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Abstract
This paper connects the traditional financial and insurance liter-

atures in the context of real option theory. We use the analogy be-
tween insurance and investment under uncertainty in order to study
the general equilibrium in an insurance industry with heterogeneous
competing firms. We show that even under the assumption of ratio-
nality (defined in the traditional sense) insurance companies should
be treated as strategic agents when catastrophic (CAT) events are
possible. We derive the equilibrium investment (insurance policies)
using a generalization of the standard model of partially reversible
investment under uncertainty. Implications of the proposed model for
the optimal contract design and future extensions in the framework of
dynamic programming approach are discussed.
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1 Introduction

Following each of the last three major US catastrophic events, the insurance
markets for these risks responded in distinctive and remarkably similar ways.
The three catastrophes were the 1992 Andrew hurricane, the 1994 Northridge
earthquake, and the 2001 9/11 terrorist attack. Immediately following each
event:
1) Virtually all firms announced they had sufficient capital to pay all

expected claims.
2) Many firms then announced they would not renew policies, and left

the industry. The result was a disrupted market with rationing, negative
impacts on the real estate markets for new construction, real estate finance,
and existing property sales.
3) For reinsurance firms and primary insurance firms that remained in

the market, premiums were raised dramatically (400% or more).
4) After some time, government entities intervened to stabilize the mar-

ket; for the natural disasters, state governments acted; for the terrorist event,
the federal government acted.
5) As further time passed and subsequent events did not occur, the effects

in (2) and (3) appear to be reversed. For the natural disasters, premiums are
now even approaching the levels in place prior to the events, and firms are
re-entering the industry. For the terrorist attack, 14 months after the event
and before the government intervention, we were seeing some modest declines
in premiums and the re-entry of some firms into that insurance market.
This stylized description of how catastrophe insurance markets respond

to an extreme event indicates distinctive dynamics for how both premiums
and market participation respond after the event. On the one hand, prices
tend to rise sharply, then to decline slowly as no further event occurs. On the
other hand, firms tend to leave the market immediately, then slowly return
as no further events occur. In short, we see firms leave the industry when
the prices are high, then reenter the industry when the prices are falling.
There are a variety of theories that may explain part, if not all, of the

price dynamics. Given that all three events have created unexpectedly large
losses, standard Bayesian updating of expected losses could explain at least
some of the initial rise in premiums. Bayesian updating, however, provides a
less obvious or persuasive explanation of the subsequent decline in premiums.
Ambiguity aversion, in which uncertainty about the generating process of the
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risk creates an additional risk premium component in prices, can provide a
further explanation of the initial jump in premiums, and may even explain
the subsequent decline (if the lack of further events reduces the ambiguity
aversion).
Insurance premium cycle theories provide an alternative explanation. The

idea here is that firms use the large profits derived from the high premiums to
replenish their capital following the losses. As the capital base of the industry
is restored, premiums fall to lower levels. A key issue for the premium cycle
explanation, however, is why the firms do not just directly access the capital
markets to replenish their capital. This would seem natural since following
the bad event, premia will be at very high levels.
Whatever the efficacy of these explanations for the price dynamics, they

do not explain the dynamics of firm exit and later reentry. First, both
Bayesian updating and/or ambiguity aversion indicate that premiums can
and do respond to the new information concerning risk and uncertainty, leav-
ing no reason for firms to exit the industry. For the premium cycle theories,
moreover, firms must remain in the industry in order to earn the exceptional
profit margins and thus replenish their capital.
The focus of this paper is to provide quite a different model of price

dynamics and of firm exit and reentry, by applying the concepts of real
option theory to catastrophe insurance markets.
Traditionally, real option theory is applied to the problem of a firm choos-

ing when to carry out a capital investment expenditure. The well-known re-
sult is that firms may delay carrying out investments, even when the project
has a positive net present value, in order to gain the benefit of further infor-
mation that arrives only with time. Recent extensions of the theory, more-
over, indicate that the extent of the delay may depend on the degree of
competition in the market for the investment project. In particular, the
more competitive this market, the less firms will delay the investment, since
all firms will fear that some other firm will preempt the market by carrying
out the investment sooner rather than later. Thus all firms accelerate their
investment.
The decision of an insurance firm to take on catastrophe risks can be

considered to be an investment decision. The fact that the insurance firms
receive premiums as a cash in flow at date 0, and then face possible payouts on
claims at a later date 1-just the opposite of the cash flow pattern of a normal
investment project-is not a fundamental difference. Similarly, the arrival of
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new information on the distribution of possible insurance losses from a future
event corresponds to the arrival of new investment cost information in the
traditional real options investment setup. The upshot is that the decisions of
a catastrophe insurance firm can readily fit into the traditional real options
model. Catastrophe insurance investments, however, are readily reversible
in the sense that an insurance firm can allows its current policies to mature,
and then leave the industry. Thus, to apply the real option approach to
catastrophe insurance, we will have to amend the basic theory to cover the
case of reversible investments.
The key benefit of applying real option theory to catastrophe insurance

markets is that we obtain a unified theory of price dynamics and exit and
entry decisions that fits the stylized facts of catastrophe insurance markets
remarkably well.

2 Two-period Model

In order to illustrate the analogy between the optimal insurance and oligopolis-
tic investment strategies, we will first consider a simple two-period model of
the insurance market. Following the approach suggested in [7], we assume
that there areN risk-neutral insurance companies insuring comparable assets
against possible losses due to the random catastrophe (CAT) event. There-
fore, each company is facing the same risk, represented as a random loss
process. Each company receives the insurance premium from its subscribers
in the first period and can borrow/lend money in the financial markets at
the interest rate rf in order to maintain its optimal insurance portfolio. For
the clarity of exposition, we will assume in this section that rf = 0. This
assumption will be lifted in a general continuous time model considered in
next section. In a two-period model, we assume that the CAT event may
take place at date 2 after the insurance contract is sold at date 1. At date 2,
the subscribers will be compensated by the insurer for all losses, if any. The
companies are maximizing their expected wealth, and the loss distribution is
assumed to be normal (this assumption will also be lifted in the next section).
Of course, real options play no role in this case, since the investment must

be made at date 1. Nevertheless, this model provides a useful benchmark for
the explicitly dynamic model presented later.
The wealth of the i th insurance company (i = 1, ...N), Wi, is given by
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the budget condition
Wi =Wi0 + qiR, (1)

where Wi0 is the initial wealth of the insurance company, i, qi (i = 1, . . . , N)
are the quantities of contracts for each firm. The “returns” are given by

R = p− l, (2)

with p being the insurance premia and l is the loss. The expected wealth for
the i-th insurer is given by

Φi =Wi0 + qiE [R] , (3)

where i = 1, ...N , q is the vector of allocations and R is the “returns”

E [R] = p−E [l] . (4)

In order to obtain an equilibrium solution, we have to specify the problem
on the subscriber’s side. To avoid technical complications and focus on the
impact of the oligopolistic competition we take as given the inverse demand
function

p = K Q−1/γ, (5)

with {K, γ} being parameters of the demand in each of the regions (assumed
to be exogenously given) and Q =

PN
i=1 qi, the total number of contracts

(aggregate demand) 1. Making use of (3), we arrive at the optimization
problem

max
qi
{L (qi)} ,

with
L (qi) = qiE [R] .

We will consider several types of equilibrium models: Cournot, monopoly
and Walras equilibrium. They correspond to different competition settings:
oligopoly, monopoly and perfect competition, respectively.

1This specification divorces the demand function from dependence on the same param-
eters of the distribution of losses that are used by the insurance firms. That is, demand
may be affected by the loss probability but it not necessarily the same probability as the
one used by the firms. The possibility of extending our model to include this form of
dependence is discussed in the concluding section.
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2.1 Oligopoly

We model oligopoly in the framework of Cournot model. With the above as-
sumptions, we can look for the symmetric equilibrium between the oligopolis-
tic insurance companies with qi, ∀i = 1, ...N . This symmetric solution is
given by 2

q(N) =

·
K

E[l]

µ
γN − 1
γN

¶¸γ
, (7)

and price,

p(N) = E[l]

µ
γN

γN − 1
¶
= E[l]

µ
1 +

1

γN − 1
¶
. (8)

From the solution (8), it follows that the equilibrium price breaks into two
components, the risk-neutral (expected loss) part and what we will (loosely)
call here the risk premium part. Note that the risk premium does not vanish
despite the fact that all insurers are risk-neutral. This is because the Cournot
competition is imperfect for any finite number of oligopolists. However, when
N grows large pricing becomes risk free

lim
N→∞

p(N) = E[l]. (9)

Note, that for all practical purposes it is safe to assume in the CAT
market that N is finite and usually N ¿∞. This parallels the comments in
[7] that the failure of insurance policies to be priced at the expected losses
must be attributed in some dimension to a failure in subdividing the risk
among a sufficiently large number of investors. To conclude, even the simple
model formulated above shows that for the case of CAT insurance there will
be a non-negligible risk-premium component in price.

2The symmetric solution is obtained as a symmetric solution of the optimization prob-
lem

q = argmax
qi

qi
K

qi + NX
j 6=i

qj

−1/γ −E [l]

 . (6)
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2.2 Monopoly

In this case all subscribers deal with the same insurance company and we
therefore have Q = q.

max
q
P (q)q −E[l]q.

The solution is very similar to one derived in the previous subsection for
oligopoly. The only correction one needs to make is to set N to 1. We can
still use (7) and (8).

2.3 Competitive equilibrium

We derive the equilibrium of this subsection in the framework of Walrasian
equilibrium. Let there be a large number of competing insurance companies,
N . In this case, the aggregate demand is given by Q =

PN
i=1 qi, i = 1, . . . , N .

Substituting this into (3), optimizing with respect to {qi} and using the
market clearing condition, we obtain a set of FOC equations. Using the
same assumptions as for the Cournot equilibrium, we obtain solution for the
symmetric competitive equilibrium in the form

x(N) =

µ
K

E[l]

¶γ

, (10)

and
p(N) = E[l], (11)

which is very similar to (7) and (8). From (11), it follows that in this case the
risk premium vanishes as opposed to the imperfect competition described by
the Cournot model. This is not surprising and is in agreement with (9).

2.4 Optionality in Insurance

The main purpose of the above discussion was to show an analogy between
insurance and investment decisions, which will enable us to apply the real
options approach to the strategic insurance problem.
These considerations can be further clarified by a simple two-state, two

period, example. At date 0, the insurance firm can sell a policy for a premium
of 2,200, which commits the firm to pay the annual catastrophe losses of the
policy holder forever (the insurance firm cannot disinvest from the policy
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once it is sold). The catastrophe loss at date 1 will be either 400 (bad event)
or 0 (good event), each occurring with a 1

2
probability. Whichever event

occurs at date 1, this particular event will then be repeated annually forever.
The risk-free interest rate is 10%, and we shall assume that the risks are fully
diversifiable, so this rate can be used to discount the expected future losses.
The firm can sell the insurance policy as of date 0, in which case it

is committed to paying the annual losses forever starting at date 1. The
expected net present value (NPV) as of date 0 of this investment is readily
computed as:
NPV = +2, 200−[(.5) (0) + (.5) (400)] / (.10) = 2, 200−2, 000 = 200 > 0.

Thus, if the insurance firm’s only choice were to sell the insurance today or
never to sell it at all, then it would of course be willing to sell the insurance
today.
Real option theory, however, offers the insurance firm the opportunity to

wait until further information becomes available at date 1, then to decide
whether or not to offer the policy. If the insurance firm observes the bad
state at date 1 (the loss of 400), it will then bypass the opportunity to sell
the policy at all (and it will be grateful it did not sell the policy at date 0).
On the other hand, if the firm observes the good state at date 1 (0 loss),
then it would compute the expected NPV (as of date 0) of selling the policy
at date 1 as:
NPV = (.5) [+2, 200− (0) / (.10)] = (.5) (2, 000) = 1, 000 > 200.
That is, deferring the decision till date 1, then selling the policy only if the

good state is revealed, creates a net present value that exceeds the (positive)
net present value available as of date 0. Thus, in these circumstances the
insurance firm would always defer its decision till the information at date 1
was revealed.
Although this example is highly simplified, it illustrates the basic sense

in which real option theory may provide a motivation for an insurance firm
to defer selling policies pending further information 3. For a more general
and realistic model, we will suppose that the state variable is presented by
a two-state process, where the state may be either ”bad” (losses occur) or

3Readers familiar with Dixit and Pindyck [2], pp. 27-28 will also recognize that our
example has the same basic structure as their 2-period, 2-state, example of option theory
applied to investment decisions. We intentionally set it up this way to illustrate the direct
correspondence between insurance and investment applications of real option theory. Dixit
and Pindyck [2] also discuss some of the special issues of investment cost uncertainty.
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”good” (no losses). Assuming that the transition probabilities between the
two states are known, we obtain a complete characterization of the firm’s
information set. In order to make an analogy with the case of a continuous
state variable which is less likely to undergo large jumps, we assume that the
transition probability matrix has the form

T =

·
χ 1− χ

1− χ χ

¸
, (12)

with χ > 1/2 implying that the probability of ”jump” is less than the prob-
ability for the two subsequent states to be of the same type. In other words,
after the ”good” event it is more likely to observe another ”good” event
than to switch to the ”bad” event on next date, and the same about two
subsequent ”bad” events. Note that the example considered above can be
viewed as a particular case of the two-state jump process with χ = 0.5 at
date 0 and χ = 1 on date 1 and later. In a more general case, the insur-
ance company (investor) optimizes by increasing capacity after observing a
”good” event and by decreasing it after a ”bad” event at date 1, respectively.
Therefore, the insurance decisions will depend on a realization of a state vari-
able, which represents the ”optionality” feature of the model. Notice that
traditional models of insurance have firms first write policies, then draw the
results, whereas with the real option structure firms ”first draw, then write”4.
It seems that the real option structure is a better description of what the
catastrophe insurance companies actually do.

3 Dynamic Competition and CAT Events

In this section, we address the issue of dynamic oligopolistic competition be-
tween different firms as opposed to the static case considered in the previous
section.
In the presence of possible future CAT events, and taking into account

contract irreversibility (or partial irreversibility), insurance policies can be
treated as continuous investments into an industry with risky returns, anal-
ogous to the discrete model considered above and suggested in [7]. In this
case, the investment policies may have significant ”optionality” features when

4Thomas Russell suggested this useful distinction to us.
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an oligopolistic firm follows its optimal dynamic strategy. In particular, the
investment (insurance) may occur only at sufficiently large positive values
of NPV (sufficiently low level of risk) implying a significant option value of
waiting [2].
However, in the case when all firms are identical and the news come

in a continuous stream, this ”waiting” effect is diminished in the presence
of oligopolistic competition. This result has a simple intuition. All firms
are trying to avoid being ”pre-emptied” by their competitors in the market
and therefore tend to wait less than the monopolists subjected to the same
level of risk for their investment (insurance) [5]. In other words, the optimal
investment occurs at lower (but positive) values of NPV. As we will see below,
this is not always true in the presence of sufficiently large CAT events and
heterogeneity across the firms.
In what follows, we concentrate on the analysis of general equilibrium in

the presence of several competing firms (oligopoly). As the first step, we
adopt a standard assumption that all agents are risk-neutral [2], [5]. We
will show that the oligopolistic competition among heterogeneous firms in
the presence of smooth shocks drives the economy towards the symmetric
equilibrium, when all firms follow essentially the same strategy described
in [5]. However, the significantly large CAT events may affect the optimal
investment (insurance) strategies and reverse the effect in the case when the
partial disinvestment (cancellation of insurance policies) is possible.
The intuition for this is the following. It turns out that the firms with

smaller capacity (size) have a greater vulnerability to the CAT risk. There-
fore, if the industry expects sufficiently large CAT events, it is optimal for
small firms to disinvest (cancel policies) and therefore reduce the effects of
competition for the larger firms still investing into the industry. As a result,
we obtain a non-stationary distribution of firms with respect to their levels of
investment, as opposed to the case of small (white noise) shocks which lead
to the symmetric strategies for all firms. In order to solve for the fixed-point
solution of the multiple-agent dynamical optimization problem arising in this
case, we employ the dynamical aggregation approach proposed in [1].

3.1 Dynamic Optimization Problem

Generalizing the approach of the previous section, we extend the analogy
between optimal insurance and investment policies to the case of dynamic
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oligopolistic competition. We extend the stylized model of the CAT insurance
considered above assuming that any insurance company may increase its
volume of insurance by the amount dqi at any time and collect the premium
endogenously defined in the dynamic oligopolistic equilibrium analogously to
the static case considered above.
To simplify our problem, we assume that all CAT risks are identical a

priori, and that each insurance contract provides the policy holder with in-
demnification for the indefinite future (including the possibility of multiple
payouts when multiple events occur). The premium paid is the market pre-
mium p(t) at the time each specific policy is initiated. This premium will
generally exceed the losses expected on the policy over its infinite life, with
the precise amount determined by the oligopolistic structure of the industry.
These upfront premiums represent the total resources available to the insur-
ance firm to pay claims. As discussed in [8], there is less need for additional
capital, when the firm uses long-term contracts with prepaid premiums. Still,
actual claims could exceed the available resources, in which case the firm pays
what it can and goes out of business-the same limited liability used by real
world firms. We discuss possible extensions of the model to finite-duration
contracts in the concluding section.
Once the CAT event occurs, the insurance company compensates the

subscribers by the amount of loss represented by a state variable x (t), up to
the amount of available resources. At this point, we keep the state variable
general, but will specify it below. As new information concerning expected
future losses becomes available, firms may wish to raise or lower their expo-
sure q. When firms expand, they sell new policies at the then current market
premium p(t). When firms contract, we assume they face penalties consist-
ing of (1) the current market premium p(t) (paid as compensation the policy
holder for canceling the coverage) and (2) an additional cost which may be
interpreted as the (foregone) opportunity value of staying in business after
the shock. In the extreme, a firm may voluntarily go out of business entirely
in which case it keeps any net positive balances that remain after paying its
penalties. However, one should note that we assume that the firms’s strate-
gies qi (t) are smooth functions of time, implying that there are no ”jumps”
in qi (t) .
Analogous to the results of the previous section and following [5], the op-

timization problem for oligopolistic competition among N heterogeneous in-
surance firms can be formulated in terms of a dynamic programming Cournot
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auction problem for the i-th firm’s project value Vi in the form

e−rtVi (t) = max
qi(t)

Et

·Z +∞

t

dt0e−rt
0
½
p (t0)

d

dt0
qi (t

0)− ϕ (t0)πi [qi (t0) , x (t0)]
¾¸
,

(13)
where qi (t) and Q (t) =

PN
i=1 qi (t) are the firm i and aggregate investments,

respectively, p (t) is a premium, π [qi (t) , x (t)] is an instantaneous payoff
(loss) of investment (analogous to the dividend process in asset pricing) and
ϕ (t0) is the probability density of exactly one CAT event occurring at time
t0. Note that in (13), we always have a constraint d

dt
qi (t) ≥ 0, implying that

the firm’s capacity can either increase or remain on the same level. This
constraint will be lifted in the next section where we take the disinvestment
into account.
In the optimization problem (13), x (t) is a state variable describing the

cost of losses. Note that this variable represents the ”bad news”, as opposed
to the investment case. It reflects the inflow of information on expected
losses due to the future and the impact of the CAT events that have already
happened. One should expect that x (t) has at least two different components
representing the gradual inflow of the information on the risk exposure and
the instantaneous change of the payoffs due to the CAT event, respectively.
While the gradual inflow of news is presented by a Geometric Brownian
Motion, the CAT event is modeled by a Poisson jump process. Since the
short-term predictions of CAT events typically do not have a lot of predictive
power, we may assume that the Poisson jumps and GBM are only weakly
correlated. As we will discuss below, our model can be extended to arbitrary
strong correlations and this does not affect our main conclusions. Therefore,
we assume

dx = x(µdt+ σdz + dηλ,∆), (14)

with µ and σ being the drift and volatility of the GBM, respectively, z (t)
is a standard Wiener process and ηλ,∆ (t) characterizing the Poisson jump
process with a constant intensity λ and size ∆; see Dixit and Pyndyck [2]
for a discussion of real options models with combined Poisson and Geometric
Brownian Motion stochastic processes. Making use of (13) yields

Et [dVi (t)] = rVi (t) dt+ ϕ (t)πi [qi (t) , Q (t) , x (t)] dt− p (t) dqi (t) , (15)
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and the probability density of CAT events is given by the probability of
Poisson arrival

ϕ (t0) = λ exp [−λ (t0 − t)] . (16)

Although the extension of our results to arbitrary payoff function is straight-
forward, we will restrict the analysis to a specific form analogous to the
previous section

πi [qi, x] = qix, (17)

with the premium given by the inverse demand function

p (t) = K [Q (t)]−1/γ , (18)

constant γ > 1 characterizing the impact of aggregate demand on price

3.2 Solution for Optimal Policies

The optimal investment policy for the continuous investment with random
exogenous shocks can be characterized as follows [2]. Each firm does not
invest until the expected payoffs achieve a sufficiently high level, which in
general is heterogeneous across all firms and has to be defined as a dynamic
equilibrium function. This function xi (qi, Q, t) is called a trigger function
for the firm i [5]. Taking into account (14) making use of the corresponding
Dynkin generators and assuming the stationary (infinite horizon) limit, we
obtain from (15)

n
µx ∂

∂x
+ σ2

2
x2 ∂2

∂x2
− r
o
Vi (t, x) + λ

£
Vi
¡
t, e∆x

¢− Vi (t, x)¤ =
= λπi [qi (t) , x] ,

(19)

for the firm i’s value function within the waiting region, with the condition
at the investment (exercise) boundary given by

∂

∂qi
Vi (qi, Q, xi) = −p (t) , (20)
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where xi is the trigger function for the i-th firm to start investing. The
additional smooth-pasting conditions with respect to x ensure that the value
of the firm has been optimized

∂2

∂qi∂x
Vi (qi, Q, x) |x=xi = 0. (21)

Introducing the marginal value of investment Mi (qi, Q, x) =
∂
∂qi
Vi (qi, Q, x)

yields

½
µx

∂

∂x
+

σ2

2
x2

∂2

∂x2
− r
¾
Mi (x) + λ

£
Mi

¡
e∆x

¢−Mi (x)
¤
= λx, (22)

for the firm i’s marginal value within the waiting region, with the conditions
at the investment (exercise) boundary given by

Mi (qi, Q, xi) = K [Q (t)]
−1/γ ,

∂

∂x
Mi (qi, Q, x) |x=xi = 0, (23)

where xi is the trigger function for the i-th firm. Note that in the case of
homogeneous firms qi ≡ Q/N and in absence of the CAT events (λ = 0), we
arrive at the symmetric equilibrium analogous to the case considered in [5].
As we will see below, the heterogeneity across the firms in the presence of
CAT events may drive the economy away from the symmetric equilibrium
and lead to complex non-stationary optimal policies. Solving (22) with (23),
we obtain

Mi (qi, Q, x) = Bx+Dx
−δ, (24)

in the investment region xi ≤ x ≤ +∞ , with

B = − λ
r−µ

D = 1
δ
x1+δi

λ
r−µ ,

(25)

with δ = µ−σ2/2
σ2

+

r³
µ−σ2/2

σ2

´2
+ 2ρ

σ2
and ρ = r + λ [1− exp (−δ∆)].

Clearly, the effective exponent in presence of jumps is distorted in com-
parison to the one for the pure GBM, in which case ρ = r. Therefore, the
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jump process leads to the shift of the discount rate. This can be interpreted
as an effective hazard rate in the presence of the additional risk due to the
jump process, and is analogous to the liquidity shock [3]. One should note
that in the presence of jumps, the explicit analytical expression for the expo-
nent δ is not available. However, the equation given above gives a complete
characterization of the distortion introduced by the CAT events which can
be solved numerically. Note that this distortion is small for sufficiently rare
CAT events (which is normally the case). Therefore, the above equation
can be approximately solved analytically. As we will see below, the main
contribution of large but rare CAT events comes from the large distortion of
optimal investment dynamics, as opposed to small distortions of the exercise
boundary.
Using the boundary condition, we finally obtain the trigger functions in

the form

xi (qi, Q) = kQ
−1/γ, (26)

where k = K (r−µ)
λ

¡
δ

δ+1

¢
e−∆ is a constant. One should note that the trigger

functions are heterogeneous across the firms with different current capacities
qi, even though the function (26) depends only on the aggregate capacity.
The reason for this is that the trigger function given by (26) in the case of
many competing firms should be understood as a ”reaction function” of the
firm i to the strategies of all other firms, according to the general concept of
the Cournot equilibrium [5]. This is analogous to the situation arising in a
simple two-period model considered in the previous section. Therefore, the
aggregate demand in (26) should be separated into the capacity of the firm i
itself qi (choice variable) and the contribution of all other firms q

0 (which is
not immediately affected by the firm i). Since Q = qi + q

0 , (26) yields

xi (qi, q
0) = k (qi + q0)

−1/γ
. (27)

The dependence (27) is presented in Fig.1, where we take a numerical exam-
ple for the large and small firms, respectively. The triggers of the large and
small firms correspond to the dashed (red) and solid (green) lines, respec-
tively.

Insert Fig.1 about here
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In Fig. 1, the trigger functions show, for a given level of bad news x, the
optimal amount of the firm’s investment q. The trigger function for the large
firm (dashed red line) is higher than the one for the small firm (solid green
line). This implies that the large firm may continue increasing its capacity at
a larger level of the state variable (”bad news”) than the small one. This has
a simple intuition, since the small firm can not strongly affect the aggregate
volume and therefore the price by its decisions. This makes a small firm more
vulnerable to the bad news and therefore more ”risk averse” than the large
one.
Note that both trigger functions belong to the same family parameterized

by the current capacity of each firm. This indicates that the symmetric
equilibrium is achievable within the same optimal set of strategies. In case
of symmetric equilibrium, the two curves in Fig. 1 coincide. As we will see
below, the symmetric equilibria are naturally achieved for the slow GBM
news inflow. As we will see below, the heterogeneous decision boundaries
combined with the large CAT events may drive the system to a different type
of equilibrium which is highly asymmetric. In particular, the sufficiently large
negative shocks can simply knock some firms out of business (note that we are
considering optimal policies based on the assumption of the full rationality).

4 Dynamic Equilibrium with Disinvestment

To illustrate a model with disinvestment, we will consider the case where
each insurance firm can reduce its level of insurance qi (t) provided that it
pays a ”penalty”, as introduced earlier. If partial disinvestment is possible,
the firm can reduce its capacity in case the bad news (the demand shock) is
sufficiently large. Therefore, we obtain two boundaries for the investment and
disinvestment, when the firm’s capacity increases and decreases, respectively.
We assume that the disinvestment is associated with a marginal cost p1,

implying that the investment is only partially irreversible. Since this cost
corresponds to the value of staying in business for the insurance firm, we as-
sume that p1 is proportional to the current premium, p1 (t) = K1 [Q (t)]

−1/γ

with K1 ≥ K. The last inequality comes from the fact that the ”penalty”
should be compared to the capitalized stream of the premia, which is pro-
portional but greater than the one-period premium p (t). In the concluding
section, we discuss plans for a more general form of this penalty cost.
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Since the firms take into account the disinvestment opportunities in their
optimal strategies, the disinvestment decisions affect the investment bound-
aries for the firms. This means that both investment and disinvestment
boundaries have to be defined simultaneously. This situation is typical for
the systems that function in multiple regimes [?, ?].
In this case, we have an additional term in (13) describing the disinvest-

ment process when the firm’s capacity decreases.

e−rtVi (t) = max
qi(t)

Et

Z +∞

t

{p (t0) d
dt0
qi (t

0) θ
·
d

dt0
qi (t

0)
¸
+ (28)

p1 (t
0)
d

dt0
qi (t

0) θ
·
− d
dt0
qi (t

0)
¸
− ϕ (t0)πi [qi (t0) , x (t0)]}e−rt0dt0,

where θ (t) is an indicator step function, which equals one for positive and
zero to negative values of its argument.
In the continuation region, the equation (22) and conditions on invest-

ment boundary (23) for the marginal value of investment still hold, but we
have additional conditions on the disinvestment boundary. Analogous to
(23), we obtain

Mi (qi, Q, yi) = p1,
∂

∂x
Mi (qi, Q, x) |yi = 0, (29)

where yi is the disinvestment trigger function for the i-th firm and p1 is
a marginal cost of disinvestment. In this case, both power-law terms in
the solution of the HJB equation (22) have to be taken into account. The
maximization and pasting conditions are the same, but are to be applied on
both boundaries. Analogous to (24), we obtain

Mi (qi, Q, xi) = Bx+ Cx
β +Dx−δ, (30)

where
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B = − λ
r−µ ,

Bxi
¡
1 + 1

δ

¢
+ Cxβi

¡
1− β

δ

¢
= p,

Byi
¡
1 + 1

δ

¢
+ Cyβi

¡
1− β

δ

¢
= p1,

xδi

³
Cβxβi −Bxi

´
= yδi

³
Cβyβi −Byi

´
,

(31)

with β = −µ−σ2/2
σ2

+

r³
µ−σ2/2

σ2

´2
+ 2ρ

σ2
. Note that (31) is four equations with

four unknowns {B,C, xi, yi} representing two coefficients and two trigger
functions xi and yi.
While the exact analytical solutions of the system (31) for arbitrary pa-

rameters are not available, it can be solved numerically. Moreover, one can
use approximate solutions under assumptions that both investment and dis-
investment boundaries are well separated and therefore do not strongly affect
each other. In this case, the approximate solution for the investment bound-
ary is still (26) and the disinvestment one is given by

yi (qi, q
0) = k1 (qi + q0)

−1/γ
, (32)

where k1 = K1
(r−µ)

λ

¡
δ

δ+1

¢
e−∆ ≥ κ is a constant. As before, the triggers for

both regimes are different across the firms with different capacities.

4.1 Comparative Dynamics of Investment

From (27) and (32), it follows that the investment decisions depend on the
size of the firm (current level of investment). Therefore, some firms may de-
cide to invest while the optimal strategies for the others will be to stay in the
waiting region. This is in contrast to [5], where only symmetric investment
strategies have been considered. The heterogeneous triggers have been con-
sidered in a different context in a paper [10], where the heterogeneity arises
due to different investment costs across the firms. Note that in our case there
is no such exogenous heterogeneity. In our model it arises due to the different
capacities across the firms and ultimately due to the CAT events that occur
in the economy.
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In the oligopolistic equilibrium, the investment decisions of each firm is
affected by the decisions of all competitors. This happens since the invest-
ment decisions of all firms change the aggregate capacity Q and therefore the
price (inverse demand) which in its turn affects the investment boundaries
(triggers) for different firms depending on their current capacities. Making
use of (27) and (32), we obtain the elasticities of the firms with respect to
the aggregate capacity of its competitors in the form

q0

xi

∂xi
∂q0

= −1
γ

µ
1− qi

Q

¶
. (33)

From (33), it follows that the elasticity is negative which is a consequence of
the fact that the state variable x represents ”bad news”. The absolute value
of the elasticity decreases in the firm’s capacity. Analogously, the slope of the
trigger function defined as the trigger elasticity with respect to the capacity
of the firm is given by

qi
xi

∂xi
∂qi

= −1
γ

qi
Q
, (34)

and its absolute value is increasing in the firm’s capacity.
From (33), it follows that the small firms are stronger affected by negative

shocks than the large ones, which may be even made better-off in case if their
competitors go out of business. Therefore, if some firm changes its capacities,
it mostly affects the strategies of small but not of very large firms.
As it follows from (27) and (32), the small firms typically have higher

values of the triggers since they are effectively more ”risk averse” than the
large ones. On the other hand, (34) indicates that the small firms’ triggers
have lower absolute elasticities with respect to their capacities. This is be-
cause the small firms act more like price-takers (they do not affect the price),
whereas the large ones act more like strategic monopolists (since they know
that they will strongly move the price). This creates additional distortion of
the oligopolistic equilibrium.
As we will see below, these distortions remain small and do not prevent

the economy from achieving the symmetric equilibrium for the GBM-type
news, but become large and may strongly affect the equilibrium in case when
the CAT events are present. The optimal investment policies can be charac-
terized by a closed set of i non-linear SDEs (one for each firm)
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dqi (t, q
0) =

½
1√
k
θ (x− xi (qi, q0))

·
dqi
dxi

¸
− 1√

k1
θ (yi (qi, q

0)− x)
·
dqi
dyi

¸¾
dx,·

dqi
dxi

¸
= −γ

k
(qi + q

0)1+1/γ , (35)·
dqi
dyi

¸
= − γ

k1
(qi + q

0)1+1/γ ,

where θ (s) is an indicator step function,
h
dqi
dxi

i
and

h
dqi
dyi

i
are the marginal

rates of investment and disinvestment at the boundaries, respectively. The
random shock process is described by (14) and Q is the aggregate investment
level, Q (t) =

P
qi (t). Dynamical equations (35) are completed by appro-

priate initial conditions q
(0)
i representing initial level of investment for each

firm i.
As we will see below, firms may have different (sub-optimal) levels of in-

vestments due to the CAT events that they previously experienced. In case
of such events, it may be optimal for some firms to go out of business, i.e.
to close their insurance policies. In principle, the set (35) with appropriate
initial conditions gives a complete characterization of the optimal investment
strategies for the oligopolistic investment economy. For example, it can be
analyzed numerically for different paths of the random shocks x(t). However,
it is not in general analytically tractable. In order to get a more intuitive
description of the economy, we will consider some approximate analytical
solutions and discuss the simplifying assumptions required for these solu-
tions to be valid. It turns out that these conditions have a simple economic
intuition and may therefore be quite reasonable.
From (35), it follows that the optimal strategy of each firm depends on

the actions of all others through the aggregate level of investment Q. As
it follows from (33), the firms’ reaction to the dynamics of the aggregate
investment depends on size and is therefore heterogeneous across different
firms. This makes the firms strategies potentially asymmetric in presence of
large shocks.
In order to obtain an intuition on the nature of dynamical equilibrium,

let us first consider the case of two competing firms (duopoly).
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4.2 Optimal Policies for Duopoly

In this case, general equations (35) take the form

dq1 (t,Q) =
n

1√
k
θ (x− x1 (q1, Q))

h
dq1
dx1

i
− 1√

k1
θ (y1 (q1, Q)− x)

h
dq1
dy1

io
dx,

dq2 (t,Q) =
n

1√
k
θ (x− x2 (q2, Q))

h
dqi
dxi

i
− 1√

k1
θ (y2 (q2, Q)− x)

h
dq2
dy2

io
dx,

h
dq1
dx1

i
=
h
dq2
dx2

i
= −γ

k
Q1+1/γ,

h
dq1
dy1

i
=
h
dq2
dy2

i
= − γ

k1
Q1+1/γ,

(36)
with

x1 (q1, q2) = k (q1 + q2)
−1/γ ,

x2 (q2, q1) = k (q1 + q2)
−1/γ .

(37)

Suppose that the initial levels of investment for the first and second firms are
q
(0)
1 and q

(0)
2 , respectively.

Graphically, the equilibrium investment strategies are presented in Fig.2
for the case with sufficiently smooth inflow of news (no CAT events are
present) and without the opportunity for disinvestment. The investment
boundaries depend on size (qi) and are therefore different for the two firms.
The lines Xi (q) with i = {1, 2} represent equilibrium investment boundaries
for the firms 1 and 2, respectively.

Inset Fig.2 about here

The initial level of the signal is x 0, then it decreases to a minimum value
x 1. The initial states of the small and large firms are presented in Fig.2 by
the points S1 and S2 , respectively. The final states of the small and large
firms are S10 and S20, respectively. This demonstrates that if the lowest
level of the signal is sufficient to move at least one of the firms firms onto
the investment boundary (the level of bad news is low), then the investment
capacities of both firms get closer at the end of the process. Since the negative
news does not affect the level of investment, this process should ultimately
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drive the investment levels of both firms together. As discussed above, in
the limit when the two firms have the same capacities, their trigger functions
coincide. Note that when the firms’ capacities change, the trigger functions
subsequently change according to the current capacity of each firm. The
graph presented above gives a qualitative picture of this convergence to the
symmetric strategy.
Since the disinvestment is not allowed, the negative news (large x) does

not affect the firms’ capacities. For example, suppose that in the situation
considered in Fig. 2, the state variable returns back to the original value x 0
at the end of a process. This does not affect the firms’ final capacities after
x 1 and therefore the conversion still takes place. Therefore, the positive
inflow of news always moves different firms closer in their investment levels
due to the fact that the exercise boundary X(q) is decreasing in q, and
this is not affected by the negative news if the disinvestment is not allowed.
Clearly, an analogous conclusion should hold for arbitrary number of firms
under these conditions.
In Fig.3, we consider a similar case in presence of sufficiently rare but

strong CAT events taking into account the possibility of partial (costly) dis-
investment. In this case, we obtain a second (disinvestment) boundary along
which the disinvestment process. Since we assume that the disinvestment is
costly, the disinvestment curves X− (q) (dotted lines in Fig.3), go above the
investment curves X+ (q) (solid and dashed lines). The investment and dis-
investment curves for the small and large firms are given by the solid green,
solid red, dashed green and dashed red lines, respectively. The main differ-
ence between Figs.2 and 3 is that in case of a sufficiently strong negative
CAT event, the firms do not get closer with respect to their capacities (as
opposed to the small GBM shock described by Fig.2). In particular, firm 1
gets ”kicked out of business” by a sufficiently large negative shock considered
in Fig.3. On the other hand, firm 2 with a larger initial capacity does not
even achieve its disinvestment boundary and stays in the waiting region.

Insert Fig.3 about here

The important feature of the optimal dynamics illustrated in Fig.3 is that
the investment strategies ”remember” their history. According to [2], this can
be interpreted as the ”hysteresis” effects in the economy with strategically
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competing firms. For example, in a situation illustrated in Fig.3, the firm 2
(the one with a larger initial capacity) does not disinvest since it was caught
by the CAT event far from the disinvestment boundary and ends up at the
initial level of investment. The firm 1 (with a small initial capacity) on the
other hand is sufficiently close to the boundary at the moment of the CAT
shock and therefore it completely disinvests with a final level q1 (t2) = 0.
As we see from Fig.3, the initial capacity difference between the two firms
increases at the end of the shock. Clearly, the same effect should take place for
arbitrary number of the firms. This indicates that in presence of sufficiently
strong CAT events, the symmetric equilibrium is not dynamically stable
(actually, it is not dynamically achievable). One should expect that the
equilibrium distribution of firms with respect to their investment levels should
be non-stationary and sufficiently complex.

5 Size Distribution of the Firms

In this section, we will consider some analytical results regarding the size
distribution of the insurance companies subjected to both expected and un-
expected losses arriving in a form of shocks. The optimal investment policies
can be characterized by a closed set of i non-linear SDEs (one for each firm)

dqi (t, q
0) =

½
θ (xi (qi, q

0)− x)
·
dqi
dxi

¸
− θ (x− yi (qi, q0))

·
dqi
dyi

¸¾
dx,·

dqi
dxi

¸
= −γ

k
(qi + q

0)1+1/γ ; xi (qi, q
0) = k (qi + q0)

−1/γ
, (38)·

dqi
dyi

¸
= − γ

k1
(qi + q

0)1+1/γ ; yi (qi, q
0) = k1 (qi + q0)

−1/γ
,

where θ (s) is an indicator step function,
h
dqi
dxi

i
and

h
dqi
dyi

i
are the marginal

rates of investment and disinvestment at the boundaries, respectively. The
random shock process is described by (14) and Q is the aggregate investment
level, Q (t) =

P
qi (t). Dynamical equations (38) are completed by appro-

priate initial conditions q
(0)
i representing initial level of investment for each

firm i. The equation (38) can be considered as a set of equations modelling
the dynamics of the whole insurance economy, in a spirit of the approach
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described in [2]. From this prospective, the solution of (38) describes the
general equilibrium in the economy. One should note that this equilibrium
may not be of a static nature depending on the characteristics of the shocks.
In other words, the set of dynamic equations (38) may or may not achieve a
steady state regime, when the characteristics of the size distribution of the
firms are time-independent. As we will see below, the steady-state solutions
formally exist, but may be achieved only after a sufficiently long time period
(the time ”lag”).
With the substitution

ψi (qi, q
0) = (qi + q0)

−1/γ
, (39)

the system (38) transforms into

dψi =

½
1

k
θ

µ
ψi − 1

k
x

¶
− 1

k1
θ

µ
1

k1
x− ψi

¶¾
dx. (40)

Given (40), we obtain the following forward Kolmogorov equation for the
distribution function F (ψ, x, t)

∂F

∂t
=

∂

∂x

½
µxF + λx

£
F
¡
xe∆

¢− F (x)¤+ σ2

2
x2

∂F

∂x

¾
+

+
∂

∂ψ

©
ϕ (ψ, x)

£
µxF + λx

£
F
¡
xe∆

¢− F (x)¤¤ª+ (41)

+
∂

∂ψ

½
[ϕ (ψ, x)]2

σ2

2
x2

∂F

∂ψ

¾
,

with

ϕ (ψ, x) =
1

k
θ

µ
ψi − 1

k
x

¶
− 1

k1
θ

µ
1

k1
x− ψi

¶
. (42)

The partial differential equation (41) reduces in the limit of large CAT shocks
∆ >> 1 to

∂F

∂t
=

∂

∂x

½
(µ− λ)xF +

σ2

2
x2

∂F

∂x

¾
+ (43)

+
∂

∂ψ

½
ϕ (ψ, x) (µ− λ)xF + [ϕ (ψ, x)]2

σ2

2
x2

∂F

∂ψ

¾
.
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The partial differential equation (41) describes the time evolution of the
joint probability distribution of shocks x and the variable ψ (q) related to
the capacity of the firm. One should note that he solution of (41) should also

satisfy the self-consistency condition at the upper boundary ψm = (q
0)−1/γ

E
£
ψ−γ

¤
= E [q + q0] = Q, (44)

(ψm)
−γ = q0 =

N − 1
N

Q,

and therefore

N − 1
N

=
(ψm)

−γ

E [ψ−γ]
, (45)

implying that the expected aggregate capacity of all firms except for a given
one is related to the expected aggregate capacity. The probability distribu-
tion in case of the large shocks described by the PDE (43) is characterized
by
Theorem 1 The solution of the PDE (43) is given by

Ψ (ψ, x, t) = J (t)Γ (t) exp

"
−
¡
ψ − ψ (t)

¢2
2∆ (t)

#
exp

"¡
ψm − ψ (t)

¢2
2∆ (t)

#
,

ψ (t) =

Z t

0

dt0α (t0) + ψa, α (t) = ηA (t) ,

∆ (t) =

Z t

0

dt0β (t0) + σ20, β (t) = σ2B (t) , (46)

Γ (t) =
2∆ (t)

ω (t)− ρ (t)
³
ψm−ψ(t)√

σ2t

´ ,
ω (t) = 2α (t)σ20 + 2β

Z t

0

dt0α (t0) ,

ρ (t) = β (t)
√
σ2t,

where the upper cur-off parameter ψm is defined through the self-consistency
(”fixed point”) condition (45).
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Proof: See Appendix.
Given the solution (46), we can define the total inflow of the active firms

into the industry J (t) through the self-consistency condition at the upper
boundary ψm. This inflow of the firms into the economy is presented as
J = d

dt
N and therefore the consistency conditions can be viewed as Ordinary

Differential Equation (ODE) describing the dynamics of the total equilibrium
number of the firms in the economy as a function of time and the state
variable x. These arguments are similar to the fixed-point type considerations
which are widely used in the General Equilibrium models and can be viewed
as an analogue of the ”market clearing” conditions. The ODE may lead to a
rich variety of possible solutions depending on the parameters of the economy
and is characterized by
Corollary 1 The aggregate number of the active firms N(t) in the industry

is given by a solution of the following ODE

µ
1− 1

N

¶−1/γ
=

µ
1 +

1

ρψ
θ

¶µ
1 +

ρ2σ2t

4θ2

¶
, (47)

θ = ω (t)− ν (t)

N

dN (t)

dt
,

where the parameter ν (t) is defined in the Appendix.
Proof: See Appendix.
The phase portrait of the ODE (47) is given in the Fig. 4.

Insert Fig.4 about here

The motion has one or two focal points for the negative and positive drift
term α (t) and presented in Figures 4a and 4b, respectively. Making use
of the expression for the drift (52) from the Appendix, we obtain a simple
intuition for these two regimes, since the drift exponentially depends on the
level of expected losses and positive or negative drift corresponds to the low
and high level of expected losses, respectively. Clearly, all firms will leave
the industry in case when a large shock arrives and expected losses become
sufficiently high. On the other hand, the small expected losses (good news)

26



may attract more firms into the industry. In case of positive drift, (47) has
a non-trivial stable equilibrium point

Ne (x, t) ≈ 4
γ

"
ω (t)

ρ (t)
√
σ2t

#2
=
16

γ

"R t
0
dt0α (t0)
σ2t

#2
, (48)

which gives an estimate Ne (x, t) ≈ 16
γ
exp (−2x) £ η

kσ4

¤2
. Clearly, the equilib-

rium number of firms decreases in the size of losses, as expected. One should
note that in our model all optimal strategies are assumed to be smooth func-
tions, implying that even in case of large expected losses when all firms tend
to close their operations, it takes some time before all firms exit the industry.
This is reflected in the dynamic nature of the equilibrium described by the
ODE (47).

6 Conclusion

This paper suggests a model of price dynamics and of firm exit and reentry
based on the concepts of real option theory to catastrophe insurance markets.
We show that the decision of an insurance firm to take on catastrophe risks
can be considered as an investment decision. Making use of this analogy, we
show that the optimal policies of a catastrophe insurance firm can readily fit
into the traditional real options model. Catastrophe insurance investments,
however, may be reversible in the sense that an insurance firm can allow its
current policies to mature, and then leave the industry. Thus, to apply the
real option approach to catastrophe insurance, we have to amend the basic
theory to cover the case of reversible investments.
The key benefit of applying real option theory to catastrophe insurance

markets is that we obtain a unified theory of price dynamics and exit and
entry decisions and one that fits the stylized facts of catastrophe insurance
markets remarkably well.
Finally, we want to describe three topics on our own research agenda for

extending the basic model of this paper.
1) In the current paper, the demand for insurance by policy holders is not

directly a function of the loss variable x. It is sensible, however, to include
an effect in which policy holder demand functions shift upward when new
information suggests greater possible future losses. While we do not expect
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this addition to change the general qualitative results of this paper, there may
be special cases of policy holder demand which do create singular results. We
hope to identity these cases as a result of this further research.
2) In the current paper, the loss variable x affects all firms in the same

proportion, in the manner of an industry effect. Insurance firms, however,
are heterogeneous not only in size (which is considered in the current paper),
but also in terms of the specific geographic location of their risks. Thus,
we plan to augment the basic model of the current paper with a second loss
variable that is firm specific. We expect that this factor will provide a further
basis for the heterogeneity that we actually observe across insurance firms.
3) In the current paper, a cost is imposed when firms reduce the level of

their industry participation. Furthermore, this cost is specified as propor-
tional to a firm’s current premium income, in the manner of an opportunity
cost of foregone income. It will be useful, however, to understand how our
results might vary as a function of alternative specifications of the exit cost.
4) The current model does not take into account strategic behavior of the

firms with respect to the ”limited liability” assumption of the model when
the firm with lower level of wealth (capital) will tend to take more risk than
the otherwise identical firm with a higher level of capital. In this case, the
level of capital plays the role of an extra degree of freedom in the model.
This will be a subject of our future research.

28



7 Appendix

Proof of Theorem 1
Integrating both sides of the equation (41) over the distribution of shocks

given by (14), we obtain the forward Kolmogorov equation for the marginal
probability distribution of Ψ (ψ, t)corresponding to the firms’ size distribu-
tion, in the form

∂Ψ (ψ, t)

∂t
=

∂

∂ψ

½
ηA (ψ, t)Ψ (ψ, t) +

σ2

2
B (ψ, t)

∂Ψ (ψ, t)

∂ψ

¾
, (49)

where

η = µ+ λ
¡
e∆ − 1¢ ,

A = E [ϕ (ψ, x)x] = (50)

= xeηt
½
1

k
Φ

·
z0

σ
√
t

¸
− 1

k1

µ
1− Φ

·
z1

σ
√
t

¸¶¾
,

B = E
£
ϕ (ψ, x)x2

¤
=

= x2e2ηt
½
1

k2
Φ

· ez1
σ
√
t

¸
+
1

k21

µ
1− Φ

· ez0
σ
√
t

¸¶¾
,

the expectation conditioned on ψ and t E [.], the Poisson distribution Pn (t) =
(λt)n /n! exp (−λt) and the standard error function Φ [.], with

z0 = logψ − log x+ log k − ¡η + σ2/2
¢
t,

z1 = logψ − log x+ log k1 −
¡
η + σ2/2

¢
t, (51)ez0 = logψ − log x+ log k − ηt,ez1 = logψ − log x+ log k1 − ηt.

From equation (50), it follows that the effective distributions have ”cuts”
for both sufficiently large or small sizes of the shocks corresponding to the
investment and disinvestment boundaries, respectively. This feature should
be expected in the general equilibrium type models of investment (insurance)
involving the trigger-type strategies. Indeed, the ”cuts” correspond to the
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trigger strategy being ”switched on”. This is taken into account in a self-
consistent way at equilibrium by the equation (49). In the range of sufficiently
long evolution times, we approximately have

A (t, x) ≈ 1

2
exp

µ
1

2
σ2t

¶·
1

k
exp (−x)− 1

k1
exp (x)

¸
,

B (t, x) ≈ 1

2
exp

¡
2σ2t

¢ · 1
k2
exp (−2x) + 1

k21
exp (2x)

¸
, (52)

x = x+ ηt.

Assuming that the initial firms size distribution was normal N (ψa,σ
2
0), ap-

plying the method of Green’s functions for (49) and making use of (52), we
obtain a solution of the evolution equation (49) in the form

Ψ (ψ, x, t) = J (t)Γ (t) exp

"
−
¡
ψ − ψ (t)

¢2
2∆ (t)

#
exp

"¡
ψm − ψ (t)

¢2
2∆ (t)

#
,

ψ (t) =

Z t

0

dt0α (t0) + ψa, α (t) = ηA (t) , (53)

∆ (t) =

Z t

0

dt0β (t0) + σ20, β (t) = σ2B (t) ,

Γ (t) =
2∆ (t)

ω (t)− ρ (t)
³
ψm−ψ(t)√

σ2t

´ ,
ω (t) = 2α (t)σ20 + 2β

Z t

0

dt0α (t0) ,

ρ (t) = β (t)
√
σ2t,

with the ”inflow” of the firms’ distribution defined as J (t) = d
dt
N (t) and

given by

J (t) = ηA (ψm, t)Ψ (ψm, t) +
σ2

2
B (ψm, t)

∂Ψ (ψ, t)

∂ψ
|ψ=ψm . (54)

¥
Proof of Corollary 1
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The total number of active firms N (x, t) and the expectation E [ψ−γ] are
directly obtained from the distribution (53) as

N (x, t) = J (t)

r
π∆ (t)

2
Γ (t)

1 + ψm − ψ (t)q¡
ψm − ψ (t)

¢2
+ σ2t

 , (55)

and

E
£
ψ−γ

¤
=

ψ (t)

2

1 + ψm − ψ (t)q¡
ψm − ψ (t)

¢2
+ σ2t


−γ

, (56)

respectively. Combining (53), (53) and (45), we obtain

µ
1− 1

N

¶−1/γ
=

µ
1 +

1

ρψ
θ

¶µ
1 +

ρ2σ2t

4θ2

¶
, (57)

θ = ω (t)− ν (t)

N
J (t) , ν (t) =

√
π [∆ (t)]3/2 .

After the substitution J (t) = d
dt
N (t), we obtain the ODE (47).

¥
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Smaller Firm 

Larger Firm 

Figure 1.  The figure shows the trigger functions x(q) for two 
firms.  A  trigger function indicates a firm’s desired size q as a 
function of the level of recent losses x. The smaller firm’s curve 
is flatter and lower than the curve for the larger firm. Thus, for 
any level of recent losses, the larger firm desires a larger 
capacity. At sufficiently large losses a firm will choose a size of 0 
(shown as xo for the small firm) 

q (firm size) 

x (recent losses) 

xo 



 
 

 
 
 
 
 
 
              

                            
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Smaller Firm 

Larger Firm 

Figure 2.  The figure shows two firms in arbitrary initial positions 
labeled as S1 and S2 respectively at an initial level of losses x0, and 
assuming firms can increase, but not decrease their capacity. 
Upon receiving new information on losses, x1,the smaller firm 
expands its capacity to S1’.  The larger firm would prefer to 
decrease its capacity, but cannot, so its capacity is unchanged at 
S2’.This illustrates the basic pressure forcing firms to the same 
ultimate capacity, that is toward symmetry. 

q (firm size) 
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Larger firm disinvestment 

Figure 3.  The figure shows the smaller firm and the larger firm 
both starting on their investment curve at points S1 and S2 

respectively, based on losses x0.  When the losses rise to x1, the 
smaller firm leaves the industry (S1’), while the larger firm does 
not even reach its disinvestment boundary (S2).  This illustrates 
how large CAT shocks can lead to heterogeneity across firm size. 
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