This appendix material solves the problem faced by liquidity supplying investors in the
infinite-horizon version of the simultaneous trade model. It appears in the paper
“Inventory Information,” by H. Cao, M. Evans, and R. Lyons (March 2002).

A.l. Proof of Proposition 1: Public Investors
The liquidity-supplying (LS) investors have the following utility defined over
intertemporal consumption c; (per equation 1):
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We begin by conjecturing a value function, which we show below is consistent with optimizing
behavior on the part of LS investors:

V. =-a exp(-gm-y rf)

where W is the LS investors nominal wedlth at the end of day t and h; is the tota
holding of the risky asset at the end of day t (defined in equation 9). We need to
determine the conditions under which h; is willingly held by the LS investors.

Given the proposed price function P,= —ah, in text proposition 1, our task is to begin
with the Bellman equation corresponding to the maximum of equation (1) and derive explicit
expressions for the three coefficient values ¢, y, and a, in this conjectured value function, as

well as an expression for the parameter a in the price function. We shall show that we must have:
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To prove these conditions, write down the Bellman equation:
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where

W, =(@+r)(W- ¢) + D (R *+ Ry~ (1+1)R)

and where we have used Dy to denote the LS investors demand for the risky asset. The

first order condition with respect to ¢; is:
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Notice that the consumption decision is unaffected by the investment decision Dy, due to

CARA utility. To get an explicit expression for the right-hand side, we calculate the

following expectation with respect to the two random variables R.1, and X1, both of

which are normally distributed with mean zero and respective variances s 2 and s 2:
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Maximizing with respect to the choice of risky asset demand Dy, we get
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For market clearing we must have D= hy, so:



which equates to the expression above that pins down the pricing parameter “a”. Now,
collecting terms in equation (A1) involving h?, we get the coefficient y on h? in the
value function:
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Substituting the expected value function in the next period back to the Bellman equation,

we get the expression for a:
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It is easy to show that when g is sufficiently small, there exists a positive solution for the
parameters. Finally, that a value function with this simple exponential form exists ensures
that the linear equilibrium pricing rule described in proposition 1 also exists (recall that
the mean payoff on the risky asset is zero). Q.E.D.



