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We model two existing thermostats and one novel thermostat to see how
well they operate under dynamic pricing. The existing thermostats include a tra-
ditional thermostat with set temperature goals and a rigid thermostat that mini-
mizes cost while always keeping temperature within a rigid predetermined range.
We contrast both with a novel optimizing thermostat that finds the optimal trade-
off between comfort and cost. We compare the thermostats’ performance both
theoretically and via numerical simulations. The simulations show that, under
plausible assumptions, the optimizing thermostat’s advantage is economically
large. Importantly, the electricity demand of the rigid thermostat (but not the
optimizing thermostat) ceases to respond to electricity prices on precisely the
days when the electricity grid tends to be near capacity. These are the times when
demand response is the most socially valuable to avoid massive price spikes. The
social benefits of the optimizing thermostat may provide incentives for utilities
and regulators to encourage its adoption.
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1. INTRODUCTION

The electricity grid that we have been using for more than a century is
being challenged. Occasional peaks in demand (for example, from air condition-
ing on hot afternoons) require costly year-round ancillary services. Declines in
supply due to maintenance at traditional plants and (increasingly) due to the
variability of renewable sources such as wind exacerbate the challenge (Joskow,
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2011). Moreover, because users are charged flat-rate prices, they have little in-
centive to reduce demand when the grid is nearing capacity. As a result, there has
been a great desire to move to a Smart Grid that can better coordinate the supply
and demand of electricity (Ipakchi, 2009).

Most visions of the Smart Grid include time-varying prices (also known
as real-time-pricing (RTP) or dynamic pricing) to balance supply and demand.
Dynamic prices provide users with an incentive to use less electricity when the
price is high, helping match demand and supply. To quote from Schweppe et al.
(1980): “Homeostatic Utility Control can offer a set of advantages of both supply
follows demand and demand follows supply while avoiding the majority of their
pitfalls.” Although some emerging technologies allow for efficient data collection
and for bi-directional communication between users and the grid, dynamic prices
are only likely to have much effect on demand if users have automatic systems
to manage their electricity demand.

Heating, venting, and air conditioning (HVAC) is a prime candidate to
provide the needed price-elastic demand. HVAC accounts for about 31% of the
total electricity usage in U.S. homes (DOEEIA, 2005). Deschênes and Greenstone
(2008) predict a 33% increase in electricity consumed by HVAC appliances in
the U.S. due to climate change.

Meanwhile, demand for HVAC is more flexible than other residential
demand because it is often possible to shift heating or cooling away from periods
of peak demand with little or no reduction in comfort. With this motivation, we
look at the design of smart thermostats that can react to dynamic prices and
schedule the use of HVAC appliances to maximize users’ total utility. While we
focus on HVAC, this optimal control strategy can easily accommodate other elec-
tric appliances.

Unfortunately, the comprehensive survey conducted by Walker and
Meier (2008) found no thermostat on the market that could react to dynamic
prices. Recently, Livengood and Larson (2009) propose a conceptual energy-
management system called “Energy Box” for residential and small-business build-
ings. They show by simulations that using the Energy Box to control room tem-
perature enhances users’ total utility in terms of both cost and comfort.

Early work on modeling users’ comfort involved purely empirical rela-
tions between physical variables and comfort (also known as thermal sensation
rating). For instance, the Predicted Percent Dissatisfied and Predicted Mean Vote
proposed by Fanger (1972), which has been largely accepted for design and field
assessment, measure how various factors such as air humidity, clothing, and users’
activities affect the perceived comfort of a large group of users. However, it is
difficult to incorporate this model into the design of an optimal control strategy
that takes into account both cost and comfort. Alternatively, some recent work
models comfort/discomfort by using functions of the parameters of interest. For
instance, Livengood and Larson (2009) uses a discretized function that maps the
room temperatures at discretized time points to numbers quantifying comfort;
Liang and Shen (2011) model discomfort as two parts: delay in meeting demand
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and failure to meet demand. We notice that users are usually risk-averse over the
deviation of room temperature from the preferred one; for example, a 2�F move
away from the preferred temperature is barely noticeable, but a similar increase
when the temperature is already 8�F causes a noticeable increase in discomfort.
This paper attempts to use a comfort function that captures that characteristic.

While one of the objectives of the studies cited above and other related
work is to use price to reduce demand in peak hours, little has been done to
analyze what would happen in the off-peak periods. Black and Tyagi (2010) study
the rebound effect under critical-peak-pricing (CPP), which is a variant of time-
of-use (TOU) pricing. They notice that when CPP is applied, a significant portion
of the load is shifted from peak-pricing hours to subsequent hours. With deep
penetration of CPP in pilot studies, this effect is enlarged and results in new peaks
right after the peak-pricing periods. Fortunately, the optimizing thermostat pro-
posed in this paper mitigates the rebound effect.

Because HVAC appliances operate more efficiently when temperature
differences between inside and outside are small, in some cases pre-cooling can
reduce costs even without dynamic pricing (Braun, 2003). Braun (2003) notes
that better control strategies are needed to optimize pre-cooling. Our optimizing
thermostat provides optimal pre-cooling under flat-rate prices (see section 4.1).

This paper focuses on analyzing the economic impacts of having smarter
thermostats for Smart Grid users. It contributes to the current literature in the
following ways. We first model the control problems of three types of thermostat;
namely, the traditional thermostat, the rigid thermostat, and the optimizing ther-
mostat. In particular, we formulate both the thermodynamics of room tempera-
tures and users’ comfort. We further show by both analytical results and controlled
simulations that the optimizing thermostat gives users maximum overall benefit.
We also illustrate the social value of the optimizing thermostat and discuss draw-
backs of the traditional and the rigid thermostats.

The remainder of this paper is organized as follows. In section 2, we
formulate the control problems of the three types of thermostat and analyze their
performance. In section 3, we conduct computational studies to compare these
thermostats and obtain managerial insights. In section 4, we discuss an improved
thermal model and the uncertainties in forecasts. In section 5, we conclude the
paper and discuss the limitations and future research directions.

2. MODEL

2.1 Three Types of Thermostat

Users in most American homes program a traditional thermostat with a
target room temperature (or temperature range), which may vary by the time of
day. The traditional thermostat uses a trigger policy: HVAC is activated every
time the room temperature deviates from the target temperature (or falls out of
the target range). Unfortunately, the traditional thermostat gives the same response
regardless of energy prices.
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1. To numerically compare the performance of the thermostats, we tweak the inputs so the ther-
mostats generate almost identical comfort and compare the costs.

2. In Appendix A, we study how the length of each period, the number of look-ahead periods,
the length of the planning horizon, and the aggregation level of temperatures affect computational
requirements (measured by CPU time) and the performance of the control algorithms.

To enable automatic management of electricity usage, a new generation
of somewhat intelligent—or “rigidly smart”—thermostats have been proposed,
which we name rigid thermostats. A rigid thermostat runs an optimization routine
in the background that, given dynamic prices, finds the lowest-cost path to keep
room temperatures within a rigid range set by the user (such as the thermostat
studied by Oldewurtel et al. (2010)). The range, for instance, may be what the
users find tolerable. Unlike the traditional thermostat, the rigid thermostat shifts
electricity demand from high-price peak hours to lower-price hours. However,
the rigid thermostat’s price-responsiveness disappears precisely when the social
value of lowering peak demand is highest. In addition, how users set their min-
imum and maximum room temperatures is subtle. For instance, to save cost, users
may set a temperature range broad enough to lead to extreme discomfort, such
as overcooling in summer.

To overcome the drawbacks of the rigid thermostat, we propose a novel
optimizing thermostat. The optimizing thermostat trades off comfort for cost sav-
ing based on users’ preferences. Instead of indicating the acceptable range of
room temperature, users set parameters to reflect their preferences on room tem-
peratures and cost savings. The optimizing thermostat runs an optimization rou-
tine in the background to maximize users’ total utility.

Both the rigid and the optimizing thermostats pre-cool, but the latter is
more flexible in how it treats high and low temperatures. For example, on a hot
afternoon, the rigid thermostat will typically let the afternoon temperature rise to
its rigid maximum. The optimizing thermostat might keep inside temperatures
lower than that level if electricity prices are low, but permit the afternoon tem-
peratures to rise higher if electricity prices are extremely high. Although the
optimizing thermostat sometimes costs its users more than the rigid one does, it
always gives users the highest total utility in cost and comfort.

All three types of thermostat first ask users to input the necessary pa-
rameters: a target temperature or range for the traditional thermostat, a tempera-
ture range for the rigid thermostat, and preference parameters for the optimizing
thermostat. Presumably, the users of the traditional and rigid thermostats would
like to set the inputs to maximize their total utility, but the control strategies of
those thermostats do not help them achieve that goal.1 We discretize time into
periods and assume that, at the beginning of each period, each thermostat runs
its control algorithm to decide whether or not to run HVAC and, if so, what the
target room temperature should be.2 The detailed model formulations for the
control problems are described in the following subsection.
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2.2 Thermal Model and Users’ Utility

First we define the following notation:

• Parameters:
▪ n: index of periods, n = 1,2, . . . ,N.
▪ N: the number of (look-ahead) periods.
▪ tn: time at the beginning of period n and the end of period n–1.
▪ h: the length of each period.
▪ pn: price of electricity in period n.
▪ Tin,s: indoor/room temperature at time s.
▪ Tini,n: initial indoor/room temperature in period n.
▪ Tout,n: ambient temperature in period n. We assume the ambient tem-

perature remains unchanged throughout any period.
▪ Tpfr,n: user-preferred room temperature in period n. This is the room

temperature at which users feel most comfortable.

• User’s decision variables:
▪ Itra,n: the traditional thermostat users’ target room temperature in

period n.
▪ Imin,n: the rigid thermostat users’ minimum acceptable room tem-

perature in period n.
▪ Imax,n: the rigid thermostat users’ maximum acceptable room tem-

perature in period n.

• Thermostat’s decision variables:
▪ Xtar,n: the target room temperature for HVAC at the beginning of

period n. (Xtar,n = Itra,n for the users of the traditional thermostat.)

There have been various models for how room temperature evolves.
These models are typically functions of initial room temperatures, ambient tem-
peratures and other factors such as construction materials, sources of internal gain
(e.g., appliances and lighting), and the behavior of residents. Different factors
and parameters can lead to quite different models; for instance, models for houses
in California can be quite different from those for apartments in New York.

However, because the focus of this paper is to investigate the perfor-
mance of the optimizing thermostat in general, we use a simple but general model
(as in Reddy et al. (1991)) instead of those ad-hoc models. Our model can describe
the temperature-evolving process, which is necessary in order to measure users’
comfort.

We model a building’s thermodynamics in the following way. The whole
building is treated as one object with room temperature Tin,s at time s. Let k1

denote the building’s projected heat capacity—the amount of electricity required
by HVAC to change the building’s temperature by ; is smaller if HVAC is1�F k1
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more efficient. At the beginning of period (that is, time )n s = t T = T =n in,s in,tn

. The amount of electricity required to change the temperature of theT Qini,n n

building in period is:n

Q = k X –T = k DT (1)⎪ ⎪n 1 tar,n ini,n 1

Let be the building material’s conductance and be the cross-sectionalk A
area of the conducting surface. By Newton’s law of cooling, the rate of heat flux
from the ambience to the internal space of the building at time ( ),s s∈ [t ,t ]n n + 1

is described by the following Fourier differential equation:

dQ
rq = = kA(T –T ) = k (T –T ) (2)s out,n in,s 2 out,n in,sds

We call the projected conductance rate, the rate at which thek = kA2

building loses heat to or gains heat from the outside. A smaller indicates thatk2

the building is better insulated. Note that the heat transfer rate is proportional to
the temperature difference. Therefore, even if we allow air exchange between the
inside of the building and its surroundings, the same model still works after a
small modification of .k2

When the HVAC is off, we assume that the only driving force for tem-
perature change is conduction through the walls, windows, and ceilings. Accord-
ing to Equations (1) and (2), the rate of change of room temperature at timeTin,s

( ) without HVAC is:s s∈ [t ,t ]n n + 1

dTin,sk = k (T –T ) (3)1 2 out,n in,sds

Let be the time at which HVAC is stopped and be the roomt Xstop,n tar,n

temperature at the end of the previous HVAC run, then the function
calculates the room temperature at time ( ):T 3f : � r � T s s∈ [t ,t ]+ in,s stop,n n + 1

TT = f (T ,X ,s– t )in,s out,n tar,n stop,n (4)
k2

(s t )� � stop,nk1= T + (X –T )eout,n tar,n out,n

Remark: In practice, the amount of energy required to cool the building is de-
termined by outside temperatures, solar gain (and associated solar load), time-
variant internal gain, the characteristics of the building (such as size, structure,
building material, and furnishings), etc. In our model, we assume that capturesk1

all the factors that affect the difference in a building’s internal energy at different
equilibrium room temperatures. In addition, by treating the entire building as one
object, we actually assume that the heat transfer processes among the objects
inside the building happen instantly. Thus, the electricity required by HVAC is
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proportional to the change in room temperature. We further assume that isk2

constant over time, while in reality, increases when windows or doors are open.k2

Fortunately, relaxing these assumptions does not affect the main results of this
paper (see section 4.1).

Let be users’ total utility in period . We assume that it is separableU nn

into (1) the cost of heating and cooling, , and (2) the comfort of having anCn

inside temperature different from the users-preferred one, , both of which re-Dn

duce total utility (thus both take negative values):

U = C + Dn n n

Without loss of generality, we convert comfort to dollar values. InDn

particular, we assume that users have a total utility function that depends on
comfort and on heating and cooling cost. The unit of the utility function is arbi-
trary up to a positive affine transformation. To save one more parameter, we
rescale comfort to be in dollar values. This normalization permits us to describe
the comfort for which a user is willing to pay as “ worth of comfort”.$100 $100
In particular, function calculates , the cost of changing the roomC 2F : � r � C+ + n

temperature by HVAC from to :T Xini,n tar,n

CC = F (T ,X ) = –p Q = –p k T –X (5)⎪ ⎪n ini,n tar,n n n 1 ini,n tar,n

For simplicity, we assume that changing room temperature by HVAC is
instantaneous: . For two reasons, the error generated by this assumptiont = tstop,n n

is believed to be small. First, because the conduction process that gradually gains
or loses heat to ambience after HVAC stops is much slower than the convection
process through which HVAC changes room temperature, users’ experience in
the former process dominates. Second, the cost is not related to how quickly the
energy is consumed, but to the total amount of energy used. Results are similar
without these simplifying assumptions.

Because users usually become increasingly uncomfortable when the
room temperature deviates further from , we model their utility associatedTpfr,n

with comfort by a negative-valued concave function. In particular, we choose
to be concave quadratic to calculate , the comfort gain per unitD 4f : � r � d(s)+ –

time due to the temperature deviation at time in period :s n

Dd(s) = f (T ,T ,X ,s– t )out,n pfr,n tar,n n

2
– T )pfr,n= a(T + b T –T⎪ ⎪in,s in,s pfr,n (6)
T 2= a( f (T ,X ,s– t )–T )out,n tar,n n pfr,n

T+ b f (T ,X ,s– t )–T⎪ ⎪out,n tar,n n pfr,n

where the parameters and are the coefficients of the second-order and first-a b
order deviation terms. Specifically, measures how much the users’ comfortb
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decreases with small deviations from the preferred room temperature, while a
accounts for the increasing decrement in comfort with each increment in the
deviation. For example, imagine that two users prefer the same room temperature
of . Let , for the first user and , for the second73�F a = –1 b = 0 a = 0 b = –11 1 2 2

user. According to Equation (6), the first user finds 4 hours of neither better74�F
nor worse than 3 hours of plus 1 hour of . On the other hand, the second73�F 75�F
user has the same level of comfort with 4 hours of , and finds that neither74�F
better nor worse than 3 hours of plus 1 hour of . Hence, the second73�F 77�F
user will be less uncomfortable by having 3 hours of plus 1 hour of ,73�F 75�F
which results from the fact that the first user is more sensitive to greater deviation
in room temperature.

Because room temperatures keep changing between two consecutive
HVAC runs, let function calculate users’ utility associated withD 3F : � r �+ –

comfort, , by integrating Equation (6):Dn

h

D DD = F (T ,T ,X ) = f (T ,T ,X ,s)dsn out,n pfr,n tar,n out,n pfr,n tar,n�
0 (7)

h

T 2 T= {a[ f (T ,X ,s)–T ] + b f (T ,X ,s)–T }ds⎪ ⎪out,n tar,n pfr,n out,n tar,n pfr,n�
0

Total utility is the sum of Equation (5) and Equation (7):Un

U (T ,T ,T ,X ) = –p k T –X⎪ ⎪n out,n ini,n pfr,n tar,n n 1 ini,n tar,n

h

T 2+ a[ f (T ,X ,s)–T ] ds (8)out,n tar,n pfr,n�
0

h

T+ b f (T ,X ,s)–T ds⎪ ⎪out,n tar,n pfr,n�
0

Unless otherwise noted, we assume in the remainder of this paper that
the users of the traditional thermostat set for all . In addition, ratherI = T ntra,n pfr,n

than using the trigger policy of the traditional thermostat, the other two thermo-
stats work in the following way. As shown in Figure 1, at the beginning of period

, a thermostat reads the current room temperature and obtains forecasts on elec-n
tricity prices and weather condition for the next periods. Then, by solving anN
optimization problem outlined in the next subsection, the thermostat generates a
sequence of target room temperatures and executes the first step. The room tem-
perature is adjusted by the HVAC and the total utility is incurred. The ther-Un

mostat repeats this procedure in every period.
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Figure 1: Sequence of Events

2.3 Rigid Thermostat

The rigid thermostat minimizes cost while keeping the temperature
within a given range. We model the rigid thermostat’s decisions as a dynamic
programming problem. Denote the total cost and total utility from period to then
end of the planning horizon as and , respectively; then the Bellman equa-J V⋅ ,n ⋅ ,n

tion for the rigid thermostat is:

CP1: J (T ) = max F (T ,X ) + αJ (T ) (9)rigid,n ini,n ini,n tar,n rigid,n + 1 ini,n + 1
Xtar,n

1
Ts.t. T = f (T ,X ,h) + (10)ini,n + 1 out,n tar,n� �2

X ,T ∈ [I ,I ] (11)tar,n ini,n + 1 min,n max,n

where and . In Equation (9), the first termn∈{0,1,2, . . . ,N} J (T )≡0rigid,N + 1 ini,N + 1

is the one-period cost for electricity. The second term denotes the future value,
given that the initial room temperature is and the decision in period isT nini,n

. is the discount factor, which is set to be 1 for all the simulations in thisX αtar,n

paper. In order to solve the problem efficiently, we confine the number of states
by aggregating the temperatures into integer values. Constraint (10) rounds the
end temperature of period . This rounding will bring error into the optimization,n
but we can reduce the error by having finer discretization over temperature. Con-
straints (11) are the rigid bounds on the feasible variable.

Theorem 1 For any fixed initial room temperature and a sequence of ambient
temperature forecasts, let be the function that maps the sequenceN + 1 N + 1X: � r �+ +

of electricity prices forecasts to the sequence of control signals obtained by solv-
ing P1. Then is homogeneous of degree zero; that is,X
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N + 1X(p) = X(kp), ∀p∈ � , k�0+

where is the vector of electricity prices.N + 1p∈ � +

As will be shown later, the rigid thermostat often reduces electricity
usage if the price rises during one particular hour (relative to other hours that
day). This theorem suggests that the rigid thermostat does not reduce energy use
when prices rise proportionately for an entire day (relative to other days). Con-
versely, even if the price profile is smooth, the demand in each period may vary
a lot, as long as the prices in different periods are not equal.

Let the initial room temperature be . Denote the optimal policy,Tini,0

corresponding cost, and total utility as , , and* N * N{X (T )} {J (T )}rigid,n ini,n n = 0 rigid,n ini,n n = 0

, respectively. Similarly, denote by ,* N * N{V (T )} {X (T )}rigid,n ini,n n = 0 tra,n ini,n n = 0

, and the optimal control policy, corresponding* N * N{J (T )} {V (T )}tra,n ini,n n = 0 tra,n ini,n n = 0

cost and total utility of the traditional thermostat.
Our next theorem compares the costs of the rigid and traditional ther-

mostats:

Theorem 2 (Weak Duality of Cost) If for allI ∈ [I ,I ]tra,n min,n max,n

, then: for all .* *n∈{0,1,2, . . . ,N} J (T )≤ J (T ) n∈{0,1,2, . . . ,N}tra,n ini,n rigid,n ini,n

That is, when the traditional thermostat is set within the bounds of the
rigid thermostat, the cost of running HVAC is at least as high as it would be with
the rigid thermostat. The intuition here is that the rigid thermostat reduces cost
by allowing the room temperatures to be different from , whereas the tradi-Itra,n

tional thermostat triggers HVAC whenever deviates from the predeterminedTini,n

. It is worthwhile to point out that, with a flat-rate electricity price, the rigidItra,n

thermostat reduces to the controllers that minimize energy usage by pre-cooling,
the same as the one studied in Braun (2003).

2.4 Optimizing Thermostat

Like the rigid thermostat, the optimizing thermostat solves a control
problem that evolves dynamically. However, the objective function of the opti-
mizing thermostat’s problem includes both , the utility associated with comfort,Dn

and , the cost. Moreover, there are no rigid bounds on for the optimizingC Xn tar,n

thermostat. This feature, along with our use of a concave function to represent
comfort, differentiates our model from similar work (such as Livengood and
Larson (2009)). Although having no bounds on the feasible region greatly in-
creases the dimension of the action space and leads us to the widely known
difficulties of dynamic programming—the “curses of dimensionality”—it allows
us to find the solution that maximizes users’ total utility. In particular, the opti-
mizing thermostat solves the following Bellman equation:
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C DP2: V (T ) = max F (T ,X ) + F (T ,T ,X )opt,n ini,n ini,n tar,n out,n pfr,n tar,n
Xtar,n (12)

+ αV (T )opt,n + 1 ini,n + 1

1
Ts.t. T = f (T ,X ,h) + (13)ini,n + 1 out,n tar,n� �2

where, in (12), the second term accounts for the utility associated with comfort.
To make the problem computationally tractable, we add lower and upper bounds
on the feasible room temperatures, which admit a different range than that of a

rigid thermostat. The modified problem ( ) is stated below:
�
P2

� C˜P2: V (T ) = max F (T ,X )opt ini,n ini,n tar,n
Xtar,n

D ˜+ F (T ,T ,X ) + αV (T )out,n pfr,n tar,n opt,n + 1 ini,n + 1 (14)

1
Ts.t. T = f (T ,X ,h) +ini,n + 1 out,n tar,n� �2

l uX ,T ∈ [B ,B ]tar,n ini,n + 1 n n

The major differences between (in (11)) and (inl u[I ,I ] [B ,B ]min,n max,n n n

(14)) are: For the rigid thermostat, users set to prevent room tem-[I ,I ]min,n max,n

peratures from falling outside the rigid range, while for the optimizing thermostat,
has to make the optimization problem solvable. As before, let the

� l uP2 [B ,B ]n n

optimal policy, corresponding cost, and total utility of be ,* NP2 {X (T )}opt,n ini,n n = 0

, and , respectively, while letting those* N * N{J (T )} {V (T )}opt,n ini,n n = 0 opt,n ini,n n = 0

of the modified problem be , , and
� * N * N˜ ˜P2 {X (T )} {J (T )}opt,n ini,n n = 0 opt,n ini,n n = 0

.* N˜{V (T )}opt,n ini,n n = 0

Intuitively, if the optimizing thermostat’s bounds are chosen such that
taking an action that violates the bounds costs more than maintaining the preferred
temperature throughout the planning horizon, then the bounds will never be vi-
olated. The following proposition generates tighter bounds, as it gives a sufficient

condition for to have the same solution as . The tighter bounds allow us to
�
P2 P2

significantly save computational time.

Proposition 1 Define ranges as following:l u˜ ˜[B ,B ] (n∈{0,1,2, . . . ,N})n n

• for the last period :N

uB̃ = min{x : D (T ,T ,x + 1)–D (T ,T ,x )�k p ,n N N out,N pfr,N N N out,N pfr,N N 1 N
xN

Tf (T ,x ,s)≥ T ∀s∈ [0,h]}out,N N pfr,N

lB̃ = max{x : D (T ,T ,x –1)–D (T ,T ,x )�k p ,n N N out,N pfr,N N N out,N pfr,N N 1 N�
xN

Tf (T ,x ,s)≤ T ∀s∈ [0,h]}out,N N pfr,N
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• for the other periods :n (n∈{0,1,2, . . . ,N–1})

uB̃ = min{x : D (T ,T ,x + 1)–D (T ,T ,x )�k p ,n n n out,n pfr,n n n out,n pfr,n n 1 n
xn

Tf (T ,x ,s)≥ T ∀s∈ [0,h],out,n n pfr,n

T uf (T ,x ,h)≥ B }out,n n n + 1

lB̃ = max{x : D (T ,T ,x –1)–D (T ,T ,x )�k p ,n n n out,n pfr,n n n out,n pfr,n n 1 n
xn

T� f (T ,x ,s)≤ T ∀s∈ [0,h],out,n n pfr,n

T lf (T ,x ,h)≤ B }out,n n n + 1

If the feasible region of satisfies , then the optimal
� l u l u˜ ˜P2 [B ,B ]�[B ,B ]n n n n

solutions of are interior points of the feasible region of .
�

P2 P2

The following theorem relates the total utilities of using the three types
of thermostat:

Theorem 3 (Weak Duality) If and for alll uI ≥ B I ≤ B n∈min,n n max,n n

, then the total utilities of using the three types of thermostat satisfy:{0,1,2, . . . N}

* * *˜V (T )≤ V (T )≤ V (T )tra,n ini,n opt,n ini,n opt,n ini,n

and

* * *˜V (T )≤ V (T )≤ V (T )rigid,n ini,n opt,n ini,n opt,n ini,n

The second inequalities are binding if the condition in Proposition 1 is met.

Note that the conditions in Theorem 3 are sufficient conditions. The
intuition behind Theorem 3 is that the optimizing thermostat penalizes deviation
from the preferred temperature; in contrast, the rigid thermostat treats the pre-
ferred and the other temperatures in as equally comfortable and the[I ,I ]min max

temperature outside as infinitely uncomfortable. Furthermore, it is[I ,I ]min max

straightforward to extend the results of Theorem 3 to obtain the following useful
corollary.

Corollary 1 Compared with the rigid thermostat, the optimizing thermostat:
• Creates more comfort for users if room temperatures are constrained

within (or if the generated room temperatures are bounded[I ,I ]min max

by ), and[I ,I ]min max

• Costs less when it generates lower or equal comfort.

The above results do not rely on the specific model for room tempera-
tures that we assumed. More accurate models (for room temperatures and the
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3. Source: http://www.ipm.ucdavis.edu/WEATHER/wxretrieve.html
4. All figures use only data collected at the beginning and the end of each hourly period. In later

figures, data from distinct simulations are plotted with different markers and we connect the data
points to make the results that come from different settings more distinguishable.

associated comfort calculations) are able to better describe room temperatures but
do not change the relationship among the regions of the feasible solutions in the
Bellman equations of the thermostats; thus, Theorem 2 and Theorem 3 still hold.
Theorem 1 also holds because scaling the price does not affect the relationship
among different solutions. In fact, as long as the model of interest possesses the
Markovian property, we can model the control problems of the rigid and the
optimizing thermostats by similar Bellman equations and the above theorems still
hold.

Our models also work when there are forecasting uncertainties. In par-
ticular, the certainty equivalence control approach (Bertsekas, 1995) is applied.
Although applying this approach is penalized when “bad” scenarios with low
probability occur (Papavasiliou, 2011), the worst-case one-period total utility of
setting at ( equals to or ) is bounded below by the summation* *X X X X Xtar,n rigid,n opt,n

of , , and . Sim-D C C T TF (T ,T ,X) F (T ,T ) F ( f (T ,X,h), f (T ,T ,h))out,n pfr,n ini,n pfr,n out,n out,n pfr,n

ulations that study the performance of this CEC approach are presented in section
4.2. An alternative approach that also preserves the weak duality is to relax the
full-information assumption by setting prices and ambient temperatures as Mar-
kov processes. This approach slightly increases the computational requirements,
as the deterministic value-to-go functions need to be replaced by their expecta-
tions.

3. SIMULATION AND MANAGERIAL INSGIHTS

Theorem 3 implies that a user’s total utility when using the optimizing
thermostat, , is always better than or equal to those of using the traditional*Vopt,n

and the rigid thermostats. In this section, we conduct numerical studies to learn
the magnitude of the increase in comfort and/or reduction in cost of the optimizing
thermostat relative to the other two. Then, we perform several controlled numer-
ical experiments to examine how the different thermostats affect peak demand
and how the different parameters influence the performance of these thermostats.

3.1 Summer Savings of the Rigid and Optimizing Thermostats

We first investigate how the optimizing and rigid thermostats benefit
Smart Grid users in the summer. In order to get a realistic simulation, we choose
the ambient temperature data collected at San Joaquin in Sacramento County,
California in 2010.3 The hour-by-hour monthly average ambient temperature pro-
files are plotted in Figure 2.4 We simulate one entire summer (24 hourly data
points per day on the 93 days from June 21 to September 21).
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Figure 2: Monthly Averaged Temperatures in 2010 in San Joaquin, CA

Note: Data are from San Joaquin in Sacramento County, CA

5. http://www.pge.com/nots/rates/tariffs/electric.shtml#RESELEC_TOU
6. We run simulations to test the impact of forecasting uncertainties in section 4.2

Because there is currently no real-time-price data for retail markets avail-
able to us, we generate simulated dynamic prices by the following sine function:

2pi
p(t ) = p –p sin (15)i b s � �N

where and are the baseline and scale of the prices. We setp p p = 0.2$/kWhb s b

and , such that the electricity prices vary from in thep = 0.11$/kWh 0.09$/kWhs

midnight to in the afternoon. Our and approximate the average0.31$/kWh p pb s

and half of the difference between the highest and lowest prices of PG&E’s tier
1 TOU price structure (for residential users).5 Although this assumption on prices
does not necessarily represent future pricing strategies for the SmartGrid, it allows
us to simulate the savings for users under a real-time pricing scheme that is similar
to PG&E’s TOU structure.

We further assume that there is no uncertainty in the price and weather
forecast.6 The advantage of using deterministic prices and ambient temperatures
in simulations is that it will not bring error into the evaluation due to lack of
sample paths. Motivated by the possibly more volatile prices in the SmartGrid,
such as PG&E’s pilot SmartRate (George et.al, 2009), we study the impact of
having different and in the next subsection.p pb s

We assume that the users-preferred temperature is . ParametersT 73�Fpfr
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Table 1: Performances of the Thermostats in the Summer of 2010

Traditional Rigid Optimizing

Settings (Inputs)

if ,T �77�F I = 76�Fini tra

if ,T �76�F I = 77�Fini tra

otherwise I = Ttra ini

I = 68�Fmin

I = 77�Fmax

2a = –0.0075 $/(�F ⋅hr)
b = –0.005 $/(�F ⋅hr)

Average Daily Cost($) 9.68 4.93 4.02

Average Daily Comfort($) –2.29 –2.22 –2.24

Mean Abs. Temp. Gap (�F) 3.04 2.8 2.54

Root Mean Squared Deviation: (�F) 3.19 3.12 3.15

of Days at/below% 68�F 0 0.98 0.23

of Days at/above% 77�F 0 0.83 0.83

Hours per day on 68�F 0 2.72 0.33

Hours per day on 77�F 0 1.4 1.17

Hours per day below 68�F 0 0 0

Hours per day above 77�F 0 0 3.1

Notes: Temperature data are from San Joaquin, CA. and are the average and root mean squaredG Re e

temperature deviation from . We adjust the inputs of the traditional and the rigid thermostats suchTpfr

that all the thermostats generate almost identical total comfort (in bold), which allows us to compare
their costs (in italics).

in Equation (6) are and ,–3 2 –3a = –7.5�10 $/(�F ⋅hr) b = –5�10 $/(�F ⋅hr)
both of which are fixed throughout the year. These parameters indicate that users
would be willing to pay an extra per hour to lower the room temperature$0.0125
from to or an extra per hour for a decrease from to74�F 73�F $0.0425 76�F

.75�F
We further assume that , meaning that it takes ofk = 1(kWh/�F) 1 kWh1

electricity to change the room temperature by . We assume1�F k =2

, which implies that the room temperature will rise from0.2(kWh/(�F ⋅hr)) 73�F
to in 1 hour when the outside temperature is . This adjustment speed75�F 83�F
is close to that assumed by others, such as Braun (2003), although in our model
the room is slightly less insulated. Note that less insulation reduces the benefit of
pre-cooling and, thus, favors the traditional thermostat.

The settings on the traditional and the rigid thermostats are adjusted to
give almost the same average daily comfort over the summer as the optimizing
thermostat does. Specifically, the input of the traditional thermostat is a fixed
range , a bit above our assumed user-preferred temperature of .[76�F,77�F] 73�F
The rigid thermostat is set to keep the indoor temperature between and68�F

. This is by no means the only way to let all three thermostats yield almost77�F
the same average daily comfort, but it is the best we have found.

The main results are summarized in Table 1, where and are theG Re e

mean absolute temperature gaps and the root mean squared deviations from
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, respectively. In this simulation, the rigid thermostat costs perT = 73�F $458.5pfr

summer, ( ) less than the traditional thermostat to achieve the same average49%
comfort. Consistent with Theorem 3, the optimizing thermostat does even better,
saving per summer ( ) relative to the traditional thermostat and$526.4 58%

( ) relative to the rigid thermostat. To put these savings in perspective,$84.63 18%
an Internet-enabled thermostat costs less than at Home Depot. With the$100
simulation results, we believe that, even if we ignore the costs of the other two
thermostats, the setup cost of the optimizing thermostat can be more than com-
pensated for by the cost saving in the first summer of use.

The advantage of the optimizing thermostat over the rigid thermostat
comes in part from keeping the indoor temperature on average closer to the users-
preferred temperature; the mean absolute deviation is for the optimizingG 2.54�Fe

versus for the rigid thermostat. The rigid thermostat treats all temperatures2.80�F
between its lowest ( ) and highest ( ) permitted temperatures as equallyI Imin max

valuable. Thus, if the indoor temperature is anywhere within that range, the rigid
thermostat makes no effort to keep the temperature any nearer to the users-pre-
ferred temperature. Therefore, on any fairly hot day, the thermostat pre-cools all
the way down to the lowest rigid constraint , and also spends the warm partImin

of the afternoon at the highest rigid constraint . In our simulations, the rigidImax

thermostat pushes the temperature down to on 91 of the 93 days over theImin

summer, while the optimizing thermostat only pushes temperatures that low on
21 days. Similarly, the rigid thermostat keeps the inside temperature within a
degree of for hours per day over the summer, while the optimizingI 2.72min

thermostat only does so for 0.33 hours per day.
At the same time, the rigid thermostat never permits temperatures above

, while the optimizing thermostat balances cost and comfort with few extremeImax

room temperatures. For instance, in the above simulation, the optimizing ther-
mostat rises over for 3.1 hours per day during the simulated summer.Imax

3.2 Four Basic Scenarios

To understand the behavior of each thermostat, we run simulations on
four scenarios: a “super mild” day, a “mild” day, a “hot” day, and a “wicked hot”
day. To be consistent with the curves in Figure 2, we use the following sine
function to generate ambient temperature profiles:

2pi
T(t ) = T –T sin (16)i b s � �N

where and are the baseline and scale of ambient temperatures. In addition,T Tb s

we generate prices from Equation (15), which implies that the prices and ambient
temperatures are perfectly positively correlated, as shown in Figures 3(a) and
3(b). For the rigid and the optimizing thermostats, the look-ahead period is 24
hours. The users-preferred temperature, , is assumed to be . In addition,T 73�Fpfr

and .I = T [I ,I ] = [68�F,78�F]tra pfr min max
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Figure 3: Four Basic Scenarios

Figures 3(c) and 3(d) show the room temperature curves when the rigid
and the optimizing thermostat are used, respectively. Because the traditional ther-
mostat runs HVAC whenever the room temperature deviates from , it producesTpfr

similar room temperatures in all four scenarios and consumes much more elec-
tricity on hotter days, as shown in Figure 4(a). In contrast, as shown in Figure
4(b), the rigid thermostat only runs HVAC in “hot” and “wicked hot” conditions.
In addition, it runs the HVAC in periods with low ambient temperature to pre-
cool the room; that is, to reduce the room temperature below . Because theTpfr

electricity prices in those periods are lower, the rigid thermostat reduces cost by
shifting the peak load to low-price periods to save cost (as long as there is need
for HVAC during the planning horizon). Figure 4(c) shows that the optimizing
thermostat also pre-cools, but not as extensively as the rigid thermostat.

Remark As shown in Figure 3(c), the room temperatures in the “super mild”
case remain constant while the ambient temperatures change slightly over time;
this is because the continuous temperatures are rounded to integer values.
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Figure 4: Electricity Consumed in Four Basic Scenarios

3.3 Benchmark Simulations

To study the effect of parameters such as prices, ambient temperatures,
building insulation, and users’ sensitivities to room temperatures, we conduct nine
controlled numerical experiments, listed in Table 2. For all nine cases, the ambient
temperature profiles are generated from (16) with , , and theT = 83�F T = 5�Fb s

preferred room temperature . Both the planning horizon and look-aheadT = 73�Fpfr

periods are set to 24 hours.
Different price profiles are tested to study the price sensitivity of the

thermostats. We restrict the price range to be no greater than that of PG&E’s
SmartRate (George et.al, 2009), which ranges from to0.085$/kWh 0.85$/kWh
in summer. Specifically, we group the cases into a low-price group (cases 1
through 5) and a high-price group in which the prices are both higher and more
volatile (cases 6 through 9).
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Table 2: Parameter Values for Sensitivity Tests

Average pb

( )$/kWh
Scale ps

( )$/kWh
Conductance k2

(kWh/(�F ⋅hr))
Comfort Coefficient a

2(10–2 $/(�F ⋅hr))
Rigid’s LB

I (�F)min

Case 1 0.1 0.03 0.2 –0.75 68

Case 2 0.1 0.08 0.2 –0.75 68

Case 3 0.1 0.08 0.2 –1.5 68

Case 4 0.1 0.08 0.2 –3 68

Case 5 0.1 0.08 0.1 –0.75 68

Case 6 0.3 0.24 0.2 –0.75 68

Case 7 0.3 0.28 0.2 –0.75 68

Case 8 0.3 0.28 0.2 –0.75 56

Case 9 0.3 0.28 0.2 –1.5 68

Notes: Highlights are key changes in parameters. The other parameters, , , , and , areT T k b Ib s 1 max

fixed across all scenarios.

For the parameters reflecting building properties, is fixedk = 1(kWh/�F)1

and is varied to investigate the effect of better insulation (case 5). Similarly,k2

for the parameters associated with comfort, is fixed–3b = –5�10 $/(�F ⋅hr)
and is adjusted to represent different users’ sensitivities to the squared deviationa
from their preferred room temperature. Three values of are tested. They area

, and for–3 2 –2 2 –2 2–7.5�10 $/(�F ⋅hr) –1.5�10 $/(�F ⋅hr) –3�10 $/(�F ⋅hr)
low sensitivity, medium sensitivity, and high sensitivity, respectively. In addition,

of the rigid thermostat is fixed at and is lowered to study the impactI 78�F Imax min

of allowing extensive pre-cooling (case 8).
The daily cost ( ), daily comfort in dollars ( ), and daily totalC Dday day

utility in dollars ( ) are summarized in Table 3. Table 4 shows the meanUday

absolute temperature gap and the root mean squared deviation from the users-
preferred temperature by the three thermostats in all nine cases.

Price Elasticity and Social Surplus

In many regions, electricity demand peaks on hot summer afternoons,
largely due to air conditioning. Borenstein (2005) shows that when supply is near
capacity at these times, prices can spike to extremely high levels if demand is
very inelastic. His simulation shows that the price spikes are much lower if a
modest share of users have a modest price elasticity. Avoiding the price spikes,
in turn, reduces generators’ investments in high-cost and socially inefficient
“peaker” plants used only a few hours a year. Finally, Borenstein (2005) shows
that many of the gains from higher price elasticity are reaped by users (and there
is higher average user’s surplus gain for the price-elastic users), as they no longer
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Table 3: Sensitivity Tests Results

Traditional Rigid Optimizing

Cday($) Dday($) Uday($) Cday($) Dday($) Uday($) Cday($) Dday($) Uday($)

Case 1 5.39 –0.29 –5.69 2.62 –2.62 –5.25 3.5 –0.81 –4.3

Case 2 6.04 –0.29 –6.34 3.08 –2.19 –5.27 3.68 –0.88 –4.57

Case 3 6.04 –0.48 –6.53 3.08 –4.04 –7.11 3.86 –1.33 –5.19

Case 4 6.04 –0.87 –6.91 3.08 –7.73 –10.8 4.98 –0.99 –5.97

Case 5 3.68 –0.4 –4.08 0.78 –2.33 –3.11 1.81 –0.27 –2.08

Case 6 18.13 –0.29 –18.42 9.23 –2.19 –11.42 3.52 –5.7 –9.22

Case 7 18.65 –0.29 –18.95 9.27 –2.42 –11.7 3.47 –5.57 –9.04

Case 8 18.65 –0.29 –18.95 8.44 –8.65 –17.08 3.47 –5.57 –9.04

Case 9 18.65 –0.48 –19.14 9.27 –4.47 –13.74 8.87 –3.65 –12.52

Notes: The cost, normalized value of discomfort, and total utility each day ( , ) areC D and Uday day day

all expressed in dollars.

Table 4: Thermostat Performance in the Scenarios

Traditional Rigid Optimizing

Ge(�F) Re(�F) Ge(�F) Re(�F) Ge(�F) Re(�F)

Case 1 0.58 3.74 3.75 19.18 1.88 11.27

Case 2 0.58 3.74 3.33 17.83 1.88 11.62

Case 3 0.58 3.74 3.33 17.83 1.75 10.86

Case 4 0.58 3.74 3.33 17.83 1.25 7.48

Case 5 0.38 3.00 2.92 16.31 0.83 4.90

Case 6 0.58 3.74 3.33 17.83 4.63 27.26

Case 7 0.58 3.74 3.33 17.72 4.54 27.04

Case 8 0.58 3.74 5.25 30.43 4.54 27.04

Case 9 0.58 3.74 3.33 17.72 2.58 16.43

Notes: Denote the Mean Absolute Temperature Gap and the Root Mean Squared Deviation from
, as and , respectively.T G Rpfr e e

suffer from very high price spikes. At the same time, Joskow (2011) shows that,
in a situation with low demand elasticity, renewable sources of power may not
be as socially valuable as they claim to be if their power does not help smooth
price spikes and avoid the need for costly peaker plants. Conversely, increasing
demand elasticity can increase the social value of renewable sources.

These results from Borenstein (2005) and Joskow (2011) have impli-
cations for the social values of the three thermostats. The traditional thermostat
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Figure 5: Temperature and Electricity Consumed in Peak Hours

has zero price elasticity, making the price spikes emphasized in Borenstein (2005)
larger and more likely. In contrast, the optimizing thermostat saves cost in peak
hours by reducing comfort when energy prices are high and by shifting demand
to lower-cost times of the day. The rigid thermostat usually has higher price
elasticity than the optimizing thermostat, as it only aims to reduce cost and gives
no attention to comfort as long as the inside temperature is within the rigid bounds.
Unfortunately, on hot days which are typically the days with the highest social
value of reducing peak demand, the price elasticity of the rigid thermostat falls
to almost zero. Thus, the optimizing thermostat provides more social benefits than
the rigid thermostat on precisely the hot days when price spikes are more likely
to occur.

The price elasticity of the rigid thermostat breaks down for two reasons.
First, consistent with Theorem 1, the optimal policy of the rigid thermostat is
homogeneous of degree zero in prices. For instance, case 6 is identical to case 2
except that the prices in the former case are 3 times higher. The rigid thermostat
consumes exactly the same electricity in each case, but has 3 times the cost
( ) in case 6 as in case 2. In contrast, the optimizing thermostat reduces elec-Cday

tricity consumption in case 6 relative to case 2.
Second, on hot days the rigid thermostat hits its upper bound evenImax

after pre-cooling to its lower bound . Thus, no matter how high electricityImin

prices rise the rigid thermostat will not lower its peak demand. Moreover, its price
elasticity can drop to near zero even if the weather is not severe. For example, in
section 3.3, the simulated ambient temperatures are moderate, ranging from

to . However, as shown in Figure 5(a), in cases 6,7,and 9 (of the high-78�F 88�F
price group), the rigid thermostat generates room temperature profiles similar to
those in cases 2, 3, and 4 (of the low-price group). In contrast, the optimizing
thermostat generates higher room temperatures in peak hours with higher peak
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Figure 6: Room Temperatures under Different Price Functions

Notes: Prices are less volatile in case 1. Users are more sensitive to comfort in cases 3 and 4.

prices. In addition, Figure 5(b) shows that in the peak hours (periods 15 through
20), the rigid thermostat consumes the same amount of electricity across the
simulated cases, whereas the optimizing thermostat consumes less in case 7 than
in case 2.

More Concerns with the Rigid Thermostat

We further analyze the controlled experiments listed in Table 2 and ob-
tain the following important observations. First, the rigid thermostat makes room
temperatures reach in the peak hours of summer. Moreover, it may make itsImax

users uncomfortably cold if is too low or if the system does not have aImin

minimum for hot days.
As shown in Figure 6(a), the control signals and the resulting room

temperatures of the traditional thermostat, which applies a trigger policy, are only
functions of weather; thus, the room temperatures remain the same in all the nine
cases. If users of a traditional thermostat want to trade off comfort for cost saving,
they have to monitor prices, perform complex calculations, and manually adjust
the target room temperature. It is implausible that many users will undertake this
real-time optimization. The other two types of thermostat admit price elasticity.
In particular, the rigid thermostat always saves cost by making room temperatures
reach during summer afternoons when prices are high. Thus, the price elas-Imax

ticity of the rigid thermostat depends on the selection of the interval ;[I ,I ]min max

larger intervals lead to higher price elasticity. For example, in cases 2, 3, and 4
of the low-price group (which differ only in the users’ sensitivity to room tem-
peratures), the rigid thermostat makes the room temperatures more volatile than
the optimizing thermostat does, as shown in Figure 6.

The dependence of the rigid thermostat’s price elasticity on [I ,I ]min max

sometimes leads to extreme room temperatures. Figure 7(a) shows that, in case
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Figure 7: Impacts of Other Parameters on Room Temperatures

7 (with high price and low sensitivity), the rigid thermostat reaches in peakImax

hours, during which HVAC needs to be run continuously. When is dropped,Imin

as in case 8, the rigid thermostat pre-cools more aggressively to achieve more
savings. However, this extensive pre-cooling will make users extremely uncom-
fortable in off-peak hours.

In contrast, the optimizing thermostat tries to avoid excessive pre-cool-
ing or pre-heating, adjusting its usage according to users’ preferences ( and ).a b
For example, the optimizing thermostat keeps the room temperature closer to

when the user puts more value on comfort relative to cost (compare the low-Tpfr

price case 2 with the similar case 3, which has more sensitivity to temperatures,
or compare the high-price case 7 with case 9), as shown in Figure 7(b). In cases
in which the optimizing thermostat leads to very low or very high room tem-
peratures, the discomfort will always be more than repaid by the lower cost.

As discussed in Appendix B, under some parameter values and settings
the rigid thermostat sometimes gives users lower total utility than the traditional
one. In addition, although better insulation is in general beneficial, without careful
adjustment of the temperature range, better insulation can reduce comfort for the
users of the rigid thermostat.

3.4 Another Impact on the Grid Side

Critical-peak-pricing (CPP) is a variant of dynamic pricing with a spe-
cific time period that has a discretely higher price. An undesirable consequence
of CPP is that when the penetration of demand-responsive systems is deep, there
may be another peak demand right after the CPP ends (Black and Tyagi, 2010).
Intuitively, users delay their demand until the peak pricing ends, leading to the
rebound effect as all the accumulated demand hits the grid.

One way to avoid this rebound effect would be to have the SmartGrid
provide dynamic prices instead of discrete jumps in price. However, even with
dynamic pricing, the rigid thermostat tends to run HVAC appliances at the max-
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Table 5: Maximum enegy use versus usage during peak hours

Traditional Rigid Opt

Emax Epeak Emax Epeak Emax Epeak

Case 1 3 3 4 1.5 5 1.83

Case 2 3 3 6 1.5 4 1.83

Case 3 3 3 6 1.5 4 1.83

Case 4 3 3 6 1.5 5 2.5

Case 5 2 2 5 0 2 0.67

Case 6 3 3 6 1.5 4 0.83

Case 7 3 3 7 1.5 3 0.83

Case 8 3 3 18 1.5 3 0.83

Case 9 3 3 7 1.5 5 1

Notes: Comparison of (the maximum electricity demand in per period) and (theE kWh Emax peak

average electricity consumed in per period in periods 15 through 20, the peak periods, with thekWh
traditional thermostat)

imum level during periods when the prices reach minimum; this maximizes cost
saving, but may lead to an undesirable secondary peak load. To illustrate this
point, we summarize in Table 5 the maximum electricity consumed per period
( ) and the average electricity consumed per period in the peak hours with theEmax

traditional thermostat ( ).Epeak

As shown in Table 5, although the of the rigid thermostat is lowerEpeak

than that of the traditional thermostat, the of the rigid thermostat is usuallyEmax

much greater than that of the traditional thermostat. This implies that, with high
penetration of the rigid thermostat, if a substantial share of users uses the settings

, a much more significant peak load may be created. A price schedule[I ,I ]min max

that ignores this peak demand prior to (or after) peak prices will not balance
supply and demand (for example, the morning demand spike from the rigid ther-
mostat’s pre-cooling may overwhelm the grid). To avoid the morning spike, price
schedules have to be smoothed within the day. Unfortunately, this smoothing
reduces the energy saving and reductions in peak load that the SmartGrid hopes
to achieve.

In contrast, simulation results suggest that the optimizing thermostat
keeps the maximum electricity consumed per period much lower than the rigid
thermostat does, although the reduction in peak load is not as significant as that
of the rigid thermostat in some cases. Thus, the rebound effect is mitigated. More-
over, with the help of the optimizing thermostat, we can take advantage of the
heterogeneity among users. For instance, as shown in Figure 8, although in cases
2, 3, and 4 all settings except and (parameters associated with comfort) remaina b
the same, users with different temperature sensitivity have their peak demand
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Figure 8: Electricity Consumed with Optimizing Thermostats

Notes: Total daily consumption is , , and for Cases 2, 3, and 4, respectively.33 34 42kWh

shifted to different periods. Hence, the optimizing thermostat helps further smooth
the aggregate demand.

4. EXTENSION OF THE MODELS

4.1 Incorporating a More Accurate Thermal Model

As noted above, replacing the simple model for room temperatures with
more accurate ones does not change the results of Theorems 1, 2, and 3. In this
subsection, we test a more realistic thermal model in which the coefficient of
performance (COP) of HVAC decreases in the temperature difference between
inside and outside. This property of HVAC appliances actually favors the rigid
and the optimizing thermostats because pre-cooling becomes more efficient.
Therefore, as pointed out at the end of section 2.3, the rigid and optimizing
thermostats are expected to pre-cool even if electricity prices are constant.

The new thermal model with a variable COP is as follows. We observe
from the study of Payne and Domanski (2002) that a linear regression fits well
with their calibration data for an air-conditioner. Thus, we replace Equation (5)
with the following one:

COP k X –T⎪ ⎪o 1 tar,n ini,n–p � if coolingn COP –COP X + Tlb ub tar,n ini,nCOP + T –ub out,n� �COP 2span

C =n

COP k X –T⎪ ⎪o 1 tar,n ini,n–p � if heating� n COP –COP X + Tlb ub tar,n ini,nCOP + T – + 1ub out,n� �COP 2span
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Figure 9: Energy Consumption Incorporating COP

where , , and are the HVAC’s lowest, highest COPs, andCOP COP COPlb ub span

the its span of working temperatures, respectively. We also assume, for consis-
tency, that is the COP that has been used in previous simulations.COPo

Simulation parameters are chosen to test performance under flat-rate
electricity prices. We let the price be and simulate ambient temperatures0.3$/kWh
according to Equation 16 with and . We increase the incentiveT = 83�F T = 15�Fb s

for using pre-cooling to save energy usage by decreasing to . The remain-k 0.052

ing parameters are the same as in case 7 in section 3.3.
The simulation results are summarized in Figure 9. With variable COP,

both the rigid and the optimizing thermostats pre-cool to save energy, although
the prices are constant. Furthermore, with variable COP, the daily cost with the
rigid thermostat is the lowest ( , , and for the traditional, rigid,$3.76 $2.09 3.03
and optimizing thermostat, respectively). Consistent with Theorems 2 and 3, the
optimizing thermostat gives the highest total utility ( , , and–$3.84 –$4.52

for the traditional, rigid, and optimizing thermostat, respectively). Finally,–$3.42
it can be shown that Proposition 1 still holds with some modifications, as ex-
plained in the proof of Proposition 1.

4.2 Incorporating Forecasting Uncertainties

The rigid and the optimizing thermostats schedule energy usage based
on the forecasts of future weather conditions and electricity prices, both of which
are difficult to predict. In this subsection, we test the performance of all three
types of thermostat in the presence of forecasting uncertainties.

Forecasting uncertainties complicate the optimization for both rigid and
optimizing thermostats by (1) creating the need to estimate the distribution of the
uncertainties, and (2) increasing the computational cost of the problem. Further-
more, more accurate forecasts usually lead to the well-known “curses of dimen-
sionality” of dynamic programming, because they rely heavily on both the current
conditions and past history.

We consider the uncertainties in forecasting both ambient temperatures
and electricity prices. In particular, we assume that the forecasts are able to deliver
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Table 6: Simulation Results with Uncertain Forecasts

Case Traditional Rigid Optimizing

andσ σe ep Tout

Cday Dday Uday Cday Dday Uday Cday Dday Uday

σ = σ = 0e ep Tout

18.65 –0.29 –18.95 9.27 –2.42 –11.70 3.47 –5.57 –9.04

σ = σ = 1e ep Tout

17.90 –0.10 –18.01 10.19 –3.10 –13.29 4.46 –5.78 –10.24

σ = σ = 2e ep Tout

16.63 –0.12 –16.75 9.62 –3.07 –12.70 5.18 –5.77 –10.95

σ = σ = 3e ep Tout

17.87 –0.20 –18.06 10.51 –3.06 –13.56 7.11 –5.73 –12.84

σ = σ = 5e ep Tout

17.55 –0.27 –17.82 8.56 –3.03 –11.59 5.90 –4.36 –10.27

Notes: and are the standard deviation of the noise of the forecasts of prices (¢/kWh) andσ σe ep Tout

ambient temperatures ( ). The cost, normalized value of discomfort, and total utility each day�F
( , ) are all expressed in dollars.C D and Uday day day

the accurate expected values ( and ). The realized valuesT̂ p̂ ∀n = 1,2, . . . ,Nout,n n

( and ) are the summation of expected values and some random noiseT pout,n n

( and ). That is:e eT pout,n n

ˆT = T + e , and p = p̂ + eout,n out,n T n n pout,n n

We run simulations with the following parameters. To study the effects
of the uncertainties, we assume and are normal random variables withe eT pout,n n

mean zero and that their variances are varied. The rest of the parameters are the
same as in case 7 in section 3.3.

In the presence of forecasting uncertainties, our algorithm works follow-
ing the certainty equivalence control approach. In particular, the future prices and
ambient temperatures are replaced with their expectations when running the op-
timization routine and the system evolves stochastically after executing the op-
timal decisions. The simulation results are presented in Table 6, which shows that,
even with relatively poor forecasts (when the standard deviations of the noise are
comparable to half of the span of the forecasts’ values), the optimizing thermostat
still dominates the other two thermostats in terms of total utility.

5. CONCLUSION, LIMITATIONS AND EXTENSIONS

This paper analyzes strategies for managing U.S. households’ major
source of electricity demand: HVAC. Because this demand is flexible compared
with other demand and often has synchronized peaks, the potential of shaving
peak demand through load shifting is substantial. However, users will require
tools to facilitate load shifting as the SmartGrid and its dynamic pricing become
more common.
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We model three types of thermostat—traditional, rigid, and optimiz-
ing—and the corresponding control strategies. We compare the performance of
these thermostats both theoretically and via numerical studies. Both the traditional
and the rigid thermostats have serious drawbacks and both deliver lower total
utility than the optimizing thermostat. The optimizing thermostat creates more
value for its users because it balances cost saving and comfort. In addition, the
optimizing thermostat creates more value to society because it lowers peak elec-
tricity usage on the hottest days.

Our model captures the main elements of the problem, but makes a
number of simplifying assumptions. It is straightforward to extend the current
model to incorporate more complex circumstances, such as users’ adaption to
sustained high or low outdoor temperature (Angilletta (2009), see Appendix C
for a preliminary analysis), forecasts (with uncertainty) of the number of people
who will soon be home (perhaps using input from GPS-enabled phones, online
calendars, motion sensors in burglar alarms, etc.), and multiple residents with
different preferences. Parameters such as the users-preferred temperature and will-
ingness to pay for comfort ( , and ) can be learned by statistical learningT a bpfr

modules yet to be developed. It is also straightforward (1) to replace the model
for room temperatures with one that accounts better for lags, humidity, solar gain,
wind, and so forth, (2) to utilize an algorithm that uses each day’s data to update
the parameters describing the building, and (3) to optimize multiple zones in a
home, each with different uses and occupancy. Other extensions include modeling
the time that HVAC appliances take to change inside temperatures, adding in
other appliances that permit load shifting (such as dishwashers and clothes wash-
ers), and dealing with forecasting uncertainties by more efficient techniques. None
of these extensions should change the main results of the paper.

In addition, our simulations can be replicated with data on weather, price
variation, and building parameters that are appropriate for different structures,
regions, and (real and potential) electricity markets. Simulations in this paper can
help users determine the potential savings from an optimizing thermostat.

When coupled with data on the elasticity of supply and demand for
electricity, these simulations can also inform policy makers about the potential
social value of optimizing thermostats. If these social gains are large, policy-
makers may want to encourage adoption of optimizing thermostats and related
products that increase the responsiveness of electricity demand to prices.
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APPENDIX

A. On CPU Time and Aggregation

In our simulations, we aggregate temperatures into discretized values
and make only one decision per period. In this appendix, we study how the length
of each period, the number of look-ahead periods, the length of the planning
horizon, and the aggregation level of temperatures affect computational require-
ments (measured by CPU time) and performance of the control algorithms. Let

denote the greatest common divider of the differences between any two dis-DT
cretized temperatures and let denote the length of each period (in hours).Dt N
and denote the number of hours of the planning horizon and the look-aheadT



Name /ej334/ej334_04_Liang/Mp_90        03/08/2012 06:03PM     Plate # 0 pg 90   # 30

90 / The Energy Journal

Copyright � 2012 by the IAEE. All rights reserved.

Table 7: CPU Time Tests

Rigid Thermostat Optimizing Thermostat

DT (�F), Dt (hr) N, T (hr) ttable (sec) ttotal (sec) ttable (sec) ttotal (sec)

DT = 0.5
Dt = 0.5

,N = 24 T = 12

0.017

0.032

132.781

132.799

,N = 24 T = 24 0.043 132.811

,N = 24 T = 36 0.056 132.821

DT = 1.0
Dt = 1.0

,N = 24 T = 12

0.008

0.01

30.109

30.112

,N = 24 T = 24 0.011 30.113

,N = 24 T = 36 0.012 30.114

Notes: CPU Time Required at Each Step ( is the length of the each interval of which the temperatureDT
is aggregated and is the length of each period. and are the number of periods simulated andDt N T
the number of look-ahead periods for making each decision. For all previous simulations, ,DT = 1.0

, , and .)Dt = 1.0 N = 24 T = 24

7. The rigid thermostat’s control algorithm only needs state transition, so constructing its look-up
table does not involve computing comfort.

periods at each step, respectively. summarizes the CPU time required tottotal

obtain control signals at each step.
In general, the CPU time consumed by the traditional thermostat is neg-

ligible, for only one operation is required at each step. The other two control
algorithms are coded in MATLAB R2008a and tested on a computer with Intel
Core 2 Duo CPU at 2.26GHz and 3 GB of RAM running Windows XP. The CPU
time required for obtaining the control signals at the beginning of each period is
summarized in Table 7. As expected, finer aggregation of temperatures and time,
more look-ahead periods, and longer planning horizon increase CPU time. In our
algorithms, we calculate look-up tables consisting of state transitions and the
corresponding comfort levels before applying backward recursion. Computing
comfort involves computing an integral, which takes much more effort than the
backward recursion does. records the time required to build the look-upttable

table.7 Hence, if the look-up tables are calculated in advance, the real-time com-
putational requirement can be substantially reduced.

The aggregation of temperatures and the assumption of one decision per
period reduce computational time, but at the cost of suboptimality, for two rea-
sons. First, the feasible region may exclude the optimal solution. Second, round-
ing state transitions may increase the error in approximating the value-to-go func-
tion. Table 8 summarizes the total utilities of the three types of thermostat with
finer aggregation: and (compared to Table 3, in whichDT = 0.5�F Dt = 0.5 hr

and ). Surprisingly, the daily total utilities for the users ofDT = 1.0�F Dt = 1.0 hr
the traditional and rigid thermostats drop under finer aggregation. The daily total
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Table 8: Simulation Tests Results with Finer Discretization

Traditional Rigid Optimizing

Cday Dday Uday Cday Dday Uday Cday Dday Uday

Case 1 5.68 –0.42 –6.1 2.55 –2.45 –5 3.52 –0.51 –4.03

Case 2 6.3 –0.42 –6.72 2.9 –2.41 –5.31 3.76 –0.55 –4.3

Case 3 6.3 –0.7 –7.01 2.9 –4.45 –7.35 4.07 –0.68 –4.75

Case 4 6.3 –1.27 –7.57 2.9 –8.53 –11.43 4.66 –0.65 –5.31

Case 5 3.4 –0.45 –3.85 0.72 –2.35 –3.07 1.78 –0.24 –2.02

Case 6 18.91 –0.42 –19.33 8.71 –2.41 –11.11 3.91 –5.16 –9.07

Case 7 19.41 –0.42 –19.83 8.58 –2.66 –11.25 5.06 –3.88 –8.94

Case 8 19.41 –0.42 –19.83 7.88 –10.89 –18.77 5.06 –3.88 –8.94

Case 9 19.41 –0.7 –20.11 8.58 –4.94 –13.52 9.67 –2.26 –11.93

Notes: Simulation Results with Finer Discretization for and . The cost, nor-DT = 0.5�F Dt = 0.5 hr
malized value of discomfort, and total utility each day ( , ) are all expressed in dollars.C D and Uday day day

utility decreases for the users of the traditional thermostat because it consumes
more electricity in order to confine the room temperature to a tighter range around

, whereas the gain in comfort is small. Meanwhile, the rigid thermostat con-Tpfr

sumes less energy ( ) by pushing room temperatures closer to the rigid6.5%
bounds, but the comfort ( ) drops more than the cost saved. In contrast, finerDday

aggregation and shorter period length improve the total utility for the users of the
optimizing thermostat. The maximum and average relative improvements are

and . However, according to Table 7, the CPU time for the optimizing11.1% 4.3%
thermostat is increased by over . Therefore, it is important in practice to300%
find a balance between the increased computational cost and the improved total
utility from finer aggregation and shorter period length.

B. More Sensitivity Analysis and Insights

1. The rigid thermostat sometimes generates the lowest total utility. If price
varies a lot within a day or if the room is very well insulated—both of which
encourage extensive morning cooling—then the rigid thermostat holds the room
temperature on the rigid lower bound for longer. As a result, users will experience
chilly summer mornings. Thus, sometimes, as in cases 3 and 4, the rigid ther-
mostat generates the lowest total utility. In all the other cases of our simulation,
the traditional thermostat has the lowest total utility.

2. Better insulation is in general beneficial, but it can create discomfort for
the users of the rigid thermostat. All three thermostats generate higher total
utility with better insulation, as in case 5, than they do in the otherwise similar
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Figure 10: Room Temperature with Better Insulation

case 2 (Table 3). Intuitively, better insulation preserves indoor temperature by
slowing down heat loss; thus, electricity consumption is reduced. However, the
resulting room temperatures are not necessarily more comfortable. For instance,
Figure 10 suggests that the rigid thermostat leads to colder and more volatile
room temperature because better insulation makes pre-cooling more effective. As
a result, the rigid thermostat pre-cools more. On the contrary, because canceling
heat loss takes less electricity with better insulation, the optimizing thermostat
keeps the room temperature closer to the users’ preference, . Therefore, usersTpfr

with the optimizing thermostat are better off in terms of both cost and comfort.

C. Incorporating the Acclimation Effect by Using the Optimizing
Thermostat

Humans acclimate (adapt) to recent temperatures (Angilletta, 2009), and
effect that can be exploited by the optimizing thermostat. Due to acclimation,
users who come into a room at when the ambient temperature is over77�F

will most likely feel just as comfortable as they would if the room tem-110�F
perature were , the most preferred one ( ), and the ambient temperature73�F Tpfr

were . By setting as a function of a user-specified “normal” preferred*80�F Tpfr

temperature and of the recent history of ambient temperatures, the optimizing
thermostat can easily incorporate acclimation. For example:

*T = g(T ,T )pfr,n pfr,n out,n

Then we could utilize instead of in the control algorithm of*T Tpfr,n pfr,n

the optimizing thermostat to capture the acclimation effect. In addition, comfort
depends on factors such as humidity as well as temperature. Learning the function

is critical and general statistical learning models could be applied, but thatg( ⋅ )
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discussion is beyond the scope of this paper. Nonetheless, so long as we have a
model for , acclimation effect can be adapted by using the optimizing ther-*Tpfr,n

mostat. On the contrary, it is more difficult to let a rigid thermostat adjust its
control according to ambience, as users’ comfort is not in the objective function.

D. Proofs

Proof of Theorem 1:

Note that is equivalent to the following problem:P1

N
n Cmax α F (T ,X )∑ ini,n tar,n

N{X } n = 0tar,n n = 0

1
Ts.t. T = f (T ,X ,h) + , ∀n = 0,1,2 . . . ,Nini,n + 1 out,n tar,n� �2

T∈ [I ,I ]min,n max,n

where the objective function can be expanded as:

N
n– α p k T –X∑ ⎪ ⎪n 1 ini,n tar,n

n = 0

Suppose the electricity prices are replaced with ,N N{p } {kp̄ }n n = 0 n n = 0

where is the scale and is the normalized price sequence. ThenNk�0 {p̄ }n n = 0

dividing the objective function by will affect neither the feasible region nor thek
ordering of candidate solutions. Hence, under price sequences that share the same
normalized , the optimal solutions are the same.N{p̄ }n n = 0

Proof of Theorem 2.

• The proof of Theorem 2 utilizes the same approach as that of Theorem
3. Please refer to the proof of Theorem 3.

Proof of Proposition 1.

First, setting a different target temperature will result in a different total
utility for the same user. This difference in utility can be obtained by combining
Equations (4) and (7). Let and be two proposed target temperatures˜ ˆX Xtar tar

and let ; then the difference D D˜ ˆ ˜X = X + DT DF = F (T ,T ,X )–tar tar out pfr tar

is:D ˆF (T ,T ,X )out pfr tar
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h

D T T˜ ˆDF = {b[ f (T ,X ,t)–T – f (T ,X ,t)–T ]⎪ ⎪ ⎪ ⎪out tar pfr out tar pfr�
0

T 2 T 2˜ ˆ+ a[( f (T ,X ,t)–T ) –( f (T ,X ,t)–T ) ]}dtout tar pfr out tar pfr

h

T T˜ ˆ= {b[ f (T ,X ,t)–T – f (T ,X ,t)–T ]⎪ ⎪ ⎪ ⎪out tar pfr out tar pfr�
0

˜ ˆ ˜ ˆ+ a(X –X )e–kt [2(T –T ) + (X –T )e–kt + (X –T )e–kt ]}dttar tar out pfr tar out tar out

h

T T˜ ˆ= b[ f (T ,X ,t)–T – f (T ,X ,t)–T ]dt⎪ ⎪ ⎪ ⎪out tar pfr out tar pfr�
0

h

˜ ˆ ˜ ˆ+ a {(X –X )e–kt [2(T –T ) + (X + X –2T )e–kt ]}dttar tar out pfr tar tar out�
0

h

T T˜ ˆ= b[ f (T ,X ,t)–T – f (T ,X ,t)–T ]dt⎪ ⎪ ⎪ ⎪out tar pfr out tar pfr�
0

h

˜ ˆ ˜ ˆ+ a(X + X –2T )(X –X ) e–2kt dt + 2a(T –T )tar tar out tar tar out pfr�
0

h

˜ ˆ(X –X ) e–kt dttar tar �
0

Obviously, the last term is fixed because it is only a function of . TheDT
middle term is a function of both and . The first term satisfies the following˜DT Xtar

inequality:

h h

T T – kt˜ ˆ ˜ ˆb[ f (T ,X ,t)–T – f (T ,X ,t)–T ]dt≤ b X –X e dt⎪ ⎪ ⎪ ⎪ ⎪ ⎪out tar pfr out tar pfr tar tar� �
0 0

hence the upper bound on the first term is also a function of . When anduDT Bn

satisfy the conditions as described in the proposition, we can always be betterlBn

off by switching the target temperature from to (or tou u lX �B B X �Btar,N n n tar,N n

) because the decrease in comfort from this adjustment is bounded below bylBn

the increase in cost. Therefore, the optimal solutions at time of are interiorT P2
points of feasible region . Moreover, is non-decreasing forl u *[B ,B ] V (x)n n optN

and non-increasing for .u l{x:x≥ B } {x:x≤ B }n n

It can then be easily verified by mathematical induction that (1) we can
always be better off by switching the target temperature from to (oru uT�B Bn n

to ) for the same reason and (2) is non-decreasing forl l *X �B B V (x)tar,n n n optn

. As a result, the optimal solutions of are interior pointsu lx:x≥ B or x≤ B P2n n

of the region defined by the conditions of Proposition 1, which is the feasible

region of .
�
P2
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If we adopt the COP-based model for room temperatures, this proposi-

tion still holds after we replace with . In addition, if is decreasing
COP ko 1k COP1 xCOPlb

at and increasing at , then replacing with ( and
COP ko 1u l˜ ˜B B k j∈{u,l} n =n n 1

jCOPBn

) is sufficient to guarantee that the optimal solutions of are interior1,2, . . . ,N P2
points of the region defined by the modified conditions.

Proof of Theorem 3.

• The following inequality:

* *˜V (T )≤ V (T )tra,n ini,n opt,n ini,n

that is, the first inequality in Theorem 3 holds, becaues the modified optimizing
thermostat optimizes total utility from both cost and comfort over a broader fea-
sible region, while the policy of the traditional thermostat is a feasible solution
to the former one.

• The other inequality:

* *˜V (T )≤ V (T )rigid,n ini,n opt,n ini,n

holds for the same reason as explained above.
• The second inequalities in both equations comes from the fact that the

feasible region of the modified problem is a subset of that of the original
�
P2

problem .P2

Proof of Corollary 1.

The optimizing thermostat costs less than the rigid and traditional ther-
mostats when it generates lower or equal comfort because the former creates the
highest total utility for its users, as stated in Theorem 3.

Compared with the rigid thermostat, the optimizing thermostat creates
more comfort for users when the obtained room temperatures are within

. Although not readily seen, this is also consistent with Theorem 3. If[I ,I ]min max

the obtained room temperatures of the optimizing thermostat are bounded by
, the cost of using the optimizing thermostat is greater or equal to that[I ,I ]min max

of using the rigid thermostat, as the optimal solution generated by the optimizing
thermostat is also a feasible solution to the rigid thermostat’s problem. Therefore
under this condition, Theorem 3 implies that the optimizing thermostat is able to
provide greater comfort, as the optimizing thermostat creates the highest total
utility for its users.
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