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Abstract

We study a competitive multiline insurance industry, in which insurance companies
with limited liability choose which insurance lines to cover and the amount of capital
to hold. Premiums are determined by no-arbitrage option pricing methods. The results
are developed under the realistic assumptions that insurers face friction costs in holding
capital and that the losses created by insurer default are shared among policyholders
following an ex post, pro rata, sharing rule. In general, the equilibrium ratios of premiums
to expected claims and of default costs to expected claims will vary across insurance lines.
We characterize the situations in which monoline and multiline insurance offerings will
be optimal. Insurance lines characterized by a large number of essentially independent
risks will be offered by very large multiline firms. Insurance lines for which the risks are
asymmetric or correlated may be offered by monoline insurers. The results are illustrated
with examples.
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1 Background

The optimal allocation of risk in an insurance market was studied in the seminal work of
Borch (1962), who showed that without frictions a Pareto efficient outcome can be reached.
Furthermore, in a friction-free setting, insurers can hold sufficient capital to guarantee they
will pay all claims. Two frictions, however, appear to be important in practice: 1) excess costs
to holding capital, leading insurers to conserve the amount of capital they hold, and 2) limited
liability, creating conditions under which insurers may fail to make payments to policyholders.
When markets are incomplete, in the sense that policyholders face a counterparty risk that
cannot be independently hedged, the existence of the two frictions can have a significant
impact on the industry equilibrium, including the amount of capital held, the premiums
set across insurance lines, and the industry structure regarding which insurance lines are
associated with monoline versus multiline insurers.

In special cases, the impact of such frictions may be negligible and a no-frication — perfect
market — approach approach is warranted. Such an approach is for example taken in Phillips,
Cummins, and Allen (1998) (henceforth denoted PCA), in which no costs are associated with
collateral, and markets are assumed to be complete. However, in many cases, the no friction
assumption may be too simplistic. It is generally more realistic to presume that frictions do
exist and that they may have an important impact on the equilibrium. For example, Froot,
Scharsfstein, and Stein (1993) emphasize the importance of capital market imperfections for
understanding a variety of corporate risk management decisions, with the tax disadvantages
to holding capital within a firm an especially common and important factor. For insurance
firms, Merton and Perold (1993), Jaffee and Russell (1997), Cummins (1993), Myers and
Read (2001), and Froot (2007) all emphasize the importance of various accounting, agency,
informational, regulatory, and tax factors in raising the cost of internally held capital.

The risk of insurer default in paying policyholder claims has lead to the imposition of
strong regulatory constraints on the insurance industry in most countries. Capital require-
ments are one common form of regulation, although there is no systematic framework for
determining the appropriate levels. As Cummins (1993) and Myers and Read (2001) point
out, it is likely that the capital requirements are being set too high in some jurisdictions
and too low in others, and similarly for the various lines of insurance risk, in both cases
leading to inefficiency. It is thus important to have an objective framework for identifying
the appropriate level of capital based on each insurer’s particular book of business.

Insurance regulation also focuses on the industry structure, requiring certain high-risk
insurance lines to be provided on a monoline basis. Monoline restrictions require that each
insurer dedicate its capital to pay claims on its monoline of business, thus eliminating the
diversification benefit in which a multiline firm can apply its capital to pay claims on any
and all of its insurance lines.1 Jaffee (2006), for example, describes the monoline restrictions

1Monoline restrictions do not preclude an insurance holding company from owning an amalgam of both
monoline and multiline subsidiaries. The intent of monoline restrictions is that the capital of a monoline
division must be dedicated to paying claims from that division alone.
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imposed on the mortgage insurance industry, an industry, as it happens, currently at sig-
nificant risk to default on its obligations as a result of the subprime mortgage crisis. Jaffee
conjectures that the monoline restrictions were imposed as consumer legislation to protect
the policyholders on relatively safe lines from an insurer default that would be created from
large losses on a line with more catastrophic risks. It is thus valuable to have a framework
in which the optimality of monoline versus multiline formats can be determined.

Although this paper is developed in the context of an insurance market, we believe the
framework will be applicable to the issues of counterparty risk and monoline structures that
are pervasive throughout the financial services industry. For example, the 1933 Glass Steagall
Act forced US commercial banks to divest their investment bank divisions, while the 1956
Bank Holding Company Act of 1956 similarly separated commercial banking from the insur-
ance industry; both Acts, repealed in 1999, were in effect monoline restrictions. In a similar
fashion, Leland (2007) develops a model in which single-activity corporations can choose the
optimal debt to equity ratio, whereas multiline conglomerates obtain a diversification benefit
but can only choose an average debt to equity ratio for the overall firm.

This paper provides a detailed analysis of the structure of an insurance market under the
assumptions of costly capital, limited liability, incomplete markets and perfect competition
between insurance companies. We specifically focus on the following questions:

1. Premia: For an insurance company offering insurance in multiple insurance lines, what
will be the price structure across lines?

2. Cost allocation: For an insurance company offering insurance in multiple insurance
lines, how should the firm allocate costs between these lines?

3. Choice of insurance lines: How will firms choose the basket of insurance lines to offer
to their customers?

4. Choice of capital: Given a choice of insurance lines, what level of capital will an insur-
ance company choose?

We introduce a consistent model to analyze each of these questions. Our results signifi-
cantly extend and generalize the analyses in earlier papers, e.g., in Phillips, Cummins, and
Allen (1998) and Myers and Read (2001). Three factors lead to these differences. First, we
consider a competitive market, in which insurance companies (insurers) compete to attract
risk averse agents who wish to insure risks (insurees). This competition severely restricts the
monoline and multiline structures that may exist in equilibrium.

Second, we rely on the existence of a pricing kernel to price any risk,2 but we make the
additional assumption that insurees cannot replicate the insurance payoffs by trading in the

2In most parts of the paper, the pricing kernel can be quite general, although in some parts we will make
the additional assumption that individual agents risks are idiosyncratic, so that the pricing operator coincides
with the discounted objective expectations operator.
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market.3 This restriction implies that the insurance company provides value by tailoring
insurance products that are optimal for its customers. Without the restriction, the insurance
company is redundant — since any payoff can be replicated by trading in the asset market
— and therefore the structure of the industry would be indeterminate.

Third, in the case of insurer bankruptcy, we assume that the insurer’s available assets
are distributed to the policyholders following what we call the ex post pro rata rule. Under
this rule, the available assets are allocated to policyholder claims based on each claimant’s
share of the total claims. This rule has sensible properties and generally reflects the actual
practice.4

The paper is organized as follows: In section 2 we give a review of related literature. In
section 3, we introduce the basic framework for our analysis. In section 4, we analyze the
first two questions — the pricing and cost allocation across lines in the case when the amount
of capital and the choice of insurance lines is given. In section 5, we analyze the monoline
versus multiline choice and the implications for industry structure. We analyze the insurance
line choices in a competitive market from two angles: In what we denote the traditional case,
there are many, essentially independent, risks available: In this case, insurance companies
will be massively multiline oriented. In contrast, in what we call the nontraditional case, the
market may be best served by monoline insurance companies. This may occur if there are a
few lines, if losses between lines are highly correlated, or if loss distributions between lines
are asymmetric. Finally, section 6 makes some concluding remarks.

2 Literature review

Financial models of insurance pricing and capital allocation were first developed by applying
the principles of the capital asset pricing model (CAPM, see, for example, Fairley (1979) and
Hill (1979)), or a discounted cash flow model (see, for example, Myers and Cohn (1987)).
Both models, however, have significant drawbacks. The CAPM applications have the basic
problem that they fail to incorporate the default risk faced by policyholders as a result of the
insurance firms limited liability. The CAPM is also not well suited to pricing risks with heavy
tails, as would be plausible for various lines of catastrophic disasters and terrorist attacks.
The discount cash flow models must apply a risk-adjusted discount rate, but the derivations
of this rate incorporate neither the frictional costs of holding capital nor the default risk for
policyholders.

A major advance occurred by applying option valuation methods to the questions of in-
surance pricing and capital allocation, starting with the monoline models of Doherty and
Garven (1986) and Cummins (1988). These papers specify the default risk faced by policy-
holders as a put option held by the equity owners of the insurer. The value of the option

3This could be because firms aggregate several sources of risks, and the market thereby is incomplete. It
could also be that insurees do not have access to the stock market, or even that they are not sophisticated
enough construct replicating portfolios in an asset market.

4This assumption seems to reflect the contracts offered to insurees in practice, as discussed below.
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depends on the range of possible outcomes for policy claims and the amount of capital held
by the insurer (which is the strike price of the option). The premium is then determined as
the expected losses on the policy line minus the value of the default option. In other words,
the ratio of the premium to the expected claim is less than 1, since the claims are not always
paid in full.

The extension of option pricing methods to a multiline insurer was first provided by
Phillips, Cummins, and Allen (1998) (PCA). Their analysis embeds the simplifying assump-
tion that claims for all the lines are realized at the same date, which has the very useful
implication that insurer default is simultaneously determined for all insurance lines. If the
insurers assets equal or exceed the actual policyholder claims, then all claims are paid in full.
Whereas, if the actual claims exceed the available assets, the insurer defaults, and pro rated
payments are made to policyholders following a loss allocation rule. The specific rule used
by PCA is that each policyholder is allocated a share of the shortfall based on the amount
of her initially expected claims relative to the total of all initially expected claims. Since the
shortfall shares are based on the expected claims as of the initial date, we will refer to this
as the ex ante rule.

The PCA ex ante allocation rule implies that the premium to expected claims ratio will be
constant across lines, since the default cost relative to expected claims is constant across lines.
While this result is very powerful, the ex ante rule is a very special case, with the undesirable
feature that the allocation of the shortfall in case of default is allocated to policyholders
on the basis of only the aggregate shortfall and the initially expected loss on each insurance
policy. In other words, the amount of the shortfall allocated to a policyholder depends only on
her expected loss and is independent of that policyholders actual claims. Since the expected
claims are not observable in the market, policyholders would have no basis to validate the
share of the shortfall imposed on them. Moreover, policyholders with small expected losses
would have to make payments to other policyholders with larger expected losses.

Mahul and Wright (2004) note that while an ex ante allocation rule may lead to optimal
risk sharing among policyholders, in practice ex post payments from policyholders to other
policyholders will be difficult to enforce.5 Instead, in our model as explained below, we apply
an ex post pro rata rule in which policyholders share the default shortfall in proportion to
their actual claims. The result is that claimants always receive some net payment from the
insurer, albeit less than their total claim when the insurer defaults.

How to allocate capital within a multiline insurer is another important question. PCA
take the position that the allocation of capital is not needed for price determination when
the insurance is sold in informationally efficient, competitive insurance markets. In our case,
however, the frictional costs of holding capital make it imperative to allocate capital in
order to determine the appropriate insurance premiums across lines. Two studies have been
undertaken to work on this problem, Merton and Perold (1993) and Myers and Read (2001).

5The proper rule for allocating the default shortfall is related to the question of optimal contract design
when insurer default may occur. Mahul and Wright (2004) is the most recent contribution to the small
literature that discusses this issue, which also includes Schlesinger (2000) and Doherty and Schlesinger (1990).
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In both cases, the amount of capital to be allocated to an insurance line is determined by
an experiment in which the size of each line is changed and a computation is made of the
resulting change in capital if the firms overall risk is to be constant.

The Merton and Perold (MP) experiment, more precisely, entirely removes an insurance
line from the multiline firm and then computes the reduction in the insurers total capital
requirements. The resulting reduction in capital is interpreted as the capital amount to be
allocated when that line is part of the multiline firm. This procedure is then repeated for each
line that the insurer covers. The MP method has the attribute that the sum of the capital
allocations across all the lines will be less than the total capital required of the firm when
it offers all the lines. The reason is that the overall firm receives a benefit of diversification
that cannot be allocated to any of the individual lines.

The Myers and Read (MR) model also uses a marginal method to compute the capital
allocation, but instead of removing each entire line from the total, they change the coverage
amount of each line only be small incremental amounts. MR demonstrate that the capital
allocations determined by their incremental technique satisfy the adding constraint whereby
the sum of the capital allocations exactly equals the total amount of capital to be allocated.
Our model, as developed below, applies the same concept for determining capital allocations
and takes advantage of the same adding up condition. Our results differ from MR, however,
because the MR computations are based on the PCA model’s ex ante allocation rule for
insurer shortfalls, whereas our results are developed on the basis of our ex post allocation
rule.6

The last major topic considered in this paper is the determination of the industry structure
in terms of which insurance lines are efficiently provided by monoline versus multiline insurers.
We know of no papers that have considered this question within an analytic framework.

3 A competitive multiline insurance market

We first study the case of only one insured risk class. Consider the following one-period
model of a competitive insurance market. At t = 0, an insurer (i.e., an insurance company)
in a competitive insurance market sells insurance against a risk, L̃ ≥ 0,7 to an insuree.8 The
expected loss of the risk is μL = E[L̃], μL < ∞.

The insurer has limited liability and reserves capital within the company, so that A is
available at t = 1, at which point losses are realized and the insurer satisfies all claims by
paying L̃ to the insuree, as long as L̃ ≤ A. But, if L̃ > A, the insurer pays A and defaults

6Zanjani provides are alternative approach to premium setting and capital allocation when there is default
risk by specifying that the demand for insurance depends in part on the quality of the insurer. Although this
approach can provide general conclusions comparable to the PCA and MR models, it lacks the quantitative
precision that is provided by the default option approach. For our paper, this attribute of the option approach
is critical in determining the optimal industry structure between monoline and multiline insurers.

7Throughout the paper we use the convention that losses take on positive values.
8It is natural to think of each risk as an insurance line.
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the additional amount that is due. Thus, the payment is

Payment = min(L̃, A) = L̃ − max(L̃ − A, 0) = L̃ − Q̃(A),

where Q̃(A) = max(L̃ − A, 0), i.e., Q̃(A) is the payoff to the option the insurer has to
default.9 The price for the insurance is P . Throughout the paper, the risk-free discount rate
is normalized to zero.10

We assume that there are friction costs when holding capital within an insurer, including
both taxation and liquidity costs.11 The cost is δ per unit of capital. This means that to
ensure that A is available at t = 1, (1 + δ) × A needs to be reserved at t = 0.

There is a friction-free complete market for risk, admitting no arbitrage. The price for L̃

risk in the market is
PL = Price

(
L̃
)

= E∗[L̃] = E[m̃ × L̃],

where Price is a linear pricing function, which can be represented by the risk-neutral expecta-
tions operator E∗[·], or with the state-price kernel, m̃, in the objective probability measure,12

and we assume that E∗[L̃] < ∞. Similarly, the price of the option to default is

PQ = Price
(
Q̃(A)

)
= E∗[Q̃(A)] = E[m̃ × L̃].

Since the market is competitive and the cost of holding capital is δA, the price charged for
the insurance is

P = PL − PQ + δA. (1)

To ensure that A is available at t = 1, the additional amount of A − PL + PQ needs to be
reserved by the insurer. The total market structure is summarized in Figure 1, which also
shows how noarbitrage pricing in the market for risk determines the price for insurance in
the competitive insurance market.

It is natural to ask why insurees would impose the costs of holding capital by buying
from an insurer instead of going directly to the market for risk. We make the assumption
that insurees do not have direct access to the market for risk and that they can only insure
through the insurers.13

The generalization to the case when there are multiple risk classes is straightforward. If
9When obvious, we suppress the A dependence, e.g., writing Q̃ instead of Q̃(A).

10The results are qualitatively the same with a non-zero risk-free rate.
11Jaffee and Russell (1997) discuss a variety of costs that arise regarding insurer capital, including a risk

of firm takeover as well as liquidity and tax costs. Myers and Read (2001) and and Cummins (1993) make
similar assumptions.

12See, e.g., Duffie (2001) for standard results on existence and uniqueness of pricing functions under these
completeness and noarbitrage assumptions.

13For example, if we think of the market for risk as a reinsurance market, this may be a natural constraint.
A similar assumption, which would lead to identical results, is if the insuree faces costs that are equal to or
higher than the costs faced by the insurer, in which case it will be optimal to buy from the insurer. Finally, if
the market is incomplete and the insurer is risk-neutral, there may be no way to replicate the payoffs in the
market for risk, leaving the insurance market as the sole market available for the insuree.
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Market for risk
-Noarbitrage 
pricing operator

Insurance market
-Costly capital
-Competitive

Insurer

Insuree

t=0: A-PL+PQ t=1: A-L+Qt=1: A-L+Qt=0: A-PL+PQ

t=0: δA+PL-PQ

t=1:  L-Q

Figure 1: Structure of model. Insurers can invest in market for risk or in a competitive insurance
market. There is costly capital, so to ensure that A is available at t = 0, (1+ δ)A needs to be reserved
at t = 1. The premium, δA+ PL −PQ, is contributed by the insuree and A−PL + PQ by the insurer.
The discount rate is normalized to zero. Noarbitrage and competitive market conditions imply that
the price for insurance is P = δA + PL − PQ.

coverage against N risks is provided by one multiline insurer, the total payment made to all
policyholders with claims, taking into account that the insurer may default, is

Total Payment = L̃ + max(L̃ − A, 0) = L̃ − Q̃(A),

where L̃ =
∑

i L̃i and Q̃(A) = max(L̃ − A, 0). The total price for the risks is, P
def=
∑

i Pi,
where Pi is the price for insurance against risk i, is once again on the form (1).

Now consider an insurance market, in which M insurers sell insurance against N ≥ M

risks. We partition the total set of N risks into X = {X1,X2, . . . ,XM}, where ∪iXi =
{1, . . . , N}, Xi ∩Xj = ∅, i 	= j, Xi 	= ∅. The partition represents how the risks are insured by
M monoline or multiline insurance businesses. The total industry structure is then charac-
terized by the duple, S = (X ,A), where A ∈ R

M
+ is a vector with i:th element representing

the capital available in the multiline business that insures the risks for agents in Xi.14 The
number of sets in the partition is denoted by M(X ). Two two polar cases are the fully multi-
line industry structure, with X = {{0, 1, . . . , N}} and the monoline industry structure, with
X = {{0}, {1}, . . . , {N}}

Our analysis so far is thus based on the following assumptions:

1. Market completeness: The market for risk is arbitrage-free and complete, such that
14We use the notation R+ = {x ∈ R : x ≥ 0} and R− = {x ∈ R : x ≤ 0}.
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there is a linear pricing operator.

2. Limited liability : Insurers have limited liability.

3. Costly capital : There is a cost for insurers to hold capital.

4. Competitive insurance markets: Prices for insurance are set competitively.

5. Access to markets: Insurees do not have direct access to the market for risk.

These assumptions completely determine the pricing of risk and cost allocation between
different lines, as shown in section 4.

To understand the prevailing market structure, S = (X ,A), in an economy – the objective
of section 5 – we also need assumptions about insurees. For simplicity, we assume that there
are N distinct insurees. Each risk is insured by one insuree with expected utility utility
function u, where u is a strictly concave, increasing function defined on the whole of R−.
For some of the results we need to make stronger conditions on u.15 The risk can not be
divided between multiple insurers.16 Finally, we assume that expected utility, U , is finite,
U = Eu(−L̃) > −∞.

We will make extensive use of the certainty equivalent as the measure of the size of a risk.
For a specific utility function, u, the certainty equivalent of risk L̃, CEu(−L̃) ∈ R is defined
such that u(CEu(−L̃)) = E[u(−L̃)], where E[·] is the (objective) expectations operator.

Finally, we will assume that the risks are idiosyncratic, i.e., that risk-neutral expectations
coincide with objective expectations, E∗[·] ≡ E[·].

To summarize, in section 5, the following additional assumptions are made:

6. Risk-averse insurees: Insurees are risk averse.

7. Nondivisibility: Risks are nondivisible.

8. Idiosyncratic risks: The insurance risks are idiosyncratic, i.e., the risk-neutral expecta-
tions operator coincides with the objective expectations operator.

For many types of individual and natural disaster risks, such as auto and earthquake in-
surance, etc., this seems a reasonable assumption, although, of course, there will be some
mega-disasters and corporate risks for which it is not true.

15We do not distinguish between lines of risks and individual risks, for simplicity assuming that there is one
insuree within each line. Obviously, so far this is no restriction, since, in principle, N can be very large. If
we wish to study a case with a “small” N , for the special case when there are several identical agents with
perfectly correlated risks, we can treat such a situation as there being one representative insuree facing one
risk, collapsing many risks into one line. In case of many i.i.d. risks a similar argument may be made.

16Such insurances are seldom seen in practice; maybe because of the agency problems that would prevail
between insurers when handling split insurance claims.
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4 Pricing and cost allocation

We now turn to the insurer’s main question, how costs are allocated and premiums are set
across insurance lines (questions 1 and 2 in the introduction). For the time being, we assume
that the cost of holding capital is zero, δ = 0, and focus on premium setting, i.e., how the
total premium, P should be split between the insurees.

What is missing is a rule for how payments are shared between claim-holders in case of
default. There are obviously many such rules, but a minimal set of consistency requirements
is

Condition 1 Consistency requirement:

1. In case of no default: The payment to each insuree is exactly the amount claimed:
Paymenti = L̃i.

2. In case of default: The payment to each insuree is bounded above by the claim, and
below by zero: 0 ≤ Paymenti ≤ L̃i.

3. No-claim policy: Insurees with no claims do not receive payments: L̃i = 0 ⇒ Paymenti =
0.

4. Linearity: If L̃1, . . . , L̃N is insured, with capital A, leading to payments
(Payment1, . . . , PaymentN ), then insurance against risks cL̃1, . . . , cL̃N , with capital
c × A leads to payments (c × Payment1, . . . , c × PaymentN ) for all c > 0.

We deviate from the optimal contracting setting here, in that we focus on contracts that are
present in practice. If more general contracts are possible, it may for example be optimal
to have ex post transfers from claimants who did not impose any losses to claimants who
did; such contracts, which would effectively turn the insuree into an insurer in some states
of the world, do not seem to exist in practice. It is out of the scope of this paper to analyze
why such contracts are rarely seen — we refer to existing literature, e.g., Mahul and Wright
(2004).

We first focus on an ex post pro rata sharing rule that specifies that:

Paymenti =
L̃i

L̃
× Total Payment = L̃i − L̃i × Q̃(A)

L̃
, (2)

i.e., in case of default the insurees share the total payments according to their fraction of
total losses. In this case, the market price for insurance in line i is

Pi = PLi − Price

(
L̃i × Q̃(A)

L̃

)
. (3)
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It is easy to check that the ex post sharing rule satisfies the consistency condition. More-
over, it seems to correspond well to the rules used in practice.17 An important variable is
the default value fraction, ri, i.e., the fraction of the default option value that is allocated to
line i:

ri
def= Price

(
L̃i

L̃
× Q̃(A)

PQ

)
. (4)

Per definition, we have
∑

i ri = 1, and the default value per unit of risk for line i, zi, is then

zi
def=

riPQ

PLi

=
1

PLi

× Price

(
L̃i

L̃i

× Q̃(A)

)
. (5)

Equation (3) can then be written

Pi = PLi − riPQ, (6)

and we have
Pi

PLi

= 1 − zi, (7)

where Pi
PLi

is the premium-to-liability ratio as defined in Phillips, Cummins, and Allen (1998).
Clearly, the premium-to-liability ratio may vary with i under the ex post sharing rule (verified
in an example in the appendix). Equation (6) is the fundamental equation for how premiums
will be set.

An alternative expression for the premium-to-liability ratio, using the state price kernel
kernel, m̃, is

Pi

PLi

= 1 − zi = 1 − 1
PLi

× E

[
m̃ × L̃i

L̃
× Q̃(A)

]
, (8)

from which we see that zi will be larger for risks that tend to make up a large fraction of total
losses in the states of the world when a company defaults, and for risks that are positively
correlated with the market. This leads to:

Implication 1

• For risks that are not related to market risk, with losses that tend to be large in states
of the world in which the insurer defaults, premium-to-liability ratios will be low.

• For risks that are not related to market risk, with losses that tend to small in states of
the world in which the insurer defaults, premium-to-liability ratios will be high.

17For example, see National Association of Insurance Commissioners, Insurer Receivership Model Act,
October 2007. An ex-post payout rule is also specified in the contracts offered by the California Earthquake
Authority for circumstances in which the Authority has insufficient resources all of its claims. See also (Mahul
and Wright 2004) for a discussion of alternative payoff rules and the complications created by rules other than
ex-post prorated payments.
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• For risks that have high correlation with market risk, premium-to-liability ratios will be
low.

• For risks that have low correlation with market risk, premium-to-liability ratios will be
low.

These implications are different than the predictions in Phillips, Cummins, and Allen (1998).
According to PCA (Hypothesis 2, page 609), the default premium should be constant across
lines.18

The source behind these differences is that PCA’s results are based on an ex ante sharing
rule, in which the default option value is allocated between lines according to the value of the
default-free claim at t = 0 (instead of according to the realized values at t = 1).The payment
under the ex ante sharing rule is

Paymenti = L̃i − PLi

PL
× Q̃(A), (9)

and it is easy to check that in this case

zi =
PQ

PL
, and

Pi

PLi

= 1 − PQ

PL
, (10)

which do not vary with i. This is equation (18) in PCA (assuming that discount rate and
inflation are 0). We also note that the ex ante sharing rule through (10) implies that

ri =
PLi

PL
, (11)

which, in general, is different from (4). As we have argued, we believe that, in practice, ex
post sharing rules are more common. Moreover, the ex ante rule will in general not satisfy
the consistency condition:

Implication 2 The ex post sharing rule satisfies the consistency condition, whereas the ex
ante sharing rule, in general, does not.

In the appendix, we introduce a simple example that emphasizes the difference between the
two sharing rules, and that violates consistency for the ex ante sharing rule.

We now turn to question 2, how capital, A, and costs, δA, should be allocated between
business lines. Our analysis is along the lines of Myers and Read (2001), which is also based

18PCA assume that δ = 0 — an assumption that we will relax in subsequent analysis. However, their model
is also more general: It is dynamic and includes an inflation premium, as well as risky processes for the returns
of A over time. Our model could be generalized along such lines, but the sources to the differences between
our and PCA’s approach are not related to these factors, which is why we can keep our analysis simple.

12



on an ex ante sharing rule, but since we assume an ex post sharing rule, our results are
different. For the time being, we keep assuming that δ = 0.

In general, we wish to allocate the assets A among lines, A =
∑

i Ai =
∑

i viA, where vi

is the relative asset allocation. As showed in Myers and Read (2001), any allocation rule, vi,
(
∑N

i=1 vi = 1) implies a “summing up” relationship, i.e., if we study insurance portfolios

∑
i

qiL̃i,

then the payout of the default option is

Q̃q = max

(∑
i

qi(−L̃i − viAi), 0

)
,

and the summing up rule states that

∑
i

qi
∂Q̃q

∂qi
≡ Q̃q

in all states of the world, for all q1, . . . , qN > 0 (we show how the rule arises in the appendix;
the argument is similar to Myers and Read (2001)).

The rule immediately implies that

∑
i

qi
∂PQq

∂qi
= PQq .

However, this in turn implies that the marginal price of buying one extra unit of L̃i risk, at
q1 = q2 = · · · = 1, is

Pi = PLi −
∂PQq

∂qi
. (12)

Therefore, using the definition of ri, we can conclude that any cost allocation rule leads to
the allocation of relative default option value

ri =
∂PQq/∂qi

PQ
. (13)

So far, we have made no restrictions on the vi’s except for that they should sum to one.
However, as shown in the appendix, consistency requires that there is bijection, R : {ri} ↔
{vi}, between relative asset allocations, vi, (satisfying

∑
i vi = 1) and allocation of relative

default option values, ri’s, (also satisfying
∑

i ri = 1), so that given ri’s, the vi’s are uniquely
defined. Any other formula will lead to mispricing in the existing lines. We note that vi

also determines the surplus allocations: Si = viA − PLi and thereby the relative surplus

allocations, si
def= Si/PLi = A vi

PLi
− 1.

It is shown in the appendix that the correct choice under the ex post sharing rule takes
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the particularly simple form vi = ri, i = 1, . . . , N. This is our fundamental formula for how
capital and costs should be allocated to different lines, which we formulate in the following

Implication 3 For δ = 0, if an ex post sharing rule is used, then the only asset allocation
rule that does not lead to redistribution between new and old insurees in case of a marginal
expansion in a specific insurance line is vi = ri, i = 1, . . . , N .

This is not the same allocation as suggested in Myers and Read (2001). On page 554 it
is suggested that the marginal contribution to default value, di — in our notation, defined
as di

def= ∂P Q

∂P Li
, i.e., the increase in default option value for a one dollar increase in liability

— should be chosen such that di is the same across lines. Via (13), and the relationship
∂PQ

∂PLi
= (∂PQ/∂qi)/PLi , we have

di = PQ × ri

PLi

, (14)

which, under the ex post sharing rule, is (in general) not constant. However, under the ex ante
sharing rule, we get di = PQ/PL (since ri = PLi/PL), so the equal allocation rule proposed
in Myers and Read (2001) is consistent with the ex ante sharing rule. In the appendix we
show in an example that the cost allocation rule used in Myers and Read (2001) leads to
redistribution between old and new insurees under the ex post sharing rule. This means that
the original prices — which were calculated without taking the possibility of redistribution
into account — are incorrect. Thus, the equal allocation rule, as expected, is not consistent
with the ex post sharing rule.

We now generalize the analysis to the case when δ > 0. Following rule (4), the corre-
sponding vi should be used to allocate assets: {vi} = R({ri}). Therefore, in the case of costly
capital, δ > 0, the pricing formula becomes:

Pi = PLi + riδA − riPQ. (15)

Thus, we have

Implication 4 For all δ ≥ 0, if an ex post sharing rule is used, then assets Ai = viA should
be allocated to line i, where vi = ri and ri is defined as in (4). This implies the pricing
formula (15).

We summarize the differences between the ex post and ex ante in Table 1.

5 Industry structure

We now study how the industry structure – monoline versus multiline – and the related
capital allocations are determined (questions 3 and 4 of the introduction). To analyze these
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questions given a fixed level of capital and prices — although quite straightforward — may
give quite misleading results. For example, an insurance company choosing to be massively
multiline may wish to have a lower level of capital than the total capital of monoline business
insuring the same risks. Moreover, the risk structure of insurance in a multiline business may
be quite different than in a monoline business.

In a competitive market, we would expect such differences to have pricing implications,
since insurees have propensities to pay different amounts for different risk structures. There-
fore, before answering the questions of industry structure, we must first study how capital,
A, and price, P , are endogenously determined in a competitive market:

• Monoline pricing: For an insurance company offering insurance in a single insurance
line in a competitive market, what price will be charged for insurance as a function of
the level of capital?

• Monoline level of capital: For a monoline insurance company, what level of capital will
be chosen?

In section 5.1, we analyze these questions in a competitive market setting with costly capital,
δ > 0. Then in sections 5.2 and 5.3, we extend this analysis to the multiline setting. Only
then can we analyze questions 3 and 4 of the introduction.

5.1 Capital and price in the monoline case

So far, we have relied on noarbitrage, ensuring the existence of a risk-neutral expectations
operator. We continue with this general set-up, assuming that the risk-neutral measure, is
equivalent to the objective probability measure.19

In the rest of the section, we focus on the monoline case, N = 1. We assume that L̃ has an
absolutely continuous, strictly positive, p.d.f with support on the whole of R+. We define the
default option’s “Eta”, i.e., η(A) = ∂E∗[Q̃(A)]

∂A . Since L̃ has an absolutely continuous, strictly
positive, distribution, η(A) is a continuous strictly negative function on (0,∞) regardless of
the distribution of L̃, and the risk-neutral measure (Ingersoll 1987). We study the price of
insurance, P as a function of capital, A. It is straightforward to show that

Lemma 1 The price of insurance as a function of capital, A, satisfies the following condi-
tions

i) P (0) = 0,
ii) P ′(A) = δ − η(A) > 0,
iii) P (A) = PL + δA + o(1), for large A,
iv) P ′′(A) < 0.

Thus, regardless of the distributional form, P (A) will be a strictly increasing, strictly concave
function with known asymptotics.

19That is, E[L̃] = 0 ⇔ E∗[L̃] = 0 for all risks, L̃
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A

P(A)

μL+δA

Figure 2: Insurance premium as a function of capital.

The conditions in Lemma 1 are natural. The first condition states that if the insurer does
not put aside any capital, it may charge no premium (anything else would be an arbitrage
opportunity). The second condition relates a small change in capital, A with the change
in premium P . In light of equation (1), it is natural that the change in option value will
enter into such a relation. The third condition shows that as A becomes large, the premium
approach the price of insurance with unlimited liability, PL (as the option value of defaulting
disappears) and costs of keeping capital within the firm (which will become large as they are
proportional to capital). The fourth condition, which follows as a direct consequence of the
convexity of an option’s value as a function of strike price (see Ingersoll 1987), states that P

is concave.
The optimal (A,P ) pair will depend on the preferences of the insuree. We therefore

turn to the insuree’s problem. In a general model with other sources of risk, we would
relate the risk-neutral measure to the insuree’s expected utility function. However, to keep
things simple, we make additional assumptions about the risks. Specifically, from here on,
we rely on assumptions 6-8 in the introduction, i.e., that insurees are risk-averse, that risks
are nondivisible and idiosyncratic. We also make the fairly standard partial equilibrium
assumption, that the L̃-risk is the only source of risk the insuree faces.20

The pricing relation (1) can then be written:

P (A) = μL + δA − μQ, (16)

where we have defined μQ = μQ(A) = E[Q̃(A)].
Given the competitiveness in the insurance market, the insurer will choose capital, A

that maximizes the expected utility of the insuree, i.e., since the total payoff to the insuree
20Or, in the special case of CARA utility, that any other source of risk is independent of L̃-risk.
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is −P (A) − L̃ + (L̃ − Q̃(A)) = −P (A) − Q̃(A),

A∗ = arg max
0≤A<∞

Eu[−P (A) − Q̃(A)]. (17)

For example, any lower value of A than A∗ would allow a competitor to take over the whole
market by offering a contract with a preferable, that is to say higher, value of A. In general,
A∗ is a set, i.e., there can be multiple solutions to (17).

If δ = 0, it is easy to show that the company will reserve an arbitrary large large amount
of capital. Formally, the solution is A∗ = {∞} and the price is P = μL. We call this the
friction-free outcome, since the insurer never defaults and all risk is transferred from the
insuree to the insurer in an optimal manner. In this case the expected utility of the insuree
is U = u(−μL) and the certainty equivalent of his utility decrease is the same as if he were
risk-neutral, CEu(L̃) = −μL.

When capital is costly, δ > 0, it is not possible to obtain the friction-free outcome. We
assume that the cost of holding capital is small compared with expected losses. Specifically,
we assume that

Condition 2 CEu(−P (A) − Q̃(A)) < −μL(1 + δ) for all A ∈ [0, μL].

This implies that each risk is potentially insurable in that if an insurer could guarantee
default-free insurance against a risk by capitalizing the expected losses, the agent would be
willing to buy such insurance, paying the cost of holding capital for the expected losses.
In reality, the insurance company would keep a higher level of capital and would still risk
default. In the case of costly capital, the best we can therefore hope for, is for the insuree to
reach a certainty equivalent of −μL(1 + δ). We therefore call an outcome in which an agent
obtains CEu = −μL(1 + δ) the ideal outcome with frictions.

It is easy to show that the set of solutions to (17) is compact and nonempty. However, it
may be that 0 ∈ A∗, i.e., it is optimal not to offer insurance. In fact, for insurees that are close
to risk neutral, we would expect no insurance to be optimal, since the loss of reserving capital
would always be greater than the gain from reduced risk. We first wish to understand in
which situations it is potential for insurance to exist, i.e., when there exists a utility function
such that 0 /∈ A∗. We have

Proposition 1
For a risk L̃ and cost of holding capital δ > 0, there exists a strictly concave utility

function, u, such that 0 /∈ A∗ for an insuree with utility function u, if and only if there is a
level of capital, A, such that the price, P , satisfies P < A, where P is defined in (1).

The “only if”-part of the proposition is immediate, since if it fails, it would be less expensive
for the insuree to reserve the capital than to buy the insurance. Clearly, we would only expect
this to be the case in cases of very large δ. The “if”-part is proved in the appendix.
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We also wish to be able to rank risks when the insurance market is present. Without an
insurance market, stochastic dominance can be used. Given two risks, with payoff −L̃1 and
−L̃2, with μL1 = μL2 = μL, Eu(−L̃1) ≥ Eu(−L̃2) for all utility functions, if and only if −L̃1

second order stochastically dominates −L̃2,

−L̃1 � −L̃2. (18)

If F1 and F2 are the c.d.f.’s of −L̃1 and −L̃2 respectively (with range in R−), we know from
Rothschild and Stiglitz (1973) that second order stochastic dominance is equivalent to the
so-called integral condition:

∫ t

−∞
F1(x)dx ≤

∫ t

−∞
F2(x)dx,

for all t < 0.
Is there a similar ranking when the insurance market is present? To analyze this question,

we define Q̃1 and Q̃2 as the option payoffs from default, for risk 1 and 2 respectively. In what
follows, we restrict our attention to cases in which it is optimal for an insurer to buy insurance
and the optimal capital is greater than the expected loss, A∗ > μL. This is obviously a
situation which that we expect to have in a standard insurance setting.

We recall that
P = δA + μL − μQ, (19)

which we use to rewrite

U = Eu
[
−P − Q̃

]
= Eu

[
−μL − δA + (μQ − Q̃)

]
(20)

For a given A, (20) implies that regardless of utility function, an investor will be better
off facing risk L̃1, than L̃2 if and only if

−(Q̃1 − μQ1) � −(Q̃2 − μQ2). (21)

Clearly, (21) is not the same as (18), so we can not expect second order stochastic dominance
to allow us to rank risks in the presence of an insurance market. Instead, we have the stronger
condition

Proposition 2 Given an insurer with capital A, if for all t < −μL,

∫ t+μL

−∞
F1(x)dx ≤

∫ t

−∞
F2(x)dx, (22)

then any insuree with a strictly concave utility function will prefer to insure risk L̃1 over risk
L̃2 in a competitive monoline insurance market.

We study the differences in the following example:
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Example 1 Consider the risks L̃β , β ≥ 1, where the c.d.f. of −L̃β is Fβ(x) = eβ(x+1)−1, x <

1/β−1 that are shifted, reflected, exponential distributions.21 It is clear that μL = E[L̃β ] = 1
and, furthermore, it is easy to check that for β1 > β2, Fβ1(x) − Fβ2(x − 1) < 0 for x <

−β2/(β1−β2), and Fβ1(x)−Fβ2(x−1) ≥ 0 otherwise. Therefore
∫ t
−∞(Fβ1(x)−Fβ2(x−1))dx

realizes a maximal value at t = μL = −1, and it is straightforward to check that

β1 ≥ β2e
β2

is a necessary and sufficient condition for the conditions in Proposition 2 to be satisfied.
This is obviously a stronger condition than β1 ≥ β2, which is what is needed for second order
stochastic dominance.

5.2 The monoline versus multiline business choices

We now have almost all of the machinery to study questions 3 and 4 under the competitive
market assumption. What we still need is a notion of competitive markets in the multiline
setup. We have already used the assumption of competitive markets to completely understand
the pricing and choice of level of capital in the monoline case. Specifically, we used the
argument to only study outcomes that satisfied equation (17). In the multiline case, however,
the analysis is slightly more complex, since several possible industry structures, S, may be
possible, and since there is now a trade-off between providing utility to multiple agents. Our
restriction will therefore be to require Pareto efficiency.

We first note that for N risks, L̃1, . . . , L̃N , and a general industry structure, S = (X ,A),
when the ex post sharing rule is used, the residual risk for an insuree, i ∈ Xj , is

K̃i(S) =
L̃i∑

i′∈Xj
L̃i′

min

⎛
⎝Ai −

∑
i′∈Xj

L̃i′ , 0

⎞
⎠ .

His expected utility is therefore Euj(−Pi(Ai) + K̃i(S)). Moreover, for a set of agents,
u1, . . . , uN , each wishing to insure risk L̃i, an industry structure, S, where X = {X1, . . . ,XM}
and A = (A1, . . . , AM )T , is Pareto efficient, if there is no industry structure S ′ such that
E[ui(−Pi(Ai) + K̃i(S))] ≤ E[ui(−Pi(Ai) + K̃i(S ′))] for all i and E[ui(−Pi(Ai) + K̃i(S))] <

E[ui(−Pi(Ai) + K̃i(S ′))] for some i.22

In a Pareto dominated industry structure, we would expect insurers to enter the market
with improved offerings, thereby outcompeting existing insurers. In fact, we make a somewhat
stronger requirement, that there should be no way to way to improve the situation for a single
insuree by offering that insuree a monoline insurance — even if that makes other agents worse
off.

21The restriction β ≥ 1 can be extended to β > 0 at the cost of allowing for L̃ to be less than zero. All
derivations go through in this case too.

22Here, Pareto efficiency is defined given the (restricted) set of limited liability contracts available.
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Definition 1

• A Pareto efficient outcome, S, is said to be robust to monoline blocking, if there is no
insuree, i ∈ {1, . . . , N} such that E[ui(K̃i(S))] < E[ui(−P (A)− Q̃(A)] for some A ≥ 0.

• The set of Pareto efficient outcomes robust to monoline blocking is denoted by O.

Remark 1 The concept of robustness to monoline blocking is similar to the core concept
used in coalition games, although, in general, O is neither a subset, nor a superset of the
core.23

We are interested in O, since we believe that it may be easier for a competitor to compete for
customers within one line of business, than in for a customers in multiple lines simultaneously.
Technically, the monoline blocking condition allows us to show that O is always nonempty
in (as opposed to the core in our setting).

The following existence and compactness results are straightforward to derive

Lemma 2

• O is nonempty.

• The set of A’s such that A = Ai for some (X ,A) ∈ O is compact.

What can we say about industry structure when there are many risks available? Intu-
itively, when capital is costly and there are many risks available, we would expect that an
insurer to be able to diversify by pooling many risks and — through the law of large numbers
— choose an efficient A∗ per unit of risk. Therefore, the multiline structure should be more
efficient than the monoline business.24 The argument is very general, as long as there are
enough risks to pool, that are not too correlated. For example, in our model, under general
conditions, the multiline business can reach an outcome arbitrary close to the ideal outcome
with frictions. We have:

23See, e.g., Osborne and Rubinstein (1984). In our model, monoline structures may dominate multilines,
leading to non-cohesiveness, which means that the core may contain Pareto-dominated outcomes. Therefore,
there may be outcomes in the core that are not in O. On the other hand, the core is robust to block-
ing/competition by any insurance company (monoline or multiline) which is stricter than the mono-blocking
condition for O, and moreover, O may contain other structures than the partition into one massively multiline
business, so O may contain elements that are not in the core. In the case of cohesive games, the core is a
subset of O, since any element in the core will be Pareto efficient. If, in addition, there are only two lines, the
core is the same as O, since only mono-blocking is possible.

24This type of diversification argument is, for example, underlying the analysis and results in Lakdawalla
and Zanjani (2006).
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Proposition 3 Consider a sequence of insurees, i = 1, 2, . . ., with expected utility functions,
ui ≡ u, holding independent risks L̃i. Suppose that u is three times continuously differentiable,
that u′′′ is bounded by a polynomial of degree q, and that the risks Li are such that

∣∣∣∑N
i=1 μi

∣∣∣ ≥
CN for some C > 0 and E|Li|p ≤ C for p = 4 + 2q and some C > 0.

Then, regardless of the per unit cost of holding capital, δ, as N grows, a fully multiline
industry, X = {{1, . . . , N}} can choose capital A, to reach an outcome that converges to the
ideal outcome with frictions as N grows, i.e.,

min
i

CEu(K̃i((X , A))) = μLi(1 + δ) + o(1).

Remark 2 Proposition 3 can be generalized in several directions, e.g., to allow for depen-
dence. As follows from the proof of the proposition, it also holds for all (possibly dependent)
risks Li with E|Li|p < C that satisfy Rosenthal inequality (see Rosenthal (1970)). Rosenthal
inequality and its analogues are satisfied for many classes of dependent random variables,
including martingale-difference sequences (see Burkholder (1973) and de la Peña, Ibragimov,
and Sharakhmetov (2003) and references therein), many weakly dependent models, including
mixing processes (see the review in Nze and Doukhan (2004)), and negatively associated ran-
dom variables (see Shao (2000) and Nze and Doukhan (2004)). Using Phillips-Solo device
(see Phillips and Solo (1992)) similar to the proof of Lemma 12.12 in Ibragimov and Phillips
(2004), one can show that it is also satisfied for correlated linear processes L̃i =

∑∞
j=0 cjεi−j ,

where (εt) is a sequence of i.i.d. random variables with zero mean and finite variance and
cj is a sequence of coefficients that satisfy general summability assumptions. Several works
have focused on the analysis of limit theorems for sums of random variables that satisfy de-
pendence assumptions that imply Rosenthal-type inequalities or similar bounds (see Serfling
(1970), Móricz, Serfling, and Stout (1982) and references therein). Using general Burkholder-
Rosenthal-type inequalities for nonlinear functions of sums of (possibly dependent) random
variables (see de la Peña, Ibragimov, and Sharakhmetov (2003) and references therein), one
can obtain extensions of Proposition 3 to the case of losses that satisfy nonlinear moment
assumptions.

The Proposition provides an upper bound of the number of risks that need to be pooled
to get close to the friction-free outcome. For a lower bound on the number of risks needed,
we have the following proposition

Proposition 4 If, in additions to the assumptions of proposition 3, the risks are uniformly
bounded: L̃i ≤ C (a.s.) for all i, and Condition 2 is satisfied, then for every ε > 0, there is
an N such that limε↘0 N(ε) = ∞ and such that any partition that has

CEu(K̃i((X ,A))) ≥ μLi(1 + δi) − ε, for i ∈ X, (23)
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has |X| ≥ N (i.e., X contains at least N elements).

Remark 3 Proposition 4 also holds if the condition of bounded risks is replaced by utility
functions having deceasing absolute risk aversion, and the expectation of the risks being
uniformly bounded (E[L̃i] < C for all i) as shown in the proof in the appendix.

We formally define what an industry structure to be massively multiline as N grows to
mean that the average number of lines for insurers grows without bonds, i.e., limN→∞ N/M(P) =
∞. With this definition, we have

Proposition 5 Under the conditions of propositions 3 and 4, any sequence of Pareto efficient
industry structures will be massively multiline as N approaches infinity.

These asymptotic results suggest that when there is a large number of essentially inde-
pendent risks that are “small,” the multiline insurance structure is optimal. For standard
risks — like auto and life insurance — it can be argued that these conditions are reasonable.
However, the results also provide an indication of when a multiline structure may not be
optimal:

Implication 5 A multiline structure may be suboptimal

• If there is a limited number of risks.

• If risks are asymmetric, for example, when some risks are heavy-tailed and others are
not.

• If risks are dependent.

One type of risks, that seem to satisfy all these sources of multiline failure is catastrophic
risks. Consider, for example, residential insurance against earthquake risk in the bay area in
California.25 The outcome for different households within this area will obviously be heavily
dependent, in case of an earthquake, making the pool of risks essentially behave as one large
risk, without diversification benefits. Moreover, many catastrophic risks are known to have
heavy tails. This further reduces the diversification benefits, even when risks are independent.
Thus, even though an earthquake in California and a hurricane in Florida may be considered
independent events, the gains from diversification of such risks may be limited due to their
heavy-tailedness.

We now show in an example that the previous intuition indeed holds. Specifically, we
show that asymmetry between risks and dependence of risks makes the monoline outcome
more likely.

25See, e.g., Ibragimov, Jaffee, and Walden (2008).
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5.3 One versus two lines - An example

The case with general N and risk distributions is complicated. We therefore focus on a special
case: We look at a situation with two insurance line and compare the two industry structures
X SL = {{1}, {2}} (monoline) with XML = {{1, 2}} (multiline). In the first partition, we
know how A1 = (A1, A2)T should be chosen from our previous analysis, leading to industry
structure SSL = (X SL,A1). In the second partition, there is typically a whole range of
capital, A ∈ [A,A], leading to competitive outcomes, SML = (XML, A). The condition for
the multiline business to be optimal is now that there is an A ∈ [A,A], such that SML offers
an improvement for both agents, i.e., Eu[K̃i(SSL)] ≤ Eu[K̃i(SML)], i = 1, 2. We study the
conditions under which this is satisfied.

For simplicity, we assume that insurees have expected utility functions defined by u(x) =
−(−x + t)β, β > 1, x < 0, and that L̃1 and L̃2 have Bernoulli distributions: P(L̃1 = 1) = p,
P(L̃2 = 1) = q, corr(L̃1, L̃2) = ρ.26 Specifically, we study the case β = 1.5, t = 1, δ = 0.008
and p = 0.1. We first choose q = 0.3 and compare the monoline outcome with the multiline
outcome for ρ ∈ {−0.1, 0, 0.1} in Figure 3. The solid lines show optimal expected utility for
insuree 1 and 2 respectively in the monoline case (which occurs at capital levels A1 = 0.7965
and A2 = 0.8997). For the case of negative and zero correlation, the situation can be improved
for both insurees by moving to a duo-line solution, reaching an outcome somewhere on the
efficiency frontier of the duo-line utility possibility curve. For the case of ρ = 0.1, insuree 1
will not participate in a duo-line solution, and the monoline outcome will therefore prevail.

In Figure 4 we plot the regions in which monoline duo-line solutions will occur respectively,
as a function of q and ρ, given other parameter values given above (p = 0.1, β = 1.5,
δ = 0.008, t = 1). In line with our previous discussion, summarized in Implication 5, it is
clear that, all else equal, increasing correlation decreases the prospects for a duo-line solution.
Also, increasing the asymmetry (|p− q|) between risks decreases the prospects for a duo-line
outcome.

Thus, in line with Implication 5, we find that multiline insurers choose lines in which

• Losses are uncorrelated/have low correlation.

• Loss distributions are similar/not too asymmetric.

6 Concluding remarks

This paper developed a model of the insurance market under the assumptions of costly capital,
limited liability, incomplete markets and perfect competition. We focus on the determination
of 4 key variables for the general case of a multiline insurer: (1) premiums, (2) capital
allocations across the insurance lines, (3) the aggregate amount of capital, and (4) the choice
between monoline and multiline firm structures.

26Depending on 0 < p < 1 and 0 < q < 1, there are restrictions on the correlation, ρ. Only for p = q can ρ
take on any value between −1 and 1.
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Figure 3: Monoline versus multiline industry structure. Monoline outcome will occur when ρ = 0.1,
because duo line structure is suboptimal for insuree 2. For ρ = 0 and ρ = −0.1, multiline structure
occurs since it is possible to improve expected utility for insuree 2, as well as for insuree 1.
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Figure 4: Regions of q and ρ, in which monoline and multiline structure is optimal. All else equal:
Increasing ρ (correlation), or |p − q| (asymmetry of risks) makes monoline structure more likely.
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The premium setting and capital allocations are based on the no-arbitrage, option-based,
technique, first developed in the papers by Phillips, Cummins, and Allen (1998) and Myers
and Read (2001). These papers, however, apply an ex ante rule for allocating the shortfall in
claim paying capacity when the insurer defaults, which has the undesirable features that (i)
it is based on the unobservable initially expected loss and that (ii) it will often require that
policyholders with small expected claims make payments to the policyholders facing large
expected claims. Instead, this paper develops the solution when the shortfall created by an
insurer default is shared among the claimants under an ex post, pro rata, rule based on the
actual realized claims.

The unique contribution of this paper is that it develops a framework to determine the
industry structure in terms of which insurance lines are provided by monoline versus multiline
insurers. We employ an equilibrium concept based on a criterion of Pareto efficiency within a
competitive industry. Pareto dominated structures are eliminated by new entrants that offer
a preferred structure. The resulting equilibrium is robust to the entry of any new monoline
provider.

We derive quite strong properties for this equilibrium. First, we find that the multiline
structure dominates when the benefits of diversification are achieved because the underlying
risks are numerous and relatively uncorrelated. We would expect this condition to hold for
consumer lines such as homeowners and auto insurance. On the other hand, when the risks
are difficult to diversify because they are limited in number and heavy tailed, the monoline
structure may be the efficient form. This condition may hold for the various catastrophe
lines, including natural disasters, security insurance, and terrorism.
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Appendix

An example

Consider two independent risks, L̃1 with 50% chance of being −40 and 50% chance of being
zero, and L̃2, with 50% chance of being −10 and 50% chance of being zero. The four
states of the world are thus, {(0, 0), (−40, 0), (0,−10), (−40,−10)}. Further, assume that
the total liability is A = 20, that r = 0, and risk-neutral propabilities coincide risk-neutral
probabilities. Then, the price of L̃1 is PL1 = 20, PL2 = 5, and PQ = 25% × 20 + 25% × 30 =
12.5. Now, using (2), the payout in the four states of the world to the two insurees are
{(0, 0), (20, 0), (0, 10), (16, 4)}. The sharing rule for the case when both insurees have claims
stems from the fraction of losses being L̃1/(L̃1 + L̃2) = 40/(40 + 10) = 80%), so 80% of the
total capital of 20, i.e., 16 goes to insuree 1, and the remaining 4 to insuree 2. Thus, the
value of the limited liability insurance against L̃1 is 25%× 20 + 25%× 16 = 9, and the value
of the limited liability insurance against L̃2 is 25%×10+25%×4 = 3.5. This in turn implies
that the premium-to-liability ratios are

P ∗
1

PL1

=
9
20

= 0.45,
P ∗

2

PL2

=
3.75
5

= 0.75,

which are not equal. Intuitively it is clear that the premium-to-liability ratio is lower for the
first risk, as it is more likely to realize losses in the states of the world when the firm defaults,
and therefore does not pay back the full losses.

We now study the same example in a setup similar to PCA. The key behind the differences
is that they assume an ex ante sharing rule, whereas we assume an ex post pro rata sharing
rule.

We look at the payouts under (9). Since PL1/(PL1 + PL2) = 80%, (9) implies that the
payouts in the four states of the word in this case are {(0, 0), (24,−4), (0, 10), (16, 4)}, i.e.,
the rule indicates that insuree 2 should pay insuree 1 20% of the option payout of 20 = 4,
in the case where only insuree 1 realizes losses. This obviously violates both assumptions 2
and 3 of the consistency condition. Under the ex ante sharing rule, the premia are P ∗

1 =
20 − 0.8 × 12.5 = 10 and P ∗

2 = 5 − 0.2 × 12.5 = 2.5, so the premium-to-liability ratios are
equal:

P ∗
1

PL1

=
10
20

= 0.5,
P ∗

2

PL2

=
2.5
5

= 0.5,

in line with PCA’s argument.
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Cost allocation

The marginal interpretation is that, with a specific choice of Ai’s (and thereby vi’s), the
marginal default value of increasing exposure to L̃i risk is

∂PQq

∂qi

∣∣∣∣
q1,...,qN=1

= riPQ.

We are interested in the bijection between ri’s and vi’s: R : {ri} ↔ {vi}. We have, for a
specific choice of Ai,

Q̃q = max

(∑
i

qi(L̃i − Ai), 0

)
,

so

Q̃q

∂qi

∣∣∣∣∣
q1,...,qN=1

= (L̃i − viAi)I{−L̃−A>0},

where I is the indicator function. This immediately implies that

riPQ =
∂PQq

∂qi

∣∣∣∣
q1,...,qN=1

= Price
(
(L̃i − Ai)I{L̃−A>0}

)
. (24)

Given an ri, and a pricing rule, Ai can now be chosen to satisfy (24), which defines the
bijection. This immediately gives us

vi =
Ai

A
,

and in our terminology, the si’s in Myers and Read (2001) satisfy Ai = (1 + si)PLi , so

si =
Ai

PLi

− 1.

The total surplus, as defined in Myers and Read (2001), is now S = A −∑i PLi , so the
surplus allocated to line i is Si = siPLi .

Given any choice of ri’s, such that
∑

i ri = 1, and the corresponding Ai’s, we have

PQ =
∑

i

riPQ = Price

(∑
i

(L̃i − Ai)I{L̃−A>0}

)
= Price

((
L̃ −

∑
i

Ai

)
I{L̃−A>0}

)
,

but since Price
((

L̃ − A
)
I{L̃−A>0}

)
= Price(max(L̃ − A, 0)) = PQ, this equation will be

satisfied iff
∑

i Ai = A. Thus,
∑

i Ai = A, i.e.,
∑

i vi = 1 iff
∑

ri = 1.
An interpretation of the relationship between the {vi}’s and the {ri}’s is that the {vi}’s

tell us how much the insurer must increase assets, if there is a marginal increase of insurance
in one line. If the insurer currently sells insurance L̃i, and then increases risk exposure in line
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i to L̃i(1 + Δq), assets will change from A to A(1 + viΔq). With such a change, the value
of the option to default increases (to a first order approximation) by PQri × Δq. Any other
choice will lead to a redistribution between old and new insurees and will therefore not be
consistent with noarbitrage, as shown in the redistribution example below.

The rule proposed in Myers and Read (2001) is to choose

di
def=

∂PQq

∂qi

∣∣∣∣
q1,...,qN=1

= PQ
ri

PLi

,

such that the di’s are constant across i’s (see page 559). Clearly, since
∑

i ri = 1, the only
way of doing this is to choose ri = PLi

PL
, which is the ri’s suggested by the ex ante sharing

rule.

Redistribution

We show in a simple example that, under the ex post sharing rule, the only asset allocation
rule that is consistent is choosing Ai = riA, i.e., vi = ri.27 Assume that there are two risks,
L̃1 and L̃2, and three states of the world. The state prices are πj, j = 1, 2, 3. The losses in
the different states of the world are shown in Table 2 below. The default prices for insurance

State, j State price, πj L̃1 L̃2

1 0.5 0 0
2 0.25 10 10
3 0.25 50 30

Table 2: Example with two risks where ex post sharing rule leads to different results than in.

are thus, PL1 = 0.25× 10+0.25× 50 = 15, and PL2 = 0.25× 10+0.25× 30 = 10. We assume
that the total reserves (assets) are A = 40. In this case, when the ex post sharing rule is
used, the payout in different states of the world are summarized in Table 3. Default thus

State, j Payment1 Payment2
1 0 0
2 10 10
3 25 15

Table 3: Payments in different states of the world.

only occurs in state 3, in which only 40 of the total 80 in liability is paid out, which in turn
implies that the value of the default option is PQ = 0.25× 40 = 10. Since the expected value
of losses is PL = PL1 + PL2 = 15 + 10 = 25, the total surplus is S = A − PL = 40 − 25 = 15.

27The asset allocation rule is for marginal expansions in individual insurance lines. Consistent means that it
does not lead to value redistribution between new and old insurees (any redistribution would be inconsistent
with the method used to determine the original price).
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How should the total assets, A = 40, be allocated between the two lines? We wish to find
v1 and v2, such that A = A1 + A2, and A1 = v1A, A2 = v2A. In the case of only one state of
the world in which default occurs, and the ex post payment rule, it is easy to check that our
previous arguments lead to v1 = r1 and v2 = r2, which through our derived rule

ri = Price

(
L̃i

L̃
× Q̃(A)

PQ

)
, (25)

implies that v1 = 0.625, v2 = 0.375, A1 = 25 and A2 = 15. The surplus allocation between
the two lines is then, S1 = A1 − PL1 = 25 − 15 = 10, S2 = A2 − PL2 = 15 − 10 = 5. Finally,
it is easy to check that the price of the cash-flows in Table 3 is P1 = 8.75 and P2 = 6.25.

The allocation implied by v1 and v2 is important in that it provides a rule for how assets
need to change if more insurance in one line is sold. For example, assume that the insurer
increases its exposure to risk 2 by Δq = 10%. In this case, the allocation rule implies that
the total assets need to increase by

v2 × Δq × A = 0.375 × 10% × 40 = 1.5.

Thus, the total assets are now A = 41.5, and A1 = 25, A2 = 15+1.5 = 16.5 and the expected
loss of risk 2 is PL2 = 1.1×10 = 11. The new surplus allocation is therefore S1 = 25−15 = 10,
S2 = 16.5 − 11 = 5.5.

Why is this the right allocation rule to use when the ex post sharing rule is used? Because,
it does not change the price or risk-structure of the payout to the already insured risks, and
it prices the new risk correctly. In short, there are no value transfers between insurers when
the new insurance is sold. With the new risk insured, the total losses are as shown in Table 4
and the payments are as shown in Table 5. The calculations of the payments are identical to

State, j State price, πj L̃1 L̃2

1 0.5 0 0
2 0.25 10 11
3 0.25 50 33

Table 4: Losses when risk 2’s exposure has increased by 10%.

State, j Payment1 Payment2
1 0 0
2 10 11
3 25 16.5

Table 5: Payments when risk 2’s exposure has increased by 10%, and A = 41.5.

the previous ones, using the ex post sharing rule. For example, for Payment2 when j = 3,
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we have 16.5 = 33/(50 + 33) × 41.5. We see in Table 5 that, in all states of the world, the
payments to risk 1 are identical, and that the payments to risk 2 have increased by exactly
10%. Thus, the price per unit risk is the same as before, and 1.5 is the “correct” amount to
increase assets with under the ex post sharing rule. It is easy to check that this is the only
choice of v1 (and thereby of v2 = 1 − v1) that has this property (under the ex post sharing
rule). Specifically, any other choice will lead to a change the prices of the already insured
risks, so that there will be “losers” and “winners” when the company scales up one insurance
line.

The rule proposed in Myers and Read (2001), on the other hand, leads to redistribution
under the ex post sharing rule. Their proposed allocation is such that the option value of
default (PQ = 10) is shared such that r1 = PL1/PL = 15/25 = 0.6, r2 = PL2/PL = 10/25 =
0.4, which by the relationship

riPQ = Price
(
(L̃i − Ai)I{L̃−A>0}

)
,

leads to A1 = 26 and A2 = 14, and thereby to v1 = 0.65, v2 = 0.35. Therefore, if insurance
2 is scaled up by 10%, total assets should increase by

v2 × Δq × A = 0.35 × 10% × 40 = 1.4,

so assets are now A = 41.4. The option value of default increases with 0.4 (r2 × 10% × PQ)
to PQ = 10.4.

The payments will be as in Table 6, using identical calculations as in Table 5, but with
A = 41.4. However, this implies that the insurance against L̃1 has become less worth by

State, j Payment1 Payment2
1 0 0
2 10 11
3 24.94 16.46

Table 6: Payments when risk 2’s exposure has increased by 10%, and A = 41.4.

the new investments in line 2, as has the value of insurance against L̃2 risk for the original
insurees. There has thus been a value transfer from the old insurees to the new ones (assuming
that the price is the same), which is inconsistent.28 Obviously, examples where the effect is
larger can be constructed.

28If the original insurees knew that such a transfer might take place, they would not pay the premium in
the first place, since the correct price for the insurance that included transfer risk would be different.
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Proofs

Proof of Lemma 1: i) and ii) follow immediately from the definition of P (1). iii) is an
immediate consequence of (1), and E∗[Q̃(A)] = o(1) for large A, follows from E[L̃] being
finite together with the equivalence of the risk neutral and the objective measure. iv) follows
from ii) and that η′ > 0 for general distributions (see Ingersoll (1987)).

Proof of Proposition 1
We first prove the “only if”-part. Assume that for all A > 0, P (A) ≥ A. Let x− denote

min(x, 0). For a given A, expected utility is Eu(−P (A)+(A− L̃)−) ≤ Eu(−P (A)+A− L̃) ≤
Eu(−L̃) = Eu(−P (0) + (0 − L̃)−), so 0 ∈ A∗.

For the “if”-part: Assume that there is an A such that P (A) < A. Obviously, A > 0, since
P (0) = 0 = A. Now, define the “utility function” uq(x) = (x+ q)−. This function is concave,
but only weakly so, and not twice continuously differentiable, so it is outside the class of
utility functions we are studying. However, it is easy to “regularize” uq and get an infinitely
differentiable strictly increasing and concave function that are arbitrarily close uq in any
reasonable topology. We can do this by using the Gaussian test function, φ(x) = 1

2
√

2π
e−x2/2

and define φε(x) = φ(x/ε)/ε. Finally, we define uq,ε(x) = uq ∗ φε =
∫∞
−∞ uq(y)φε(x − y) dy.

Clearly, as ε ↘ 0, uq,ε converges to uq. Moreover, uq,ε is infinitely differentiable and since
u

(n)
q,ε = (uq ∗φε)(n) = u

(n)
q ∗φε, where u

(n)
q,ε denotes the nth derivative of uq,ε, it is easy to check

that u′
q,ε > 0 and u′′

q,ε < 0 for all q and ε, so uq,ε belongs to our class of utility functions.
Now, if A > P , then EuP (−P+(A−L̃)−) = E[(A−L̃)−] > E[(P−L̃)−] = EuP (−L̃), so an

insuree with “utility function” uP is strictly better off by choosing insurance. However, since
limε↘0 EuP,ε(−P + (A − L̃)−) = EuP (−P + (A − L̃)−) and limε↘0 EuP,ε(−L̃) = EuP (−L̃),
for ε small enough, the strict inequality also holds for a uP,ε, which belongs to our class of
utility functions. Thus, insurance is optimal for an insuree with such a utility function.

We also make some straightforward observations: First, if L̃ has an absolutely continuous
distribution in a neighborhood of 0, then ∂Eu(A)/∂A < 0 at A = 0, i.e., insurees are
always strictly worse off buying a small amount of insurance than buying no insurance at all.
Second, if L̃ has a bounded range, with upper bound L, and L̃ has an absolutely continuous
distribution function in a neighborhood of L, then ∂Eu(A)/∂A < 0 at A = L, i.e., insurees
are always strictly worse off buying full insurance compared with buying slightly less than
full insurance. These results similar to the classical results on optimal contracts having
deductibles in the insurance literature. Third, if the p.d.f of L̃ vanishes on an interval [a, b],
then Eu(A) is concave for A ∈ [a, b].

Proof of Proposition 2: Given A, the utility of insuring a risk is Eu
[
−μL − δA + (μQ − Q̃)

]
=
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Eu[−μL − δA + ((−L̃ − A)− − E[(−L̃ − A)−])]. Here, we use the notation x− = min(x, 0).
Since E[L̃1] = E[L̃2] = μL, second order stochastic dominance is therefore equivalent to
Eu((−L̃1 − A)− − E[(−L̃1 − A)−]) ≥ Eu((−L̃2 − A)− − E[(−L̃2 − A)−]), which in turn is
equivalent to

(−L̃1 − A)− � (−L̃1 − A)− + z, (26)

where z = E[(−L̃1 − A)−] − E[(−L̃2 − A)−]. Now, if z ≤ 0, (26), is implied by

∫ t

−∞
F1(x)dx ≤

∫ t

−∞
F2(x)dx, (27)

for all t < −A, and since A > μL, (27) is obviously implied by (22).
For z > 0, we note that z ≤ μL, so a similar argument implies that

∫ t+z

−∞
F1(x)dx ≤

∫ t

−∞
F2(x)dx, (28)

implies the domination, which, once again is implied by (22), and we are done.

Proof of Lemma 2: Second part is trivial, since for a given industry structure, we now
that the set of Pareto efficient outcomes is non-empty, and that the A∗’s and thereby A’s are
compact. Since there are a finite number of possible partitions of N risks, the set remains
compact (being a finite union of compact sets) when Pareto efficiency is taken over all Par-
titions. For the second part, compactness is preserved by finite intersections. Uniqueness is
also straightforward: If the partition into singletons (P = {{1}, . . . , {N}}) is Pareto efficient,
it is clearly robust to monoline blocking. If it is not Pareto efficient, then there is another
partition that is Pareto efficient, which thereby dominates the partition into singletons. This
partition is then robust to monoline blocking, since there is no way to make an agent better
off by offering insurance in a monoline business.

Proof of Proposition 3: The condition that u is three times continuously differentiable with
u′′′ bounded by a polynomial of degree q implies the following uniform Lipschitz condition,
with α = q:

|u′′(x) − u′′(y)| ≤ C|x − y|α, for all x, y.

Moreover, condition E|Li|p ≤ C, together with Jensen’s inequality implies that E|Li −
μi|p ≤ C, σ2

i ≤ (E|Li −μi|p)2/p ≤ C. Using the Rosenthal inequality for sums of independent
mean-zero random variables, we obtain that, for some constant C > 0,

E|
N∑

i=1

(Li − μi)|p ≤ C max
( N∑

i=1

E|Li − μi|p,
( N∑

i=1

σ2
i

)p/2)
, (29)
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and, thus,

N−pE|
N∑

i=1

(Li − μi)|p ≤ CN−p max
( N∑

i=1

E|Li − μi|p,
( N∑

i=1

σ2
i

)p/2) ≤ CN−p/2 → 0 (30)

as N → ∞. Take A =
∑N

i=1 μi. Denote xi = −Li

(
1 − max

(
1 − APN

i=1 Li
, 0
))

= −Li

(
1 −

max
(
1 −

PN
i=1 μi

PN
i=1 Li

, 0
))

, yi = Li max
(
1 − APN

i=1 Li
, 0
)

= Li max
(
1 −

PN
i=1 μi

PN
i=1 Li

, 0
)
. We have

Eu(−Exi(1 + δ) + Li − xi) = Eu(μi(1 + δ) − Eyi(1 + δ) + yi). Using Taylor expansions and
Lipschitz continuity of order α for u′′, we get

|Eu(μi(1 + δ) − Eyi(1 + δ) + yi)− u(μi(1 + δ)) − δu′(μ(1 + δ))Eyi| ≤ C|yi − Eyi(1 + δ)|2+α,

and, consequently,

|Eu(μi(1 + δ) − Eyi(1 + δ) + yi) − u(μi(1 + δ))| ≤ C|Eyi| + CE|yi|2+α + C|Eyi|2+α. (31)

Since, by Jensen’s inequality, |Eyi|2+α ≤ (E|yi|2+α)1/(2+α), (31) implies, that, to complete
the proof, it suffices to show that

E|yi|2+α → 0 (32)

as N → ∞.

By Jensen’s inequality, we have, under the conditions of the proposition,

E|yi|2+α = E
∣∣∣Li max

(
1 −

∑N
i=1 μi∑N
i=1 Li

, 0
)∣∣∣2+α

= E|Li|2+α
∣∣∣max

(∑N
i=1(Li − μi∑N

i=1 Li

, 0
)∣∣∣2+α ≤

E|Li|2+α |
∑N

i=1(Li − μi)|2+α

|∑N
i=1 μi|2+α

≤
(
E|Li|p

)1/2(
E
∣∣∣∑N

i=1(Li − μi)∑N
i=1 μi

∣∣∣p)1/2 ≤

C
(
E
∣∣∣∑N

i=1(Li − μi)∑N
i=1 μi

∣∣∣p)1/2 ≤ C
(
N−pE

∣∣∣ N∑
i=1

(Li − μi)
∣∣∣p)1/2

. (33)

From (33) and (30) it follows that (32) indeed holds. The proof is complete.

Proof of Proposition 4:
By Taylor expansion, for all x, y, u(x+y) ≥ u(x)+u′(x)y +u′′(ζ)y2

2 , where ζ is a number
between x and x + y. Since u′′ is bounded away from zero: u′′ ≥ C > 0, we, therefore, get

u(x + y) ≥ u(x) + u′(x)y + C
y2

2
(34)

for all x, y. Using inequality (34), in the notations of the proof of Proposition 3, we obtain
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Eu(−Exi(1 + δ) + Li − xi) = Eu(μi(1 + δ) − Eyi(1 + δ) + yi) ≥
E
[
u(μi(1 + δ)) + u′(μi(1 + δ))(yi − Eyi(1 + δ)) + u′′(μi(1 + δ))

(yi − Eyi(1 + δ))2

2

]
=

u(μi(1 + δ)) + u′(μi(1 + δ))δEyi + u′′(μi(1 + δ))
V ar(yi) + δ2(Eyi)2

2
=

u(μi(1 + δ)) − u′(μi(1 + δ))δ|Eyi| − |u′′(μi(1 + δ))|V ar(yi) + δ2(Eyi)2

2
. (35)

Consequently, if (23) is satisfied, then

ε > u′(μi(1 + δ))δ|Eyi| + |u′′(μi(1 + δ))|V ar(yi) + δ2(Eyi)2

2
≥

|u′′(μi(1 + δ))|Ey2
i + (1 − δ2)(Eyi)2

2
,

and, since δ < 1, Ey2
i < ε′ = 2ε/|u′′(μi(1 + δ))|. Take Δ > 0. We have, using Jensen’s

inequality and the assumptions of the proposition,

Ey2
i = EL2

i

[
max

(
1 −

∑N
i=1 μi∑N
i=1 Li

, 0
)]2

= EL2
i

[
max

(∑N
i=1(Li − μi)∑N

i=1 Li

)]2
I
( N∑

i=1

Li >

N∑
i=1

μi

)
≥

EL2
i

[
max

(∑N
i=1(Li − μi)∑N

i=1 Li

)]2
I
( N∑

i=1

(Li − μi) > NΔ
)
≥ μ2

i

Δ2

C2

[
P
( N∑

i=1

(Li − μi) > NΔ
)]2

.

The above inequalities imply that if condition (23) is satisfied, then N must be sufficiently
large so that P

(∑N
i=1(Li − μi) > NΔ

)
<

√
ε′C

Δμ =
√

2εC

Δμ
√

|u′′(μi(1+δ))| .

Proof of Proposition 5: Proof by contradiction: Suppose that the proposition is not true.
Then there is a constant integer, C > 0, and an increasing sequence N1 < N2 < . . ., such
that Ni/Mi < C for a Pareto efficient partition containing Mi elements in the economy with
Ni risks. We have

∑Mi
j=1 |Pj | = Ni, where we w.l.o.g. assume that the Pj ’s are ordered

in increasing order of size. Let r denote the number of Pj ’s containing at most 2C risks.
Clearly, r ≥ Mi/2 since otherwise

∑Mi
j=r |Pj | >

∑Mi

j=Mi/2+1 2C ≥ 2C × Mi/2 = Ni, which
obviously can not hold. However, from proposition 4, it is clear that for all elements in Pi,
i ≤ r, CEu(K̃i) + μLi ≥ ε, for some fixed ε > 0, regardless of N . Now, since Mi approaches
infinity as N grows, we can choose N large enough to make r arbitrary large, and the number
of elements in ∪r

i=1Pi thereby also becomes arbitrary large. We can then use the result in
proposition 3 to choose r so large, so that replacing the industry with Nj′ risks with a
multiline version, P = {∪r

i=1Pi, Pr+1, . . . , PMj′ }, gives for all j ∈ ∪r
i=1Pi, CEu(K̃j)+μLj < ε.
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Clearly, this is a Pareto improvement, since all agents in {∪r
i=1Pi} are better off, whereas all

other agents are identically well off. Thus, the proposed sequence can not be Pareto optimal
and we are done.
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