Sunk Cost Fallacy in Driving the World’s Costliest Cars

Teck-Hua Ho
University of California Berkeley

Joint with
I.P.L. Png and Sadat Reza
National University of Singapore
May, 2013
Key Research question

Driver A
Mercedes-Benz CLS Class
Purchase month: February 2009
Price = $300,000
US$242,000

Driver B
Mercedes-Benz CLS Class
Purchase month: February 2010
Price = $322,500
US$260,000

Question: If both owners enjoy driving equally, would Driver B drive more as a result of higher sunk cost?
Sunk cost fallacy

✓ Behavioral tendency of an economic agent to consume/produce at a greater than optimal level

✓ Consumption: Desire not to appear wasteful

✓ Project investment: Do not wish to recognize losses

✓ To recover the sunk investment one has made (or close a mental account that carries the sunk cost of the product or project)
Sunk cost fallacy – Over-consumption

- Experiment by Arkes and Blumer (1985)

- Setting:
 - Control: Bought a season theater ticket at full price
 - Treatment: Bought a season theater ticket with unexpected discount
 - Arkes and Blumer: Any difference in the attendance behaviour of the two (the number of shows attended)?

- Result:
 - Buyers in the control condition attended more shows than those in the treatment condition (*4.1 versus 3.3 out of 5 shows*)

- Once the season ticket has been acquired, the actual price of the ticket paid should not affect decision to go to the show.

- Unless, there is a tendency to recover the initial investment – sunk cost fallacy
Sunk cost fallacy – Escalation of commitment

- Field studies by Staw and Hoang (1995) and Camerer and Weber (1999)
- Setting:
 - National Basketball Association (NBA): Teams choose players in annual “draft”: higher rank = lower picks
 - Lower draft players are expected to perform better and guaranteed higher salaries compared to the higher draft players
 - Staw-Hoang and Camerer-Weber: Did teams deploy lower draft picks relatively (more minutes of play) because of the high salary commitment (after adjusting for performance)?
- Result:
 - A minimal decrement in draft order increases playing time by 14 minutes in Year 2 to 2 minutes in Year 5 (Camerer and Weber, 1999).
 - Performance should be the key driver of how many minutes a player plays and not the draft pick order.
 - Escalation of commitment is another manifestation of sunk cost fallacy.
Positioning of research

<table>
<thead>
<tr>
<th>Low stakes</th>
<th>High stakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>This study</td>
</tr>
<tr>
<td>Arkes and Blumer (1985) Small monetary involvement</td>
<td>High stakes consumption, free of agency problem</td>
</tr>
<tr>
<td>Project Investment</td>
<td>Staw and Hoang (1995) and Camerer and Weber (1999)</td>
</tr>
<tr>
<td></td>
<td>Agency problem</td>
</tr>
</tbody>
</table>
Singapore car market

- Singapore car market is heavily regulated to influence demand for cars

- High tariffs make the cars in Singapore the world’s costliest
 - ARF (Additional Registration Fee)
 - COE (Certificate of Entitlement)
Components of car price

<table>
<thead>
<tr>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car price on-the-road =</td>
</tr>
<tr>
<td>Open market value (OMV)</td>
</tr>
<tr>
<td>+ Retail mark-up</td>
</tr>
<tr>
<td>+ Customs duty</td>
</tr>
<tr>
<td>+ GST</td>
</tr>
<tr>
<td>+ Registration fee</td>
</tr>
<tr>
<td>+ Certificate of entitlement (COE) premium</td>
</tr>
<tr>
<td>+ Additional registration fee (ARF)</td>
</tr>
</tbody>
</table>
A popular model in our sample – Jun 2009

| Car price on-the-road | $129,000 |
+-----------------------+----------|
| OMV: $34,952 | |
+-----------------------+----------|
| Retail mark-up: $37,141| |
+-----------------------+----------|
| Customs duty: $6,990 | |
+-----------------------+----------|
| GST: $2,936 | |
+-----------------------+----------|
| Registration fee: $140| |
+-----------------------+----------|
| COE Premium: $11,889 | |
+-----------------------+----------|
| ARF: $34,952 | |

Ex-policy Price (P)

Policy components
Three sources of sunk cost

- Ex-policy price
- ARF
- COE Premium
Source of sunk costs: Ex-policy price

- Value of ex-policy price declines as soon as the car is out on the road
- Sunk cost is therefore the difference between the amount paid and the amount available if re-sold the very next day
Sunk cost of ex-policy price

Car age in years

Ex-policy price

ΔP

ARF

COE

Premium

$s_0 P$
Source of sunk costs: ARF

- Owners can purchase a new car by paying ARF at a preferential rate (PARF) if they dispose the car within 10 years.

- If disposed within the first 5 years, a new car can be purchased by paying 25% of ARF (current policy).

- From the 6th year onward, the preferential rate increases by 5% per year (current policy).

- Therefore, 25% of ARF is sunk cost.
Sunk cost of ARF

\[s_1 \text{ARF} = 0.25 \text{ARF} \]
Source of sunk costs: COE premium

- COE is valid for 10 years

- If vehicle is disposed within 2 years of purchase, only 80% is refundable

- After 2 years the COE premium is depreciated on a monthly basis until the end of the 10th year.

- Therefore, 20% of COE premium is sunk cost
Sunk costs of COE Premium

\[s_2 \text{COE} = 0.20 \text{COE} \]
Panel dataset of car usage

- Proprietary field data from a car dealer in Singapore
 - Jan 2001 – Dec 2011
 - 33,457 observations on 6,474 cars
 - Engine capacity – 15 different sizes
 - LTA registration date
 - Servicing date
 - Cumulative mileage

- Other information (from Land Transport Authority, Dept of Statistics)
 - OMV
 - ARF rates
 - COE quota and premium - monthly
 - CPI Fuel - monthly
 - Car population per km - monthly
Noticeable phenomenon: Usage declines with time and price

Vertical axis: average usage per month in km, horizontal axis: age of car in months
(the most popular model in the sample)
Hypothesis 1: Novelty effect (H1.)

- Driver’s may drive more right after purchase of the car
- Novelty effect can be assumed to have non-negative contribution to utility of driving
- The effect diminishes over time
Hypothesis 2: Increasing gasoline cost (H2.)

Gasoline Cost
2001-2011
Hypothesis 3: Increasing congestion due to more cars on the road (H3.)
Hypothesis 4: Reduction in sunk cost (H4.)

- Decreasing prices resulted in decreasing sunk cost
- Average ARF and COE Quota Premium also declined
Hypothesis 4: Reduction in sunk cost (H4.)

- Decreasing prices resulted in decreasing sunk cost
- Average ARF and COE Quota Premium also declined
Hypothesis 5: Reduction in price – selection effect (H5.)

Average price of two most popular models in our sample:

<table>
<thead>
<tr>
<th>Year of Purchase</th>
<th>Model A</th>
<th>Model C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>$174,578</td>
<td>$212,140</td>
</tr>
<tr>
<td>2007</td>
<td>$145,347</td>
<td>$171,920</td>
</tr>
</tbody>
</table>
Model of driving behavior

- **Assumptions**:
 - Individual buys a car
 - Plans to use for 120 months
 - Scrap value at the end of the 120th month – 50% of ARF
Model of driving behavior

Standard model

- Usage in period t is q_t
- Driver’s utility in period t,

$$U(q_t) = V(q_t) - G(q_t, t) - C(q_t, t) - D(t)$$

Usage value Gasoline cost Congestion cost Depreciation cost
Model of driving behavior

Standard model

- Usage in period t is q_t
- Driver’s utility in period t,

$$U(q_t) = V(q_t) - G(q_t, t) - C(q_t, t) - D(t)$$

- Usage value
- Gasoline cost
- Congestion cost
- Depreciation cost

$$
\theta_0 + \left(\theta_1 + e^{-\theta_2 t}\right) q_t - \theta_3 q_t^2 \\
\beta_1 g_t q_t \\
\beta_2 c_t q_t \\
D(t)
$$

Notes: $\theta_0, \theta_1, \theta_2, \beta_1, \beta_2, \gamma, \delta_0, \delta_1, \delta_2 > 0$, P is ex – policy price
Model of driving behavior

\[U(q_t) = V(q_t) - G(q_t, t) - C(q_t, t) - D(t) \]

Usage value

\[\theta_0 + (\theta_1 + e^{-\theta_2 t})q_t - \theta_3 q_t^2 \]

Novelty effect

Gasoline cost

\[\beta_1 g_t q_t \]

Congestion cost

\[\beta_2 c_t q_t \]
Optimal usage – standard model

Optimal usage in \(t = 1, 2, \ldots, T \),

\[
q_t^* = \frac{1}{2\theta_3} \{\theta_1 + e^{-\theta_2 t} - \beta_1 g_t - \beta_2 c_t\}
\]
Incorporating sunk-cost fallacy

✓ Driver’s utility in period t,

$$U(q_t) = V(q_t) - G(q_t, t) - C(q_t, t) - D(t) - \max \left\{ 0, \lambda S \left[1 - \frac{Q_t}{\hat{Q}} \right] \right\}$$

✓ Consumer amortizes sunk cost S by the actual cumulative usage $Q_t = \sum_{\tau=1}^{t} q_{\tau}$ relative to some target cumulative usage \hat{Q}

✓ This nests the standard model ($\lambda = 0$)

✓ Sunk cost gets smaller over time as usage accumulates
Optimal usage with sunk costs

- Optimal usage in \(t = 1, 2, ... T \),

\[
q_t^* = \frac{1}{2\theta_3} \left\{ \theta_1 + e^{-\theta_2 t} - \beta_1 g_t - \beta_2 c_t + [T - t + 1] \frac{\lambda S}{Q} \right\}
\]

- H1.
- H2.
- H3.
- H4. (confounded by H5.)
Assumptions:
- Constant gasoline prices over time
- Constant level of congestion over time
- Zero novelty effect
Selection effect and identification of sunk-cost fallacy

- It is possible that heavy users are willing to pay higher price, thus higher sunk cost.
- Since sunk-cost is assumed to be a function of price, sunk-cost effect is not identified using the optimal usage function.
- However, it may be plausible to assume that selection effect has no time-varying effect.
 - In other words, heavy users may pay higher price, but their change in usage over time may have little to do with paying higher price.
- On the other hand, our model suggests that sunk-cost effect diminishes over time (Arkes and Blumer find similar diminishing effect).
- Change in usage equation can be used to estimate the sunk-cost parameter λ.
Total sunk cost is the sum of the sunk costs associated with the three components of car price

- Ex-policy price \(P \)
- ARF
- COE Premium

\[
S = s_0 P + s_1 ARF + s_2 COE
\]

\(s_0, s_1, s_2 \in (0,1) \)
Estimating sunk-cost fallacy

- Estimation equation:
 \[
 \Delta q_{it}^* = \Delta e^{-\theta_2 t} - \beta_1 \Delta g_t - \beta_2 \Delta c_t - \frac{\lambda [0.25 \times ARF_i + 0.2 \times COE_i + s_0 P_i]}{Q_i} + \epsilon_{it}'
 \]

- \(\lambda > 0 \) would indicate presence of sunk-cost fallacy
Target usage

- Target usage \hat{Q} is unobserved
- \hat{Q} is assumed to be log-normally distributed with mean equaling sample average
- Maximum simulated likelihood method is applied to estimate the parameters of interest
The following specifications are estimated:

Specification a: Conventional model (without sunk cost)

Specification b: Main specification (previous slide)

Specification c: Allowing marginal benefit to be dependent on price

Specification d: Alternative definition of sunk cost

Specification e: Main specification – smaller cars only

Specification f: Main specification – larger cars only

Specification g: Main specification – heterogeneous distribution of target usage for smaller and larger cars
Robustness check specifications

✓ Marginal benefit dependent on price (specification c):

\[
\text{Usage value} = \exp(\mu.\text{Total Price}). (\theta_0 + \theta_1q_t + e^{-\theta_2t}q_t - \theta_3q_t^2)
\]

✓ Alternative definition of sunk cost (specification d):

\[
\text{Sunk cost, } S = \alpha.\text{Total Price}, \alpha \in (0,1)
\]

✓ Separate estimation for small and large cars (specifications e, f)
 • Target usage drawn from distributions with corresponding sample average as mean

✓ Heterogeneous target usage (specification g):
 • Target usage drawn from two distributions with means corresponding to small and large cars
Estimates: With and Without Sunk Cost

<table>
<thead>
<tr>
<th>Variable</th>
<th>(a) Conventional rationality</th>
<th>(b) Mental accounting for sunk cost</th>
<th>(c) Scaled marginal benefit</th>
<th>(d) Sunk cost proportional to retail price</th>
<th>(e) Smaller cars</th>
<th>(f) Larger cars</th>
<th>(g) Heterogeneous target usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline cost, β_1</td>
<td>-0.0001 (0.000)</td>
<td>-0.0003 (0.000)</td>
<td>-0.0006* (0.000)</td>
<td>-0.0003 (0.000)</td>
<td>-0.0006* (0.000)</td>
<td>-0.0001 (0.000)</td>
<td>-0.0003 (0.000)</td>
</tr>
<tr>
<td>Congestion cost, β_2</td>
<td>0.027*** (0.002)</td>
<td>0.010*** (0.002)</td>
<td>0.009** (0.003)</td>
<td>0.010*** (0.002)</td>
<td>0.011*** (0.003)</td>
<td>0.003 (0.003)</td>
<td>0.011*** (0.002)</td>
</tr>
<tr>
<td>Age, θ_2</td>
<td>0.010*** (0.000)</td>
<td>0.004*** (0.000)</td>
<td>0.000 (0.000)</td>
<td>0.005*** (0.000)</td>
<td>0.003** (0.001)</td>
<td>0.003** (0.001)</td>
<td>0.004*** (0.001)</td>
</tr>
<tr>
<td>Sunk cost, λ</td>
<td>0.094*** (0.012)</td>
<td>0.237*** (0.031)</td>
<td>0.074*** (0.011)</td>
<td>0.060** (0.022)</td>
<td>0.095*** (0.022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunk cost part of ex-policy price, α</td>
<td>0.125*** (0.038)</td>
<td>0.208*** (0.039)</td>
<td>0.233*** (0.080)</td>
<td>0.326* (0.186)</td>
<td>0.094*** (0.023)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunk cost, $\lambda \rho$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.024*** (0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>3581</td>
<td>2893</td>
<td>6474</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-17946.2</td>
<td>-17815.1</td>
<td>-17788.7</td>
<td>-17833.8</td>
<td>-9643.3</td>
<td>-8155.7</td>
<td>-17819.2</td>
</tr>
<tr>
<td>Elasticity</td>
<td>n.a.</td>
<td>0.56*** (0.072)</td>
<td>0.64*** (0.190)</td>
<td>0.85*** (0.071)</td>
<td>0.53*** (0.079)</td>
<td>0.73*** (0.269)</td>
<td>0.51*** (0.043)</td>
</tr>
</tbody>
</table>
Estimates: Controlling for Self-selection

<table>
<thead>
<tr>
<th>Variable</th>
<th>(a) Conventional rationality</th>
<th>(b) Mental accounting for sunk cost</th>
<th>(c) Scaled marginal benefit</th>
<th>(d) Sunk cost proportional to retail price</th>
<th>(e) Smaller cars</th>
<th>(f) Larger cars</th>
<th>(g) Heterogeneous target usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline cost, β_1</td>
<td>-0.0001</td>
<td>-0.0003</td>
<td>-0.0006*</td>
<td>-0.0003</td>
<td>-0.0003</td>
<td>-0.0003</td>
<td>-0.0003</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Congestion cost, β_2</td>
<td>0.027***</td>
<td>0.010***</td>
<td>0.009**</td>
<td>0.010***</td>
<td>0.011***</td>
<td>0.003</td>
<td>0.011***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Age, θ_2</td>
<td>0.010***</td>
<td>0.004***</td>
<td>0.000</td>
<td>0.005***</td>
<td>0.003**</td>
<td>0.003</td>
<td>0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Sunk cost, λ</td>
<td>0.094***</td>
<td>0.237***</td>
<td></td>
<td>0.074***</td>
<td>0.060**</td>
<td>0.095***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.031)</td>
<td></td>
<td>(0.011)</td>
<td>(0.022)</td>
<td>(0.008)</td>
<td></td>
</tr>
<tr>
<td>Sunk cost part of ex-policy price, α</td>
<td>0.125***</td>
<td>0.208***</td>
<td></td>
<td>0.233***</td>
<td>0.326*</td>
<td>0.094***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.039)</td>
<td></td>
<td>(0.080)</td>
<td>(0.186)</td>
<td>(0.023)</td>
<td></td>
</tr>
<tr>
<td>Sunk cost, $\lambda \rho$</td>
<td></td>
<td></td>
<td></td>
<td>0.024***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>3581</td>
<td>2893</td>
<td>6474</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-17946.2</td>
<td>-17815.1</td>
<td>-17788.7</td>
<td>-17833.8</td>
<td>-9643.3</td>
<td>-8155.7</td>
<td>-17819.2</td>
</tr>
<tr>
<td>Elasticity</td>
<td>n.a.</td>
<td>0.56***</td>
<td>0.64***</td>
<td>0.85***</td>
<td>0.53***</td>
<td>0.73***</td>
<td>0.51***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.072)</td>
<td>(0.190)</td>
<td>(0.071)</td>
<td>(0.079)</td>
<td>(0.269)</td>
<td>(0.043)</td>
</tr>
</tbody>
</table>
Estimates: Alternative Specification of Sunk Cost

<table>
<thead>
<tr>
<th>Variable</th>
<th>(a) Conventional rationality</th>
<th>(b) Mental accounting for sunk cost</th>
<th>(c) Scaled marginal benefit</th>
<th>(d) Sunk cost proportional to retail price</th>
<th>(e) Smaller cars</th>
<th>(f) Larger cars</th>
<th>(g) Heterogeneous target usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline cost, β_1</td>
<td>-0.0001 (0.000)</td>
<td>-0.0003 (0.000)</td>
<td>-0.0006* (0.000)</td>
<td>-0.0003 (0.000)</td>
<td>-0.0006* (0.000)</td>
<td>-0.0001 (0.000)</td>
<td>-0.0003 (0.000)</td>
</tr>
<tr>
<td>Congestion cost, β_2</td>
<td>0.027*** (0.002)</td>
<td>0.010*** (0.002)</td>
<td>0.009** (0.003)</td>
<td>0.010*** (0.002)</td>
<td>0.011*** (0.003)</td>
<td>0.003 (0.003)</td>
<td>0.011*** (0.002)</td>
</tr>
<tr>
<td>Age, θ_2</td>
<td>0.010*** (0.000)</td>
<td>0.004*** (0.000)</td>
<td>0.000 (0.000)</td>
<td>0.005*** (0.000)</td>
<td>0.003** (0.001)</td>
<td>0.003** (0.001)</td>
<td>0.004*** (0.001)</td>
</tr>
<tr>
<td>Sunk cost, λ</td>
<td>0.094*** (0.012)</td>
<td>0.237*** (0.031)</td>
<td>(0.000)</td>
<td>0.074*** (0.011)</td>
<td>0.060** (0.022)</td>
<td>0.095*** (0.008)</td>
<td></td>
</tr>
<tr>
<td>Sunk cost part of ex-policy price, α</td>
<td>0.125*** (0.038)</td>
<td>0.208*** (0.039)</td>
<td>(0.000)</td>
<td>0.233*** (0.080)</td>
<td>0.326* (0.186)</td>
<td>0.094*** (0.023)</td>
<td></td>
</tr>
<tr>
<td>Sunk cost, $\lambda \rho$</td>
<td>(0.024*** (0.002)</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>3581</td>
<td>2893</td>
<td>6474</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-17946.2</td>
<td>-17815.1</td>
<td>-17788.7</td>
<td>-17833.8</td>
<td>-9643.3</td>
<td>-8155.7</td>
<td>-17819.2</td>
</tr>
<tr>
<td>Elasticity</td>
<td>n.a.</td>
<td>0.56*** (0.072)</td>
<td>0.64*** (0.190)</td>
<td>0.85*** (0.071)</td>
<td>0.53*** (0.079)</td>
<td>0.73*** (0.269)</td>
<td>0.51*** (0.043)</td>
</tr>
</tbody>
</table>
Estimates: Small versus Large Cars

<table>
<thead>
<tr>
<th>Variable</th>
<th>(a) Conventional rationality</th>
<th>(b) Mental accounting for sunk cost</th>
<th>(c) Scaled marginal benefit</th>
<th>(d) Sunk cost proportional to retail price</th>
<th>(e) Smaller cars</th>
<th>(f) Larger cars</th>
<th>(g) Heterogeneous target usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline cost, β_1</td>
<td>-0.0001</td>
<td>-0.0003</td>
<td>-0.0006**</td>
<td>-0.0003</td>
<td>-0.0006*</td>
<td>-0.0001</td>
<td>-0.0003</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Congestion cost, β_2</td>
<td>0.027***</td>
<td>0.010***</td>
<td>0.009**</td>
<td>0.010***</td>
<td>0.011***</td>
<td>0.003</td>
<td>0.011***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Age, θ_2</td>
<td>0.010***</td>
<td>0.004***</td>
<td>0.000</td>
<td>0.005***</td>
<td>0.003**</td>
<td>0.003**</td>
<td>0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Sunk cost, λ</td>
<td>0.094***</td>
<td>0.237***</td>
<td></td>
<td>0.074***</td>
<td>0.060**</td>
<td>0.095***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.031)</td>
<td></td>
<td>(0.011)</td>
<td>(0.022)</td>
<td>(0.008)</td>
<td></td>
</tr>
<tr>
<td>Sunk cost part of ex-policy price, α</td>
<td>0.125***</td>
<td>0.208***</td>
<td></td>
<td>0.233***</td>
<td>0.326*</td>
<td>0.094***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.039)</td>
<td></td>
<td>(0.080)</td>
<td>(0.186)</td>
<td>(0.023)</td>
<td></td>
</tr>
<tr>
<td>Sunk cost, $\lambda \rho$</td>
<td></td>
<td></td>
<td></td>
<td>0.024***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>3581</td>
<td>2893</td>
<td>6474</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-17946.2</td>
<td>-17815.1</td>
<td>-17788.7</td>
<td>-17833.8</td>
<td>-9643.3</td>
<td>-8155.7</td>
<td>-17819.2</td>
</tr>
<tr>
<td>Elasticity</td>
<td>n.a.</td>
<td>0.56***</td>
<td>0.64***</td>
<td>0.85***</td>
<td>0.53***</td>
<td>0.73***</td>
<td>0.51***</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.190)</td>
<td>(0.071)</td>
<td>(0.079)</td>
<td>(0.269)</td>
<td>(0.043)</td>
<td></td>
</tr>
</tbody>
</table>
Estimates: Allowing for Different Means of Target Usage for Different Engine Sizes

<table>
<thead>
<tr>
<th>Variable</th>
<th>(a) Conventional rationality</th>
<th>(b) Mental accounting for sunk cost</th>
<th>(c) Scaled marginal benefit</th>
<th>(d) Sunk cost proportional to retail price</th>
<th>(e) Smaller cars</th>
<th>(f) Larger cars</th>
<th>(g) Heterogeneous target usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline cost, β_1</td>
<td>-0.0001</td>
<td>-0.0003</td>
<td>-0.0006*</td>
<td>-0.0003</td>
<td>-0.0006*</td>
<td>-0.0001</td>
<td>-0.0003</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Congestion cost, β_2</td>
<td>0.027***</td>
<td>0.010***</td>
<td>0.009**</td>
<td>0.010***</td>
<td>0.011***</td>
<td>0.003</td>
<td>0.011***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Age, θ_2</td>
<td>0.010***</td>
<td>0.004***</td>
<td>0.000</td>
<td>0.005***</td>
<td>0.003**</td>
<td>0.003</td>
<td>0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Sunk cost, λ</td>
<td>0.094***</td>
<td>0.237***</td>
<td>0.074***</td>
<td>0.060**</td>
<td>0.095***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.031)</td>
<td>(0.011)</td>
<td>(0.022)</td>
<td>(0.008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunk cost part</td>
<td>0.125***</td>
<td>0.208***</td>
<td>0.233***</td>
<td>0.326*</td>
<td>0.094***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of ex-policy price, α</td>
<td>(0.038)</td>
<td>(0.039)</td>
<td>(0.080)</td>
<td>(0.186)</td>
<td>(0.023)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunk cost, $\lambda \rho$</td>
<td></td>
<td>0.024***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>6474</td>
<td>3581</td>
<td>2893</td>
<td>6474</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-17946.2</td>
<td>-17815.1</td>
<td>-17833.8</td>
<td>-9643.3</td>
<td>-8155.7</td>
<td>-17819.2</td>
<td></td>
</tr>
<tr>
<td>Elasticity</td>
<td>n.a.</td>
<td>0.56***</td>
<td>0.64***</td>
<td>0.85***</td>
<td>0.53***</td>
<td>0.73***</td>
<td>0.51***</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.190)</td>
<td>(0.071)</td>
<td>(0.079)</td>
<td>(0.269)</td>
<td>(0.043)</td>
<td></td>
</tr>
</tbody>
</table>
Results

✓ Significant improvement in log-likelihood with specifications including sunk-cost
✓ Sunk-cost effect is significant in all specifications
✓ Elasticity wrt sunk-cost is similar (statistically not different) in all specifications
✓ Novelty effect is generally positive and significant
✓ Effect of gasoline cost is not significant (plausible since the sample is of premium cars)
✓ Congestion cost is generally positive and significant
✓ COE premium increased by $22,491 from February 2009 to February 2010

✓ **Specification b:** Estimated increase in sunk cost $4,500 and increase in average monthly usage is 147 km (8.8% increase)

✓ **Specification d:** Estimated increase in average monthly usage due to increase in sunk cost is 164 km (9.9%)
Policy/Managerial implications

✓ Policy:
 - Making cars expensive has countervailing effect
 - Better to directly price congestion

✓ Managerial:
 - Countervailing argument against ‘razor/razorblade strategy’
 - Underpricing the razor would reduce consumption of razor blade?
Back to the question that we posed in the beginning....

Driver A

Mercedes-Benz CLS Class
Purchase month: February 2009
Estimated price=$300,000
US$242,000

Driver B

Mercedes-Benz CLS Class
Purchase month: February 2010
Estimated price=$322,500
US$260,000

• Owner of the second car pays $22,500 more for the same model, due to increase in the COE premium.

• Structural estimation suggests that Driver B will drive 147-164 km per month more than Driver A.
Conclusion

- Developed a behavioral model of car usage that incorporated mental accounting for sunk cost, where the standard model is a special case.

- Tested the model on a proprietary data set of 6,474 cars in Singapore, the world’s most expensive car market

- Found compelling evidence of sunk cost fallacy in car usage in Singapore