2. Then two-step thinkers enter

when c > 5=6 and 1=6 < c < 0:5. What happens is that more steps of thinking \iron

out" steps in the function relating c to overall entry. In the example, one-step players

are afraid to enter when c < 1=2. But when c is not too low (between 1/6 and .5) the

two-step thinkers perceive room for entry because they believe the relative proportion of

zero-steppers is 1/3 and those players enter half the time. Two-step thinkers stay out

for capacities between .5 and 5/6, but they enter for c > 5=6 because they know half

of the (1/3) zero-step types will randomly stay out, leaving room even though one-step

thinkers always enter. Higher steps of thinking smooth out steps in the entry function

even further.

The surprising experimental fact is that players can coordinate entry reasonably well,

even in the ¯rst period. (\To a psychologist," Kahneman (1988) wrote, \this looks like

magic".) The thinking steps model provides a possible explanation for this magic and

can account for the other two regularities for reasonable ¿ values. Figure 4 plots entry

rates from the ¯rst block of two studies for a game similar to the one above (Sundali et

al., 1995; Seale and Rapoport, 1999). Note that the number of actual entries rises almost

monotonically with c, and entry is above capacity at low c and below capacity at high c.
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Figure 4 also shows the thinking steps entry function N(allj¿ )(c) for ¿ = 1:5 and

2. Both functions reproduce monotonicity and the over- and under- capacity e®ects.

The thinking-steps models also produces approximate cuto® rule behavior for all higher

thinking steps except two. When ¿ = 1:5, step 0 types randomize, step 1 types enter for

all c above .5, step 3-4 types use cuto® rules with one \exception", and levels 5-above

use strict cuto® rules. This mixture of random, cuto® and near-cuto® rules is roughly

what is observed in the data when individual patterns of entry across c are measured

(e.g., Seale and Rapoport, 1999).

2.3 Thinking steps and cognitive measures

Since the thinking steps model is a cognitive model, it gives an account of some treatment

e®ects and shows how cognitive measures, like response times and information acquisition,

can be correlated with choices.

1. Belief-prompting: Several studies show that asking players for explicit beliefs about

what others will do moves their choices, moving them closer to equilibrium (com-

pared to a control in which beliefs are not prompted). A simple example reported

in Warglien, Devetag and Legrenzi (1998) is shown in Table 2. Best-responding

one-step players think others are randomizing, so they will choose X, which pays

60, rather than Y which has an expected payo® of 45. Higher-step players choose

Y.

Without belief-prompting 70% of the row players choose X. When subjects are

prompted to articulate a belief about what the column players will do, 70% choose

the dominance-solvable equilibrium choice Y. Croson (2000) reports similar e®ects.

In experiments on beauty contest games, we found that prompting beliefs also

reduced dominance-violating choices modestly. Schotter et al. (1994) found a

related display e®ect-showing a game in an extensive-form tree led to more subgame

perfect choices.

Belief-prompting can be interpreted as increasing all players' thinking by one step.

To illustrate, assume that since step 0's are forced to articulate some belief, they

move to step 1. Now they believe others are random so they choose X. Players

previously using one or more steps now use two or more. They believe column

players choose L so they choose Y. The fraction of X play is therefore due to former
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Table 2: How belief-prompting promotes dominance-solvable choices by row players (War-

glien, Devetag and Legrenzi, 1998)

column player without belief with belief

row move L R prompting prompting

X 60,20 60,10 .70 .30

Y 80,20 10,10 .30 .70

zero-step thinkers who now do one step of thinking. This is just one simple example,

but the numbers match up reasonably well16 and it illustrates how belief-prompting

e®ects could be accommodated within the thinking-steps model.

2. Information look-ups: Camerer et al. (1993), Costa-Gomes, Crawford, and Broseta

(2001), Johnson et al. (2002), and Salmon (1999) directly measure the information

subjects acquire in a game by putting payo® information in boxes which must be

clicked open using a computer mouse. The order in which boxes are open, and how

long they are open, gives a \subject's-eye view" of what players are looking at, and

should be correlated with thinking steps. Indeed, Johnson et al. show that how

much time players spend looking ahead to future \pie sizes" in alternating-o®er

bargaining is correlated with the o®ers they make. Costa-Gomes et al. show that

lookup patterns are correlated with choices that result from various (unobserved)

decision rules in normal-form games. These correlations means that a researcher

who simply knew what a player had looked at could, to some extent, forecast that

player's o®er or choice. Both studies also showed that information lookup statistics

helped answer questions that choices alone could not.17

16Take the overcon¯dence k ¡ 1 model. The 70% frequency of X choices without belief-prompting is

consistent with this model if f(0j¿)=2 + f (1j¿) = :70, which is most closely satis¯ed when ¿ = :55. If

belief-prompting moves all thinking up one step, then the former zero-steppers will choose X and all

others choose Y. When ¿ = :55 the fraction of level 0's is 29%, so this simple model predicts 29% choice

of X after belief-prompting, close to the 30% that is observed.
17Information measures are crucial to resolving the question of whether o®ers which are close to equal

splits are equilibrium o®ers which re°ect fairness concerns, or re°ect limited lookahead and heuristic

reasoning. The answer is both (see Camerer et al., 1993; Johnson et al., in press. In the Costa-Gomes

study, two di®erent decision rules always led to the same choices in their games, but required di®erent

lookup patterns. The lookup data were able to therefore classify players according to decision rules more

conclusively than choices alone could.
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2.4 Summary

A simple model of thinking steps attempts to predict choices in one-shot games and

provide initial conditions for learning models. We propose a model which incorporate

discrete steps of thinking, and the frequencies of players using di®erent numbers of steps

is Poisson-distributed with mean ¿ . We assume that players at level K > 0 cannot

imagine players at their level or higher, but they understand the relative proportions

of lower-step players and normalize them to compute expected payo®s. Estimates from

three experiments on matrix games show reasonable ¯ts for ¿ around 1-2, and ¿ is fairly

regular across games in two of three data sets. Values of ¿ = 1:5 also ¯ts data from 15

games with mixed equilibria and reproduces key regularities from binary entry games.

The thinking steps model also creates natural heterogeneity across subjects. When best

response is assumed, the model generally creates \puri¯cation" in which most players at

any step level use a pure strategy, but a mixture results because of the mixture of players

using di®erent numbers of steps.

3 Learning

By the mid-1990s, it was well-established that simple models of learning could explain

some movements in choice over time in speci¯c game and choice contexts.18 The challenge

taken up since then is to see how well a speci¯c parametric model can account for ¯ner

details of the equilibration process in wide range of classes of games.

This section describes a one-parameter theory of learning in decisions and games

called functional EWA (or fEWA for short; also called \EWA Lite" to emphasize its

`low-calorie' parsimony). fEWA predicts the time path of individual behavior in any

normal-form game. Initial conditions can be imposed or estimated in various ways. We

use initial conditions from the thinking steps model described in the previous section.

The goal is to predict both initial conditions and equilibration in new games in which

behavior has never been observed, with minimal free parameters (the model uses two, ¿

and ¸).

18To name only a few examples, see Camerer (1987) (partial adjustment models); Smith, Suchanek and

Williams (1988) (Walrasian excess demand); McAllister (1991) (reinforcement); Camerer and Weigelt

(1993) (entrepreneurial stockpiling);Roth and Erev (1995) (reinforcement learning); Ho and Weigelt

(1996) (reinforcement and belief learning); Camerer and Cachon (1996) (Cournot dynamics).
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3.1 Parametric EWA learning: Interpretation, uses and limits

fEWA is a relative of a parametric model of learning called experience-weighted attrac-

tion (EWA) (Camerer and Ho 1998, 1999). As in most theories, learning in EWA is

characterized by changes in (unobserved) attractions based on experience. Attractions

determine the probabilities of choosing di®erent strategies through a logistic response

function. For player i, there are mi strategies (indexed by j) which have initial attrac-

tions denoted Aji (0). The thinking steps model is used to generate initial attractions

given parameter values ¿ and ¸.

Denote i's j 'th strategy by sji, chosen strategies by i and other players (denoted ¡i)
by si(t) and s¡i(t), and player i's payo®s by ¼i(s

j
i ; s¡i(t)).

19 De¯ne an indicator function

I(x; y) to be zero if x6= y and one if x = y . The EWA attraction updating equation is

Aji (t) =
ÁN(t¡ 1)Aji(t¡ 1) + [± + (1¡ ±)I(sji ; si(t))]¼i(s

j
i ; s¡i(t))

N(t¡ 1)Á(1 ¡ ·) + 1
(3.1)

and the experience weight (the \EW" part) is updated according to N(t) = N(t¡1)Á(1¡
·) + 1.

Notice that the term [±+(1¡ ±)I(sji ; si(t))] implies that a weight of one is put on the

payo® term when the strategy being reinforced is the one the player chose (sji = si(t)), but

the weight on foregone payo®s from unchosen strategies (sji 6= si(t)) is ±. Attractions are

mapped into choice probabilities using a logit response function P j
i (t+ 1) = e

¸¢Aj
i

(t)

Pmi
k=1

e
¸¢Ak

i
(t)

(where ¸ is the response sensitivity). The subscript i, superscript j, and argument t+ 1

in P ji (t+ 1) are reminders that the model aims to explain every choice by every subject

in every period.20

Each EWA parameter has a natural interpretation.

The parameter ± is the weight placed on foregone payo®s. It presumably is a®ected by

imagination (in psychological terms, the strength of counterfactual reasoning or regret,

or in economic terms, the weight placed on opportunity costs and bene¯ts) or reliability

of information about foregone payo®s (Heller and Sarin, 2000).

19To avoid complications with negative payo®s, we rescale payo®s by subtracting by the minimum

payo® so that rescale payo®s are always weakly positive.
20Other models aim to explain choices aggregated at some level. Of course, models of this sort can

sometimes be useful. But our view is that a parsimonious model which can explain very ¯ne-grained

data can probably explain aggregated data well too, but the opposite may not be true.
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The parameter Á decays previous attractions due to forgetting or, more interestingly,

because agents are aware that the learning environment is changing and deliberately

\retire" old information (much as ¯rms junk old equipment more quickly when technology

changes rapidly).

The parameter · controls the rate at which attractions grow. When · = 0 attractions

are weighted averages and grow slowly; when · = 1 attractions cumulate. We originally

included this variable because some learning rules used cumulation and others used av-

eraging. It is also a rough way to capture the distinction in machine learning between

\exploring" an environment (low ·), and \exploiting" what is known by locking in to a

good strategy (high ·) (e.g., Sutton and Barto, 1998).

The initial experience weight N (0) is like a strength of prior beliefs in models of

Bayesian belief learning. It plays a minimal empirical role so it is set to one in our

current work.

EWA is a hybrid of two widely-studied models, reinforcement and belief learning. In

reinforcement learning, only payo®s from chosen strategies are used to update attractions

and guide learning. In belief learning, players do not learn about which strategies work

best; they learn about what others are likely to do, then use those updated beliefs

to change their attractions and hence what strategies they choose (see Brown, 1951;

Fudenberg and Levine, 1998). EWA shows that reinforcement and belief learning, which

were often treated as fundamentally di®erent, are actually related in a non-obvious way,

because both are special kinds of reinforcement rules.21 When ± = 0 the EWA rule is a

simple reinforcement rule22. When ± = 1 and · = 0 the EWA rule is equivalent to belief

learning using weighted ¯ctitious play.23

Foregone payo®s are the fuel that runs EWA learning. They also provide an indirect

link to \direction learning" and imitation. In direction learning players move in the direc-

tion of observed best response (Selten and StÄocker, 1986). Suppose players follow EWA

21See also Cheung and Friedman, 1997, pp. 54-55; Fudenberg and Levine, 1998, pp. 184-185; and Ed

Hopkins, in press.
22See Bush and Mosteller, 1955; Harley, 1981; Cross, 1983; Arthur, 1991; McAllister, 1991; Roth and

Erev, 1995; Erev and Roth, 1998.
23When updated ¯ctitious play beliefs are used to update the expected payo®s of strategies, precisely

the same updating is achieved by reinforcing all strategies by their payo®s (whether received or foregone).

The belief themselves are an epiphenomenon that disappear when the updating equation is written

expected payo®s rather than beliefs.
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but don't know foregone payo®s, and believe those payo®s are monotonically increasing

between their choice si(t) and the best response. If they also reinforce strategies near

their choice si(t) more strongly than strategies that are further away, their behavior will

look like direction learning. Imitating a player who is similar and successful can also be

seen as a way of heuristically inferring high foregone payo®s from an observed choice and

moving in the direction of those higher payo®s.

The relation of various learning rules can be shown visually in a cube showing con-

¯gurations of parameter values (see Figure 5). Each point in the cube is a triple of EWA

parameter values which speci¯es a precise updating equation. The corner of the cube

with Á = · = 0; ± = 1, is Cournot best-response dynamics. The corner · = 0; Á = ± = 1,

is standard ¯ctitious play. The vertex The relation of various learning rules can be shown

visually in a cube showing con¯gurations of parameter values (see Figure 5). Each point

in the cube is a triple of EWA parameter values which speci¯es a precise updating equa-

tion. The corner of the cube with Á = · = 0;± = 1, is Cournot best-response dynamics.

The corner · = 0; Á = ± = 1, is standard ¯ctitious play. The vertex connecting these

corners, ± = 1; · = 0, is the class of weighted ¯ctitious play rules (e.g., Fudenberg and

Levine, 1998). The vertices with ± = 0 and · = 0 or 1 are averaging and cumulative

choice reinforcement rules (Roth and Erev, 1995; and Erev and Roth, 1998).

The biologist Francis Crick (1988) said, \in nature a hybrid is often sterile, but in

science the opposite is usually true". As Crick suggests, the point of EWA is not simply

to show a surprising relation among other models, but to improve their fertility for

explaining patterns in data by combining the best modeling \genes". In reinforcement

theories received payo®s get the most weight (in fact, all the weight24). Belief theories

implicitly assume that foregone and received payo®s are weighted equally. Rather than

assuming one of these intuitions about payo® weights is right and the other is wrong,

EWA allows both intuitions to be true. When 0 < ± < 1 received payo®s can get more

weight, but foregone payo®s also get some weight.

The EWA model has been estimated by ourselves and many others on about 40 data

sets (see Camerer, Hsia, and Ho, 2000). The hybrid EWA model predicts more accurately

than the special cases of reinforcement and weighted ¯ctitious in most cases, except in

24Taken seriously, reinforcement models also predict that learning paths will look the same whether

players know their full payo® matrix or not. This prediction is rejected in all the studies that have tested

it, e.g., Mookerjhee and Sopher, 1994; Rapoport and Erev, 1998; Battalio, Van Huyck, and Rankin, 2001.
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games with mixed-strategy equilibrium where reinforcement does equally well.25 In our

model estimation and validation, we always penalize the EWA model in ways that are

known to make the adjusted ¯t worse if a model is too complex (i.e., if the data are

actually generated by a simpler model).26 Furthermore, econometric studies show that if

the data were generated by simpler belief or reinforcement models, then EWA estimates

would correctly identify that fact for most games and reasonable sample sizes (see Salmon,

2001; Cabrales and Garcia-Fontes, 2000). Since EWA is capable of identifying behavior

consistent with special cases, when it does not then the hybrid parameter values are

improving ¯t.

Figure 5 also shows estimated parameter triples from twenty data sets. Each point

is an estimate from a di®erent game. If one of the special case theories is a good ap-

proximation to how people generally behave across games, estimated parameters should

cluster in the corner or vertex corresponding to that theory. In fact, parameters tend to

be sprinkled around the cube, although many (typically mixed-equilibrium games) clus-

ter in the averaged reinforcement corner with low ± and ·. The dispersion of estimates

in the cube raises an important question: Is there regularity in which games generate

which parameter estimates? A positive answer to this question is crucial for predicting

behavior in brand new games.

This concern is addressed by a version of EWA, fEWA, which replaces free parame-

ters with deterministic functions Ái(t); ±i(t); ·i(t) of player i's experience up to period t.

These functions determine parameter values for each player and period. The parameter

values are then used in the EWA updating equation to determine attractions, when then

determine choices probabilistically. Since the functions also vary across subjects and over

time, they have the potential to inject heterogeneity and time-varying \rule learning",

and to explain learning better than models with ¯xed parameter values across people

and time. And since fEWA has only one parameter which must be estimated (¸)27, it

is especially helpful when learning models are used as building blocks for more complex

25In mixed games no model improves much on Nash equilibrium (and often don't improve on quantal

response equilibrium at all), and parameter identi¯cation is poor; see Salmon, 2001))
26We typically penalize in-sample likelihood functions using the Akaike and Bayesian information

criteria, which subtract a penalty of one, or log(n), times the number of degrees of freedom from the

maximized likelihood. More persuasively, we rely mostly on out-of-sample forecasts which will be less

accurate if a more complex model simply appears to ¯t better because it over¯ts in-sample.
27Note that if your statistical objective is to maximize hit rate, ¸ does not matter and so fEWA is a

zero-parameter theory given initial conditions.
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models that incorporate sophistication (some players think others learn) and teaching,

as we discuss in the section below.

The crucial function in fEWA is Ái(t), which is designed to detect change in the

learning environment. As in physical change detectors, such as security systems or smoke

alarms, the challenge is to detect change when it is really occurring, but not falsely

mistake noise for change too often. The core of the function is a \surprise index", the

di®erence between the other players' strategies in the window of the last W periods and

the average strategy of others in all previous periods (where W is the minimal support

of Nash equilibria, smoothing °uctuations in mixed games). The function is speci¯ed in

terms of relative frequencies of strategies, without using information about how strategies

are ordered, but is easily extended to ordered strategies (like prices or locations). Change

is measured by taking the di®erences in corresponding elements of the two frequency

vectors (recent history and all history), squaring them, and sum over strategies. Dividing

by two and subtracting from one normalizes the function so it is between zero and one

and is smaller when change is large. The change-detection function Ái(t) is

Ái(t) = 1¡ :5(
m¡iX

j=1

[

Pt
¿=t¡W+1 I(sj¡i; s¡i(¿))

W
¡
Pt
¿=1 I(sj¡i; s¡i)

t
]2) (3.2)

The term
Pt

¿=t¡W+1
I(sj¡i;s¡i (¿))

W is the j-th element of a vector that simply counts how

often strategy j was played by the others in periods t ¡ W + 1 to t, and divides by

W . The term
Pt

¿=1
I(sj¡i ;s¡i)
t is the relative frequency count of the j-th strategy over all

t periods.28 When recent observations of what others have done deviate a lot from all

previous observations, the deviations in strategy frequencies will be high and Á will be

low. When recent observations are like old observations, Á will be high. Since a very

low Á erases old history{ permanently{ Á should be kept close to one unless there is an

unmistakable change in what others are doing. The function above only dips toward zero

if a single strategy has been played by others in all t¡1 previous periods and then a new

strategy is played. (Then Ái(t) = 2t¡1
t2 , which is .75, .56 and .19 for t=2,3,10.)29

28In games with multiple players, the frequency count of the relevant aggregate statistics is used. For

example, in median action game, the frequency count of the median strategy by all other players in each

period is used.
29Another interesting special case is when di®erent strategies have been played in every period up to

t ¡ 1, and another di®erent strategy is played. (This is often true in games with large strategy spaces,

such as location or pricing, when order of strategies is not used.) Then Ái(t) = :5 + 1
2t

, which starts at

:75 and asymptotes at :5.
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The other fEWA functions are less empirically important and interesting so we men-

tion them only brie°y. The function ±i(t) = Ái(t)=W . Dividing by W pushes ±i(t)

toward zero in games with mixed equilibria, which matches estimates in many games

(see Camerer, Ho and Chong, in press).30 Tying ±i(t) to the change detector Ái(t) means

chosen strategies are reinforced relatively strongly (compared to unchosen ones) when

change is fast. This re°ects a \status quo bias" or \freezing" response to danger (which

is virtually universal across species, including humans). Since ·i(t) controls how sharply

subjects lock in to choosing a small number of strategies, we use a \Gini coe±cient"{

a standard measure of dispersion often used to measure income inequality{ over choice

frequencies 31

fEWA has three advantages. First, it is easy to use because it has only one free

parameter (¸). Second, parameters in fEWA naturally vary across time and people (as

well as across games), which can capture heterogeneity and mimic \rule learning" in which

parameters vary over time (e.g., Stahl, 1996, 2000, and Salmon, 1999). For example, if Á

rises across periods from 0 to 1 as other players stabilize, players are e®ectively switching

from Cournot-type dynamics to ¯ctitious play. If ± rises from 0 to 1, players are e®ectively

switching from reinforcement to belief learning. Third, it should be easier to theorize

about the limiting behavior of fEWA than about some parametric models. A key feature

of fEWA is that as a player's opponents' behavior stabilizes, Ái(t) goes toward one and

(in games with pure equilibria) ±i(t) does too. If · = 0, fEWA then automatically turns

into ¯ctitious play; and a lot is known about theoretical properties of ¯ctitious play.

3.2 fEWA predictions

In this section we compare in-sample ¯t and out-of-sample predictive accuracy of dif-

ferent learning models when parameters are freely estimated, and check whether fEWA

functions can produce game-speci¯c parameters similar to estimated values. We use

seven games: Games with unique mixed strategy equilibrium (Mookerjhee and Sopher,

1997); R&D patent race games (Rapoport and Amaldoss, 2000); a median-action order

statistic coordination game with several players (Van Huyck, Battalio, and Beil, 1991);

a continental-divide coordination game, in which convergence behavior is extremely sen-

30If one is uncomfortable assuming subjects act as if they know W, you can easily replace W by some

function of the variability of others' choices to proxy for W.
31Formally, ·i(t) = 1¡2 ¢f

Pmi

k=1 f
(k)
i (t) ¢ mi¡kmi¡1g where f ki (t) are ranked from the lowest to the highest.
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sitive to initial conditions (Van Huyck, Cook, and Battalio, 1997); a \pots game" with

entry into two markets of di®erent sizes (Amaldoss and Ho, in preparation); dominance-

solvable p-beauty contests (Ho, Camerer, and Weigelt, 1998); and a price-matching game

(called \travellers' dilemma" by Capra, Goeree, Gomez and Holt, 2000).

3.3 Estimation Method

The estimation procedure for fEWA is sketched brie°y here (see Ho, Camerer, and Chong,

2001 for details). Consider a game where N subjects play T rounds. For a given player i

of level c, the likelihood function of observing a choice history of fsi(1); si(2); : : : ; si(T ¡
1); si(T)g is given by:

¦T
t=1P

si(t)
i (tjc) (3.3)

The joint likelihood function L of observing all players' choice is given by

L(¸) = ¦N
i f

KX

c=1

f(c) ¢ ¦T
t=1P

si(t)
i (t)g (3.4)

where K is set to a multiple of ¿ rounded to an integer. Most models are \burned in" by

using ¯rst-period data to determine initial attractions. We also compare all models with

burned-in attractions with a model in which the thinking steps model from the previous

section is used to create initial conditions and combined with fEWA. Note that the latter

hybrid uses only two parameters (¿ and ¸) and does not use ¯rst-period data at all.

Given the initial attractions and initial parameter values32, attractions are updated

using the EWA formula. fEWA parameters are then updated according to the functions

above and used in the EWA updating equation. Maximum likelihood estimation is used

to ¯nd the best-¯tting value of ¸ (and other parameters, for the other models) using

data from the ¯rst 70% of the subjects. Then the value of ¸ is frozen and used to

forecast behavior of the entire path of the remaining 30% of the subjects. Payo®s were

all converted to dollars (which is important for cross-game forecasting).

In addition to fEWA (one parameter), we estimated the parametric EWA model (¯ve

parameters), a belief-based model (weighted ¯ctitious play, two parameters) and the two

32The initial parameter values are Ái(0) = ·i(0) = :5 and ±i(0) = Ái(0)=W . These initial values are

averaged with period-specī c values determined by the functions, weighting the initial value by 1
t

and

the functional value by t¡1
t

.
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Table 3: Out of sample accuracy of learning models (Ho, Camerer and Chong, 2001)

Thinking Weighted Reinf.

+fEWA fEWA EWA ¯ct. play with PV QRE

game %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL

Cont'l divide 45 -483 47 -470 47 -460 25 -565 45 -557 5 -806

Median action 71 -112 74 -104 79 -83 82 -95 74 -105 49 -285

p-BC 8 -2119 8 -2119 6 -2042 7 -2051 6 -2504 4 -2497

Price matching 43 -507 46 -445 43 -443 36 -465 41 -561 27 -720

Mixed games 36 -1391 36 -1382 36 -1387 34 -1405 33 -1392 35 -1400

Patent Race 64 -1936 65 -1897 65 -1878 53 -2279 65 -1864 40 -2914

Pot Games 70 -438 70 -436 70 -437 66 -471 70 -429 51 -509

Pooled 50 -6986 51 -6852 49 -7100 40 -7935 46 -9128 36 -9037

KS p-BC 6 -309 3 -279 3 -279 4 -344 1 -346

Note: Sample sizes are 315, 160, 580, 160, 960, 1760, 739, 4674 (pooled), 80.

-parameter reinforcement models with payo® variability (Erev, Bereby-Meyer and Roth,

1999; Roth et al., 2000), and QRE.

3.4 Model ¯t and predictive accuracy in all games

The ¯rst question we ask is how well models ¯t and predict on a game-by-game basis

(i.e., parameters are estimated separately for each game). For out-of-sample validation

we report both hit rates (the fraction of most-likely choices which are picked) and log

likelihood (LL). (Keep in mind that these results forecast a holdout sample of subjects

after model parameters have been estimated on an earlier sample and then \frozen". If

a complex model is ¯tting better within a sample purely because of spurious over¯tting,

it will predict more poorly out of sample.) Results are summarized in Table 3.

The best ¯ts for each game and criterion are printed in bold; hit rates which statis-

tically indistinguishable from the best (by the McNemar test) are also in bold. Across

games, parametric EWA is as good as all other theories or better, judged by hit rate, and

has the best LL in four games. fEWA also does well on hit rate in six of seven games.

Reinforcement is competitive on hit rate in ¯ve games and best in LL in two. Belief

models are often inferior on hit rate and never best in LL. QRE clearly ¯ts worst.
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Combining fEWA with a thinking steps model to predict initial conditions (rather

than using the ¯rst-period data), a two-parameter combination, is only a little worse in

hit rate than fEWA and slightly worse in LL.

The bottom line of Table 3, \pooled", shows results when a single set of common

parameters is estimated for all games (except for game-speci¯c ¸). If fEWA is capturing

parameter di®erences across games e®ectively, it should predict especially accurately,

compared to other models, when games are pooled. It does: When all games are pooled,

fEWA predicts out-of-sample better than other theories, by both statistical criteria.

Some readers of our functional EWA paper were concerned that by searching across

di®erent speci¯cations, we may have over¯tted the sample of seven games we reported.

To check whether we did, we announced at conferences in 2001 that we would analyze all

the data people sent us by the end of the year and report the results in a revised paper.

Three samples were sent and we analyzed one so far{ experiments by Kocher and Sutter

(2000) on p-beauty contest games played by individuals and groups. The KS results are

reported in the bottom row of Table 3. The game is the same as the beauty contests we

studied (except for the interesting complication of group decision making, which speeds

equilibration), so it is not surprising that the results replicate the earlier ¯ndings: Belief

and parametric EWA ¯t best by LL, followed by fEWA, and reinforcement and QRE

models ¯t worst. This is a small piece of evidence that the solid performance of fEWA

(while worse than belief learning on these games) is not entirely due to over¯tting on our

original 7-game sample.

The Table also shows results (in the column headed \Thinking+fEWA") when the

initial conditions are created by the thinking steps model rather than from ¯rst-period

data and combined with the fEWA learning model. Thinking plus fEWA are also a little

more accurate than the belief and reinforcement models in ¯ve of seven games. The hit

rate and LL su®er only a little compared to the fEWA with estimated parameters. When

common parameters are estimated across games (the row labelled \pooled"), ¯xing initial

conditions with the thinking steps model only lowers ¯t slightly.

Now we will show predicted and relative frequencies for three games which highlight

di®erences among models. In other games the di®erences are minor or hard to see with

the naked eye.33

33More details are in Ho, Camerer and Chong, 2001, and corresponding graphs for all games can be

seen at http://www.fba.nus.edu.sg/depart/mk/fbacjk/ewalite/ewalite.htm
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3.5 Dominance-solvable games: Beauty contests

In beauty contest games each of n players chooses xi 2 [0; 100]. The average of their

choices is computed and whichever player is closest to p < 1 times the average wins a

¯xed prize (see Nagel, 1999, for a review). The unique Nash equilibrium is zero. (The

games get their name from a passage in Keynes about how the stock market is like a

special beauty contest in which people judge who others will think is beautiful.) These

games are a useful way to measure the steps of iterated thinking players seem to use

(since higher steps will lead to lower number choices). Experiments have been run with

exotic subject pools like Ph.D's and CEOs (Camerer, 1997), and in newspaper contests

with very large samples (Nagel et al., 1999). The results are generally robust although

specially-educated subjects (e.g., professional game theorists) choose, not surprisingly,

closer to equilibrium.

We analyze experiments run by Ho, Camerer and Weigelt (1998).34 The data and

relative frequencies predicted by each learning model are shown in Figure 6a-f. Figure

6a shows that while subjects start around the middle of the distribution, they converge

downward steadily toward zero. By period 5 half the subjects choose numbers 1-10.

The EWA, belief, and thinking-fEWA model all capture the basic regularities although

they underestimate the speed of convergence. (In the next section we add sophistication{

some subjects know that others are learning and \shoot ahead" of the learners by choosing

lower numbers{ which improves the ¯t substantially.) The QRE model is a dud in

this game and reinforcement also learns far too slowly because most players receive no

reinforcement.35

34Subjects were 196 undergraduate students in computer science and engineering in Singapore. Each

group played 10 times together twice, with di®erent values of p in the two 10-period sequences. (One

sequence used p > 1 and is not included.) We analyze a subsample of their data with p = :7 and :9,

from groups of size 7. This subsample combines groups in a `low experience' condition (the game is the

¯rst of two they play) and a `high experience' condition (the game is the second of two, following a game

with p > 1).
35Reinforcement can be sped up in such games by reinforcing unchosen strategies in some way, e.g.,

Roth and Erev, 1995, which is why EWA and belief learning do better.
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Table 4: Payo®s in `continental divide' experiment, Van Huyck, Cook and Battalio (1997)

Median Choice

choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142

2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98

3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58

4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22

5 35 44 52 60 69 77 83 46 32 25 19 15 12 10

6 23 33 42 52 62 72 82 62 53 47 43 41 39 38

7 7 18 28 40 51 64 78 75 69 66 64 63 62 62

8 -13 -1 11 23 37 51 69 83 81 80 80 80 81 82

9 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 98

10 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 110

11 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 119

12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123

13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123

14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120

3.6 Games with multiple equilibria: Continental divide game

Van Huyck, Cook and Battalio (1997) studied a coordination game with multiple equi-

libria and extreme sensitivity to initial conditions, which we call the continental divide

game (CDG). The payo®s in the game are shown in Table 4. Subjects play in cohorts of

seven people. Subjects choose an integer from 1 to 14, and their payo® depends on their

own choice and on the median choice of all seven players.

The payo® matrix is constructed so that there are two pure equilibria (at 3 and 12)

which are Pareto-ranked (12 is the better one). Best responses to di®erent medians are

in bold. The best-response correspondence bifurcates in the middle: If the median starts

at 7 virtually any sort of learning dynamics will lead players toward the equilibrium at

3. If the median starts at 8 or above, however, learning will eventually converge to an

equilibrium of 12. Both equilibrium payo®s are shown in bold italics. The payo® at 3 is

about half as much as at 12 so which equilibrium is selected has a large economic impact.
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Figures 7a-f show empirical frequencies (pooling all subjects) and model predictions.36

The key features of the data are: Bifurcation over time from choices in the middle of the

range (5-10) to the extremes, near the equilibria at 3 and 12; and late-period choices are

more clustered around 12 than around 3. There is also an extreme sensitivity to initial

conditions (which is disguised by the aggregation across sessions in Figure 7a): Namely,

¯ve groups had initial medians below 7 and all ¯ve converged toward the ine±cient low

equilibrium. The other ¯ve groups had initial medians above 7 and all ¯ve converged

toward the e±cient high equilibrium. This path-dependence shows the importance of a

good theory of initial conditions (such as the thinking steps model). Because a couple of

steps of thinking generates a distribution concentrated in the middle strategies 5-9, the

thinking-steps models predicts that initial medians will sometimes be above the separatrix

7 and sometimes below. The model does not predict precisely which equilibrium will

emerge, but it predicts that both high and low equilibria will sometimes emerge.

Notice also that strategies 1-4 are never chosen in early periods, but are frequently

chosen in later periods. Strategies 7-9 are frequently chosen in early periods but rarely

chosen in later periods. Like a sportscar, a good model should be able to capture these

e®ects by "accelerating" low choices quickly (going from zero to frequent choices in a few

periods) and "braking" midrange choices quickly (going from frequent choices to zero).

QRE ¯ts poorly because it predicts no movement (it is not a theory of learning, of

course, but simply a static benchmark which is tougher to beat than Nash). Reinforce-

ment with PV ¯ts well. Belief learning does not reproduce the asymmetry between sharp

convergence to the high equilibrium and °atter frequencies around the low equilibrium.

The reason why is diagnostic of a subtle weakness in belief learning. Note from Table 4

that the payo® gradients around the equilibria at 3 and 12 are exactly the same{ choosing

one number too high or low \costs" $.02; choosing two numbers too high or low costs

$.08, and so forth. Since belief learning computes expected payo®s, and the logit rule

means only di®erences in expected payo®s in°uence choice probability, the fact that the

payo® gradients are the same means the spread of probability around the two equilibria

must be the same. fEWA, parametric EWA, and the reinforcement models generate the

asymmetry with low ±.37

36Their experiment used 10 cohorts of seven subjects each, playing for 15 periods. At the end of each

period subjects learned the median, and played again with the same group in a partner protocol. Payo®s

were the amounts in the table, in pennies.
37At the high equilibrium, the payo®s are larger and so the di®erence between the received payo® and

± times the foregone payo® will be larger than at the low equilibrium. (Numerically, a player who chooses
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3.7 Games with dominance-solvable equilibrium: Price-matching

with loyalty

Capra et al. (1999) studied a dominance-solvable price-matching game. In their game

two players simultaneously choose a price between 80 and 200. Both players earn the low

price. In addition, the player who names the lower price receives a bonus of R and the

players who names the higher price pays a penalty R. (If their prices are the same the

bonus and penalty cancel and players just earn the price they named.) You can think of

R as a reduced-form expression of the bene¯ts of customer loyalty and word-of-mouth

which accrue to the lower-priced player, and the penalty is the cost of customer disloyalty

and switching away from the high-price ¯rm. We like this game because price-matching

is a central feature of economic life. These experiments can also, in principle, be tied to

¯eld observations in future work.

Their experiment used six groups of 9-12 subjects. The reward/penalty R had six

values (5, 10, 20, 25, 50, 80). Subjects were rematched randomly.38

Figures 8a-f show empirical frequencies and model ¯ts for R=50 (where the models

di®er most). A wide range of prices are named in the ¯rst round. Prices gradually fall,

between 91-100 in rounds 3-5, 81-90 in rounds 5-6, and toward the equilibrium of 80 in

later rounds.

QRE predicts a spike at the Nash equilibrium of 80.39 The belief-based model pre-

dicts the direction of convergence, but overpredicts numbers in the interval 81-90 and

underpredicts choices of precisely 80. The problem is that the incentive in the travellers'

3 when the median is 3 earns $.60 and has a foregone payo® from 2 or 4 of $.58 ¢±. The corresponding

¯gures for a player choosing 12 are $1.12 and $1:10 ¢ ± . The di®erences in received and foregone payo®s

around 12 and around 3 are the same when ± = 1 but the di®erence around 12 grows larger as ± falls (for

example, for the fEWA estimate ±̂ = :69, the di®erences are $.20 and $.36 for 3 and 12.) Cumulating

payo®s rather than averaging them \blows up" the di®erence and produces sharper convergence at the

high equilibrium.
38They also had a session with R = 10 but in this session one subject sat out each round so we dropped

it to avoid making an ad hoc assumption about learning in this unusual design. Each subject played 10

times (and played with a di®erent R for ¯ve more rounds; we use only the ¯rst 10 rounds)
39As ¸ rises, the QRE equilibria move sharply from smearing probability throughout the price range

(for low ¸) to a sharp spike at the equilibrium (higher ¸). No intermediate ¸ can explain the combination

of initial dispersion and sharp convergence at the end so the best-¯tting QRE model essentially makes

the Nash prediction.
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dilemma is to undercut the other player's price by as little as possible. Players only

choose 80 frequently in the last couple of periods; before those periods it pays to choose

higher numbers.

EWA models explain the sharp convergence in late periods by cumulating payo®s

and estimating ± = :63 (for fEWA). Players who chose 80 while others named a higher

price could have earned more by undercutting the other price, but weighting that higher

foregone payo® by ± means their choice of 80 is reinforced more strongly, which matches

the data.

Reinforcement with payo®-variability has a good hit rate because the highest spikes in

the graph often correspond with spikes in the data. But the graph shows that predicted

learning is much more sluggish than in the data (i.e., the spikes are not high enough).

Because Á = 1 and players are not predicted to move toward ex-post best responses, the

model cannot explain why players learn to choose 80 so rapidly.

3.8 Economic value of learning models

In the last couple of decades the concept of economic engineering has gradually emerged

from its start in the late 1970s (see Plott, 1986) as increasingly important. Experimen-

tation has played an important role in this emergence (see Plott, 1997; Rassenti, Smith

and Wilson, 2001; Roth, 2001). For the practice of economic engineering, it is useful

to have a measure of how much value a theory or design creates. For policy purposes

increases in allocative e±ciency are a sensible measure. But for judging the private value

of advice to a ¯rm or consumer other measures are more appropriate.

Camerer and Ho (2001) introduced a measure called \economic value". The economic

value of a learning theory is how much model forecasts of behavior of other players

improve the pro¯tability of a particular player's choices. This measure treats a theory as

being like the advice service professionals sell (e.g., consultants). The value of a theory is

the di®erence in the economic value of the client's decisions with and without the advice.

In equilibrium, the economic value of a learning theory is zero by de¯nition. A bad

theory, which implicitly \knows" less than the subjects themselves do about what other

subjects are likely to do, will have negative economic value.
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To measure economic value, we use model parameters and a player's observed expe-

rience through period t to generate model predictions about what others will do in t+1.

Those predictions are used to compute expected payo®s from strategies and recommend

a choice with the highest expected value. We then compare the pro¯t from making that

choice in t+1 (given what other players did in t+1) with pro¯t from the target player's

actual choice. Economic value is a good measure because it uses the full distribution

of predictions about what other players are likely to do, and the economic impact of

those possible choices. We have not yet controlled for the boomerang e®ect of how a

recommended choice would have changed future behavior by others, but this e®ect will

be small in most of the games.40

Data from six games are used to estimate model parameters and make recommenda-

tions in the seventh game, for each of the games separately. Table 5 shows the overall

economic value{ the percentage improvement (or decline) in payo®s of subjects from fol-

lowing a model recommendation rather than their actual choices. The highest economic

value for each game is printed in bold. Most models have positive economic value.41 The

percentage improvement is small in some games because even clairvoyant advice would

not raise pro¯ts much.42

fEWA and EWA usually add the most value (except in pot games, where only QRE

adds value). Belief learning has positive economic value in all but one game. Reinforce-

ment learning adds the most value in patent races, but has negative economic value in

three other games. (Reinforcement underestimates the rate of strategy change in conti-

nental divide and beauty contest games, and hence gives bad advice.) QRE has negative

40In beauty contests and coordination games, payo®s depend on the mean or median of fairly large

groups (7-9 except in 3-person entry games) so switching one subject's choice to the recommendation

would probably not change the mean or median and hence would not change future behavior much.

In other games players are usually paired randomly so the boomerang e®ect again is muted. We are

currently redoing the analysis to simply compare pro¯ts of players whose choices frequently matched the

recommendation with those who rarely did. This controls for the boomerang e®ect and also for a Lucas

critique e®ect in which adopting recommendations would change behavior of others and hence the model

parameters used to derive the recommendations. A more interesting correction is to run experiments in

which one or more computerized subjects actually use a learning model to make choices, and compare

their performance with that of actual sub jects.
41We are currently working on computing economic value of the thinking plus fEWA speci¯cation.
42For example, in the continental divide game, ex post optimal payo®s would have been 892 (pennies

per player) if players knew exactly what the median would be, and subjects actually earned 837. EWA

and fEWA generate simulated pro¯ts of 879-882, which is only an improvement of 5% over 837 but is

80% of the maximum possible improvement from actual payo®s to clairvoyant payo®s.
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Table 5: Economic value of learning theories (% improvement in payo®s)

Game functional EWA parametric EWA Belief-based Reinf.-PV QRE

continental divide 5.0% 5.2% 4.6% -9.4% -30.4%

median action 1.5% 1.5% 1.2% 1.3% -1.0%

p-Beauty contest 49.9% 40.8% 26.7% -7.2% -63.5%

price matching 10.3% 9.8% 9.4% 3.4% 2.7%

mixed strategies 7.5% 3.0% 1.1% 5.8% -1.8%

patent race 1.7% 1.2% 1.3% 2.9% 1.2%

pot games -2.7% -1.1% -1.3% -1.9% 9.9%

economic value in four games.

3.9 Summary

This section reports a comparison among several learning models on seven data sets. The

new model is fEWA, a variant of the hybrid EWA model in which estimated parameters

are replaced by functions which are entirely determined by data. fEWA captures pre-

dictable cross-game variation in parameters and hence ¯ts better than other models when

common parameters are estimated across games. A closer look at the continental divide

and price-matching games shows that belief models are close to the data on average but

miss other features (the asymmetry in convergence toward each of the two pure equilibria

in the continental divide game, and the sharp convergence on the minimum price in price-

matching). Reinforcement predicts well in coordination games and predicts the correct

price often in price-matching (but with too little probability). However, reinforcement

predicts badly in beauty contest games. It is certainly true that for explaining some

features of some games, the reinforcement and belief models are adequate. But fEWA

is easier to estimate (it has one parameter instead of two) and explains subtler features

other models sometimes miss. It is also never ¯ts poorly (relative to other games), which

is the de¯nition of robustness.
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4 Sophistication and teaching

The learning models discussed in the last section are adaptive and backward-looking:

Players only respond to their own previous payo®s and knowledge about what others did.

While a reasonable approximation, these models leave out two key features: Adaptive

players do not explicitly use information about other players' payo®s (though subjects

actually do43); and adaptive models ignore the fact that when the same players are

matched together repeatedly, their behavior is often di®erent than then they are not

rematched together, generally in the direction of greater e±ciency (e.g., Andreoni and

Miller (1993), Clark and Sefton (1999), Van Huyck, Battalio and Beil (1990)).

In this section adaptive models are extended to include sophistication and strategic

teaching in repeated games (see Stahl, 1999; and Camerer, Ho and Chong, in press, for

details). Sophisticated players believe that others are learning and anticipate how others

will change in deciding what to do. In learning to shoot a moving target, for example,

soldiers and ¯ghter pilots learn to shoot ahead, toward where the target will be, rather

than shoot at the current target. They become sophisticated.

Sophisticated players who also have strategic foresight will \teach"{ that is, they

choose current actions which teach the learning players what to do, in a way that bene¯ts

the teacher in the long-run. Teaching can be either mutually-bene¯cial (trust-building

in repeated games) or privately-bene¯cial but socially costly (entry-deterrence in chain-

store games). Note that sophisticated players will use information about payo®s of others

(to forecast what others will do) and will behave di®erently depending on how players

are matched, so adding sophistication can conceivably account for e®ects of information

and matching that adaptive models miss.44

4.1 Sophistication

Let's begin with myopic sophistication (no teaching). The model assumes a population

mixture in which a fraction ® of players are sophisticated. To allow for possible overcon-

¯dence, sophisticated players think that a fraction (1¡®0) of players are adaptive and the

43Partow and Schotter (1993), Mookerjee and Sopher (1994), Cachon and Camerer (1996).
44Sophistication may also potentially explain why players sometimes move in the opposite direction

predicted by adaptive models (Rapoport, Lo and Zwick, 1999), and why measured beliefs do not match

up well with those predicted by adaptive belief learning models (Nyarko and Schotter, in press).
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remaining fraction ®0 of players are sophisticated like themselves.45 Sophisticated play-

ers use the fEWA model to forecast what adaptive players will do, and choose strategies

with high expected payo®s given their forecast and their guess about what sophisticated

players will do. Denoting choice probabilities by adaptive and sophisticated players by

P ji (a; t) and P ji (s; t), attractions for sophisticates are

Aji(s; t) =
m¡iX

k=1

[®0P k¡i(s; t+ 1) + (1¡ ®0) ¢ P k¡i(a; t+ 1)] ¢ ¼i(sji; sk¡i) (4.1)

Note that since the probability P k¡i(s; t + 1) is derived from an analogous condition

for Aji(s; t), the system of equations is recursive. Self-awareness creates a whirlpool of

recursive thinking which means QRE (and Nash equilibrium) are special cases in which

all players are sophisticated and believe others are too (® = ®0 = 1).

An alternative structure we are currently studying links steps of sophistication to the

steps of thinking used in the ¯rst period. For example, de¯ne zero learning steps as using

fEWA; one step is best-responding to zero-step learners; two steps is best-responding to

choices of one-step sophisticates, and so forth. We think this model can produce results

similar to the recursive one we report below, and it replaces ® and ®0 with ¿ from the

theory of initial conditions so it reduces the entire thinking-learning-teaching model to

only two parameters.

We estimate the sophisticated EWA model using data from p-beauty contests in-

troduced above. Table 6 reports results and estimates of important parameters (with

bootstrapped standard errors). For inexperienced subjects, adaptive EWA generates

Cournot-like estimates (Á̂ = 0 and ±̂ = :90). Adding sophistication increases Á̂ and

improves LL substantially both in- and out-of-sample. The estimated fraction of sophis-

ticated players is 24% and their estimated perception ®̂0 is zero, showing overcon¯dence

(as in the thinking-steps estimates from the last section).46

Experienced subjects are those who play a second 10-period game with a di®erent

p parameter (the multiple of the average which creates the target number). Among

45To truncate the belief hierarchy, the sophisticated players believe that the other sophisticated players,

like themselves, believe there are ®0 sophisticates.
46The gap between apparent sophistication and perceived sophistication shows the empirical advantage

of separating the two. Using likelihood ratio tests, we can clearly reject both the rational expectations

restriction ® = ®0 and the pure overcon¯dence restriction ®0 = 0 although the di®erences in log-likelihood

are not large.
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Table 6: Sophisticated and adaptive learning model estimates for the p-beauty contest

game (Camerer, Ho, and Chong, in press)

inexperienced subjects experienced subjects

sophisticated adaptive sophisticated adaptive

EWA EWA EWA EWA

Á 0.44 0.00 0.29 0.22

(0:05)2 (0.00) (0.03) (.02)

± 0.78 0.90 0.67 0.99

(0.08) (0.05) (0.05) (0.02)

® 0.24 0.00 0.77 0.00

(0.04) (0.00) (0.02) (0.00)

®0 0.00 0.00 0.41 0.00

(0.00) (0.00) (0.03) (0.00)

LL

(in sample) -2095.32 -2155.09 -1908.48 -2128.88

(out of sample) -968.24 -992.47 -710.28 -925.09

2Standard errors in parentheses.
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experienced subjects, the estimated proportion of sophisticates increases to ®̂ = 77%.

Their estimated perceptions increase too but are still overcon¯dent (®̂0 = 41%). The

estimates re°ect \learning about learning": Subjects who played one 10-period game

come to realize an adaptive process is occurring; and most of them anticipate that others

are learning when they play again.

4.2 Strategic teaching

Sophisticated players matched with the same players repeatedly often have an incentive

to \teach" adaptive players, by choosing strategies with poor short-run payo®s which will

change what adaptive players do, in a way that bene¯ts the sophisticated player in the

long-run. Game theorists have showed that strategic teaching could select one of many

repeated-game equilibria (teachers will teach the pattern that bene¯ts them) and could

give rise to reputation formation without the complicated apparatus of Bayesian updating

of Harsanyi-style payo® types (see Fudenberg and Levine, 1989; Watson, 1993; Watson

and Battigali, 1997). This section of the paper describes a parametric model which

embodies these intuitions, and tests it with experimental data. The goal is to show how

the kinds of learning models described in the previous section can be parsimoniously

extended to explain behavior in more complex games which are, perhaps, of even greater

economic interest than games with random matching.

Consider a ¯nitely-repeated trust game. A borrower B wants to borrow money from

each of a series of lenders denoted Li (i = 1; : : : ; N). In each period a lender makes

a single lending decision (Loan or No Loan). If the lender makes a loan, the borrower

either (repays or defaults). The next lender in the sequence, who observed all the previous

history, then makes a lending decision. The payo®s used in experiments are shown in

Table 7.

There are actually two types of borrowers. As in post-Harsanyi game theory with

incomplete information, types are expressed as di®erences in borrower payo®s which the

borrowers know but the lenders do not (though the probability that a given borrower

is each type is commonly known). The honest (Y) types actually receive more money

from repaying the loan, an experimenter's way of inducing preferences like those of a

person who has a social utility for being trustworthy (see Camerer, 2002, chapter 3 and

references therein). The normal (X) types, however, earn 150 from defaulting and only
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Table 7: Payo®s in the borrower-lender trust game, Camerer & Weigelt (1988)

lender borrower payo®s to payo®s to borrower

strategy strategy lender normal (X) honest (Y)

loan default -100 150 0

repay 40 60 60

no loan (no choice) 10 10 10

60 from repaying. If they were playing just once and wanted to earn the most money,

they would default.

In the standard game-theoretic account, paying back loans in ¯nite games arises

because there is a small percentage of honest types who always repay. This gives normal-

type borrowers an incentive to repay until close to the end, when they begin to use mixed

strategies and default with increasing probability.

Whether people actually play these sequential equilibria is important to investigate for

two reasons. First, the equilibria impose consistency between optimal behavior by bor-

rowers and lenders and Bayesian updating of types by lenders (based on their knowledge

and anticipation of the borrowers' strategy mixtures); whether reasoning or learning can

generate this consistency is an open behavioral question (cf. Selten, 1978). Second, the

equilibria are very sensitive to the probability of honesty (if it is too low the reputational

equilibria disappear and borrowers should always default), and also make counterintu-

itive comparative statics predictions which are not con¯rmed in experiments (e.g., Neral

and Ochs, 1992; Jung, Kagel and Levin, 1994).

In the experiments subjects play many sequences of 8 periods. The eight-period

game is repeated to see whether equilibration occurs across many sequences of the entire

game.47 Surprisingly, the earliest experiments showed that the pattern of lending, de-

fault, and reactions to default across experimental periods within a sequence is roughly

in line with the equilibrium predictions. Typical patterns in the data are shown in Fig-

ures 9a-b. Sequences are combined into ten-sequence blocks (denoted \sequence") and

average frequencies are reported from those blocks. Periods 1,...,8 denote periods in each

47Borrower subjects do not play consecutive sequences, which removes their incentive to repay in the

eighth period of one sequence so they can get more loans in the ¯rst period of the next sequence.
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sequence. The ¯gures show relative frequencies of no loan and default (conditional on

a loan). Figure 9a shows that in early sequences lenders start by making loans in early

periods (i.e., there is a low frequency of no-loan), but they rarely lend in periods 7-8.

In later sequences they have learned to always lend in early periods and rarely lend in

later periods. Figure 9b shows that borrowers rarely default in early periods, but usu-

ally default (conditional on getting a loan) in periods 7-8. The within-sequence pattern

becomes sharper in later sequences.

The general patterns predicted by equilibrium are therefore present in the data. But

given how complex the equilibrium is, how do players approximate it? Camerer and

Weigelt (1988) concluded their paper as follows:

...the long period of disequilibrium behavior early in these experiments raises

the important question of how people learn to play complicated games. The

data could be ¯t to statistical learning models, though new experiments or

new models might be needed to explain learning adequately. (pp 27-28)

The teaching model is a \new model" of the sort Camerer and Weigelt had in mind. It is

a boundedly rational model of reputation formation in which the lenders learn whether

to lend or not. They do not update borrowers' types and do not anticipate borrowers'

future behavior (as in equilibrium models); they just learn.

In the teaching model, some proportion of borrowers are sophisticated and teach; the

rest are adaptive and learn from experience but have no strategic foresight. The teachers

choose strategies which are expected (given their beliefs about how borrowers will react

to their teaching) to give the highest long-run payo®s in the remaining periods.

A sophisticated teaching borrower's attractions for sequence k after period t are spec-

i¯ed as follows (j 2 frepay; defaultg is the borrower's set of strategies):

AjB(s; k; t) =
NoLoanX

j0=Loan

P j
0

L (a; k; t+ 1) ¢ ¼B(j; j0)+

max
Jt+1

f
TX

v=t+2

NoLoanX

j0=Loan

P̂ j
0

L (a; k; vjjv¡1 2 Jt+1) ¢ ¼B(jv 2 Jt+1; j
0)g

The set Jt+1 speci¯es a possible path of future actions by the sophisticated borrower

from round t+ 1 until end of the game sequence. That is Jt+1 = fjt+1; jt+2; : : : ; jT¡1; jTg
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and jt+1 = j.48 The expressions P̂ j0
L (a; k; vjjv¡1) are the overall probabilities of either

getting a loan or not in the future periods v, which depends on what happened in the

past (which the teacher anticipates).49 P jB(s; k; t+ 1) is derived from AjB(s; k; t) using a

logit rule.

The updating equations for adaptive players are the same as those used in fEWA with

two twists. First, since lenders who play in later periods know what has happened earlier

in a sequence, we assume that they learned from the experience they saw as if it had

happened to them.50. Second, a lender who is about to make a decision in period 5 of

sequence 17, for example, has two relevant sources of experience to draw on{ the behavior

she saw in periods 1-4 in sequence 17, and the behavior she has seen in the period 5's of

the previous sequences (1-16). Since both kinds of experience could in°uence her current

decision, we include both using a two-step procedure. After period 4 of sequence 17, for

example, attractions for lending and not lending are ¯rst updated based on the period 4

experience. Then attractions are partially updated (using a degree of updating parameter

¾) based on the experience in period 5 of the previous sequences.51 The parameter ¾ is

a measure of the strength of \peripheral vision"{ glancing back at the \future" period

5's from previous sequences to help guess what lies ahead.

Of course, it is well-known that repeated-game behavior can arise in ¯nite-horizon

games when there are a small number of \unusual" types (who act like the horizon is

unlimited), which creates an incentive for rational players to behave as if the horizon

is unlimited until near the end (e.g., Kreps and Wilson, 1982). But specifying why

some types are irrational, and how many they are, makes this interpretation di±cult

to test. In the teaching approach, which \unusual" type the teacher pretends to be

arises endogenously from the payo® structure: They are Stackelberg types, who play the

strategy they would choose if they could commit to it. For example, in trust games,

they would like to commit to repaying; in entry-deterrence, they would like to commit

48To economize in computing, we search only paths of future actions that always have default following

repay because the reverse behavior (repay following default) generates a lower return.
49Formally, P̂ j

0
L (a;k; vjjv¡1) = P̂LoanL (a; k; v ¡ 1jjv¡1) ¢ P j

0
L (a;k; vj(Loan; jv¡1)) + P̂ NoLoan

L (a; k; v ¡
1jjv¡1) ¢P j0

L (a; k; vj(NoLoan; jv¡1)).
50This is called \observational learning"; see Du®y and Feltovich, 1999) Without this assumption the

model learns far slower than the lenders do so it is clear that they are learning from observing others
51The idea is to create an \interim" attraction for round t, B

j
L(a; k; t), based on the attraction

AjL(a; k; t ¡ 1) and payo® from the round t, then incorporate experience in round t + 1 from previ-

ous sequences, transforming Bj
L(a; k; t) into a ¯nal attraction AjL(a; k; t). See Camerer, Ho, and Chong

(in press) for details.
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to ¯ghting entry.

The model is estimated using repeated game trust data from Camerer and Weigelt

(1988). In Camerer, Ho and Chong (in press), we used parametric EWA to model behav-

ior in trust games. That model allows two di®erent sets of EWA parameters for lenders

and borrowers. In this paper we use fEWA to model lenders and adaptive borrowers so

the model has fewer parameters.52 Maximum likelihood estimation is used to estimate

parameters on 70% of the sequences in each experimental session, then behavior in the

holdout sample of 30% of the sequences is forecasted using the estimated parameters.

As a benchmark alternative to the teaching model, we estimated an agent-based ver-

sion of QRE suitable for extensive-form games (see McKelvey and Palfrey, 1998). Agent-

QRE is a good benchmark because it incorporates the key features of repeated-game

equilibrium{ strategic foresight, accurate expectations about actions of other players,

and Bayesian updating{ but assumes stochastic best-response. We use an agent-based

form in which players choose a distribution of strategies at each node, rather than using

a distribution over all history-dependent strategies. We implement agent QRE with four

parameters{ di®erent ¸'s for lenders, honest borrowers, and normal borrowers, and a

fraction µ, the percentage of players with normal-type payo®s who are thought to act as

if they are honest (re°ecting a \homemade prior" which can di®er from the prior induced

by the experimental design53). (Standard equilibrium concepts are a special case of this

model when ¸'s are large and µ = 0, and ¯t much worse than AQRE does).

The models are estimated separately on each of the eight sessions to gauge cross-

session stability. Since pooling sessions yields similar ¯ts and parameter values, we report

only those pooled results in Table 8 (excluding the ¸ values). The interesting parameters

for sophisticated borrowers are estimated to be ®̂ = :89 and ¾̂ = :93, which means most

subjects are classi¯ed as teachers and they put a lot of weight on previous sequences. The

teaching model ¯ts in-sample and predicts better out-of-sample than AQRE by a modest

margin (and does better in six of eight individual experimental sessions), predicting about

75% of the choices correctly. The AQRE ¯ts reasonably well too (72% correct) but the

estimated \homemade prior" µ is .91, which is absurdly high. (Earlier studies estimated

numbers around .1-.2.) The model basically ¯ts best by assuming that all borrowers

52We use four separate ¸'s, for honest borrowers, lenders, normal adaptive borrowers, and teaching

borrowers, an initial attraction for lending A(0), and the spillover parameter ¾ and teaching proportion

®.
53see Camerer and Weigelt (1988), Palfrey and Rosenthal (1988), and McKelvey and Palfrey (1992).
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Table 8: Model parameters and ¯t in repeated trust games

model

fEWA+ Agent

statistic teaching QRE

in-sample hit rate (%) 76.5% 73.9%

calibration (n=5757) log-likelihood -2975 -3131

out-of-sample hit rate (%) 75.8% 72.3%

validation (n=2894) log-likelihood -1468 -1544

parameters estimates

cross-sequence learning ¾ 0.93 -

% of teachers ® 0.89 -

homemade prior p(honest) µ - 0.91

simply prefer to repay loans. This assumption ¯ts most of the data but it mistakes

teaching for a pure repayment preference. As a result, it does not predict the sharp

upturn in defaults in periods 7-8, which the teaching model does.

Figures 5c-d show average predicted probabilities from the teaching model for the

no-loan and conditional default rates. No-loan frequencies are predicted to start low and

rise across periods, as they actually do, though the model underpredicts the no-loan rate

in general. The model predicts the increase in default rate across periods reasonably

well, except for underpredicting default in the last period.

The teaching approach as a boundedly-rational alternative to type-based equilibrium

models of reputation-formation.54 It has always seemed improbable that players are

capable of the delicate balance of reasoning required to implement the type-based models,

unless they learn the equilibrium through some adaptive process. The teaching model

is one parametric model of that adaptive process. It retains the core idea in the theory

of repeated games{ namely, strategic foresight{ and consequently, respects the fact that

54One direction we are pursuing is to ¯nd designs or tests which distinguish the teaching and equilib-

rium updating approaches. The sharpest test is to compare behavior in games with types that are ¯xed

across sequences with types that are independently \refreshed" in each period within a sequence. The

teaching approach predicts similar behavior in these two designs but type-updating approaches predict

that reputation formation dissolves when types are refreshed.
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matching protocols matter. And since the key behavioral parameters (® and ¾) appear

to be near one, restricting attention to these values should make the model workable for

doing theory.

4.3 Summary

In this section we introduced the possibility that players can be sophisticated{ i.e., they

believe others are learning. (In future work, it would be interesting to link steps of iter-

ated thinking, as in the ¯rst section, to steps of sophisticated thinking.) Sophistication

links learning theories to equilibrium ones if sophisticated players are self-aware. Adding

sophistication also improves the ¯t of data from repeated beauty-contest games. Inter-

estingly, the proportion of estimated sophisticates is around a quarter when subjects

are inexperienced, but rises to around three-quarters when the play an entire 10-period

game a second time, as if subjects learn about learning. Sophisticated players who know

they will be rematched repeatedly may have an incentive to \teach", which provides a

boundedly rational theory of reputation formation. We apply this model to data on

repeated trust games. The model adds only two behavioral parameters, representing

the fraction of teachers and how much \peripheral vision" learners have (and some nui-

sance ¸ parameters), and predicts substantially better than a quantal response version

of equilibrium.

5 Conclusion

In the introduction we stated that the research program in behavioral game theory has

three goals: (1) To create a theory of one-shot or ¯rst-period play using an index of

bounded rationality measuring steps of thinking; (2) to predict features of equilibration

paths when games are repeated; and (3) to explain why players behave di®erently when

matched together repeatedly.55

The models described in this paper illustrate ways to understand these three phenom-

ena. There are lots of alternative models (especially of learning). The models described

55A fourth enterprise ¯ts utility functions which re°ect social preferences for fairness or equality. This

important area is left aside in this paper.
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here are just some examples of the style in which ideas can be expressed and how data

are used to test and modify them.

Keep in mind that the goal is not to list deviations from Nash equilibrium and stop.

Deviations are just hints. The goal is to develop alternative models which are precise,

general, and disciplined by data. The thinking-steps model posits a Poisson distribution

(with mean ¿ ) of number of thinking steps, along with decision rules for what players

using each number of steps will do. Studies with simple matrix games, beauty contests

(unreported), mixed games, and entry games all show that values of ¿ around 1.5 can

¯t data reasonably well (and never worse than Nash equilibrium). The model is easy

to use because players can be assumed to best-respond and the model usually makes

realistic probabilistic predictions because the mixture of thinking steps types creates a

population mixture of responses. The surprise is that the same model, which is tailor-

made to produce spikes in dominance-solvable games, can also ¯t data from games with

pure and mixed equilibria using roughly the same ¿.

The second section compared several adaptive learning models. For explaining simple

trends in equilibration, many of these models are close substitutes. However, it is useful

to focus on where models fail if the goal is to improve them. The EWA hybrid was created

to include the psychological intuitions behind both reinforcement learning (that received

payo®s receive more weight than foregone payo®s) and belief learning (both types of

payo®s receive equal weight). If both intuitions were compelling enough for people to

want to compare them statistically, then a model which had both intuitions in it should

be better still (and generally, it is). The functional fEWA uses one parameter (¸) and

substitutes functions for parameters. The major surprise here is that functions like the

change-detector Ái(t) can reproduce di®erences across games in which parameter values

¯t best. This means the model can be applied to brand new games (when coupled with

a thinking-steps theory of initial conditions) without having to make a prior judgment

about what parameter values are reasonable, and without positing game-speci¯c strate-

gies. The interaction of learning and game structure creates reasonable parameter values

automatically.

In the third section we extend the adaptive learning models to include sophisticated

players who believe others are learning. Sophistication improves ¯t in the beauty con-

test game data (Experienced subjects seem to have \learned about learning" because

the percentage of apparently sophisticated players is higher and convergence is faster.)

Sophisticated players who realize they are matched with others repeatedly often have
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an incentive to \teach" as in the theory of repeated games. Adding two parameters

to adaptive learning was used to model learning and teaching in ¯nitely-repeated trust

games. While trustworthy behavior early in these games is known to be rationalizable

by Bayesian-Nash models with \unusual" types, the teaching model create the unusual

types from scratch. Teaching also ¯ts and predicts better than more forgiving quantal re-

sponse forms of the Bayesian-Nash type-based model. The surprise here is that the logic

of mutual consistency and type updating is not needed to produce accurate predictions

in ¯nitely-repeated games with incomplete information.

5.1 Potential applications

A crucial question is whether behavioral game theory can help explain naturally-occurring

phenomena. We conclude the paper with some speculations about the sorts of phenomena

precise models of limited thinking, learning, and teaching could illuminate.

Bubbles: Limited iterated thinking is potentially important because, as Keynes and

many others have pointed out before, it is not always optimal to behave rationally if you

believe others are not. For example, prices of assets should equal their fundamental or

intrinsic value if rationality is common knowledge (Tirole, 1985). But when the belief that

others might be irrational arises, bubbles can too. Besides historical examples like Dutch

tulip bulbs and the $5 trillion tech-stock bubble in the 1990s, experiments have shown

such bubbles even in environments in which the asset's fundamental value is controlled

and commonly-known.56

Speculation and competition neglect: The \Groucho Marx theorem" says that traders

who are risk-averse should not speculate by trading with each other even if they have pri-

vate information (since the only person who will trade with you may be better-informed).

But this theorem rests on unrealistic assumptions of common knowledge of rationality

and is violated constantly by massive speculative trading volume and other kinds of

betting, as well as in experiments.57

Players who do limited iterated thinking, or believe others are not as smart as them-

selves, will neglect competition in business entry (see Camerer and Lovallo, 1999; Huber-

56See Smith, Suchanek and Williams, 1988; Camerer and Weigelt, 1993; and Lei, Noussair and Plott,

2001.
57See Sonsino, Erev and Gilat, 2000; Sovik, 2000.
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man and Rubinstein, 2000). Competition neglect may partly explain why the failure rate

of new businesses is so high. Managerial hubris, overcon¯dence, and self-serving biases

which are correlated with costly delay and labor strikes in the lab (Babcock et al., 1995)

and in the ¯eld (Babcock and Loewenstein, 1997) can also be interpreted as players not

believing others always behave rationally.

Incentives: In a thorough review of empirical evidence on incentive contracts in or-

ganizations, Prendergast (1999) notes that workers typically react to simple incentives

as standard models predict. However, ¯rms usually do not implement complex contracts

which should elicit higher e®ort and improve e±ciency. Perhaps the ¯rms' reluctance to

bet on rational responses by workers is evidence of limited iterated thinking.

Macroeconomics: Woodford (2001) notes that in Phelps-Lucas \islands" models, nom-

inal shocks can have real e®ects but their predicted persistence is too short compared to

e®ects in data. He shows that imperfect information about higher-order nominal GDP

estimates{ beliefs about beliefs, and higher-order iterations{ can cause longer persistence

which matches the data. However, Svensson (2001) notes that iterated beliefs are proba-

bly constrained by computational capacity. If people have a projection bias, their beliefs

about what others believe will be too much like their own, which undermines Woodford's

case. On the other hand, in the thinking steps model players' beliefs are not mutually

consistent so there is higher-order belief inconsistency which can explain longer persis-

tence. In either case, knowing precisely how iterated beliefs work could help inform a

central issue in macroeconomics{ persistence of real e®ects of nominal shocks.

Learning: Other phenomena are evidence of a process of equilibration or learning. For

example, institutions for matching medical residents and medical schools, and analogous

matching in college sororities and college bowl games, developed over decades and often

\unravel" so that high-quality matches occur before some agreed-upon date (Roth and

Xing, 1994). Bidders in eBay auctions learn to bid late to hide their information about

an object's common value (Bajari and Hortacsu, 2000). Consumers learn over time what

products they like (Ho and Chong, 2000). Learning in ¯nancial markets can generate

excess volatility and returns predictability, which are otherwise anomalous in rational ex-

pectations models (Timmerman, 1993). We are currently studying evolution of products

in a high-uncertainty environment (electronics equipment) for which thinking-steps and

learning models are proving useful.

Teaching: Teaching in repeated games may prove to be the most potentially useful tool
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for economics, because it is essentially an account of how bounded rationality can give

rise to some features of repeated-game behavior, where standard theory has been widely

applied. The teaching model could be applied to repeated contracting, employment rela-

tionships, alliances among ¯rms, industrial organization problems (such as pricing games

among perennial rivals, and entry deterrence) and macroeconomic models of policymaker

in°ation-setting.58
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6 Appendix: Thinking models applied to mixed games

and entry games

6.1 Games with mixed equilibria

A good model of thinking steps should be able to both account for deviations from Nash

equilibrium (as in the games above), and reproduce the successes of Nash equilibrium. A

domain in which Nash equilibrium does a surprisingly good job is in games with unique

mixed equilibria. It is hard to beat Nash equilibrium in these games because (as we shall

see) the correlation with data is actually very good (around .9) so there is little room

for improvement. Instead, the challenge is to see how well a thinking-steps model which

bears little resemblance to the algebraic logic of equilibrium mixing can approximate

behavior in these games.

Early tests in the 1960's and 1970's (mostly by psychologists) appeared to reject Nash

equilibrium as a description of play in mixed games. As others have noted (e.g., Binmore



55

et al., 2001), these experiments were incomplete in important dimensions and hence

inconclusive. Financial incentives were very low or absent; subjects typically did not

play other human subjects (and often were deceived about playing other people, or were

only vaguely instructed about how their computer opponents played); and pairs were

often matched repeatedly so that (perceived) detection of temporal patterns permitted

subjects to choose nonequilibrium strategies. Under conditions ideal for equilibration,

however, convergence was rapid and sharp. Kaufman and Becker (1961), for example, had

subjects specify mixtures and told them that a computer program would then choose a

mixture to minimize the subjects' earnings. Subjects could maximize their possible gains

by choosing the Nash mixture. After playing ¯ve games, more than half learned to do

so. More recent experiments are also surprisingly supportive of Nash equilibrium (see

Binmore et al., 2001; and Camerer, 2002, chapter 2). The data are supportive in two

senses- (1) equilibrium predictions and actual frequencies are closely correlated, when

taken as a whole (e.g., strategies predicted to be more likely are almost always played

more often); and (2) it is hard to imagine any parsimonious theory which can explain

the modest deviations.

We applied a version of the thinking model in which K¡step thinkers think all others

are usingK¡1 steps along with best response to see whether it could produce predictions

as accurate as Nash in games with mixed equilibria. This model is extremely easy to use

(just start with step zero mixtures and compute best responses iteratively). Furthermore,

it creates natural \puri¯cation": Players using di®erent thinking steps usually choose

pure strategies, but the Poisson distribution of steps generates a mixture of responses

and hence, a probabilistic prediction.

Model predictions are compared with data from 15 games with unique mixed equilibria

reported in Camerer (2002, chapter 2).59 These games are not a random or exhaustive

sample of recent research but there are enough observations that we are con¯dent the

basic conclusion will be overturned by adding more studies. Note that we use data from

all the periods of these games rather than the ¯rst period only. (In most cases the

¯rst-period data are rarely reported, and there is usually little trend over time in the

data.)

59The studies, in the order in which ¿ estimates are reported below, are Malcolm and Lieberman

(1965), O'Neill (1987), Rapoport and Boebel (1992), Mookerjhee and Sopher (1997), Tang (2001, games

3 and 1), Ochs (1995, games with 9 and 4 payo®s), Bloom¯eld (1994), Rapoport and Amaldoss (2000,

r=8, 20), Binmore, Swierzbinski, and Proulx (2001), games 1, 3, 4. Readers should let us know of

published studies which we overlooked and we'll plan to include them in a later draft.
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Each data point in Figure 11 represents a single strategy from a di®erent game (pool-

ing across all periods to reduce sampling error).60 Figure 11 plots actual frequencies on

the ordinate (y) axis against either mixed-strategy equilibrium predictions or thinking-

steps predictions on the abscissa (x) axis.

In Figure 11, the value of ¿ is common across games (1.46) and minimizes mean

squared deviations between predicted and actual frequencies. When values are estimated

separately for each game to minimize mean squared deviations, the values across the

games (in the order they are listed above) are .3, .3, .3, 2.2, 2.5, .1, 1.8, 2.3, 2.9, 2.7, .5,

.8, 1.6, 1.5, 1.9. The lower values occur in games where the actual mixtures are close

to equal across strategies, so that a distribution with ¿ = 0 ¯ts well. When there are

dominated strategies, which are usually rarely played, much higher ¿ values are need

since low ¿ generates a lot of random play and frequent dominance violation. The simple

arithmetic average across the 15 games is 1.45 which is very close to the best-¯tting

common ¿ = 1:46. The Figure shows two regularities: Both thinking-steps (circles in the

plot) and equilibrium predictions (triangles) have very high correlations (above .9) with

the data, though there is substantial scatter, especially at high probabilities. (Keep in

mind that sampling error means there is an upper bound on how well any model could

¯t- even the true model which generated the data.) The square roots of the mean squared

deviation is around .10 for both models.

While the thinking-steps model with common ¿ is a little less accurate than Nash

equilibrium (the game-speci¯c model is more accurate), the key point is that the same

model which can explain Nash deviations in dominance-solvable games and matrix games

¯ts about as well with a value of ¿ close to those estimated in other games.

Table 9 shows a concrete example of how the thinking model is able to approximate

mixture probabilities. The game is Mookerjhee and Sopher's (1997) 4x4 game. Payo®s are

shown as wins (+) or losses (-) (the (2/3)+ means a 2/3 chance of winning) in the upper

left cells. The rightmost columns show the probabilities with which row players using

di®erent thinking steps choose each of the four row strategies. To narrate a bit, zero-step

players randomize (each is played with probability .25); one-step players best-respond

to a random column choice and choose row strategy 3 with probability 1, and so forth.

First notice that the weakly dominated strategy (4) is only chosen by a quarter of 0-step

60In each game, data from those n-1 out of the n possible strategies with the most extreme predicted

equilibrium probabilities are used to ¯t the models. Excluding the n-th strategy reduces the dependence

among data points, since all n frequencies (and predictions) obviously add to one.
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Table 9: How thinking steps ¯ts mixed-game data (Mookerjhee and Sopher 4x4 game)

row strategies 1-4 column thinking steps 0-5 thinking

strat's 1 2 3 4 step 0 1 2 3 4 5 MSE data model

1 + - - + 0.25 0 0.5 1 0 0 0.375 .32 .37

2 - - + + 0.25 0 0 0 1 0 0.25 .17 .14

3 - + (2/3)+ (2/3)+ 0.25 1 0.5 0 0 1 0.375 .43 .46

4 - - (1/3)+ + 0.25 0 0 0 0 0 0 .08 .03

step 0 .25 .25 .25 .25

1 0.5 0.5 0 0

2 1 0 0 0

3 0 0 1 0

4 0 0.5 0.5 0

5 0.5 0.5 0 0

6 1 0 0 0

7 0 0 1 0

MSE 0.375 0.25 0.375 0

data 0.38 0.31 0.27 0.04

thinking 0.46 0.23 0.28 0.03
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players (since it is never a best response against players who randomize), which generates

a small amount of choice that matches the data. Notice also that the best responses tend

to lurch around as thinking steps change. When these are averaged over thinking steps

frequencies a population mixture results. Furthermore, one of the quirkiest features of

mixed equilibrium is that one player's mixture depends only on the other player's payo®s.

This e®ect also occurs in the thinking steps models because a K-step row player's payo®s

a®ect row's best responses, which then a®ect a K +1-step column player's best response.

So one player's payo®s a®ect the other's strategies indirectly. The table also shows the

MSE (mixed equilibrium) prediction, the data frequencies, and overall frequencies from

the thinking-steps model when ¿ = 2:2. The model ¯ts the data closer than MSE for

row players (it accounts for underplay of row strategy 2 and overplay of strategy 3) and

is equally accurate as MSE for column players. As noted in the text, the point is not

that the thinking steps model outpredicts MSE{ it cannot, because MSE has such a

high correlation{ but simply that the same model which explains behavior in dominance-

solvable, matrix, and entry games also generates mixtures of players playing near-pure

strategies which are close to outcomes in mixed games.

6.2 Market entry games

Analysis of the simple entry game described in the text proceeds as follows. Step 0's ran-

domize so f (0)=2 level 0's enter. De¯ne the relative proportion of entry after accounting

up through level k as N(k). De¯ne a Boolean function B(X) = 1 if X true, B(X) = 0

if X false. Level 1's enter i® 1=2 < c. Therefore, total entry "after" level 1 types are

accounted for is N(1) = f(0)=2+B[N (0)=(f (0)=2) > c]f (1) Total entry after level k type

is therefore N(k) = f (0)=2 +
Pk
n=1 f(n)B[N(n¡ 1)=(

Pk
m=1f (m)) > c]. A given c and ¿

then generates a sequence of cumulated entry rates which asymptotes as k grows large.

De¯ne a function N (allj¿ )(c) as the overall rate of entry, given ¿, for various capacities

c.

The data reported in the text Figure come from experiments by Sundali et al. (1995)

and Seale and Rapoport (1999). Their game is not precisely the same as the one analyzed

because in their game entrants earn 1 + 2(c¡ e) (where e is the number of entrants) and

nonentrants earn 1. They used 20 subjects with odd values of c (1,3,...19). To compute

entry rates reported in the Figure we averaged entry for adjacent c values (i.e., averaging

1 and 3 yields a ¯gure for c = 2 to match c=.1, averaging 3 and 5 yields a ¯gure for
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c = 4 corresponding to c=.2, etc.) Obviously the analysis and data are not perfectly

matched, but we conjecture that the thinking steps model can still match data closely

and reproduce the three experimental regularities described in the text; whether this is

true is the subject of ongoing research.
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Figure 2: Fit of thinking-steps model to three 
games (R2=.84)
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Figure 3: Nash equilibrium predictions vs 
data in three games 
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Figure 4: How entry varies with capacity (c),  
data and thinking-steps model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

capacity (out of 10)

%
 e

n
tr

y entry=capacity

experimental data

tau=1.5

tau=2



Figure 5: The EWA Learning Cube 
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Figure 6: Predicted Frequencies  for p-Beauty Contest

1

3

5

7

9

0

1~
10

11
~

20

21
~

30

31
~

40

41
~

50

51
~

60

61
~

70

71
~

80

81
~

90

91
~

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

Prob

Period

Strategy

Empirical Frequency

1

3

5

7

9

0

1~
10

11
~

20

21
~

30

31
~

40

41
~

50

51
~

60

61
~

70

71
~

80

81
~

90

91
~

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

Prob

Period

Strategy

Thinking fEWA

1

3

5

7

9

0

1~
10

11
~

20

21
~

30

31
~

40

41
~

50

51
~

60

61
~

70

71
~

80

81
~

90

91
~

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

Prob

Period

Strategy

Adaptive EWA

1

3

5

7

9

0

1~
10

11
~

20

21
~

30

31
~

40

41
~

50

51
~

60

61
~

70

71
~

80

81
~

90

91
~

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

Prob

Period

Strategy

Belief-based

1

3

5

7

9

0

1~
10

11
~

20

21
~

30

31
~

40

41
~

50

51
~

60

61
~

70

71
~

80

81
~

90

91
~

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

Prob

Period

Strategy

Choice Reinforcement with PV

1

3

5

7

9

0

1~
10

11
~

20

21
~

30

31
~

40

41
~

50

51
~

60

61
~

70

71
~

80

81
~

90

91
~

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

Prob

Period

Strategy

Quantal Response



Figure 7: Predicted Frequencies for Continental Divide
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Figure 8: Predicted Frequency for Traveller's Dilemma (Reward = 50)
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Figure 9c: Predicted Frequency for No Loan
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Figure 9a: Empirical Frequency for No Loan
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Figure 9b: Empirical Frequency for Default conditional on 
Loan (Dishonest Borrower)
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Figure 9d: Predicted Frequency for Default conditional on 
Loan (Dishonest Borrower)



Figure 10: Fit of data to equilibrium & thinking steps model 
(common ττ=1.5) in mixed-equilibrium games 
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