Sunk Cost Fallacy in Driving the World's Costliest Cars

Teck-Hua Ho University of California Berkeley

Joint with I.P.L. Png and Sadat Reza National University of Singapore May, 2013

Key Research question

Mercedes-Benz CLS Class Purchase month: February 2009 Price = \$300,000

US\$242,000

Driver B

Mercedes-Benz CLS Class Purchase month: February 2010 Price = \$322,500

US\$260,000

Question: If both owners enjoy driving equally, would Driver B drive more as a result of higher sunk cost?

- Behavioral tendency of an economic agent to consume/produce at a greater than optimal level
- ✓ Consumption: Desire not to appear wasteful
- ✓ Project investment: Do not wish to recognize losses
- ✓ To recover the sunk investment one has made (or close a mental account that carries the sunk cost of the product or project)

Sunk cost fallacy – Over-consumption

- Experiment by Arkes and Blumer (1985)
- > Setting:
 - ✓ Control: Bought a season theater ticket at full price
 - ✓ Treatment: Bought a season theater ticket with unexpected discount
 - ✓ Arkes and Blumer: Any difference in the attendance behaviour of the two (the number of shows attended)?
- Result:
 - ✓ Buyers in the control condition attended more shows than those in the treatment condition (4.1 versus 3.3 out of 5 shows)
 - Once the season ticket has been acquired, the actual price of the ticket paid should not affect decision to go to the show.
 - Unless, there is a tendency to recover the initial investment sunk cost fallacy

Sunk cost fallacy – Escalation of commitment

- Field studies by Staw and Hoang (1995) and Camerer and Weber (1999)
- Setting:
 - National Basketball Association (NBA): Teams choose players in annual "draft": higher rank = lower picks
 - Lower draft players are expected to perform better and guaranteed higher salaries compared to the higher draft players
 - Staw-Hoang and Camerer-Weber: Did teams deploy lower draft picks relatively (more minutes of play) because of the high salary commitment (after adjusting for performance)?
- ➢ Result:
 - A minimal decrement in draft order increases playing time by 14 minutes in Year 2 to 2 minutes in Year 5 (Camerer and Weber, 1999).
 - Performance should be the key driver of how many minutes a player plays and not the draft pick order.
 - Escalation of commitment is another manifestation of sunk cost fallacy.

Singapore car market

- Singapore car market is heavily regulated to influence demand for cars
- ✓ High tariffs make the cars in Singapore the world's costliest
 - ARF (Additional Registration Fee)
 - COE (Certificate of Entitlement)

Car price on-the-road \$ 129,000 =

Ex-policy price

≻ARF

➤ COE Premium

- Value of ex-policy price declines as soon as the car is out on the road
- Sunk cost is therefore the difference between the amount paid and the amount available if re-sold the very next day

- Owners can purchase a new car by paying ARF at a preferential rate (PARF) if they dispose the car within 10 years
- If disposed within the first 5 years, a new car can be purchased by paying 25% of ARF (current policy)
- From the 6th year onward, the preferential rate increases by 5% per year (current policy)
- Therefore, 25% of ARF is sunk cost

- COE is valid for 10 years
- If vehicle is disposed within 2 years of purchase, only 80% is refundable
- After 2 years the COE premium is depreciated on a monthly basis until the end of the 10th year.
- Therefore, 20% of COE premium is sunk cost

Panel dataset of car usage

Proprietary field data from a car dealer in Singapore

- Jan 2001 Dec 2011
- 33,457 observations on 6,474 cars
- Engine capacity 15 different sizes
- LTA registration date
- Servicing date
- Cumulative mileage
- Other information (from Land Transport Authority, Dept of Statistics)
 - OMV
 - ARF rates
 - COE quota and premium monthly
 - CPI Fuel monthly
 - Car population per km monthly

Noticeable phenomenon: Usage declines with time and price

Vertical axis: average usage per month in km, horizontal axis: age of car in months (the most popular model in the sample)

Hypothesis 1: Novelty effect (H1.)

> Driver's may drive more right after purchase of the car

- Novelty effect can be assumed to have non-negative contribution to utility of driving
- The effect diminishes over time

Hypothesis 2: Increasing gasoline cost (H2.)

Hypothesis 3: Increasing congestion due to more cars on the road (H3.)

Number of cars in Singapore 2001-2011

Hypothesis 4: Reduction in sunk cost (H4.)

Decreasing prices resulted in decreasing sunk cost

Average ARF and COE Quota Premium also declined

Hypothesis 4: Reduction in sunk cost (H4.)

- Decreasing prices resulted in decreasing sunk cost
- Average ARF and COE Quota Premium also declined

Hypothesis 5: Reduction in price – selection effect (H5.)

> Average price of two most popular models in our sample:

Year of Purchase	Model A	Model C
2003	\$174,578	\$212,140
2007	\$145,347	\$171,920

> Assumptions :

- ✓ Individual buys a car
- ✓ Plans to use for 120 months
- \checkmark Scrap value at the end of the 120th month 50% of ARF

Standard model

- \succ Usage in period t is q_t
- Driver's utility in period t,

Standard model

- \blacktriangleright Usage in period *t* is q_t
- Driver's utility in period t,

Notes: $\theta_0, \theta_1, \theta_2, \beta_1, \beta_2, \gamma, \delta_0, \delta_1, \delta_2 > 0$, *P is ex – policy price*

$$U(q_t) = V(q_t) - G(q_t, t) - C(q_t, t) - D(t)$$

Usage value =
$$\theta_0 + (\theta_1 + e^{-\theta_2 t})q_t - \theta_3 q_t^2$$

Novelty effect

Gasoline cost = $\beta_1 g_t q_t$

Congestion cost = $\beta_2 c_t q_t$

> Optimal usage in t = 1, 2, ..., T,

$$q_t^* = \frac{1}{2\theta_3} \{ \theta_1 + e^{-\theta_2 t} - \beta_1 g_t - \beta_2 c_t \}$$

Psychological Sunk Cost

✓ Driver's utility in period t,

$$U(q_t) = V(q_t) - G(q_t, t) - C(q_t, t) - D(t) - \max\left\{0, \lambda S\left[1 - \frac{Q_t}{\hat{Q}}\right]\right\}$$

- ✓ Consumer amortizes sunk cost *S* by the actual cumulative usage $Q_t = \sum_{\tau=1}^t q_\tau$ relative to some target cumulative usage \hat{Q}
- ✓ This nests the standard model $(\lambda = 0)$
- ✓ Sunk cost gets smaller over time as usage accumulates

Optimal usage with sunk costs

> Optimal usage in t = 1, 2, ..., T,

$$q_{t}^{*} = \frac{1}{2\theta_{3}} \left\{ \theta_{1} + e^{-\theta_{2}t} - \beta_{1}g_{t} - \beta_{2}c_{t} + [T - t + 1]\frac{\lambda S}{\hat{Q}} \right\}$$

H1. H2. H3. H4. (confounded by H5.)

Diminishing effect of sunk-cost fallacy

- Constant level of congestion over time
- ✓ Zero novelty effect

Selection effect and identification of sunk-cost fallacy

- It is possible that heavy users are willing to pay higher price, thus higher sunk cost
- Since sunk-cost is assumed to be a function of price, sunk-cost effect is not identified using the optimal usage function
- However, it may be plausible to assume that selection effect has no time-varying effect
 - In other words, heavy users may pay higher price, but their change in usage over time may have little to do with paying higher price
- On the other hand, our model suggests that sunk-cost effect diminishes over time (Arkes and Blumer find similar diminishing effect)
- > Change in usage equation can be used to estimate the sunk-cost parameter λ .

- Total sunk cost is the sum of the sunk costs associated with the three components of car price
 - Ex-policy price (*P*)
 - ARF
 - COE Premium

 $S = s_0 P + s_1 ARF + s_2 COE$ $s_0, s_1, s_2 \in (0, 1)$

Estimation equation:

 $\Delta q_{it}^* = \Delta e^{-\theta_2 t} - \beta_1 \Delta g_t - \beta_2 \Delta c_t - \frac{\lambda [0.25 \times ARF_i + 0.2 \times COE_i + s_0 P_i]}{\widehat{Q_i}} + \epsilon'_{it}$

> $\lambda > 0$ would indicate presence of sunk-cost fallacy

- \succ Target usage \hat{Q} is unobserved
- $\triangleright \hat{Q}$ is assumed to be log-normally distributed with mean equaling sample average
- Maximum simulated likelihood method is applied to estimate the parameters of interest

Alternative specifications for robustness check

The following specifications are estimated : Specification *a*: Conventional model (without sunk cost) Specification b: Main specification (previous slide) Specification c: Allowing marginal benefit to be dependent on price Specification d: Alternative definition of sunk cost Specification e: Main specification – smaller cars only Specification f: Main specification – larger cars only Specification *g*: Main specification – heterogeneous distribution of target usage for smaller and larger cars

✓ Marginal benefit dependent on price (specification *c*):

Usage value = $\exp(\mu . Total Price) . (\theta_0 + \theta_1 q_t + e^{-\theta_2 t} q_t - \theta_3 q_t^2)$

- ✓ Alternative definition of sunk cost (specification *d*):
 Sunk cost,
 S = α. Total Price, α ∈ (0,1)
- Separate estimation for small and large cars (specifications *e, f*)
 - Target usage drawn from distributions with corresponding sample average as mean
- ✓ Heterogeneous target usage (specification g):
 - Target usage drawn from two distributions with means corresponding to small and large cars

Estimates: With and Without Sunk Cost

Variable	(a)	(b)	(c)	(d)	(e)	(f)	(g)
	Convent-	Mental	Scaled	Sunk cost	Smaller cars	Larger	Hetero-
	ional	accounting	marginal	proportional		cars	geneous
	rationality	for sunk	benefit	to retail			target usage
		cost		price			0 0
Gasoline cost, β_1	-0.0001	-0.0003	-0.0006*	-0.0003	-0.0006*	-0.0001	-0.0003
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Congestion cost, β_2	0.027***	0.010***	0.009**	0.010***	0.011***	0.003	0.011***
	(0.002)	(0.002)	(0.003)	(0.002)	(0.003)	(0.003)	(0.002)
Age, θ_2	0.010***	0.004***	0.000	0.005***	0.003**	0.003**	0.004***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)
Sunk cost, λ		0.094***	0.237***		0.074***	0.060**	0.095***
		(0.012)	(0.031)		(0.011)	(0.022)	(0.008)
Sunk cost part		0.125***	0.208***		0.233***	0.326*	0.094***
of ex-policy price, α		(0.038)	(0.039)		(0.080)	(0.186)	(0.023)
Sunk cost, $\lambda \rho$				0.024***			
				(0.002)			
No. of observations	6474	6474	6474	6474	3581	2893	6474
Mean log likelihood	-2.77204	-2.752	-2.748	-2.755	-2.693	-2.819	-2.752
Log likelihood	-17946.2	-17815.1	-17788.7	-17833.8	-9643.3	-8155.7	-17819.2
Elasticity	n.a.	0.56***	0.64***	0.85***	0.53***	0.73***	0.51***
-		(0.072)	(0.190)	(0.071)	(0.079)	(0.269)	(0.043)

Estimates: Controlling for Self-selection

Variable	(a)	(b)	(c)	(d)	(e)	(f)	(g)
	Convent-	Mental	Scaled	Sunk cost	Smaller cars	Larger	Hetero-
	ional	accounting	marginal	proportional		cars	geneous
	rationality	for sunk	benefit	to retail			target usage
		cost		price			
Gasoline cost, β_1	-0.0001	-0.0003	-0.0006*	-0.0003	-0.0006*	-0.0001	-0.0003
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Congestion cost, β_2	0.027***	0.010***	0.009**	0.010***	0.011***	0.003	0.011***
-	(0.002)	(0.002)	(0.003)	(0.002)	(0.003)	(0.003)	(0.002)
Age, θ_2	0.010***	0.004***	0.000	0.005***	0.003**	0.003**	0.004***
-	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)
Sunk cost, λ		0.094***	0.237***		0.074***	0.060**	0.095***
		(0.012)	(0.031)		(0.011)	(0.022)	(0.008)
Sunk cost part		0.125***	0.208***		0.233***	0.326*	0.094***
of ex-policy price, α		(0.038)	(0.039)		(0.080)	(0.186)	(0.023)
Sunk cost, $\lambda \rho$				0.024***			
· •				(0.002)			
No. of observations	6474	6474	6474	6474	3581	2893	6474
Mean log likelihood	-2.77204	-2.752	-2.748	-2.755	-2.693	-2.819	-2.752
Log likelihood	-17946.2	-17815.1	-17788.7	-17833.8	-9643.3	-8155.7	-17819.2
Elasticity	n.a.	0.56***	0.64***	0.85***	0.53***	0.73***	0.51***
-		(0.072)	(0.190)	(0.071)	(0.079)	(0.269)	(0.043)

Estimates: Alternative Specification of Sunk Cost

Variable	(a)	(b)	(c)	(d)	(e)	(f)	(g)
	Convent-	Mental	Scaled	Sunk cost	Smaller cars	Larger	Hetero-
	ional	accounting	marginal	proportional		cars	geneous
	rationality	for sunk	benefit	to retail			target usage
		cost		price			
Gasoline cost, β_1	-0.0001	-0.0003	-0.0006*	-0.0003	-0.0006*	-0.0001	-0.0003
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Congestion cost, β_2	0.027***	0.010***	0.009**	0.010***	0.011***	0.003	0.011***
	(0.002)	(0.002)	(0.003)	(0.002)	(0.003)	(0.003)	(0.002)
Age, θ_2	0.010***	0.004***	0.000	0.005***	0.003**	0.003**	0.004***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)
Sunk cost, λ		0.094***	0.237***		0.074***	0.060**	0.095***
		(0.012)	(0.031)		(0.011)	(0.022)	(0.008)
Sunk cost part		0.125***	0.208***		0.233***	0.326*	0.094***
of ex-policy price, α		(0.038)	(0.039)		(0.080)	(0.186)	(0.023)
Sunk cost, $\lambda \rho$				0.024***			
				(0.002)			
No. of observations	6474	6474	6474	6474	3581	2893	6474
Mean log likelihood	-2.77204	-2.752	-2.748	-2.755	-2.693	-2.819	-2.752
Log likelihood	-17946.2	-17815.1	-17788.7	-17833.8	-9643.3	-8155.7	-17819.2
Elasticity	n.a.	0.56***	0.64***	0.85***	0.53***	0.73***	0.51***
•		(0.072)	(0.190)	(0.071)	(0.079)	(0.269)	(0.043)
						· · · ·	· · · · · ·

Estimates: Small versus Large Cars

Variable	(a)	(b)	(c)	(d)	(e)	(f)	(g)
	Convent-	Mental	Scaled	Sunk cost	Smaller cars	Larger	Hetero-
	ional	accounting	marginal	proportional		cars	geneous
	rationality	for sunk	benefit	to retail			target usage
		cost		price			
Gasoline cost, β_1	-0.0001	-0.0003	-0.0006*	-0.0003	-0.0006*	-0.0001	-0.0003
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Congestion cost, β_2	0.027***	0.010***	0.009**	0.010***	0.011***	0.003	0.011***
	(0.002)	(0.002)	(0.003)	(0.002)	(0.003)	(0.003)	(0.002)
Age, θ_2	0.010***	0.004***	0.000	0.005***	0.003**	0.003**	0.004***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)
Sunk cost, λ		0.094***	0.237***		0.074***	0.060**	0.095***
		(0.012)	(0.031)		(0.011)	(0.022)	(0.008)
Sunk cost part		0.125***	0.208***		0.233***	0.326*	0.094***
of ex-policy price, α		(0.038)	(0.039)		(0.080)	(0.186)	(0.023)
Sunk cost, $\lambda \rho$				0.024***			
				(0.002)			
						• • • •	
No. of observations	6474	6474	6474	6474	3581	2893	6474
Mean log likelihood	-2.77204	-2.752	-2.748	-2.755	-2.693	-2.819	-2.752
Log likelihood	-17946.2	-17815.1	-17788.7	-17833.8	-9643.3	-8155.7	-17819.2
Elasticity	n.a.	0.56***	0.64***	0.85***	0.53***	0.73***	0.51***
		(0.072)	(0.190)	(0.071)	(0.079)	(0.269)	(0.043)

Estimates: Allowing for Different Means of Target Usage for Different Engine Sizes

Variable	(a)	(b)	(c)	(d)	(e)	(f)	(g)
	Convent-	Mental	Scaled	Sunk cost	Smaller cars	Larger	Hetero-
	ional	accounting	marginal	proportional		cars	geneous
	rationality	for sunk	benefit	to retail			target usage
	5	cost		price			0 0
-							
Gasoline cost, β_1	-0.0001	-0.0003	-0.0006*	-0.0003	-0.0006*	-0.0001	-0.0003
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Congestion cost, β_2	0.027***	0.010***	0.009**	0.010***	0.011***	0.003	0.011***
• • • •	(0.002)	(0.002)	(0.003)	(0.002)	(0.003)	(0.003)	(0.002)
Age, θ_2	0.010***	0.004***	0.000	0.005***	0.003**	0.003**	0.004***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)
Sunk cost, λ		0.094***	0.237***		0.074***	0.060**	0.095***
		(0.012)	(0.031)		(0.011)	(0.022)	(0.008)
Sunk cost part		0.125***	0.208***		0.233***	0.326*	0.094***
of ex-policy price, α		(0.038)	(0.039)		(0.080)	(0.186)	(0.023)
Sunk cost, $\lambda \rho$				0.024***			
· •				(0.002)			
No. of observations	6474	6474	6474	6474	3581	2893	6474
Mean log likelihood	-2.77204	-2.752	-2.748	-2.755	-2.693	-2.819	-2.752
Log likelihood	-17946.2	-17815.1	-17788.7	-17833.8	-9643.3	-8155.7	-17819.2
Elasticity	n.a.	0.56***	0.64***	0.85***	0.53***	0.73***	0.51***
·		(0.072)	(0.190)	(0.071)	(0.079)	(0.269)	(0.043)

Results

- ✓ Significant improvement in log-likelihood with specifications including sunk-cost
- ✓ Sunk-cost effect is significant in all specifications
- Elasticity wrt sunk-cost is similar (statistically not different) in all specifications
- ✓ Novelty effect is generally positive and significant
- ✓ Effect of gasoline cost is not significant (plausible since the sample is of premium cars)
- ✓ Congestion cost is generally positive and significant

- ✓ COE premium increased by \$22,491 from February 2009 to February 2010
- ✓ Specification *b*: Estimated increase in sunk cost \$4,500 and increase in average monthly usage is 147 km (8.8% increase)
- Specification d: Estimated increase in average monthly usage due to increase in sunk cost is 164 km (9.9%)

✓ Policy:

- Making cars expensive has countervailing effect
- Better to directly price congestion
- ✓ Managerial:
 - Countervailing argument against 'razor/razorblade strategy'
 - Underpricing the razor would reduce consumption of razor blade?

Back to the question that we posed in the beginning....

Driver A

Mercedes-Benz CLS Class Purchase month: February 2009 Estimated price=\$300,000

US\$242,000

Driver B

Mercedes-Benz CLS Class Purchase month: February 2010 Estimated price=\$322,500 US\$260,000

- Owner of the second car pays
 \$22,500 more for the same
 model, due to increase in the COE
 premium.
- Structural estimation suggests that Driver B will drive 147-164 km per month more than Driver A

Developed a behavioral model of car usage that incorporated mental accounting for sunk cost, where the standard model is a special case.

- Tested the model on a proprietary data set of 6,474 cars in Singapore, the world's most expensive car market
- Found compelling evidence of sunk cost fallacy in car usage in Singapore