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Abstract

Self-tuning experience weighted attraction (EWA) is a one-parameter theory of learning in games. It
addresses a criticism that an earlier model (EWA) has too many parameters, by fixing some parameters at
plausible values and replacing others with functions of experience so that they no longer need to be estimated.
Consequently, it is econometrically simpler than the popular weighted fictitious play and reinforcement
learning models. The functions of experience which replace free parameters “self-tune” over time, adjusting
in a way that selects a sensible learning rule to capture subjects’ choice dynamics. For instance, the self-
tuning EWA model can turn from a weighted fictitious play into an averaging reinforcement learning as
subjects equilibrate and learn to ignore inferior foregone payoffs. The theory was tested on seven different
games, and compared to the earlier parametric EWA model and a one-parameter stochastic equilibrium
theory (QRE). Self-tuning EWA does as well as EWA in predicting behavior in new games, even though it
has fewer parameters, and fits reliably better than the QRE equilibrium benchmark.
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1. Introduction

The power of equilibrium models of games comes from their ability to produce precise pre-
dictions using only the structure of a game and assumptions about players’ rationality. Statistical
models of learning, on the other hand, often need data to calibrate free parameters in order to
generate predictions about behavior in new games. This calibration–prediction process, while
standard in econometrics, gives rise to two unresolved issues for learning models: the value of
additional parameters in a generalized model, and explaining apparent cross-game variation in
learning rules.

The first unresolved issue is how to judge the value of incremental parameters when com-
paring models with different numbers of parameters. For example, the experience weighted at-
traction (EWA) learning model[8] econometrically nests the weighted fictitious play [21] and
averaging reinforcement learning [19] models. As a result, the EWA model has two and three
more parameters than weighted fictitious play and averaging reinforcement learning, respec-
tively. There are many standard statistical procedures for comparing models with different num-
bers of parameters. One popular approach is generalized likelihood ratio tests which penalize
theories for extra free parameters (e.g., the Akaike or Bayesian information criteria). Another
approach is to judge the predictive power of a learning model out-of-sample (i.e., after pa-
rameter values have been estimated) in both existing and brand new games. The results from
prior studies suggest that the additional parameters in EWA are helpful in improving predictions
of behavior at least in some games, by either Bayesian information criteria or out-of-sample
fit (e.g., [9]).

In this paper we take a different approach: by reducing the number of estimated parameters in
the EWA model. Ideally, the methods used to reduce parameters are behaviorally principled and
insightful. We reduce parameters in two ways: fixing parameters to specific numerical values; and
replacing estimable parameters with functions of data.
Fixing a parameter value numericallycan reduce the general EWA specification. There are

two parameter restrictions which reduce general EWA learning models so that they still include
many familiar special cases. It is also helpful to replace the free parameters which represent the
initial strengths of strategies, rather than estimating them, because initial conditions are not of
central interest in studying learning (their initial impact typically declines rapidly as learning
takes place). We replace estimation of initial conditions with a priori numerical values derived
from a cognitive hierarchy model that was designed to predict how people play one shot games
[11], although other models could be used instead.
Replacing a free parameter with a functionwhich depends on observed experience means

the parameter does not have to be estimated from data. The functional value can also vary over
time, games, and different players. The key for these functions to fit well and to generate in-
sight lies in using behaviorally plausible principles to derive the functional forms. We use this
functional approach to replace parameters that represent the decay weights placed on recent
and distant experience, and the weight placed on foregone payoffs from strategies that were not
chosen.

By replacing two EWA parameters and all initial attractions with sensibly determined numer-
ical values and two EWA parameters with behaviorally disciplined functions of experience, the
resulting self-tuning EWA model has only one free parameter, fewer than typical versions of re-
inforcement and weighted fictitious play models. The goal is to make the self-tuning EWA model
as predictive as the original parametric EWA model while reducing the number of parameters as
much as possible.
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The second unresolved issue is how to model cross-game variation in parameters of learn-
ing theories. Several studies have shown that the best-fitting parameter values of learning rules
vary significantly across games and across subjects (see for example[13,8]; for a comprehensive
review, see [7]). Some learning theorists regard parameter variation across games as a “dis-
appointment” (e.g., [20, p. 42]). We disagree and regard variation across games as a natural
reflection of the heterogeneity in the learning environment (as determined by the game struc-
ture and the history of play). Modelling cross-game variation should be viewed as a scientific
challenge.

One could abandon the search for a single rule that predicts well across games, and instead build
up a catalog of which rules fit well in which games. We do otherwise, by developing a learning
model which flexibly “self-tunes” the parameters of our earlier EWA model across game, subjects,
and time (inspired by self-tuning control and Kalman filtering).1 The model posits a single family
of self-tuningfunctionswhich can be applied to a wide variety of games. The functions are the
same in all games, but the interaction of game structure and experience will generate different
parameter values from the functions, both across games and across time within a game. We find
that the self-tuning functions can reproduce parameter variation well enough that the model out-
predicts models which estimate separate parameters for different games, in forecasting behavior
in new games.

Since many familiar learning rules correspond to particular values of decay and foregone payoff
weights, endogeneous changes in these parameters through their functional forms in self-tuning
EWA also creates variation in rules over time, a reduced-form variant of “rule learning”.2 One
key function is the decay rate�i (t), which weights previous experience. The self-tuning value
of �i (t) falls when another player’s behavior changes sharply (a kind of deliberate forgetting
resulting from change detection or surprise). This change is like switching from a pure fictitious
play belief learning rule (which weights all past experience equally) to a rapidly adjusting Cournot
belief learning rule (which weights only the last period and ignores previous periods). The change
captures the idea that if their opponents are suddenly behaving differently than in the past, players
should ignore their distant experience and concentrate only on what happened recently. (Marcet
and Nicolini [33] use a similar change-detection model to explain learning in repeated monetary
hyperinflations).

The second key function is the weight given to foregone payoffs,�ij (t), in updating the numeri-
cal attractions of strategies. This weight is one for strategies that yield better or equal payoffs than
the payoff a player actually received, and zero for strategies that yield worse than actual payoffs.
If players start out choosing bad strategies, then the weights on most alternative strategies are 1,
and the rule is approximately the same as belief learning (i.e., reinforcing all strategies’ payoffs
equally). But when players are in a strict pure-strategy equilibrium, all other strategies have worse
payoffs and so the rule is equivalent to choice reinforcement.

1 Erev et al.[18] use a response sensitivity parameter which is “self-adjusting” in a similar way. They divide the fixed
parameter (� in the notation below) by the average absolute deviation of received payoffs from historically average payoff.
As a result, when equilibration occurs the payoff variance shrinks and the adjusted� rises, which sharpens convergence
to equilibrium. (This remedies a problem noted by Arifovic and Ledyard[2]—in games with many strategies, learning
models predict less convergence in strategy frequencies than is observed.) Their model also has the interesting property
that when the game changes and received payoffs suddenly change, the adjusted� rises, flattening the profile of choice
probabilities which causes players to “explore” their new environment more.

2 Variation over time in EWA might be more aptly called rule adjustment. It is different than directly reinforcing different
rules according to payoffs of strategies those rules recommend, as in Stahl[46].
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While the self-tuning EWA model is honed on data from several game experiments, it should
be of interest to economists of all sorts because learning is important for virtually every area of
economics.3 Much as in physical sciences, in the lab we can see clearly how various theories
perform in describing behavior (and giving valuable advice) before applying those theories to more
complex field applications. Since self-tuning EWA is designed to work across many economic
domains, sensible extensions of it could be applied to field settings such as evolution of economic
institutions (e.g., internet auctions or pricing), investors and policymakers learning about equity
market fluctuations or macroeconomic phenomena (as in [49,33]), and consumer choice (e.g.,
[28]).

The paper is organized as follows. In the next section, we describe the self-tuning EWA model
and its parametric precursor. In Section 3, self-tuning EWA is used to fit and predict data from
seven experimental data sets. The hardest kind of prediction is to estimate free parameters on
one sample of games and predict play in a new game. Self-tuning EWA does well in this kind of
cross-game prediction. Section 4 concludes.

2. Self-tuning EWA

First, some notation is necessary. For playeri, there aremi strategies, denotedsj
i (thejth strategy

for playeri), which have initial attractions denotedA
j
i (0). Strategies actually chosen byi in period

t, and by all other players (who are denoted−i) aresi(t) ands−i (t), respectively. Playeri’s ex
post payoff of choosing strategysj

i in time t is �i (s
j
i , s−i (t)) and the actual payoff received is

�i (si(t), s−i (t)) ≡ �i (t).
For playeri, strategyj has a numerical attractionAj

i (t) after updating from periodt experience.

A
j
i (0) are initial attractions before the game starts. Attractions determine choice probabilities in

periodt + 1 through a logistic stochastic response function,P
j
i (t + 1) = e

�·Aj
i
(t)∑mi

k=1 e
�·Ak

i
(t)

, where� is

the response sensitivity. Note that� = 0 is random response and� = ∞ is best response.
In the parametric EWA model, attractions are updated by

A
j
i (t) = � · N(t − 1) · A

j
i (t − 1) + [� + (1 − �) · I (s

j
i , si(t))] · �i (s

j
i , s−i (t))

N(t − 1) · � · (1 − �) + 1
, (1)

3 Since its first exposition in 2001, the self-tuning model has succeeded in many robustness tests in which other
researchers applied the model to many games that are substantially different from the seven games we validated the model
on in this paper. We highlight three pieces of work here: Kocher and Sutter[32] data stretches the model to explain choices
made bygroups; Cabrales et al.[6] and Sovik[44] are games of incomplete information. (All seven games we studied are
games with complete information.) Kocher and Sutter[32]’s data are choices made by individual and three-person groups
in p-beauty contests. Competing groups appear to learn much faster than individuals. Cabrales et al.[6] report data from a
2×2 coordination game with incomplete information, studying theories of “global games”. In their games, players receive
a private signal (knowing the distribution of private signals) which shows the payoffs in a signal-dependent stag-hunt
coordination game. The game was designed so that iterated dominance leads subjects to select the risk-dominant outcome.
Sovik [44] reports data from a zero-sum betting game with asymmetric information. Two players simultaneously choose
between a safe outside option and a zero-sum game based on their information sets. The information sets were chosen
such that the game is dominance solvable. Players should figure out that they should never bet because they can only bet
against players with better information. The self-tuning model fits the data well in all three datasets. Specific estimation
result is available in our longer working paper version or by request. We have also recently extended the self-tuning model
to study sophistication and quantal response equilibrium in repeated trust and entry games[14].
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Fig. 1. The EWA learning cube.

whereI (x, y) is an indicator function (equal to zero ifx �= y and one ifx = y) (see[8]). That
is, previous attractions are multiplied by an experience weightN(t − 1), decayed by a weight
�, incremented by either the payoff received (whenI (s

j
i , si(t)) = 1) or by� times the foregone

payoff (whenI (s
j
i , si(t)) = 0), and pseudo-normalized.

EWA is a hybrid of the central features of reinforcement and fictitious play (belief learning)
models. This hybrid is useful if actual learning mixes components of those simpler rules.A hybrid
is also useful for evaluating the statistical and economic advantages of complicating the simpler
models by adding components (and, consequently, for finding out when simple rules are adequate
approximations and when they are not).

Standard reinforcement models assume that only actual choices are reinforced (i.e.,� = 0).4

When� = 0 and� = 1 the rule is like the cumulative reinforcement model of Roth and Erev [40].
When� = 0 and� = 0 it is like the averaging reinforcement model of Erev and Roth [19]. A
central insight from the EWA formulation is that weighted fictitious play belief learning isexactly
the same as a generalization of reinforcement in which all foregone payoffs are reinforced by
a weight� = 1 (when� = 0).5 Intuitively, the EWA form allowsboth the stronger focus on
payoffs that are actually received, as in reinforcement (i.e.,� < 1) and the idea that foregone
payoffs usually affect learning when they are known, as in fictitious play (i.e.,� > 0). Fig. 1 is
a cube that shows the universe of learning rules captured by the EWA learning model and the
positions of various familiar cases.

As shown in Fig. 1, the front face of the cube (� = 0) captures almost all familiar special cases
except for the cumulative reinforcement model. The cumulative model has been supplanted by the
averaging model (with� = 0) because the latter seems to be more robust in predicting behavior
in some games (see [19]). This sub-class of EWA learning models is the simplest model that

4 See Harley[23], Roth and Erev[40], Sarin and Vahid[42] (cf. [5,17,3]). Choice reinforcement is most sensible when
players do not know the foregone payoffs of unchosen strategies. However, several studies show that providing foregone
payoff information affects learning (see[35,39,51]), which suggests that players do not simply reinforce chosen strategies.

5 See also Cheung and Friedman[13, pp. 54–55], Fudenberg and Levine[21, pp. 1084–1085], Hopkins[30].



Aut
ho

r's
   

pe
rs

on
al

   
co

py

182 T.H. Ho et al. / Journal of Economic Theory 133 (2007) 177–198

nests averaging reinforcement and weighted fictitous play (and hence Cournot and simple fic-
titious play) as special cases. It can also capture a weighted fictitious play model using time-
varying belief weights (such as the stated-beliefs model explored by Nyarko and Schotter[37]),
as long as subjects are allowed to use a different weight to decay lagged attractions over time
(i.e., move along the top edge of the side in Fig. 1). There is also an empirical reason to
set � to a particular value. Our prior work suggests that� does not seem to affect fit much
(e.g., [8], [29]).

The initial experienceN(0) was included in the original EWA model so that Bayesian learning
models are nested as a special case—N(0) represents the strength of prior beliefs. We restrict
N(0) = 1 here because its influence fades rapidly as an experiment progresses and most subjects
come to experiments with weak priors anyway.The specification of initial attractions is not specific
to a learning rule. All learning rules that use attraction as latent variable to predict behavior must
face this problem. We use a “cognitive hierarchy” (CH) theory of games [11] to provide the initial
attraction values because it has been shown to predict behavior well in many one-shot games. In
the CH theory, each player assumes that his strategy is the most sophisticated. The CH model has
a hierarchy of categories: step 0 players randomize; and stepk thinkers best respond, assuming
that other players are distributed over step 0 through stepk − 1. Since an average of 1.5 steps fits
data well from many games, we use that value to set initial attractions.6

Consequently, we are left with three free parameters—�, �, and�. To make the model simple
to estimate statistically, and self-tuning, the parameters� and� are replaced by deterministic
functions�i (t) and�ij (t) of player i’s experience with strategyj, up to periodt. These func-
tions determine numerical parameter values for each player, strategy, and period, which are
then plugged into the EWA updating equation above to determine attractions in each period.
Updated attractions determine choice probabilities according to the logit rule, given a value of
�. Standard maximum-likelihood methods for optimizing fit can then be used to find which�
fits best.7

2.1. The change-detector function�i (t)

The decay rate� which weights lagged attractions is sometimes called “forgetting” (an inter-
pretation which is carried over from reinforcement models of animal learning). While forgetting
obviously does occur, the more interesting variation in�i (t) across games, and across time within
a game, is a player’s perception of how quickly the learning environment is changing. The function
�i (t) should therefore “detect change”. When a player senses that other players are changing,
a self-tuning�i (t) should dip down, putting less weight on distant experience. As in physical
change detectors (e.g., security systems or smoke alarms), the challenge is to detect change when
it is really occurring, but not falsely mistake small fluctuations for real changes too often.

6 There are at least three other ways to pin down the initial attractionsA
j
i
(0).You can either use the first-period data to

“burn-in” the attractions, assume all initial attractions are equal (which leads to uniformly distributed first-period choices),
or assume players use a decision rule that best responds to a uniform distribution. The cognitive hierarchy approach uses
a specific mixture of the latter two rules but adds further steps of iterated thinking in a precise way. Stahl and Wilson[47]
and Costa-Gomes et al.[16] explore richer reasoning-step models.

7 If one is interested only in the hit rate—the frequency with which the predicted choice is the same as what a player
actually picked—then it is not necessary to estimate�. The strategy that has the highest attraction will be the predicted
choice. The response sensitivity� only dictates howfrequentlythe highest-attraction choice is actually picked, which is
irrelevant if the statistical criterion is hit rate.
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The core of the�i (t) change-detector function is a “surprise index”, which is the difference
between other players’ most recently chosen strategies and their chosen strategies in all previous
periods. First, define a cumulative history vector, across the other players’ strategiesk, which
records the historical frequencies (including the last periodt) of the choices by other players.

The vector elementhk
i (t) is

∑t
�=1 I (sk−i ,s−i (�))

t
. 8 The immediate “history”rk

i (t) is a vector of
0’s and 1’s which has a one for strategysk

−i = s−i (t) and 0’s for all other strategiessk
−i (i.e.,

rk
i (t) = I (sk

−i , s−i (t))). The surprise indexSi(t) simply sums up the squared deviations between
the cumulative history vectorhk

i (t) and the immediate history vectorrk
i (t); that is,

Si(t) =
m−i∑
k=1

(hk
i (t) − rk

i (t))2. (2)

In other words, the surprise index captures the degree of change of the most recent observation9

from the historical average. Note that it varies from zero (when the last strategy the other player
chose is the one they have always chosen before) to two (when the other player chose a particular
strategy “forever” and suddenly switches to something brand new). When surprise index is zero,
we have a stationary environment; when it is one, we have a turbulent environment. The change-
detecting decay rate is

�i (t) = 1 − 1
2Si(t). (3)

BecauseSi(t) is between zero and two,� is always (weakly) between one and zero.
Some numerical boundary cases help illuminate how the change detection works. If the other

player chooses the strategy she has always chosen before, thenSi(t) = 0 (playeri is not surprised)
and�i (t) = 1 (playeri does not decay the lagged attraction at all, since what other players did
throughout is informative). The opposite case is when an opponent has previously chosen a single
strategy in every period, and suddenly switches to a new strategy. In that case,�i (t) is 2t−1

t2 .
This expression declines gracefully toward zero as the string of identical choices up to periodt
grows longer. (Fort = 2, 3, 5 and 10 the�i (t) values are 0.75, 0.56, 0.36, and 0.19.) The fact
that the� values decline witht expresses the principle that a new choice is bigger surprise (and
should have an associated lower�) if it follows a longer string of identical choices which are
different from the surprising new choice. Note that since the observed behavior in periodt is
included in the cumulative historyhk

i (t), �i (t) will never dip completely to zero (which could
be a mistake because it erases all the history embodied in the lagged attraction). For example,
if a player chose the same strategy for each of 19 periods and a new strategy in period 20, then
�i (t) = 39/400= 0.0975.

Another interesting special case is when unique strategies have been played in every period
up to t − 1, and another unique strategy is played in periodt . (This is often true in games with
large strategy spaces.) Then�i (t) = 0.5 + 1

2t
, which starts at 0.75 and asymptotes at 0.5 ast in-

creases. Comparing the case where the previous strategy was the same, and the previous strategies

8 Note that if there is more than one other player, and the distinct choices by different other player’s matter to playeri,
then the vector is ann − 1-dimensional matrix if there aren players.

9 In games with mixed equilibria (and no pure equilibria), a player should expect other players’ strategies to vary.
Therefore, if the game has a mixed equilibrium withWstrategies which are played with positive probability, the surprise
index defines recent history over a window of the lastW periods (e.g., in a game with four strategies that are played in

equilibrium,W = 4). Thenrk
i
(t) = ∑m−i

k=1

[∑t
�=t−W+1 I (sk−i

,s−i (�))

W

]
.
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were all different, it is evident that if the choice in periodt is new, the value of�i (t) is higher if
there were more variation in previous choices, and lower if there were less variation. This mimicks
a hypothesis-testing approach (cf.[33]) in which more variation in previous strategies implies
that players are less likely to conclude there has been a regime shift, and therefore do not lower
the value of�i (t) too much.

Note that the change-detector function�i (t) is individual and time specific and it depends on
information feedback. Nyarko and Schotter [37] show that a weighted fictitious play model that
uses stated beliefs (instead of empirical beliefs posited by the fictitious play rule) can predict
behavior better than the original EWA model in games with unique mixed-strategy equilibrium.
One way to intrepret their result is that their model allows each subject to attach a different weight
to previous experiences over time. In the same vein, the proposed change-detector function allows
for individual and time heterogeneity by positing them theoretically.

2.2. The attention function,�ij (t)

The parameter� is the weight on foregone payoffs. Presumably this is tied to the attention
subjects pay to alternative payoffs, ex post. Subjects who have limited attention are likely to
focus on strategies that would have given higher payoffs than what was actually received, because
these strategies present missed opportunities (cf. [24], who show that such a regret-driven rule
converges to correlated equilibrium.) To capture this property, define10

�ij (t) =
{

1 if �i (s
j
i , s−i (t))��i (t),

0 otherwise.
(4)

That is, subjects reinforce chosen strategies and all unchosen strategies with (weakly) better
payoffs by a weight of one. They reinforce unchosen strategies with strictly worse payoffs by
zero.

Note that this�ij (t) can transform the self-tuning rule into special cases over time. If subjects are
strictly best responding (ex post), then no other strategies have a higher ex post payoff so�ij (t) =
0 for all strategiesj which were not chosen, which reduces the model to choice reinforcement.
However, if they always choose the worst strategy, then�ij (t) = 1, which corresponds to weighted
fictitious play. If subjects neither choose the best nor the worst strategy, the updating scheme
will push them (probabilistically) toward those strategies that yield better payoffs, as is both
characteristic of human learning and normatively sensible.

The updating rule is a natural way to formalize and extend the “learning direction” theory of
Selten and Stoecker[43]. Their theory consists of an appealing property of learning: subject move
in the direction of ex post best response. Broad applicability of the theory has been hindered by
defining “direction” only in terms of numerical properties of ordered strategies (e.g., choosing
“higher prices” if the ex post best response is a higher price than the chosen price). The self-tuning
�ij (t) defines the “direction” of learning set theoretically, as shifting probability toward the set of
strategies with higher payoffs than the chosen ones.

10 In games with unique mixed-strategy equilibrium, we use�ij (t) = 1
W

if �i (s
j
i
, s−i (t))��i (t) and 0 otherwise.

This modification is driven by the empirical observation that estimated�’s are often close to zero in mixed games (which
might also be due to misspecified heterogeneity, see[53]). Using only�ij (t) without this adjustment produces slightly
worse fits in the two mixed-equilibrium games examined below where the adjustment matters (patent-rate games and the
Mookerjhee–Sopher games).
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The self-tuning�ij (t) also creates the “exploration–exploitation” shift in machine learning
(familiar to economists from multi-armed bandit problems). In low-information environments,
it makes sense to explore a wide range of strategies, then gradually lock in to a choice with a
good historical relative payoffs. In self-tuning EWA, if subjects start out with a poor choice, many
unchosen strategies will be reinforced by their (higher) foregone payoffs, which shifts choice
probability to those choices and captures why subjects “explore”. As equilibration occurs, only
the chosen strategy will be reinforced, thereby producing an “exploitation” or “lock-in”. This is
behaviorally very plausible. The updating scheme also helps to detect any change in environment.
If a previously optimal response becomes inferior because of an exogenous change, other strategies
will have higher ex post payoffs, triggering higher�ij (t) values (and reinforcement of superior
payoffs) and guiding players to re-explore better strategies.

The self-tuning�ij (t) function can also be seen as a reasonable all-purpose rule which con-
serves a scarce cognitive resource—attention. The parametric EWA model shows that weighted
fictitious play is equivalent to generalized reinforcement in which all strategies are reinforced.
But reinforcing many strategies takes attention. As equilibration occurs, the set of strategies
which receive positive�ij (t) weights shrinks so attention is conserved when spreading attention
widely is no longer useful. When an opponent’s play changes suddenly, the self-tuning�i (t)

value drops. This change reduces attractions (since lagged attractions are strongly decayed) and
spreads choice probability over a wider range of strategies due to the logit response rule. This
implies that the strategy chosen may no longer be optimal, leading�ij (t) to allocate attention
over a wider range of better responses. Thus, the self-tuning system can be seen as procedurally
rational (in Herbert Simon’s language) because it follows a precise algorithm and is designed to
express the basic features of how people learn—by exploring a wide range of options, locking in
when a good strategy is found, but re-allocating attention when environmental change demands
such action.

A theorist’s instinct is to derive conditions when flexible learning rules choose parameters
optimally, which is certainly a direction to explore in future research (cf.[25,31]). However,
broadly optimal rules will likely depend on the set of games an all-purpose learning agent en-
counters, and also may depend sensitively on how cognitive costs are specified (and should
also jibe with data on the details of neural mechanisms, which are not yet well understood).
So it is unlikely to find a universally optimal rule that can always beat rules which adapt
locally.

Our approach is more like the exploratory work in machine learning. Machine learning the-
orists try to develop robust heuristic algorithms which learn effectively in a wide variety of
low-information environments (see [48]). Good machine learning rules are not provably optimal
but perform well on tricky test cases and natural problems like those which good computerized
robots need to perform (navigating around obstacles, hill climbing on rugged landscapes, difficult
pattern recognition, and so forth).

Before proceeding to estimation, it is useful to summarize the properties of the self-tuning
model. First, the use of simple fictitious play and reinforcement theories in empirical analysis
is often justified by the fact that they have only a few free parameters. The self-tuning EWA is
useful by this criterion because it requires estimating only one parameter,� (which is difficult to
do without empirical work). Second, the functions in self-tuning EWA naturally vary across time,
people, games, and strategies. The potential advantage of this flexibility is that the model can
predict across new games better than parametric methods. Whether this advantage is realized will
be examined below. Third, the self-tuning parameters can endogenously shift across rules. Early
in a game, when opponent choices vary a lot and players are likely to make ex post mistakes,
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the model automatically generates low values of�i (t) and high�ij (t) weights—it resembles
Cournot belief learning. As equilibration occurs and behavior of other players stabilizes,�i (t)

rises and�ij (t) falls—it resembles reinforcement learning. The model therefore keeps a short
window of history (low�) and pays a lot of attention (high�) when it should, early in a game,
and conserves those cognitive resources by remembering more (high�) and attending to fewer
foregone strategies (low�) when it can afford to, as equilibration occurs.

3. Self-tuning EWA predictions within and across games

In this section we compare in-sample fit and out-of-sample predictive accuracy of self-tuning
EWA, its predecessor (EWA) where parameters are freely estimated, and the one-parameter Quan-
tal Response Equilibrium model benchmark[34]. 11 The goals are to see whether self-tuning EWA
can fit and predict as well as parametric EWA and whether the� and� functions can vary sensibly
across games. In addition, we use a jackknife approach by estimating a common set of parameters
on n − 1 of then games and use the estimated parameters to predict choices in the remaining
game, to judge how well models predict in brand new games.

We use seven games: two matrix games with unique mixed-strategy equilibrium [36]; R&D
patent race games [38]; a median-action order statistic coordination game with several players [50];
a continental-divide coordination game, in which convergence behavior is extremely sensitive to
initial conditions [52]; a coordination game in which players choose whether to enter a large or
small market [1]; dominance-solvablep-beauty contests [27]; and a price matching game called
traveler’s dilemma [12].

Table 1 summarizes features of these games and the data. Three of the games are described
in detail below.12 Many different games are studied because the main goal is to see how well
self-tuning EWA can explain cross-game variation. Sampling widely is also a good way to test
robustness of any model of learning or equilibrium. Models that are customized to explain one
game are insightful, but not as useful as games which explain disparate patterns with one general
model (see [40,22]).

3.1. Estimation method

Consider a game whereN subjects playT rounds. For a given playeri, the likelihood function
of observing a choice history of{si(1), si(2), . . . , si(T − 1), si(T )} is given by

T∏
t=1

P
si(t)
i (t |�). (5)

11 Our working paper also reports fit statistics and estimates from belief learning and reinforcement models.
12The other four games are: mixed-equilibrium games studied by Mookherjee and Sopher[36] which have four or

six strategies, one of which is weakly dominated; the nine-player median-action game studied by Van Huyck et al.[50],
in which players choose integer strategies 1–7 and earn payoffs increasing linearly in the group median and decreasing
linearly in the squared deviation from the median; a traveler’s dilemma game[12] in which players choose numbers from
80 to 200 and each player receives the a payoff equal to the minimum of the chosen numbers and the player who chose
the low number receives a bonus ofR from the player who chose the high number; and a coordination game[1] in which
n players simultaneously enter a large or small market and earn 2n (n) divided by the number of entrants if they enter the
large (small) market.
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Table 1
The seven games used in the estimation of self-tuning EWA, parametric EWA, and QRE

Game Number of Number of Number Number of Number of Matching Experimental Description of games
players strategies of pure subjects rounds protocol treatment

strategy
equilibria

A. Games with a unique mixed-strategy equilibrium
Mixed strategies 2 4,6 0 80 40 Fixed Stake size A constant-sum game with unique
Mookerjhee and Sopher[36] mixed strategy equilibrium
Patent race 2 5,6 0 36 80 Random Strong vs. Strong (weak) player invests between
Rapoport and Amaldoss[38] weak 0 and 5 (0 and 4) and the higher in-

vestment wins a fixed prize
B. Coordination games

Continental divide 7 14 2 70 15 Fixed None A coordination game with two pure
Van Huyck et al.[52] strategy equilibria
Median action 9 7 7 54 10 Fixed None A order-statistic game with individual
Van Huyck et al.[50] payoff decreases in the distance be-

tween individual choice and the
median

Pot games 3,6,9,18 2 na 84 25 (manual) Fixed Number of An entry game where players must
Amaldoss et al.[1] 28 (computer) players decide which of the two ponds of sizes

2n andn they wish to enter. Payoff is
the ratio of the pond size and number
of entries.

C. Dominance solvable games
Price matching 2 121b 1 52 10 Random Penalty Players choose claims between 80 and
(Traveller’s dilemma) size 200. Both players get lower claim but
Capra et al.[12] the high-claim player pays a penalty

to the low-claim player
p-Beauty contest 7 101 1 196 10 Fixed Experienced Players simultaneously choose a
Ho et al.[27] vs. inexpe-

rienced
number from 0 to 100 and the win-
ner whose number is closet top(< 1)

times the group average

aThe number of equilibria depends on the number of players.n = 3, 15, 84, 18 564, respectively.
bContinuous strategies of 80–200 are discretized to 121 integer strategies.
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The joint likelihood functionL(�) of observing all players’ choice histories is given by

L(�) =
N∏
i

{
T∏

t=1

P
si(t)
i (t |�)

}
. (6)

To determine the predicted probabilitiesP
si(t)
i (t |�), we start with initial attractionsAj

i (0)

(which are the same for alli) determined by the predictions of the cognitive hierarchy model
[10,11] using� = 1.5.13 After each period, the functions�i (t) and�ij (t) are updated according
to playeri’s experience and apply to the self-tuning EWA model (fixing�) to determine updated
attractions according to the EWA rule. The updated attractions produce predicted probabilities
P

si(t)
i (t |�). Using a random sample of 70% of the subjects in each game, we determine the

value of� that maximizes the joint likelihood. Then the value of� is frozen and used to forecast
behavior of the entire path of the remaining 30% of the subjects.14 We convert payoffs to inflation-
adjusted dollars (which is important for cross-game forecasting) and scale them by subtracting
the lowest possible payoffs. Randomized bootstrap resampling is used to calculate parameter
standard errors.15

In addition to self-tuning EWA, we estimated both the parametric EWA model and the one-
parameter quantal response equilibrium (QRE) model. QRE is a static no-learning benchmark,
which is a tougher competition than Nash equilibrium.

3.2. Model fit and predictive accuracy

The first question to address is how well models fit and predict on a game-by-game basis (i.e.,
when EWA parameters are estimated separately for each game). As noted, to limit over-fitting
we estimate parameters using 70% of the subjects (in-sample calibration) and use those estimates
to predict choices by the remaining 30% (out-of-sample validation). For in-sample estimation
we report a Bayesian information criterion (BIC) which subtracts a penaltyk·ln(NT )

2 from the
L(�) value wherek is the number of parameters. For out-of-sample validation we report the
log-likelihood (L(�)) on the hold-out sample of 30% of the subjects.

Table 2 shows the results. The table also shows the choice probability implied by the aver-
age likelihood16 compared to the probability if choices were random. Across games, self-tuning
EWA predicts a little worse than EWA in out-of-sample prediction, though generally more ac-
curately than QRE. This is not surprising since the parametric EWA model uses four extra free
parameters (�, �, � andN(0)) in each game. The correlation between the� function of self-
tuning and the� estimates of EWA is 0.77 and the corresponding correlation for the� is 0.49.17

13 In the games we study, for example, one-step behavior predicts choices of 35 in beauty contests, seven in continental-
divide games, four in median-action games, the large pot in entry-choice games, five and four in patent-race games for
strong and weak players, and 200− 2R in traveler’s dilemma games.

14We also tried using the first 70% of the observations from each subject, then forecasted the last 30%. The results are
similar.

15 In the first few periods of a game, players often learn rapidly. To capture this, we smooth the�i (t) function by
starting at 0.5, and gently blending in the updated values according to�̂i (t) ≡ 0.5/t + (t − 1)�i (t)/t in the empirical
implementation.

16That is, divide the total log likelihood by the number of subject-periods. Exponentiating this number gives the
geometric mean (“average”) predicted probability of the strategies that are actually played.

17The parameter estimates are reported in Table4. Standard errors of these estimates are reported in Ho et al.[26].
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Table 2
Model fit and validation using in-game estimates

Data set Mixed Patent Continental Median Pot p-Beauty Price Pooleda

strategies race divide action games contest matching

Total sample size 3200 5760 1050 540 2217 1960 520 15 247

In-sample calibration
Sample size 2240 4000 735 380 1478 1380 360 10 573

BIC (Bayesian information criterion)b

Self-tuning EWA −3206 −4367 −1203 −309 −938 −5190 −1451 −16 672
EWA −3040 −4399 −1091 −293 −931 −4987 −1103 −16 646
QRE −3442 −6686 −1923 −549 −1003 −6254 −1420 −21 285

Average probability
Self-tuning EWA (%) 23.9 33.6 19.5 44.6 53.1 2.3 1.8
EWA (%) 26.0 33.5 23.2 48.1 53.9 2.7 4.9
QRE (%) 21.6 18.8 7.3 23.8 50.8 1.1 2.0
Random (%) 20.4 18.3 7.1 14.3 50.0 1.0 0.8

Out-of-sample validation
Sample size 960 1760 315 160 739 580 160 4674

Log-likelihood
Self-tuning EWA −1394 −1857 −522 −94 −441 −2350 −585 −7246
EWA −1342 −1876 −482 −89 −433 −2203 −532 −7366
QRE −1441 −3006 −829 −203 −486 −2667 −607 −9240

aA common set of parameters, except game-specific�, is estimated for all games. Each game is given equal weight inLL

estimation.
bBIC (Bayesian Information Criterion) is given byLL − (k/2) log(NT ) wherek is the number of parameters,N is the
number of subjects andT is the number of periods.

However, self-tuning EWA is better than EWA in the pooled estimation where a common set
of parameters (except�, which is always game-specific) was used for EWA. QRE fits worst in
both individual games and pooled estimation, which is no surprise because it does not allow
learning.

A more challenging robustness test is to estimate all parameters on six of the seven games, then
use those parameters to predict choices in the remaining seventh game for all subjects. This is
done for each of the seven games, one at a time. Cross-game prediction has been used by others
but only within similar games in a class (2× 2 games with mixed equilibria[19]; and 5× 5
symmetric games [46]). Our results test whether fitting a model on a coordination game, say, can
predict behavior in a game with mixed equilibrium. This is the most ambitious use of learning
models across games since Roth and Erev [40] who demonstrated the importance of this kind of
cross-game forecasting.

Table 3 reports results from the cross-game prediction. By this measure, self-tuning EWA has
the highest cross-game likelihood in three games; EWA is highest in four other games. QRE is
the least accurate in six out of the seven games.

Likelihood values summarize the model fit over time, strategies and subjects; but they do
not allow one to gauge how model fit changes over time and across strategies. To get a more
nuanced feel for the fit between data and models, the next section produces graphs using predicted
and relative frequencies for three games which are exemplars of three classes: The patent race
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Table 3
Out-of-sample prediction using out-game estimates

Data set Mixed Patent Continental Median Pot p-Beauty Price
strategies race divide action games contest matching

Total sample size 3200 5760 1050 540 2217 1960 520

Log-likelihood
Self-tuning EWA −4602 −7114 −1723 −419 −1399 −8282 −2192
EWA −4733 −6321 −1839 −457 −1365 −7806 −2140
QRE −4667 −9132 −2758 −957 −1533 −8911 −2413

Average probability
Self-tuning EWA (%) 23.7 29.1 19.4 46.0 53.2 1.5 1.5
EWA (%) 22.8 33.4 17.4 42.9 54.0 1.9 1.6
QRE (%) 23.3 20.5 7.2 17.0 50.1 1.1 1.0
Random (%) 20.4 18.3 7.1 14.3 50.0 1.0 0.8

Table 4
Parameter estimates

Data set Mixed Patent Continental Median Pot p-Beauty Price Pooled
strategies race divide action games contest matching

Self-tuning EWA
� function 0.89 0.89 0.69 0.85 0.80 0.58 0.63 0.76
� function 0.11 0.08 0.29 0.15 0.10 0.29 0.36 0.32
� 4.13 9.24 4.45 5.64 7.34 2.39 10.17 5.87

EWA
� 0.97 0.91 0.72 0.73 0.86 0.31 0.80 0.79
� 0.19 0.30 0.90 0.94 0.00 0.70 0.40 0.41
� 0.82 0.15 0.77 0.99 0.92 0.91 0.80 0.28
N0 0.67 0.73 0.36 0.14 0.00 0.17 0.39 0.77
� 0.34 4.27 13.83 18.55 1.61 2.57 9.88 6.33

QRE
� 1.12 0.81 1.83 28.45 3.37 0.69 29.83 9.44

game has a unique mixed-strategy equilibrium, the continental-divide coordination game has
multiple Pareto-ranked pure equilibria, and the beauty contest games are dominance-solvable.18

3.3. Games with unique mixed-strategy equilibrium: patent races

In the patent race game, two players, one strong and one weak, are endowed with resources
and compete in a patent race. The strong player has an endowment of 5 units and the weak player
has an endowment of 4 units [38]. They simultaneously invest an integer amount up to their
endowments,istrongandiweak. The player whose investment is strictly larger earns 10 minus their

18 Corresponding graphs forall games can be seen athttp://www.bschool.nus.edu.sg/Staff/bizcjk/fewa.htmso that
readers can draw their own conclusions about other games.
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investment. A player whose investment is less than or equal to the other player’s investment earns
no payoff, and ends up with their endowment minus the investment.

The game has an interesting strategic structure. The strong player can guarantee a payoff
of five by investing the entire endowmentistrong = 5 (out-spending the weak player), which
strictly dominates investing zero (istrong= 0). Eliminating the strong player’s dominated strategy
istrong = 0 then makesiweak = 1 a dominated strategy for the weak player (since she can never
win by investing one unit). Iterating in this way, the strong player deletesistrong ∈ {0, 2, 4} and
the weak player deletesiweak ∈ {1, 3} by iterated application of strict dominance. The result is
a unique mixed equilibrium in which strong players invest five 60% of the time and play their
other two (serially) undominated strategies of investing one and three 20% of the time, and weak
players invest zero 60% of the time and invest either two or four 20% of the time.

Thirty-six pairs of subjects played the game in a random matching protocol 160 times (with the
role switched after 80 rounds); the 36 pairs are divided into two groups where random matching
occurs within group. Since aggregate choice frequencies do not change visibly across time, and are
rather close to equilibrium predictions, our plots show frequencies oftransitionsbetween period
t−1 and periodtstrategies to focus on changes across time. Figs.2a–d show the empirical transition
matrix and predicted transition frequencies across the five strategies (istrong ∈ {0, 1, . . . , 5}) for
strong players, using the within-game estimation and pooling across all subjects. (Weak-player
results are similar.)

The key features of the data are the high percentage of transitions from 5 to 5, almost 40%,
and roughly equal numbers of transitions (about 5%) from 1 to 1, and from 1 to 5 or vice versa.
The figures show that QRE does not predict differences in transitions at all. The challenge for
explaining transitions is that after investingistrong = 5, about 80% of the time the strong player
knows that the weak player invested only 0 or 2. Most learning models predict that strong players
should therefore invest less, but the figures show that about half the time the strong players invest
5 again. The self-tuning and parametric EWA models explain the relatively low rate of downward
transitions by multiplying the high foregone payoffs, in the case where the strong player invested
5 and the weak player invested nothing or two, by a relatively low value of�. This means the
attractions for lowistrongare not updated as much as the chosen strategyistrong= 5, which explains
the persistence of investing and the low rate of switching. The low value of�, which is estimated
to be 0.30 in EWA and averages 0.08 in self-tuning EWA, is one way of expressing why strong
players are sluggish in switching down fromistrong= 5.

3.4. Games with multiple pure strategy equilibria: continental divide game

Van Huyck et al. [52] studied a coordination game with multiple equilibria and extreme sensi-
tivity to initial conditions, which we call the continental divide game (CDG).

Subjects play in cohorts of seven people. Subjects choose an integer from 1 to 14, and their
payoff depends on their own choice and on the median choice of all seven players. The payoff
matrix is constructed so that there are two pure equilibria (at 3 and 12) which are Pareto-ranked
(12 pays $1.12 and 3 pays $.60). The best-response correspondence bifurcates in the middle: for
all M �7, the best response to a medianM is strictly betweenM and 3. For high mediansM �8,
the best response is strictly betweenM and 12. The payoff at 3 is about half as much as at 12. This
game captures the possibility of extreme sensitivity to initial conditions (or path-dependence).

Their experiment used 10 cohorts of seven subjects each, playing for 15 periods. At the end
of each period subjects learned the median, and played again with the same group in a partner
protocol.
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Fig. 2. Actual and predicted choice transition matrices in patent race.

Figs.3a–d show empirical frequencies (pooling all subjects) and model predictions. The key
features of the data are: bifurcation over time from choices in the middle of the range (5–10) to
the extremes, near the equilibria at 3 and 12; and late-period choices are more sharply clustered
around 12 than around 3. (Fig. 3a hides strong path-dependence: groups which had first-period
M �7 (M �8) alwaysconverged toward the low (high) equilibrium.) Notice also that strategies
1–4 are never chosen in early periods, but are frequently chosen in later periods; and oppositely,
strategies 7–9 are frequently chosen in early periods but never chosen in later periods. A good
model should be able to capture these subtle effects by “accelerating” low choices quickly (going
from zero to frequent choices in a few periods) and “braking” midrange choices quickly (going
from frequent 7–9 choices to zero).

QRE fits poorly because it predicts no movement. Self-tuning EWA and parametric EWA are
fairly accurate and able to explain the key features of the data—viz., convergence toward the two
equilibria, sharper convergence around 12 than around 3, and rapid increase in strategies 1–4
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Fig. 3. Actual and predicted choice frequencies in continental divide.

and extinction of 7–9. Both this game and the game above show how self-tuning EWA is able to
reproduce the predictive power of EWA without having to estimate parameters.

3.5. Games with dominance-solvable pure strategy equilibrium: p-beauty contests

In the p-beauty contests of Ho et al.[27], seven players simultaneously choose numbers in
[0,100]. The player whose number is closest to a known fraction (either 0.7 or 0.9) of the group
average wins a fixed prize. Their experiment also manipulated experience of subjects because
half of them played a similar game before. Initial choices are widely dispersed and centered
around 45. When the game is repeated, numbers gradually converge toward the equilibrium 0 and
experienced subjects converge much faster toward equilibrium.

Figs. 4a–f show empirical frequencies and model predictions of self-tuning EWA and EWA
broken down by experience of subjects. (As in the earlier plots, QRE fits badly so it is omitted.)
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Fig. 4. Actual and predicted choice frequencies inp-beauty contest played by experienced and inexperienced subjects.
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Self-tuning EWA tracks behavior about as accurately as EWA for inexperienced subjects, and is
substantially more accurate for experienced subjects. The cross-game EWA estimate of� used is
0.83, which is significantly higher than the in-game estimate� of 0.31. The cross-game estimate
of � used is 0.29, lower than the in-game estimate� of 0.70. These cross-game values create the
sluggishness in responding to surprises (� is too high) and to the many better strategies available
(� is too low).

The average self-tuning function�i (t) is 0.58, which is more responsive to surprises than the
0.83 cross-game estimate of EWA. The EWA’s sluggish response to surprises explains why it is
less accurate in experienced sessions because experienced subjects generate more surprises than
their inexperienced counterparts by choosing smaller numbers. The�ij (t) function, which by
definition is totally responsive to better strategies, gives more weights to smaller numbers too.
In combination, the two functions help to explain the faster convergence of experienced subjects
toward the equilibrium of zero.

4. Conclusion

Learning is clearly important for economics. Equilibrium theories are useful because they
suggest a possible limit point of a learning process and permit comparative static analysis. But if
learning is slow, or the time path of behavior selects one equilibrium out of many, a precise theory
of equilibration is crucial for knowing which equilibrium will result, and how quickly.

The theory described in this paper, self-tuning EWA, replaces the key parameters in the EWA
learning models with functions that change over time in response to experience. One function is
a “change detector”� which goes up (limited by one) when behavior by other players is stable,
and dips down (limited by zero) when there is surprising new behavior by others. When� dips
down, the effects of old experience (summarized in attractions which average previous payoffs)
is diminished by decaying the old attraction by a lot. The second “attention” function� is one for
strategies that yield better than actual payoff and zero otherwise. This function ties sensitivity to
foregone payoffs to attention, which is likely to be on strategies that give better than actual payoff
ex post. Self-tuning EWA is more parsimonious than most learning theories because it has only
one free parameter—the response sensitivity�.

We report fit and prediction of data from seven experimental games using self-tuning EWA, the
parameterized EWA model, and quantal response equilibrium (QRE). Both QRE and self-tuning
EWA have one free parameter, and EWA has five. We report both in-sample fit (penalizing more
complex theories using the Bayesian information criterion) and out-of-sample as well as out-of-
game predictive accuracy, to be sure that more complex models do not necessarily fit and predict
better.

There are two key results.
First, self-tuning EWA fits and predicts slightly worse than parametric EWA in all seven games.

Since self-tuning EWA generates functional parameter values for� and�, which vary sensibly
across games, it predicts better than other QRE and parametric EWA when games are pooled
and common parameters are estimated. Self-tuning EWA therefore represents one solution to the
problem of flexibly generating EWA-like parameters across games.

Second, the functions in self-tuning EWA seem to be robust across games. Our working paper
added three brand new games which are not reported here (after the first version was written and
circulated, and people were invited to submit games for analysis) to test robustness. The basic
conclusions are replicated in these games, which have incomplete information and choices are
made by groups rather than individuals (see our working paper).
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A next step in this research is to find some axiomatic underpinnings for the functions. Extending
the� function to exploit information about ordered strategies might prove useful. And since self-
tuning EWA is so parsimonious, it is useful as a building block for extending learning theories
to include sophistication (players anticipating that others are learning; see[45]) and explain
“teaching” behavior in repeated games [9,15].

The self-tuning functions can also potentially do something that people do well-respond to
changes in structural parameters of games over time (like demand shocks or the entry of new
players)—which models that use estimated parameters from history will do poorly. Since many
naturally occurring economic games do have unanticipated shocks which change payoffs, explor-
ing how people and models perform in games like this is worthwhile.

The theory is developed to fit experimental data, but the bigger scientific payoff will come
from application to naturally occurring situations. If learning is slow, a precise theory of eco-
nomic equilibration is just as useful for predicting what happens in the economy as a theory of
equilibrium. For example, participants in market institutions like eBay auctions learn to bid late
to hide their information about an object’s common value [4]. Consumers learn over time what
products they like [28]. Learning in financial markets can generate excess volatility and returns
predictability, which are otherwise anomalous in rational expectations models [49]. Sargent [41]
argues that learning by policymakers about expectational Phillips’curves and the public’s percep-
tions of inflation explains macroeconomic behavior in the last couple of decades. Good theories
of learning should be able to explain these patterns and help predict how new institutions will
evolve, how rapidly bidders learn to wait, and which new products will succeed. Applying self-
tuning EWA, and other learning theories, to field domains is therefore an important goal of future
research.
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