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Understanding the daily use patterns of traditional and nontraditional cooking technolo-

gies is essential for researchers and policy makers attempting to reduce indoor air pollu-

tion and environmental degradation from inefficient cookstoves. This paper describes field

methods and proposes a new algorithm for converting temperature data generated from

stove use monitors into usage metrics for both traditional and nontraditional stoves.

Central to our technique is recording the visual on/off status of a stove anytime research

staff observes the stove. The observations are regressed against temperature readings in a

logistic regression to estimate the probability that a temperature reading indicates usage.

Using this algorithm we correctly predict 89% of three stone fire observations and 94% of

Envirofit observations. The logistic regression correctly classifies more observations than

published temperature analysis algorithms. This is the first published algorithm for con-

verting temperature data for traditional stoves such as three stone fires.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

This study examines how best to measure the use of nontra-

ditional and traditional stoves, an important step in the effort

to mitigate the harm caused by inefficient cookstove designs.

Traditional wood-and charcoal-burning stoves both burn

inefficiently and produce a great amount of smoke. The smoke

leads to respiratory, heart, and other disorders that kill

approximately four million people per year [1]. Much of the

health burden is concentrated on women and children, as is

the time burden collecting biomass fuel [2]. Environmental

damage can be significant; by one estimate, household energy
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use in Africa will produce 6.7 Gt of carbon by 2050 [3].

Furthermore, the incomplete combustion of biomass fuels

leads to the release of black carbon (soot) that contributes to

current global warming [4,5]. These inefficiencies imply

deeper poverty, loss of biodiversity, rapid deforestation, and

climate change. These problems have led both policy-makers

and practitioners to search for safer and more fuel-efficient

stoves that are attractive to consumers as substitutes for

traditional stoves.

One challenge to understanding stove use substitution

behaviors is to measure stove use precisely, economically and

with minimal intrusion into the lives of study participants.

Measuring stove usage with minimal observation bias is
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mailto:ams727@cornell.edu
mailto:andrewsimons_2@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biombioe.2014.08.008&domain=pdf
www.sciencedirect.com/science/journal/09619534
http://www.elsevier.com/locate/biombioe
http://dx.doi.org/10.1016/j.biombioe.2014.08.008
http://dx.doi.org/10.1016/j.biombioe.2014.08.008
http://dx.doi.org/10.1016/j.biombioe.2014.08.008


b i om a s s a n d b i o e n e r g y 7 0 ( 2 0 1 4 ) 4 7 6e4 8 8 477
necessary to recover unbiased estimates of stove use because

study participants behave differently when research staff are

present [6] and because study participants over report stove

use when it is self-reported [7]. Scientists studying the health

effects of cooking technologies need to understand howmany

hours a day a stove is used to estimate exposure to household

air pollution [8,9]. Project financiers need to measure the time

cooked on both new and old stoves to allocate the carbon

credits that can fund stove subsidies in developing countries

[10e12]. Further, “stove stacking” (the use of multiple fuels

and stoves) often occurs when multiple cooking options exist

[13e15]. To understand any of these issues researchers must

know the baseline amount of cooking on existing stoves, and

then the time cooked on both the existing and new stove.

Pioneering stove studies have highlighted the harmful ef-

fects of indoor air pollution and the health benefits of adopt-

ing fuel-efficient nontraditional stoves [16e22]. However

these studies were characterized by high levels of interactions

between research staff and study participants; for example, in

Ref. [16] research staff noted the locations of each household

member and the status of how active the cooking fire is every

5e10 min. Observational studies of stove use raise the possi-

bility of observation bias (or Hawthorne effect), which arises

when participants act differently than they normally would

because they know they are being observed (as noted by Ref.

[22]). Our study is similar to [7] in that both use co-located

observational and sensor data to calibrate a sensor to mea-

sure household product use (in their case, a water filter).

To minimize observation bias, stove use monitor systems

(SUMs) can record stove temperatures without the need for an

observer to be present. The SUMs used for our project, iBut-

tons™ manufactured by Maxim Integrated Products, Inc., are

small stainless steel temperature sensors about the size of a

small coin and the thickness of a watch battery that can be

affixed to any stove type. The SUMs used in our study record

temperatures with an accuracy of ±1.3 �C up to 85 �C (see Fig. 1

for a photograph). Stove Usage Monitors that log stove tem-

peratures were first suggested by Ref. [23]. SUMs offer an un-

obtrusive, precise, relatively inexpensive (approximately USD

$16 each), and objective measure of stove usage [23,24].

We know of two published algorithms for determining

stove usage with SUMs. Both studies use SUMs tomeasure the
Fig. 1 e Photograph of stove use monitoring system

(SUMs).
temperature of nontraditional cookstoves at set time in-

tervals, and then calculate temperature changes between

readings. In Ref. [25] the algorithm considers an increase in

temperature above a certain threshold (1.52 �C increase over

40 min) as the start of a candidate cooking or refueling event.

If the post-increase stove temperature is also above the

ambient temperature, the algorithm counts the passage of

time until a temperature drop indicates that the stove is

cooling down (indicated by a 2.28 �C decrease over 60 min),

signaling the end of the cooking event. These slope thresholds

are chosen by taking the 99th and 1st percentiles of slope

values from the distribution of ambient air temperatures in

the research area. Multiple temperature peaks within a 2 h

period of each other are considered the same cooking event

[25]. A similar technique, combining both change in slope and

a temperature threshold to classify when a stove is being

used, is used in a similar study, however, the researchers

choose different thresholds based on observed local cooking

practices and local ambient temperatures [26].

The use of temperature slopes to identify cooking works

well for heat-efficient manufactured stoves, such as those

used in these two studies [25,26]. Because these stoves heat

and cool quickly and have fixed form-factors, temperature

slopes are steep and can be consistently measured by SUMs

attached to a fixed spot. For traditional stoves, such as a three

stone fire, however, the use of temperature slopes can be

challenging for two reasons. First, three stone fires heat and

cool more slowly, producing more attenuated temperature

slopes. Second, each three stone fire has a unique form-factor

that can change over time, e.g., a stone is moved. Thus, the

same cooking activity could create different measured tem-

perature slopes both across stoves and within the same stove

over time. The challenges suggest that a more flexible func-

tional form mapping temperature readings to cooking activ-

ities might be advantageous for three stone fires.

We propose a methodology that uses SUMs temperature

data gathered in the same way as previous studies, but com-

bines this temperature data with observations made

throughout the experiment of when stoves were seen as on or

off. We run a logistic regression that fits SUMs temperature

data to observations of stoves being on or off.We then take the

coefficients from this regression to predict the probability of

cooking over the much larger set of SUMs temperature read-

ings without any observational data. The researcher can sum

the predicted minutes cooked in a 24-h period to estimate

minutes of cooking that day. This measure of cooking can

then be used as the basis for other analysis such as comparing

cooking behaviors between groups of households with certain

characteristics or groups differentiated by experimental

design.
2. Methods

Our technique requires continuous SUMs temperature data

for a given stove, and recorded instances of whether that

particular stove is seen in use or not (henceforth called “ob-

servations”). We matched observations of stove use to SUMs

temperature data by time and date stamps. The core of our

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
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method is a logistic regression using the lags and leads of the

SUMs temperature data to predict observations of stove usage.
2.1. Continuous SUMs temperature data

A stove usage monitor takes a temperature reading at an in-

terval specified by the user. The SUMs used in this experiment

hold approximately 2000 data points before the data needs to

be downloaded and the device reset. We set the SUM to record

temperature every 30 min, giving it six weeks between

required servicing. Instantaneous temperature readings from

SUMs devices in a given household were matched based on

date and timestamp to observations of stove use made in that

same household. The observation of use is matched with the

temperature reading with the closest date and timestamp.

Since our temperature data occurs every 30 min, this ensures

that at most a visual observation is ±15 min from the time-

stamp of the temperature reading.
2.2. Observations of stove use

Each time the data collection team visited a household they

observed which stoves were in use (date and timestamp were

recorded digitally via handheld device). Enumerators visited a

house numerous times during a “measurement week,” when

we also enumerated a survey and weighed wood for a kitchen

performance test [27,28]. Another enumerator visited once

every 4e6 weeks to download data and reset the SUM.

A detailed description of the process to match the time-

stamps of observations of use to SUMs level temperature data

is described in the web enabled SupplementaryMaterial, but a

summary conclusion of that process is presented in Fig. 2.

This presents the outcomes for the visual observations of

three stone fires, but the same process was followed for

Envirofits as well. The largest challenge was to reconcile

households with two SUMs readings, two three stone fires,

and an observation of one stove in use. To do this we classified

the hotter of the two stoves (within ±60 min of the observa-

tion) as ‘on’, and the colder observation as ‘off.’ For the cases

of households with one SUMs reading, two three stone fires,

and an observation of one stove being used, we could not

definitively determine if the three stone fire observed as ‘on’

was the same three stone fire as the one with the SUMs device

attached, therefore we had to exclude these observations

from use in the subsequent analysis.

We originally intended to use the entire sample of obser-

vations. We found, however, a number of anomalies. For
Fig. 2 e Stove level temperature data matched with
example, 3.0% (10 out of 329) of “lit” three stone fire observa-

tions had SUM readings below the daily mean temperature

(23.8 �C). At the same time 7.8% (105 out of 1339) of “not lit”

three stone fire observations had SUM readings over 40 �C,
which was the highest ambient air temperature recorded in

the observation period. While suspicious, these readings may

not necessarily be erroneous, as SUMs can be cool if the stove

was just lit in the last few minutes and the SUM has not yet

registered the heat increase, or a SUM could still be hot on an

unlit stove if the stove was just extinguished.

We suspect a substantial share of such cases were due to

errors in observing or recording the lit status of stoves or in

errors in matching the time stamps, stoves, or homes of ob-

servations and SUMs measurements. Therefore we trim the

observation sample based on the hourly ambient tempera-

tures (with a conservative adjustment). We drop observations

observed as “lit” below the mean minus 2.0 �C of the ambient

temperature for that hour, andwe drop observations observed

as “not lit” that are above themaximum ambient temperature

plus 2.0 �C for that hour. The mean and maximum hourly

ambient temperatures are taken across the entire sample of

ambient temperature readings. This removes 11.0% (184 out of

1668) and 3.6% (28 out of 782) of the observation samples for

three stone fires and Envirofits, respectively.
2.3. Regression specification

There is no theory of what combinations or transforms of

current, lagged, and leading temperature readings should be

used to predict observed cooking. We test ten specifications

and compare the goodness of fit for each specification. (We do

not also include slope terms, because they are perfectly

collinear withmultiple lags or leads.) For simplicity, our desire

is to use the same specification on both the three stone fire

sample and the Envirofit sample.
3. Data

A series of randomized control trials were executed in rural

areas of the Mbarara District in southwestern Uganda (Fig. 3)

from February to September 2012, which focused on the use,

and adoption of fuel-efficient stoves (see Refs. [29,30] for more

details on the experimental design and an overview of the

study area). In our study the traditional stove was a three

stone fire, (simply three large stones, approximately the same

height, on which a cooking pot is balanced) and the
household level observation of stove use data.

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
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Fig. 3 e Map of Uganda with Mbarara district highlighted.

Table 1 e Temperature readings, days, stoves observed
by stove type.

Stove type Readings Days Stoves

Envirofit 1st 432,033 8945 153

Envirofit 2nd 137,413 2974 107

Three stone fire 1st 708,048 14,081 168

Three stone fire 2nd 417,149 8204 152

Totals 1,694,643 34,204 580

Note: data collected MarcheSeptember 2012.
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nontraditional stove was a fuel-efficient Envirofit G-3300 (a

engineered stove designed to be heat efficient with the

manufacturer reporting 60% biomass fuel reduction, an 80%

reduction in harmful smoke and gasses, and reductions of

cooking time of up to 50% versus the three stone fire). The

study area is characterized by agrarian livelihoods including

farming of matooke (starchy cooking banana), potatoes, and

millet as well as raising livestock. At baseline almost all

families cook on a traditional three-stone fire (97%), usually

located within a separate cooking hut (62% of households had

totally enclosed kitchens with no windows, while 38% had

semi-enclosed kitchens with at least one window). Most stove

usage occurs during lunch and dinner preparation, with

matooke and beans the most common and most time

consuming foods cooked. Matooke, a main food for lunch and

dinner, is unripe plantain eaten after steaming for 3e5 h.

Beans, another common dish, is prepared by boiling and

simmering for generally 2e4 h. Thus for the main meals, it is

common cooking practice to simmer and/or steam foods for

several hours in a row.

The study tracked stove usage (before and after the pur-

chase of a fuel efficient stove) amongst twelve households in

each of fourteen rural parishes in Mbarara (168 total house-

holds). Upon arriving in a new parish, staff displayed the new

Envirofit and offered it for sale to anyone who wanted to

purchase at USD $16 (local currency converted at rate of 2500

UGX USD�1 on March 31, 2012, see Ref. [30] for an overview of

the sales contract). Consumers who wanted to buy the stove

were randomly assigned into two groups (early buyers, late

buyers). The project asked both early buyers and late buyers if

they would agree to have SUMs placed on their traditional

stoves immediately. Then approximately two weeks later the

early buyers group received their first Envirofit stove, and

approximately four to five weeks after that the late buyers

received their first Envirofit stove. Households were eligible to

participate in the study if they mainly used wood as a fuel
source, regularly cooked for eight or fewer persons, someone

was generally home every day, and cooking was largely in an

enclosed kitchen. In each parish, more than twelve house-

holdsmet these criteria and agreed to join the study; therefore

among those that agreed, we randomly selected twelve

households per parish for the usage study with the SUMs.

Stove temperatures were tracked for approximately six

months (AprileSeptember 2012).

Approximately six weeks after late buyers received their

Envirofits, both groups were surprised with a second Envirofit

stove. Because common cooking practices in the area require

two simultaneous cooking pots (for example rice and beans, or

matooke and some type of sauce), and the Envirofit is sized for

one cooking pot, we gave a second Envirofit to mimic normal

cooking behavior as much as possible. Each household had as

many as two three stone fires and two Envirofit stoves

monitored with SUMs throughout the study. Household tem-

perature data from both Envirofits and up to two three stone

fires are used in the study. The results of stove use and the

substitution patterns between stove types will be presented in

a subsequent analysis.
4. Results

4.1. Descriptive statistics

The data consist of approximately 1.7 million temperature

readings from more than 34,000 stove-days of use recorded

across 580 stoves at 168 households. The sample sizes by stove

type are in Table 1. Among the 168 households, 154 initially

had two three stone fires present in their home and all 168

households accepted the second Envirofit stove when it was

offered.

SUMs must be placed close enough to the heat source to

capture changes in temperatures, but not so close that they

exceed 85 �C, the maximum temperature the SUMs used in

this study can record before they overheat and malfunction.

We do not need to recover the exact temperature of the

hottest part of the fire to learn about cooking behaviors. Even

with SUMs that are reading temperatures 20e30 cm from the

center of the fire, as long as the temperature readings for

times when stoves are in use are largely different than times

when stoves are not used the logistic regressionwill be able to

predict a probability of usage. SUMs for three stone fires were

placed in a SUM holder (Fig. 4) and then placed under one of

the stones in the three stone fire (left panel, Fig. 5). The SUMs

for Envirofits were attached using duct tape and wire and

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
http://dx.doi.org/10.1016/j.biombioe.2014.08.008


Fig. 4 e SUM holder designed to encase the stove use

monitor to protect it from malfunctions when exceeding

temperatures of 85 �C.
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placed at the base of the stove behind the intake location for

the firewood (right panel, Fig. 5). Over multiple weeks users

likely move the locations of the stones in their three stone

fires depending on their cooking needs, pushing the stones

closer together for a smaller fire and wider to fit more fuel

wood for a larger fire. Therefore we expect the tracking of

three stone fire temperatures to be more difficult with SUMs

than the tracking of Envirofit stove usage.

Fig. 6 shows an example of SUMs temperature data for a

household across about three weeks. The left panel shows the

temperatures registered in a three stone fire versus the

ambient temperature also recorded with SUMs in this

household, while the right panel compares the temperature of

the Envirofit to the ambient temperature reading. These two

figures illustrate a point that is largely consistent throughout

our wider data set. SUMs readings of the three stone fires are

less responsive than Envirofit SUMs readings to temperature

changes. It seems that residual heat stays in the cooking area
Fig. 5 e Approximate placement of SUMs on t
of a three stone fire preventing temperatures from dropping

all the way to the ambient temperature. The design of the

Envirofit, which is engineered to be much more heat efficient,

shows up in these SUMs graphs as less residual heat when a

stove is not in use by the temperatures dropping to room

temperature or below.

A final difficulty is found July 2e4 (left panel, Fig. 6) where

temperatures for the three stone fire remain above 40 �C for

about a 48-h period. While it could be that the fire was on for

this entire period, it could also be that the household was

banking embers (keeping coals warm, but not cooking) and

the SUM was close to those embers. This figure highlights

some of the potential challenges of using temperatures as a

predictive mechanism for cooking metrics, especially with

three stone fires.

Ambient temperature sensors were placed in one house-

hold in each of the fourteen parishes. Fig. 7 is a box plot of the

ambient temperatures by hour of the day (averaged over each

day of the experiment).

There are 1668 visual observations for three stone fires, and

782 for the Envirofit stove (see the web enabled

Supplementary Materials for a detailed description of the

process to match observations to temperature data). The

summary statistics for the entire sample and for the trimmed

sample (dropping observations that were implausible given

the ambient temperature) are in Table 2. Note the spread of

mean temperatures (“off” vs. “on”) is wider for observations

for Envirofits (26.2 �C vs. 41.5 �C in full sample, and 25.3 �C vs.

42.0 �C in trimmed sample) as compared to the three stone

fires (30.2 �C vs. 38.3 �C in full sample, and 28.2 �C vs. 39.0 �C in

trimmed sample).
4.2. Comparison of fit: full vs. trimmed sample

We first examine one regression with two leads and lags on

both the full and trimmed samples. Table 3 shows the logistic

regression predicting the observation that the stove was

recorded as lit. The percent correctly classified (observations

were classified as “on” if the predicted probability was �0.5) is

good (83.1%), but the pseudo-R2 is a modest 0.17. Fig. 8 shows

the predicted probability a stove is observed in use at each

SUM temperature. Contrary to our priors, the predicted
hree stone fire and Envirofit in this study.

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
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Fig. 6 e Temperature readings on a three stone fire, Envirofit, and ambient air in one household over 20 days.
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probability is fairly linear for the full sample (especially for the

three stone fire).

We originally hoped to let the dataset “speak for itself.”

However, the predicted probability a three stone fire with a

temperature reading of 50 �C is “lit” is only about 50%. Because

50 �C is much higher than the highest ambient temperature

we recorded (40 �C), it should have a predicted probability of

cooking much higher than 50%.

The predictive power rises substantially when we discard

outliers, defined as observations coded “lit” and more than

two degrees below the hourly mean air temperatures (Fig. 7),

or “not lit” andmore than two degrees above themaximumair

temperature we observed that hour of the day across the

duration of the experiment (Fig. 7). This increase in fit holds

for the three stone fires (pseudo-R2 increases from 0.17 to 0.40,

percentage correctly classified increases from 83.1% to 89.3%)

and Envirofits (pseudo-R2 increases from 0.45 to 0.70, per-

centage correctly classified increases from 90.7% to 93.8%).

(Note that trimming these outliers mechanically improves the

fit and percent correctly classified.) Whenwe drop outliers the

predicted probability now has the expected logistic S-shape

(Fig. 8).
Fig. 7 e Distribution of hourly
4.3. Regression specifications

We test ten regression specifications on the trimmed sample

for both the three stone fires and the Envirofit (Table 4).

Initially, we include only the temperature at time t (specifi-

cation 1); it has a pseudo-R2 of 37% and 60%, and correctly

classifies 87.5% and 96.1% of the three stone fire and Envirofit

sample, respectively. Adding a lead and lag of one period

(spec. 2) increases the pseudo R2 to 41% and 68%, and in-

creases the percentage correctly classified to 89.2% for three

stone fires, but decreases the percentage correctly classified to

94.9% in the Envirofits. Adding a second (spec. 4), third (spec. 6)

or fourth (spec. 8) lead and lag does not improve fit by much.

Adding a slope-squared termwhen the slope is positive for the

time step from t-1 to t (coding slope-squared as zero other-

wise) measures steep positive increases in slope, as would be

the case when a fire is lit. However adding this slope-squared

term (col. 3, 5, and 7) minimally changes the results. Only

including leads (spec. 9) or only including lags (spec. 10) re-

duces pseudo-R2, but increases percentage correctly classified

to 89.4% and 95.3% (spec. 10) for three stone fires and Envir-

ofits, respectively.
ambient temperatures.

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
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Table 2 e Summary statistics: observations of stove
usage.

Mean Std.
Dev.

Min. Max. N

Observations

Temp [C] when three stone fire

observed as off

30.17 7.27 19.5 85 1339

Temp [C] when three stone fire

observed as on

38.30 10.63 20 85 329

Temp [C] when Envirofit observed

as off

26.17 6.34 18.5 76 704

Temp [C] when Envirofit observed

as on

41.52 11.7 20 69.5 78

Observationsetrimmed samplea

Temp [C] when three stone fire

observed as off

28.21 4.60 19.5 41.5 1169

Temp [C] when three stone fire

observed as on

38.97 10.36 22 85 315

Temp [C] when Envirofit observed

as off

25.27 3.86 18.5 41 678

Temp [C] when Envirofit observed

as on

42.04 11.39 20 69.5 76

a Note: In the trimmed sample, observations are dropped if ‘lit’ and

more than two degrees below hourly mean air temperature, or if

observed as ‘not lit’ but more than two degrees above the hourly

maximum air temperature. The trimmed sample removes 11.0%

(184 out of 1668) and 3.6% (28 out of 782) of the observation samples

for the three stone fire and Envirofits, respectively.
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In order to determine which of the models is most appro-

priate we test the ten specifications with the Akaike infor-

mation criterion (AIC) [31,32]. The AIC trades off goodness of

fit of the model with the complexity of the model to guard
Table 3e Probability (odds ratio) that three stone fire (TSF)
or Envirofit (ENV) is lit: full versus trimmed samples.

(1)
TSF

(2)
TSF

trimmed

(3)
ENV

(4)
ENV

trimmed

SUMs temperature [C], t 1.13*** 1.37*** 1.08 1.46***

(0.03) (0.06) (0.06) (0.13)

SUMs temperature [C],

t � 1

0.99 0.95 0.99 1.09

(0.06) (0.07) (0.06) (0.08)

SUMs temperature [C],

t þ 1

0.98 0.98 1.16*** 1.24***

(0.03) (0.04) (0.05) (0.07)

SUMs temperature [C],

t � 2

0.95 1.03 1.05 0.94

(0.05) (0.07) (0.05) (0.05)

SUMs temperature [C],

t þ 2

1.06** 1.07** 0.96 0.90**

(0.03) (0.03) (0.03) (0.05)

Control: hour of day Yes Yes Yes Yes

Observations 1184 1052 366 356

Pseudo R-squared 0.167 0.403 0.445 0.696

Correctly classified 83.11% 89.26% 90.71% 93.82%

Robust standard error exponentiated form in parentheses

***p < 0.01, **p < 0.05, *p < 0.1.

Note: Columns (1) and (3) use the full observation sample. Columns

(2) and (4) are trimmed for outliers, meaning observations are

dropped if ‘lit’ and more than two degrees below hourly mean air

temperature, or if observed as ‘not lit’ but more than two degrees

above the hourly maximum air temperature.

Note: Standard errors clustered at stove level.
against over fitting. Given a set of candidatemodels for a set of

data, the preferred model is the one with the lowest AIC. The

AIC is appropriate in cases where the number of observations

is many times larger than the square of the number of pre-

dictors [33], as in this case.

Among both the three stone fire and Envirofit sample, the

AIC is a much higher value for the specifications with tem-

perature at t (spec. 1), temperature at t and four leads (spec. 9),

temperature at t and 4 lags (spec. 10) than for the other

specifications. The remaining seven specifications all have

similar AICs. The specification that includes two leads and

two lags (spec. 4) has the lowest AIC among the three stone fire

sample. The lowest AIC among the Envirofit sample is the

specification with four leads and four lags (spec. 8). For

simplicity, we use the same specification on both the three

stone fire sample and the Envirofit sample; therefore, we rely

on the specification with two leads and lags (spec. 4) for both

samples.
4.4. Logistic regression specification

According to the AIC for three stone fires, the preferred

specification is:

Oit ¼ Fðg1Tit þ g2Tit�1 þ g3Titþ1 þ g4Tit�2 þ g5Titþ2 þ g6Hit þ eitÞ
(1)

where F($) is the logistic functional form, Oit is a dummy var-

iable for observations for stove i at time t. Tit is the SUMs

temperature reading for stove i at time t. Titþt is the SUMs

temperature reading for stove i at time t þ t, for t ¼ �2, �1, 1,

and 2 (that is 30 and 60 min prior to the observation, and 30

and 60 min after). Hit is a dummy variable for the hour of the

day for stove i at time t. The terms g1;g2;g3;g4;g5;g6 are the

parameters and eit is an error term.

Estimated odds ratios of the logistic regression for both

the three stone fires and the Envirofit are presented in Table

3 (columns 2 and 4). An increase of 1 �C at time t is associ-

ated with an odds ratio of 1.37 and 1.46 (both statistically

significant at the 1% level) for the three stone fire and

Envirofit, respectively. This means, holding all else constant,

that an increase of 1 �C at time t means the odds of a stove

being “on” are approximately 37% higher for three stone

fires, and 46% higher for Envirofits than the odds of the stove

being “on” at the initial time t temperature. The three stone

fire temperature reading at time t þ 2 is associated with an

odds ratio of 1.07 (significant at 5% level), meaning the odds

of a three stone fire being on at time t are 7% higher in the

presence of a one degree increase in temperature at time

t þ 2 holding all else constant. The Envirofit temperature

reading at time t þ 1 has an odds ratio of 1.24 (significant at

1% level) and at time t þ 2 an odds ratio of 0.90 (significant at

5% level). This means the odds of an Envirofit being on at

time t are 24% higher in the presence of a one degree in-

crease in temperature at time t þ 1, and 10% lower in the

presence of a one degree increase in temperature at time

t þ 2, holding all else constant.

We also tested probit and the linear probability model

(LPM) in addition to the logistic regression. Predictions of the

probability of stove usage from the probit and logistic

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
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regression were correlated at levels higher than 0.99 for both

the three stone fire and Envirofit sample. Among the pre-

dictions of probability of stove use from the linear probability

model, 28.8% and 36.2% of the prediction fell outside of the

range [0 to 1] for the three stone fire and Envirofit, respectively.

As the proportion of linear probability model predicted prob-

abilities that fall outside of the unit interval increases, the

potential bias of using LPM also increases [34]. Because we

have a high proportion of LPM predictions that fall outside of

this range, using LPM would likely result in biases.

As a robustness check Table 5 shows the in sample and out

of sample predictive accuracy of the preferred specification.

We randomly split the sample of observations of each stove in

half and ran the logistic regression on half of the observations.

We then predict the probability of use to both halves of the

sample. For the three stone fires the in-sample predictive ac-

curacy is 89.8% while out-of-sample predictive accuracy is

87.8%. For the Envirofits the in-sample predictive accuracy is
Table 4 e Candidate regression specifications: all specification
day.

Spec Leads Lags Slope2 if
slope > 0

Three stone

Pseudo R2 AIC % C
pr

(1) 0 0 e 0.37 984.01

(2) 1 1 e 0.41 649.04

(3) 1 1 Yes 0.42 649.44

(4) 2 2 e 0.42 648.29

(5) 2 2 Yes 0.42 648.49

(6) 3 3 e 0.42 650.87

(7) 3 3 Yes 0.42 651.19

(8) 4 4 e 0.42 653.48

(9) 4 0 e 0.39 865.75

(10) 0 4 e 0.40 772.18

Note: Classified as correctly predicted if predicted Pr(D) �0.5: True D defi

Note: Control for hour of the day is a dummy variable for each hour of th

Akaike information criterion: defined as AIC ¼ 2k � 2ln(L), where k is nu

function. Given a set of candidate models for a set of data, the preferred
95.5% while outeof-sample predictive accuracy is 91.1%.

Because the in-sample and out-of-sample predictive accuracy

is very similar for each stove type, it is unlikely that we are

over-fitting the data.

A classification table for the entire sample (Table 6) shows

how well the regression predicts the entire observation sam-

ple for the three stone fires and for the Envirofit. The sensi-

tivity (probability predicted “lit” when observation observed

as “lit”) is only 56.5% for the three stone fires and 77.6% for the

Envirofits, showing that the technique struggles when only

predicting the sample that was observed as “lit.” The speci-

ficity (probability predicted “not lit” when the observation

observed as “not lit”) is much better, 97.6% for the three stone

fire, and 97.0% for the Envirofits. This technique generally

holds more predictive power with Envirofits than three stone

fires as evidenced by the Envirofit sample having a higher

percentage of overall correctly classified observations (93.8%

vs. 89.2%).
s include temperature at time [t] and control for hour of the

fire Envirofit

orrectly
edicted

N Pseudo R2 AIC % Correctly
predicted

N

87.49 1479 0.60 212.05 96.05 735

89.16 1052 0.68 120.29 94.94 356

89.07 1052 0.69 121.55 95.22 356

89.26 1052 0.70 120.14 93.82 356

89.35 1052 0.70 121.61 94.10 356

89.15 1051 0.72 117.33 94.93 355

89.34 1051 0.72 118.49 94.93 355

89.05 1050 0.73 116.33 94.93 355

86.98 1260 0.69 149.97 94.57 516

89.36 1269 0.61 183.79 95.30 574

ned when stove use observed as ‘on’.

e day stoves were observed in use.

mber of parameters and L is the maximized value of the likelihood

model is the one with the minimum AIC.

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
http://dx.doi.org/10.1016/j.biombioe.2014.08.008


Table 5eOut of sample predictive accuracy: three stone fire and envirofit classification tables for in-sample predictions and
out-of-sample predictions.

Three stone fire Envirofit

In-sample Out-sample In-sample Out-sample

Sensitivity: classified as ‘on’ when observed as ‘on’ 62.04 49.07 80.00 67.86

Specificity: classified as ‘off’ when observed as ‘off’ 97.09 97.45 98.65 95.09

Positive predictive value: observed ‘on’ when classified ‘on’ 84.81 82.81 92.31 70.37

Negative predictive value: observed ‘off’ when classified ‘off’ 90.70 88.45 96.05 94.51

False positive rate given observed as ‘off’ 2.91 2.55 1.35 4.91

False negative rate given observed as ‘on’ 37.96 50.93 20.00 32.14

False positive rate given classified as ‘on’ 15.19 17.19 7.69 29.63

False negative rate given classified as ‘off’ 9.30 11.55 3.95 5.49

Overall correctly classified (percentage) 89.81 87.78 95.51 91.10

Sample size 520 540 178 191

Note: Unless noted cell contents to be read as probabilities out of one hundred.

Note: Classified as ‘on’ if predicted probability �0.5.

Note: For this exercise, the samples of observations are randomly split into two groups, the logistic regression is run on one of the two groups,

then based on the coefficients of that regression, the prediction ismade to the other (out-of-sample) group. Running a classification table on the

in-sample and out-of-sample groups shows very little difference between the two samples, suggesting the technique is robust out-of-sample.

When the samples were randomly split in half the groups were equally sized (three stone fire groups sized 742/742 and Envirofit groups sized

377/377), however the sample size of the groups presented in this table is different because various observations drop out of the regression if

lacking temperature data for any of the leads and lags. The observation sample is trimmed for outliers, observations are dropped if ‘lit’ andmore

than two degrees below hourly mean air temperature, or if observed as ‘not lit’ but more than two degrees above the hourly maximum air

temperature.
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4.5. Applying published SUMs algorithms to our data

We replicate the algorithmdescribed in Refs. [25,26] to convert

temperature readings to hours of usage, henceforth called the

RMM algorithm (Ruiz-Mercado-Mukhopadhyay et al. algo-

rithm). We first determined a threshold increase and decrease

in stove temperature equal to the 99th and 1st percentiles of

ambient temperature slopes. In our sample of approximately
Table 6 e How well do temperature readings generated
from stove use monitors predict observations of stove
use.

Three
stone fire

Envirofit

Sensitivity: classified as ‘on’ when

observed as ‘on’

56.54 77.59

Specificity: classified as ‘off’ when

observed as ‘off’

97.61 96.98

Positive predictive value: observed ‘on’

when classified ‘on’

85.82 83.33

Negative predictive value: observed ‘off’

when classified ‘off’

89.79 95.70

False positive rate given observed as ‘off’ 2.39 3.02

False negative rate given observed as ‘on’ 43.46 22.41

False positive rate given classified as ‘on’ 14.18 16.67

False negative rate given classified as ‘off’ 10.21 4.30

Overall correctly classified (percentage) 89.26 93.82

Sample size 1052 356

Note: Unless noted cell contents to be read as probabilities out of

one hundred.

Note: Classified as ‘on’ if predicted probability �0.5.

Note: The observation sample is trimmed for outliers, observations

are dropped if ‘lit’ and more than two degrees below hourly mean

air temperature, or if observed as ‘not lit’ but more than two de-

grees above the hourly maximum air temperature.
56,000 ambient temperature readings the 99th percentile of

slopes is 83.3 mK min�1 (triggering slope of an increase of

2.5 �C in 30 min), and the 1st percentile of slopes is

�50.0 mK min�1 (exit slope of a decrease of 1.5 �C in 30 min).

The RMM algorithm counts a stove as turning “on” when

the slope is larger than a triggering slope, then it continues to

count each subsequent temperature reading as “on” (as long

as temperatures are higher than the ambient temperature)

until it reaches a negative slope that is steeper than the exit

slope. We calculate the on/off status of our entire data set

using this algorithm. We apply this algorithm to both the

traditional three stone fires and the Envirofit stoves; however

[25,26] designed their algorithms for nontraditional stoves and

do not endorse this technique for three stone fires.

We observe some irregularities when the RMM algorithm

is applied to our data, most notably a very hot stove could be

marked as “off” too quickly if the temperature falls steeper

than a decrease of 1.5 �C in 30 min even if the absolute

temperature is still hot enough to likely indicate cooking.

Take for example the following series of temperature data

{26, 51, 52, 47, 49, 46, 41, 37, 33, 31 �C} with each reading

30 min apart. The algorithm would return {off, on, on, off, off,

off, off, off, off, off}. When the temperature falls from 52 �C to

47 �C between the third and fourth reading the slope is steep

enough and the algorithm switches to off. However, in reality

the subsequent temperature readings above 40 �C are likely

to indicate stove usage (recall no ambient air temperatures

were ever that high). Another irregularity with the RMM al-

gorithm is that stoves can cool too slowly to trigger an exit

slope so the algorithm returns an excessively long period of

cooking (at times multiple days) despite temperatures low

enough that cooking is unlikely. For example the data series

{26, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20 �C} would

return {off, on, on, on, on, on, on, on, on, on, on, on, on, on,

on} despite 20 �C being below the mean ambient temperature

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
http://dx.doi.org/10.1016/j.biombioe.2014.08.008
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in our period, and almost certainly not hot enough to indicate

stove usage.

We created an adjusted RMM algorithm to account for

these two cases. The first adjustment is that once the algo-

rithm has a triggering slope marking the stove as “on” it does

not consider an exit slope to trigger as “off” until the absolute

temperature is less than 40 �C. The second adjustment is that

once the algorithm has a triggering slopemarking the stove as

“on” it will switch to “off” evenwithout a sufficiently steep exit

slope if it has negative slope readings for an hour straight and

the absolute temperature is below 35 �C.
4.6. Comparison of fit

Next we test which algorithm correctly predicts the highest

percentage of observations. In addition to testing the RMM

algorithm, and the adjusted RMM algorithm, we also test

various cutoff points in relation to mean ambient tempera-

ture. For example considering all data points above tempera-

ture thresholds such as 32 �C, 34 �C, 36 �C, and 38 �C as “on”

(these correspond to approximately 8 �C, 10 �C, 12 �C, and 14 �C
above mean ambient temperature, respectively).

Table 7 reports the classification table of how well the al-

gorithms predict the observations of three stone fire use. The

strict threshold cutoff of 36 �C (correctly classified 85.0% of the

observations. This was the best performing strict threshold,

correctly predicting more than the thresholds of 32 �C (76.8%),

34 �C (81.9%), and 38 �C (84.8%). The adjusted RMM algorithm

(77.7%) correctly predicted better than the RMM algorithm

(58.9%), but not as well as the strict threshold of 36 �C (85.0%).
Table 7 eHowwell do temperature readings generated from sto
use: classification tables comparing algorithms.

Over 32 Ove

Sensitivity: classified as ‘on’ when obs as ‘on’ 53.0 44

Specificity: classified as ‘off’ when obs as ‘off’ 83.2 92

Positive predictive: obs ‘on’ when classified ‘on’ 46.0 59

Negative predictive: obs ‘off’ when classified ‘off’ 86.8 85

False positive rate given observed as ‘off’ 16.8 8

False negative rate given observed as ‘on’ 47.0 55

False positive rate given classified as ‘on’ 54.0 40

False negative rate given classified as ‘off’ 13.2 14

Overall correctly classified (percentage) 76.8 81

Pseudo R-squared 10.3 13

Note: Each column represents the results of a logistic regression with the

column header as the independent variable, cell contents are classified as

each regression. The first four columns represent a simple (non-statistica

below the threshold, and ’on’ if the temperature exceeds the threshold. T

Ruiz-Mercado-Mukhopadhyay et al. algorithm as the independent variable

‘off’ status as determined by the adjusted Ruiz-Mercado-Mukhopadhyay

very hot even if an exit slope has triggered, and switching ‘off’ if cooling a

as the independent variable. The column titled ‘Logit’ uses the logistic re

are regressed against temperature at time t, and two lead and lag tempera

not run due to insufficient variability or collinearity, the classification table

a. All cells are to be read as probabilities out of one hundred.

Note: The observation sample is trimmed for outliers, observations are

temperature, or if observed as ‘not lit’ but more than two degrees above
The logistic regression with temperature readings at times

t� 2, t� 1, t, tþ 1, tþ 2 (that is at time t, and 30 and 60min prior

to, and 30 and 60 min after) and hour of the day predicts the

most observations of three stone fire use, predicting 89.3% of

observations correctly. The pseudo R-squared of the logistic

regression explains 41.8% of the variation in observations,

whereas each of the temperature thresholds has pseudo R-

squared in the range of 10.3%e18.4%. The RMM algorithm and

the adjusted RMM algorithm have a pseudo R-squared of 0.1%

and 7.7%, respectively.

Table 8 shows how well the algorithms predict the obser-

vations of Envirofit use. Among Envirofits, the strict threshold

cutoff of 36 �C correctly classified 94.7% of the observations.

This was the best performing strict threshold, correctly pre-

dictingmore than the thresholds of 32 �C (91.6%), 34 �C (93.9%),

and 38 �C (94.3%). The strict threshold of 36 �C also correctly

classified more observations (94.7%) than both the RMM al-

gorithm (84.4%), and the adjusted RMM algorithm (85.9%).

The logistic regression with temperature readings at times

t� 2, t� 1, t, tþ 1, tþ 2 (that is at time t, and 30 and 60min prior

to, and 30 and 60 min after) and hour of the day correctly

predicts slightly fewer (93.8%) than the best performing tem-

perature threshold of 36 �C (94.7%). However, considering the

pseudo R-squared the logistic regression explains 67.1% of the

variation in trimmed observations, whereas each of the tem-

perature thresholds has a pseudo R-squared in the range of

27.0%e36.7%. The RMM algorithm and the adjusted RMM al-

gorithm have a pseudo R-squared of 14.4% and 19.6%,

respectively. Because the performance of a strict temperature

threshold would vary based on the local climate the logistic

regression is a more robust algorithm.
ve usemonitors predict observations of three stone fires in

Three stone fire

r 34 Over 36 Over 38 RMM adj RMM Logit

.1 36.8 31.4 40.0 41.3 56.5

.0 98.0 99.1 64.0 87.5 97.6

.9 83.5 90.8 23.0 47.1 85.8

.9 85.2 84.3 79.8 84.7 89.8

.0 2.0 0.9 36.0 12.5 2.4

.9 63.2 68.6 60.0 58.7 43.5

.1 16.5 9.2 77.0 52.9 14.2

.1 14.8 15.7 20.2 15.3 10.2

.9 85.0 84.8 58.9 77.7 89.3

.4 18.4 17.7 0.1 7.7 41.8

trimmed sample of observations as the dependent variable and the

‘on’ if predicted probability�0.5, the psuedo R-squared is reported for

l) decision rule that assigns the stove status ‘off’ if the temperature is

he column titled ‘RMM’ uses the ‘on’/‘off’ status as determined by the

for the logistic regression. The column titled ‘adj RMM’ uses the ‘on’/

et al. algorithm (allowing the stove to remain ‘on’ if temperatures are

nd approaching ambient temperature even if exit slope not triggered)

gression developed in this paper where the observations of stove use

ture readings, and the hour of day. In cases where the regression does

s are calculatedmanually, and the pseudo R-squared is reported as n/

dropped if ‘lit’ and more than two degrees below hourly mean air

the hourly maximum air temperature.
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Table 8 e How well do temperature readings generated from stove use monitors predict visual observations of Envirofit
use: classification tables comparing algorithms.

Envirofit

Over 32 Over 34 Over 36 Over 38 RMM adj RMM Logit

Sensitivity: classified as ‘on’ when obs as ‘on’ 57.9 52.6 48.7 43.4 56.6 63.2 77.6

Specificity: classified as ‘off’ when obs as ‘off’ 95.4 98.5 99.9 100.0 87.5 88.5 97.0

Positive predictive: obs ‘on’ when classified ‘on’ 58.7 80.0 97.4 100.0 33.6 38.1 83.3

Negative predictive: obs ‘off’ when classified ‘off’ 95.3 94.9 94.6 94.0 94.7 95.5 95.7

False positive rate given observed as ‘off’ 4.6 1.5 0.1 0.0 12.5 11.5 3.0

False negative rate given observed as ‘on’ 42.1 47.4 51.3 56.6 43.4 36.8 22.4

False positive rate given classified as ‘on’ 41.3 20.0 2.6 0.0 66.4 61.9 16.7

False negative rate given classified as ‘off’ 4.7 5.1 5.4 6.0 5.3 4.5 4.3

Overall correctly classified (percentage) 91.6 93.9 94.7 94.3 84.4 85.9 93.8

Pseudo R-squared 27.0 32.2 36.7 n/a 14.4 19.6 69.6

Note: Each column represents the results of a logistic regression with the trimmed sample of observations as the dependent variable and the

column header as the independent variable, cell contents are classified as ‘on’ if predicted probability�0.5, the psuedo R-squared is reported for

each regression. The first four columns represent a simple (non-statistical) decision rule that assigns the stove status ‘off’ if the temperature is

below the threshold, and ’on’ if the temperature exceeds the threshold. The column titled ‘RMM’ uses the ‘on’/‘off’ status as determined by the

Ruiz-Mercado-Mukhopadhyay et al. algorithm as the independent variable for the logistic regression. The column titled ‘adj RMM’ uses the ‘on’/

‘off’ status as determined by the adjusted Ruiz-Mercado-Mukhopadhyay et al. algorithm (allowing the stove to remain ‘on’ if temperatures are

very hot even if an exit slope has triggered, and switching ‘off’ if cooling and approaching ambient temperature even if exit slope not triggered)

as the independent variable. The column titled ‘Logit’ uses the logistic regression developed in this paper where the observations of stove use

are regressed against temperature at time t, and two lead and lag temperature readings, and the hour of day. In cases where the regression does

not run due to insufficient variability or colinearity, the classification tables are calculatedmanually, and the pseudo R-squared is reported as n/

a. All cells are to be read as probabilities out of one hundred.

Note: The observation sample is trimmed for outliers, observations are dropped if ‘lit’ and more than two degrees below hourly mean air

temperature, or if observed as ‘not lit’ but more than two degrees above the hourly maximum air temperature.
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5. Conclusion

Wedescribe an algorithm that combines observations of stove

use with continuous temperature data from a stove usage

monitor to predict the on/off status of a stove. We test various

regression specifications and use the Akaike Information

Criterion for choosing a logistic regressionwhere observations

are regressed against temperature at times t � 2, t � 1, t, t þ 1,

tþ 2 and a dummyvariable for hour of the day. This regression

specification correctly predicts 89.3% of three stone fire ob-

servations and 93.8% of Envirofit observations of stove usage.

The predictive accuracy is almost the same in and out-of-

sample.

We continue by comparing the performance of this algo-

rithm to previously published algorithms [25,26] and strict

temperature threshold cutoffs. Our logistic regression

correctly classifiesmore observations, with a higher pseudo R-

squared, than any other algorithm for three stone fires.

Among the Envirofit observations our logistic regression

correctly predicts a higher percentage of observations than

both the RMM algorithm and the adjusted RMM algorithm.

The strict 36 �C threshold predicts slightly more observations

(0.4%) than our logistic regression, however the logistic

regression has amuch higher pseudo R-squared than all other

algorithms.We argue that a predictive logistic regressionwith

observations of actual use and temperature readings at times

t � 2, t � 1, t, t þ 1, t þ 2 and hour of the day is the best algo-

rithm for both traditional and nontraditional stove types. In

considering the external validity of this algorithm, we argue

that it is transferable to many climatic zones (both hot and

cold) whereas strict temperature thresholds and algorithms
based on entry and exit slopes need adjustment depending on

the local climate and local cooking practices. Additionally,

while we have demonstrated the approach can be used with

traditional cooking technologies such as the three stone fire,

we anticipate the logistic regression approach to have a higher

fit for stoves with a lower thermal mass (e.g. the Berkley

Darfur stove) that heat up and cool down quickly.

Some challenges to the approach are the placement and

location of SUMs on three stone fires and training enumera-

tors to differentiate between a stove that is in use versus one

that is not in use. We use SUM holders to protect the SUMs

from overheating. While necessary to prevent overheating,

this insulates the sensor from heat (likely slowing down the

rate of heating up and cool down for three stone fires). Addi-

tionally, the SUMholder is placed beneath one of the stones of

the three stone fire, however this location potentially moves

around over multiple weeks as cooks move the location of the

stones as cooking needs dictate. Moving the sensor can add

noise to the cooking signal and likely contributes to why this

technique performs less well on three stone fires. Lastly, we

had to remove some of the original visual observations (11.0%

of the three stone fire sample, and 3.6% of the Envirofit sam-

ple) because they did not make logical sense (too hot to be

coded as ‘off’ or too cold to be coded as ‘on’). For future studies

more time should be spent in the up front training of enu-

merators to differentiate the ‘on’/’off’ status of a stove, and/or

other higher-cost automatic devices could be installed instead

(i.e., video camera, thermocouple data logger, infrared ther-

mometer and data logger, etc.) to reduce the visual classifi-

cation errors we encountered in our study that ultimately had

to be removed from the sample.

http://dx.doi.org/10.1016/j.biombioe.2014.08.008
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By combining relatively few observations of whether a

household stove is in use and quantitative SUMs data, re-

searchers can measure stove adoption in a cost-effective

fashion. Our algorithm performs better with Envirofit stoves

than three stone fires. At the same time, this technique ad-

vances the frontier for calculating usage with SUMs temper-

ature data for traditional stoves such as three stone fires.

Measuring usage of both traditional and manufactured stoves

is crucial due to “stove stacking” (using both old and new

stoves at the same time). As such, our algorithm can help

measure how new stoves affect the risks of household air

pollution and fuel use (and, thus eligibility for carbon credits).
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