Designing Price Contracts for Boundedly Rational Customers: Does the Number of Block Matter?

Teck H. Ho
University of California, Berkeley

Forthcoming, *Marketing Science*

Coauthor:
Noah Lim, University of Houston

February 2007
Outline

- Motivation
- Does the Number of Block Matter?
- Economic Hypotheses
- A Behavioral (and General) Approach
Motivation

- B2C \(\Rightarrow\) B2B

- Integration of economics and psychology
 \(\Rightarrow\) Combine the strengths of economics and psychology

- Lack of behavioral data in real B2B settings
 \(\Rightarrow\) Study laboratory B2B settings
Integration of Economics and Psychology (Johnson 2006)

Figure 2: Cross Citation of Three Major Marketing Journals and Groups of Related Journals

KEY
> 21%
17-21%
13-17%
9-13%
5-9%
Behavioral Economics Models

(Ho et al. 2006)

<table>
<thead>
<tr>
<th>Behavioral Regularities</th>
<th>Standard Assumptions</th>
<th>New Specification (Reference Example)</th>
<th>New Parameters (Behavioral Interpretation)</th>
<th>Marketing Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized Utility Functions</td>
<td>Expected utility hypothesis</td>
<td>Reference-dependent preferences (Kahneman and Tversky 1979)</td>
<td>(\omega) (weight on transaction utility)</td>
<td>Business-to-business pricing contracts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\mu) (loss-aversion coefficient)</td>
<td></td>
</tr>
<tr>
<td>Fairness and social preferences</td>
<td>Pure self-interest</td>
<td>Inequality aversion (Fehr and Schmidt 1999)</td>
<td>(\gamma) (envy when others earn more)</td>
<td>Sales force compensation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\eta) (guilt when others earn less)</td>
<td></td>
</tr>
<tr>
<td>Impatience and taste for instant gratification</td>
<td>Exponential discounting</td>
<td>Hyperbolic discounting (Laibson 1997)</td>
<td>(\beta) (preference for immediacy, “present bias”)</td>
<td>Price plans for gym memberships</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Methods of Game-Theoretic Analysis</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Noisy best-response</td>
<td>Best-response property</td>
<td>Quantal response equilibrium (McKelvey and Palfrey 1995)</td>
<td>(\lambda) (better-response sensitivity)</td>
<td>Price competition with differentiated products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinking steps</td>
<td>Rational expectations hypothesis</td>
<td>Cognitive hierarchy (Camerer, Ho, and Chong 2004)</td>
<td>(\tau) (average number of thinking steps)</td>
<td>Market entry</td>
</tr>
<tr>
<td>Adaptation and learning</td>
<td>Instant equilibration</td>
<td>Self-tuning EWA (Ho, Camerer, and Chong, in press)</td>
<td>(\lambda) (better-response sensitivity)</td>
<td>Lowest-price guarantees</td>
</tr>
</tbody>
</table>

\(^*\)There are two additional behavioral parameters \(\phi\) (change detection, history decay) and \(\zeta\) (attention to forgone payoffs, regret) in the self-tuning EWA model. These parameters do not need to be estimated; they are calculated on the basis of feedback.

Notes: EWA = experience-weighted attraction.
Examples of Pricing Contracts

- Linear
- Two-part Tariff
- Three-part Tariff
- Multi-Block Tariff
A Simple Framework

Number of Block

<table>
<thead>
<tr>
<th>Fixed Fee</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Linear</td>
<td>Block-tariff (2B vs. 3B)</td>
</tr>
<tr>
<td>Yes</td>
<td>Two-part Tariff</td>
<td>Three-part Tariff</td>
</tr>
</tbody>
</table>
Does Number of Block Matter?

Number of Block

<table>
<thead>
<tr>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>Block-tariff (2B vs. 3B)</td>
</tr>
<tr>
<td>Two-part Tariff</td>
<td>Three-part Tariff</td>
</tr>
</tbody>
</table>

Fixed Fee

- No
- Yes
Research Question

Does the Number of Block Matter Empirically?

- Total surplus generated from trading
- Division of surplus (e.g., which format favors the seller)
A B2B Market: The Mapping between Real and Laboratory Settings

Independent

Manufacturer (seller) C = 20

Retailer (Buyer)

Demand = 100 - price

Example

Which Type of Pricing Contract to Use?

Price Contract

Office Depot USA

Price

Which Type of Pricing Contract to Use?

Price Contract

Office Depot USA

Price

February 2007

Teck H. Ho
Integrated Manufacturer and Retailer

Demand = 100 - price

Manufacturer

Retailer

C = 20

Price* = 60

Manufacturer Profits

Retailer Profits

* Assume equal division

0 800 1600 Retailer Profits

0 800 1600 Manufacturer Profits

February 2007

Teck H. Ho
Linear Price

Independent

Demand = 100 - price

\[W^* = 60 \]

\[\text{Price}^* = 80 \]

\[C = 20 \]

Total Surplus (Integrated) > Total Surplus (Independent)
Two-Block Tariff

Manufacturer

Retailer

C = 20

W1, X1, W2 = 20

Price* = 60

Demand = 100 - Price

Total Cost to Retailer

2-Block Tariff

Manufacturer Profits

Retailer Profits

M = (W1 - W2)X1

1600-M

1600

1600

Teck H. Ho

February 2007
Number of Block: 2B vs. 3B

\[
\begin{align*}
W2 &= 20 \quad \text{(2B & 3B)} \\
M &= (W1-W2)X1 \quad \text{(2B)} \\
&= (W0-W2)X0 + (W1-W2)(X1-X0) \quad \text{(3B)}
\end{align*}
\]
1. Revenue Equivalence (Strong)

Manufacturer Profits (π_M)

Retailer Profits (π_R)

\[
\pi_M(X) = \delta(X) + \kappa(X)\pi_R(X)
\]
\[
\pi_M(Y) = \delta(Y) + \kappa(Y)\pi_R(Y)
\]

Constraints:
\[
\kappa(X) = \kappa(Y) = -1
\]
\[
\delta(X) = \delta(Y) = 1600
\]

\[X = 2B\quad ; \quad Y = 3B\]
2. Revenue Equivalence (Weak)

\[\pi_M(X) = \delta(X) + \kappa(X) \pi_R(X) \]
\[\pi_M(Y) = \delta(Y) + \kappa(Y) \pi_R(Y) \]

Constraints:
\[\delta(X) = \delta(Y) \]
\[\kappa(X) = \kappa(Y) = -1 \]

\[X = 2B \quad ; \quad Y = 3B \]
3. Division Equivalence

Manufacturer Profits (π_M)

Retailer Profits (π_R)

Constraints: $\delta_{(X)} = \delta_{(Y)} = 0$

$\delta_{(X)} = \delta_{(Y)} = 0$

$\kappa_{(X)} = \kappa_{(Y)}$

$\pi_M(X) = \delta_{(X)} + \kappa_{(X)}\pi_R(X)$

$\pi_M(Y) = \delta_{(Y)} + \kappa_{(Y)}\pi_R(Y)$

$X = 2B$; $Y = 3B$
Empirical Equivalence

Manufacturer Profits (π_M)

Retailer Profits (π_R)

$X = Y$

$X = 2B$; $Y = 3B$
Testable Hypotheses

Number of Block

Total Pie

1600
1200

M’s Share of Pie

100%
67%

Number of Block

H1
H2
H3
H4
Economic Experiments

• Vary Number of Blocks: 1-Block (Linear Price), 2-Block tariff, and 3-Block tariff Price contracts.

• Subjects are business students and working managers.

• Subjects were told the following:
 • Decision-making experiment and they will earn cash according to the decision points they obtain.
 • 11 subjects per session with 11 rounds. 2 sessions per contract.
 • Each subject is randomly matched with another subject only once.
 • They will either be a RED player (Manufacturer) or BLUE player (Retailer) in each round.
 • RED sells a product to BLUE, who in turn sells it to a group of customers.
 • RED’s unit cost is 20. Customers’ Demand is Quantity =100-Price.
Subjects’ Decisions

- 2-Block and 3-Block tariffs (between-subjects): RED offers BLUE a quantity discount contract.
- RED chooses X, Y and Break (w1, w2 and x1 respectively). In 3-Block contract, we fixed w0 and x0 to control for decision complexity.
Subjects’ Payoffs

- **BLUE** observes **RED**’s contract offer of w_1, w_2 and x_1.
- **BLUE** chooses Price, which determines Quantity sold according to $\text{Quantity} = 100 - \text{Price}$.

- E.g., For 2-Block tariff:

 If $\text{Quantity} \leq \text{Break}$,
 \[
 \text{RED profits} = [X - 20] \times \text{Quantity} \\
 \text{BLUE profits} = [\text{PRICE} - X] \times \text{Quantity}
 \]

 If $\text{Quantity} > \text{Break}$,
 \[
 \text{RED profits} = [X \times \text{Break}] + [Y \times (\text{Quantity} - \text{Break})] - [20 \times \text{Quantity}] \\
 \text{BLUE profits} = [\text{Price} \times \text{Quantity}] - [X \times \text{Break}] - [Y \times (\text{Quantity} - \text{Break})]
 \]

- **BLUE** can also Reject the contract and both players earn zero points.
Students versus Managers

Managers (Full-time and Part-time MBA students), Stake Size Doubled, Groups of 4, Instructions given out 7 days in advance.

<table>
<thead>
<tr>
<th>2-Block Tariff</th>
<th>Undergrad (1)</th>
<th>MBA (2)</th>
<th>t-stat (1 v 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>80%</td>
<td>83%</td>
<td>-0.95</td>
</tr>
<tr>
<td>M’s share of total profits</td>
<td>65%</td>
<td>68%</td>
<td>-1.27</td>
</tr>
</tbody>
</table>

Conditional on retailer accepting contract.
Scatter-Plots: 2- versus 3-Block Tariff

2-Block Tariff

3-Block Tariff

π_M π_R

π_M π_R
H1 and H3: 1- versus 2-Block

<table>
<thead>
<tr>
<th></th>
<th>Theory Prediction (1-Block)</th>
<th>Actual 1-Block</th>
<th>Theory Prediction (2-Block)</th>
<th>Actual 2-Block</th>
<th>t-stat (2 v 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>75%</td>
<td>67%</td>
<td>100%</td>
<td>81%</td>
<td>H1: 5.24*</td>
</tr>
<tr>
<td>Manufacturer’s Share of Profits</td>
<td>67%</td>
<td>64%</td>
<td>100%</td>
<td>65%</td>
<td>H3: 0.80</td>
</tr>
</tbody>
</table>

*significant at the 5% level. Conditional on Retailer accepting contract.
H2 and H4: 2- versus 3-Block

<table>
<thead>
<tr>
<th></th>
<th>Theory Prediction</th>
<th>2-Block</th>
<th>3-Block</th>
<th>t-stat (2 v 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_2)</td>
<td>20</td>
<td>34</td>
<td>30</td>
<td>2.81*</td>
</tr>
<tr>
<td>Price</td>
<td>60</td>
<td>74</td>
<td>66</td>
<td>6.85*</td>
</tr>
<tr>
<td>Efficiency</td>
<td>(H_2: 2B=3B)</td>
<td>81%</td>
<td>95%</td>
<td>-6.55*</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M’s Share of Total Profits</td>
<td>(H_4: 2B=3B)</td>
<td>65%</td>
<td>73%</td>
<td>-4.03*</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*significant at the 5% level

Conditional on Retailer accepting contract
Empirical Regularities

Number of Block

Total Pie

H1

H2

1

2

3

1200

1600

M’s Share of Pie

100%

67%

Number of Block

H3

H4

1

2

3

Teck H. Ho
Quantal Response Equilibrium (QRE)

- **Empirical Puzzle 1**: Retailer choose to buy in the “last block” less often in 2-Block vs. 3-block (only 60% compared to 83% for accepted contracts), whereas theory predicts retailer doing so all the time.

- **QRE Model**: Allow Retailer to be less than perfectly sensitive to payoffs across blocks (i.e., noisily best respond)

```
0

U_R^l (q \leq x_1)  U_R^r (q > x_1)
```

"Reject" "Left" "Right" (Last Block)
Assume that the retailer follows a multinomial logit choice rule so that the probability of the retailer choosing ‘Right’ is

\[
\frac{e^{\gamma U^r_R}}{1 + e^{\gamma U^l_R} + e^{\gamma U^r_R}}
\]

- Parameter \(\gamma \) captures the sensitivity to differences in monetary payoffs.
- Manufacturer takes retailer’s decision rule into account. Sets the contract by maximizing the following expected profit function:

\[
E(\pi_M) = \frac{e^{\gamma U^l_R}}{1 + e^{\gamma U^l_R} + e^{\gamma U^r_R}} \cdot \pi^l_M + \frac{e^{\gamma U^r_R}}{1 + e^{\gamma U^l_R} + e^{\gamma U^r_R}} \cdot \pi^r_M + \frac{1}{1 + e^{\gamma U^l_R} + e^{\gamma U^r_R}} \cdot 0
\]
Reference-Dependent Payoffs

• **Empirical Puzzle 2**: \(w_2 \) and Price are higher in 2-block (vs. 3-Block)

• Retailer’s wants lower adjacent marginal price it pays to apply to the previous block.

• Let \(\beta \) be the value of every counterfactual dollar.

• Example: For 2-Block tariff, Retailer’s Utility is:

\[
U^R = \begin{cases}
 U^l_R = \pi^l_R & \text{if } 0 < q \leq x_1 \\
 U^r_R = \pi^r_R - \beta(w_1 - w_2)x_1 & \text{if } q > x_1
\end{cases}
\]
Model Estimation

- Manufacturer’s decisions are iid with a bivariate normal density:

\[
\begin{pmatrix}
 w_{1it} \\
 w_{2it}
\end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix}
 w_1^* \\
 w_2^*
\end{pmatrix}, \begin{pmatrix}
 \sigma_{w_i}^2 & \rho_{12}\sigma_{w_i}\sigma_{w_2} \\
 \rho_{12}\sigma_{w_2}\sigma_{w_i} & \sigma_{w_2}^2
\end{pmatrix}\right)
\]

- \(w_1^*\) and \(w_2^*\) are the equilibrium predictions (solved numerically) of the QRE model with counterfactual profits.

- Estimate common \(\beta\) and contract-specific \(\gamma\).
Likelihood Function

- Log-Likelihood function for each contract is:

\[
LL (\beta, \gamma, \sigma_{w_1}, \sigma_{w_2}, \rho_{12}) =
\]

\[
\sum_{i=1}^{N} \sum_{t=1}^{T} \left\{ -\ln(2\pi) - \frac{1}{2} \ln |\Sigma| - \frac{1}{2} (\Omega' \Sigma^{-1} \Omega) + \text{Reject}_{it} \cdot \ln \left(\frac{1}{1 + e^{U_{R}^l} + e^{U_{R}^r}} \right) \right\}
\]

\[
+ \text{Left}_{it} \cdot \ln \left(\frac{e^{U_{R}^l}}{1 + e^{U_{R}^l} + e^{U_{R}^r}} \right) + \text{Right}_{it} \cdot \ln \left(\frac{e^{U_{R}^r}}{1 + e^{U_{R}^l} + e^{U_{R}^r}} \right)
\]

where \(\Sigma = \begin{pmatrix} \sigma_{w_1}^2 & \rho_{12} \sigma_{w_1} \sigma_{w_2} \\ \rho_{12} \sigma_{w_2} \sigma_{w_1} & \sigma_{w_2}^2 \end{pmatrix} \) and \(\Omega = \begin{pmatrix} w_{1it} - w_1^* \\ w_{2it} - w_2^* \end{pmatrix} \)
Estimation Results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Full Model</th>
<th>Nested Model $\gamma_{2B} = \gamma_{3B} = 0.2^*$</th>
<th>Nested Model $\beta = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.196</td>
<td>0.126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.10)</td>
<td>(35.00)</td>
<td></td>
</tr>
<tr>
<td>γ_{2B}</td>
<td>0.0036</td>
<td></td>
<td>0.0016</td>
</tr>
<tr>
<td></td>
<td>(7.08)</td>
<td></td>
<td>(9.30)</td>
</tr>
<tr>
<td>γ_{3B}</td>
<td>0.0107</td>
<td></td>
<td>0.0048</td>
</tr>
<tr>
<td></td>
<td>(7.12)</td>
<td></td>
<td>(26.06)</td>
</tr>
<tr>
<td>-LL</td>
<td>2186.7</td>
<td>4431.2</td>
<td>2225.8</td>
</tr>
</tbody>
</table>

To approximate large value of γ. Figures in parentheses are the t-statistics.
Model Predictions: 2 Block

<table>
<thead>
<tr>
<th>Variable</th>
<th>Actual Data</th>
<th>Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>63.7</td>
<td>63.51</td>
</tr>
<tr>
<td>w2</td>
<td>34.0</td>
<td>32.20</td>
</tr>
<tr>
<td>Left</td>
<td>0.36</td>
<td>0.39</td>
</tr>
<tr>
<td>Right</td>
<td>0.53</td>
<td>0.50</td>
</tr>
<tr>
<td>Reject</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Conditional Efficiency</td>
<td>80.8%</td>
<td>85.7%</td>
</tr>
<tr>
<td>m</td>
<td>65.3%</td>
<td>67.9%</td>
</tr>
</tbody>
</table>
Model Predictions: 3 Block

<table>
<thead>
<tr>
<th>Variable</th>
<th>Actual Data</th>
<th>Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>57.3</td>
<td>56.1</td>
</tr>
<tr>
<td>w2</td>
<td>29.9</td>
<td>28.4</td>
</tr>
<tr>
<td>Left</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Right</td>
<td>0.74</td>
<td>0.82</td>
</tr>
<tr>
<td>Reject</td>
<td>0.15</td>
<td>0.06</td>
</tr>
<tr>
<td>Conditional Efficiency</td>
<td>95.1%</td>
<td>96.0%</td>
</tr>
<tr>
<td>m</td>
<td>72.7%</td>
<td>77.4%</td>
</tr>
</tbody>
</table>
Future Research

- A mini field application project at HP
- Field data (B2B pricing contract data from HP)
- Other pricing contracts (Two-part tariff vs. quantity discount contract)
- B2C settings (mobile phone plans, 3-block tariffs)
HP Printing Division Go-to-Market Strategy

Design and Analysis

Business Objective
- Optimize incentives for IPG new product business

Policy Issues
- Fixed vs % target before discount kicks in
- 2-block versus 3-block tariffs

Experimental Design
- Stanford students as subjects held at HP Labs
- One new and one old product in IPG Commercial Value-added Reseller Program
- Demand model calibrated with business inputs
 - Reseller competence / sales activity modeling
 - Demand drivers

Research Results
- Fixed threshold better quantity discount policy
- 3-block is better for several retailers

Business Results
- HP adopted all recommendations
Does Contract Framing Matter?

<table>
<thead>
<tr>
<th>Fixed Fee</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Linear</td>
<td>Block-tariff (2B vs. 3B)</td>
</tr>
<tr>
<td>Yes</td>
<td>Two-part Tariff (Salient vs. Opaque)</td>
<td>Three-part Tariff</td>
</tr>
</tbody>
</table>
Thank You
A “Tighter” Test of H2

- Define $Z = 1600$-Total Profits.
- Let Z be distributed with density $f(Z)$ for $Z > 0$, where $f(Z)$ is exponential with parameter λ.
- $f(0) = 0$.
- Let y be the probability that $Z = 0$.
- Likelihood function of Z with n observations:

$$L(y, \lambda) = \prod_{i=1}^{n} \left\{ y \cdot I(Z) + (1 - y) \cdot f(Z) \right\}$$

where $I(Z) = \begin{cases} 1 & \text{if } Z = 0, \\ 0 & \text{otherwise} \end{cases}$

- Key is to test whether model where values of y and λ are equal across the 2 and 3 Block contracts can be accepted.
Parameter Estimates and L-R Tests

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Exponential</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_{2B}</td>
<td>0.077</td>
</tr>
<tr>
<td>y_{3B}</td>
<td>0.172</td>
</tr>
<tr>
<td>λ_{2B}</td>
<td>0.0030</td>
</tr>
<tr>
<td>λ_{3B}</td>
<td>0.0105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Exponential (-LL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained Model</td>
<td>1322.60</td>
</tr>
<tr>
<td>$y_{2B} = y_{3B}$</td>
<td>1324.95 (4.70)*</td>
</tr>
<tr>
<td>$\lambda_{2B} = \lambda_{3B}$</td>
<td>1354.70 (64.20)*</td>
</tr>
<tr>
<td>$y_{2B} = y_{3B}$, $\lambda_{2B} = \lambda_{3B}$</td>
<td>1357.04 (68.88)*</td>
</tr>
</tbody>
</table>

All estimated parameters are significant.
Testable Hypotheses

- H1: Total channel profits increase as the number of blocks in a price contract changes from 1 to 2.

- H2: Total channel profits remain unchanged as the number of blocks changes from 2 to 3.

- H3: Manufacturer’s share of total profits increases from 66.7% in the 1-Block contract to 100% in the 2-Block contract.

- H4: Manufacturer’s share of total profits remain unchanged at 100% as the number of blocks increases from 2 to 3.
Empirical Regularities

1. Total profits increases as number of blocks increases from 1 to 2. (H1 supported)

2. Total profits increases even as number of blocks increases from 2 to 3 (H3 not supported)

3. Manufacturer’s share of profits does not increase as number of blocks changes from 1 to 2 (H2 not supported).

4. Manufacturer’s share of profits increases as number of blocks changes from 2 to 3, but still far below the 100% predicted (H4 not supported).