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Abstract

This paper tests the hypothesis that freedom to experiment, tolerance for early failure, long
time horizons to evaluate results, and detailed feedback on performance stimulate creativity
and innovation in scientific research. We do so by studying the careers and output of U.S.
academic life scientists funded through two very distinct mechanisms: investigator-initiated
R01 grants from the NIH, or appointment as an investigator of the Howard Hughes Medical
Institute (HHMI), whose funding practices embody many of the elements mentioned above.
Using careful adjustment for selection on observables, we find that HHMI investigators produce
high-impact papers at a much higher rate than two control groups of similarly-accomplished
NIH-funded scientists. In contrast, the program does not appear to have much effect on the
raw number of articles published. We also observe large effects on the probability of being
elected to prestigious scientific societies or the training of students that go on to win early
career prizes.
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In 1980, a scientist from the University of Utah, Mario Capecchi, applied for a grant at

the National Institutes of Health (NIH). The application contained three projects. The NIH

peer-reviewers liked the first two projects, which were building on Capecchi’s past research

efforts, but they were unanimously negative in their appraisal of the third project, in which

he proposed to develop gene targeting in mammalian cells. They deemed the probability

that the newly introduced DNA would ever find its matching sequence within the host

genome vanishingly small, and the experiments not worthy of pursuit. The NIH funded

the grant despite this misgiving, but strongly recommended that Capecchi drop the third

project. In his retelling of the story, the scientist writes that despite this unambiguous

advice, he chose to put almost all his efforts into the third project: “It was a big gamble.

Had I failed to obtain strong supporting data within the designated time frame, our NIH

funding would have come to an abrupt end and we would not be talking about gene targeting

today” (Capecchi, 2008). Fortunately, within four years, Capecchi and his team obtained

strong evidence for the feasibility of gene targeting in mammalian cells, and in 1984 the

grant was renewed enthusiastically. Dispelling any doubt that he had misinterpreted the

feedback from reviewers in 1980, the critique for the 1984 competitive renewal started, “We

are glad that you didn’t follow our advice.” The story does not stop there. In September

2007, Capecchi shared the Nobel prize for developing the techniques to make knockout mice

with Oliver Smithies and Martin Evans. Such mice have allowed scientists to learn the roles

of thousands of mammalian genes and provided laboratory models of human afflictions in

which to test potential therapies.

Across all of the social sciences, researchers often model the creative process as the cumu-

lative, interactive recombination of existing bits of knowledge in novel ways (Weitzman, 1998;

Burt, 2004; Simonton, 2004). But the combinatoric metaphor does not speak directly to the

important trade-off illustrated by the anecdote above. Some discoveries are incremental in

nature, and reflect the fine-tuning of previously available technologies, or the exploitation

of established scientific trajectories. Others are more radical and require the exploration

of new, untested approaches. Both forms of innovation are valuable, but we still have a

poor understanding of what drives radical innovation. One view is that radical innovation
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happens by accident. From Archimedes’ eureka moment to Newton’s otherworldly contem-

plation interrupted by the fall of an apple, luck (and sometimes talent) play an essential

role in lay theories of breakthrough innovation. Of course, if luck and talent exhaust the

list of ingredients necessary to produce breakthroughs, then there is little for economists to

contribute. As argued by Manso (2007), however, incentives may play an important role

in the production of radical innovation. In a model that incorporates the trade-off between

the exploitation of well-known approaches and the exploration of new untested approaches,

he shows that optimal incentive schemes for exploration depart in systematic ways from

standard pay-for-performance contracts. In particular, schemes that motivate exploration

exhibit substantial tolerance for early failure, and reward for long-term success.1

The goal of our study is to test the predictions of this theory in the field. The challenge

is to find a setting in which (1) radical innovation is a key concern; (2) agents are at risk

of receiving different incentive schemes; and (3) it is possible to measure innovative output

and to distinguish between incremental and radical ideas.

We do so by studying the careers and output of U.S. academic life scientists who can

be funded through two very distinct mechanisms: investigator-initiated R01 grants from the

NIH, or support from the Howard Hughes Medical Institute (HHMI) through its investigator

program. HHMI, a non-profit medical research organization, plays a powerful role in advanc-

ing biomedical research and science education in the United States. The Institute commits

almost $700 million a year — a larger amount than the NSF biological sciences program, for

example. HHMI’s stated goal is to “push the boundaries of knowledge” in some of the most

important areas of biological research. To do so, the HHMI program has adopted practices

that according to Manso (2007) should provide strong incentives for breakthrough scientific

discoveries: the grant cycles are long (from five to seven years, and typically renewed at

least once); the review process provides detailed, high-quality feedback to the researcher;

and the program selects “people, not projects,” which allows (and in fact encourages) the

quick reallocation of resources to new approaches when the initial ones are not fruitful. This

1In the same spirit, Garner (1979) provides a model in which scientists refrain from bold conjecture
because objective criteria (publications, citations, etc.) enables them to signal at relatively low cost their
competence (in the sense of being able to perform “normal science”).
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stands in sharp contrast with the incentives faced by life scientists funded by the NIH. The

typical R01 grant cycle lasts only three years, and renewal is not very forgiving of failure.

Feedback on performance is limited in its depth. Most importantly, the NIH funds projects

with clearly defined deliverables, not individual scientists, which could increase the costs of

experimentation.

The contrast between the HHMI and NIH grant mechanisms naturally leads to the ques-

tion of whether HHMI-style incentives result in a higher rate of production of particularly

valuable ideas. Two significant hurdles must be overcome to answer this question. First,

we need to identify a group of NIH-funded scientists that are appropriate controls for the

researchers selected into the HHMI program. Given the high degree of accomplishment ex-

hibited by HHMI investigators at the time of their selection, a random sample of scientists

of the same age, working in the same fields, would not be appropriate. We estimate the

treatment effect of the program by contrasting HHMI-funded scientists’ output with that of

two groups of NIH-funded scientists. The first control group is composed of scientists who

received prestigious early career prizes that focus on the same subfields of the life sciences as

HHMI: the Pew and Searle scholarships. The second control group is composed of scientists

whose NIH grants received the coveted MERIT designation, which is only available for sci-

entists whose grant application was scored in the top two or three percentiles by NIH peer

reviewers. Furthermore, using the propensity score, we cull from these two control groups

scientists who look similar to the HHMI investigators on the observable factors that we know

to be relevant for selection into the program.

Second, we use a variety of metrics to distinguish particularly creative contributions from

incremental advances. While we investigate the effect of the program on the raw number

of original research articles published, the bulk of our analysis focuses on the number of

publications that fall into different quantiles of the vintage-specific, article-level distribution

of citations (see Figure 1): top quartile, top ventile, and top percentile. As well, we exam-

ine the effect of the program on future appointment to elite societies, such as the National

Academy of Sciences and the Institute of Medicine. Finally, we contrast control and treat-
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ment scientists by focusing on the quality of their predoctoral and postdoctoral trainees,

using receipt of an early-career prize as a measure of quality.

Our results provide support for the hypothesis that appropriately designed incentives

stimulate radical innovation. In particular, we find that the effect of selection into the

HHMI program increases as we examine higher quantiles of the distribution of citations.

When compared to Pew and Searle scholars, the average treatment effect on number of

publications ranges from 10% to 25%, with the lower bound imprecisely estimated. The

average treatment effect on the number of publications in the top percentile, in contrast,

ranges from 60% to 110%. The main message is qualitatively similar when we compare

HHMI researchers and MERIT awardees, though the magnitudes of the effects are smaller.

Similarly, 5% of our controls are elected to the NAS, versus 30% of our HHMI scientists.

During our period of observation, our control scientists train on average .15 students who go

on to win an early-career prize. Among HHMI scientists, the average is .55.

However, we find no evidence that HHMI scientists fail more often than their NIH-

funded counterparts, using the rate of publications in the bottom quartile of the citation

distribution as an indicator of failure. We also look at evidence that HHMI scientists change

the direction of their research efforts after appointment into the program by examining

the extent of overlap between the keywords in their articles published after, versus before

appointment. The evidence is mixed, with more overlap relative to Pew and Searle scholars,

and less overlap relative to MERIT awardees.

In the absence of random assignment or data on the runner-ups of the HHMI compe-

titions, our conclusions must remain guarded, since we rely mostly on observables to dis-

tinguish the treatment effects of the program from its pure selection effects. Beyond this

major caveat, we face additional hurdles in interpreting our results through the lens of an

incentive story. First, HHMI appointment could also confer prestige to selected scientists,

and this “anointment” effect would be hard to separate from the program’s incentive effects.

Second, to the extent that coauthorship exists among control and treated scientists, this will

also muddy the effects’s interpretation, since appointment could generate peer effects onto
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collaborators. Finally, HHMI- and NIH-funded scientists differ in the amount of resources

available to their laboratories, but measuring the effects of the program on productivity

rather than output would require an estimate of the elasticity of publication output with

respect to funding. At this stage, we know of no credible estimate of this important policy

parameter.

The rest of the paper proceeds as follows. In the next section, we present the theoret-

ical motivation for our hypothesis. Section 2 describes the construction of the sample and

presents descriptive statistics. Section 3 lays out our econometric methodology. Section 4

reports the results of the analysis, which are discussed in section 5.

1 Theoretical Background

The bulk of the literature on incentives for innovation has focused on the problems inherent to

the measurement and contractability of output that plagues most innovative activities. For

example, Holmström (1989) observes that most innovation projects are risky, unpredictable,

long-term, labor-intensive, and idiosyncratic. In such settings, performance measures are

likely to be extremely noisy, and contracting particularly challenging. This leads him to

see virtue in the adoption of low-powered incentives when creativity is what is required of

the agent, for salary is less likely to distort the agent’s attention away from the less-easily

measurable tasks that compete for her attention. This view stands in sharp contrast with

the standard prescription to adopt piece rates whenever agent’s individual contributions

are easy to measure, such as in the case of the windshield installers studied by Lazear

(2000). A substantial body of experimental and field research in psychology reaches a similar

conclusion, but for different reasons: the worry is that pay-for-performance might encourage

the repetition of what has worked in the past, at the expense of the exploration of untested

approaches (Amabile, 1996).

In contrast, Manso (2007) explicitly models the innovation process as the result of learning

through experimentation. In this setting, the trade-off between the exploitation of well-

known approaches and the exploration of new untested approaches first emphasized by March
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(1991) arises naturally. The main insight of his contribution is that the optimal incentive

scheme to motivate exploration exhibits substantial tolerance for early failure and reward for

long-term success. Tolerance for early failure allows the agent to explore in the early stages

of the contractual relationship without incurring the usual negative consequences of lower

pay or termination. At the same time, reward for long-term success prevents the agent from

shirking early on and induces the agent to explore new ideas that will allow him to perform

well in the long-run. Another important ingredient of Manso’s model is timely feedback on

performance. Providing information to the agent about how well he is doing allows the agent

to explore more efficiently, reducing the costs of experimentation. An agent who does not

get feedback on performance may waste more time on unfruitful ideas.

This paper presents the first attempt to test Manso’s arguments in the field (see Manso

and Ederer (2008) for experimental evidence with a similar flavor). A necessary ingredient for

this exercise is to identify a setting in which (1) radical innovation is a key concern; (2) agents

are at risk of receiving different incentive schemes; and (3) it is possible to measure innovative

output and to distinguish incremental from radical ideas. We believe that the academic

life sciences in the United States provide a well-suited setting, first and foremost because it

provides naturally-occurring variation in incentives that closely matches the contrast between

pay-for-performance and exploration-type schemes emphasized by Manso.

Most academic life scientists must rely on grants from the National Institutes of Health

(NIH), the largest public funder of biomedical research in the United States. With an annual

budget of $28.4 billion in 2007, support for the NIH dwarfs that available to other public

or private funders, including the National Science Foundation ($6 billion in 2007) or the

American Cancer Society ($147 million in 2007). The most common type of NIH grant for

investigator-initiated projects is the R01 grant. In 2007, their average amount was $225,000

in annual direct costs, and the awards last for a typical three to five years before coming

up for renewal (see Figure 2). The NIH “study sections,” or peer-review panels in charge of

allocating awards, are notoriously risk-averse and often insist on a great deal of preliminary

evidence before deciding to fund a project. This often leads researchers to resubmit their

applications several times and to multiply the number of applications, taking time away from
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productive research activities. It is an often-heard complaint among academic biomedical

researchers that study sections’ prickliness encourages them to pursue relatively safe avenues

that build directly on previous results, at the expense of truly exploratory research (Kaplan,

2005).

An alternative funding mechanism is provided by the investigator program of the Howard

Hughes Medical Institute (HHMI). This program “urges its researchers to take risks, to ex-

plore unproven avenues, to embrace the unknown – even if it means uncertainty or the chance

of failure.”2 New appointments are made every three years, based on nominations from re-

search institutions. Once selected, researchers continue to be based at their institutions,

typically leading a research group of 10 to 25 students, postdoctoral associates and techni-

cians. In its stated policies, HHMI departs in striking fashion from NIH’s funding practices,

in ways that should bring incentives in line with the type of schemes suggested by Manso

(2007). HHMI Investigator are initially appointed for 5 years,3 and in case of termination,

there is a two-year phase-down period during which the researcher continues to be funded,

allowing her to search for other sources of funding without having to close down her lab.

Moreover, HHMI investigators appear to share the perception that their first appoint-

ment review is rather lax, with reviewers more interested in making sure that they have

taken on new projects with uncertain payoffs, rather than insisting on achievements. Below,

we validate this perception by showing that the second review is much more sensitive to

performance than the first. The review process is also streamlined, lasting a mere six weeks.

Investigators are asked to submit a packet containing their five most notable papers in the

past five years, along with a short research proposal for the next five years. In contrast, NIH

grants take at a minimum three months to be reviewed, and success typically depends upon

a rather exhaustive list of accomplishments by the primary research team members.

Since HHMI researchers publish 29 articles on average in the five years that follow their

initial appointment (the median is 25), constraining their renewal packet to contain only five

2See http://www.hhmi.org/research/investigators/
3Appointment lengths have varied over the history of the program, more detailed information will be

provided in the data section.
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papers ensures that only what they see as their most meaningful achievements matters for

the renewal decision. The review process culminates in an oral defense in front of an elite

panel especially convened for the occasion. The reviewers must not be HHMI researchers,

and are of very high caliber (e.g., members of the National Academies). The richness of the

feedback is yet another point of departure between HHMI and NIH practices. Besides the

intensity and quality of the advice generated by the review process, HHMI-funded scientists

participate in annual science meetings during which they can interact with other HHMI

investigators. This gives them access to a deep level of critique, encouragement, ideas,

and potential collaborations. While NIH-funded researchers receive a critique of their grant

applications, these vary widely in quality and depth. Furthermore, the federal agency does

not provide any meaningful feedback between review cycles.

Finally, an important distinction between the two sources of funding is the unit of selec-

tion. The NIH funds specific projects. Applicants need to map out experiments far into the

future, and have limited flexibility to change course between funding cycles. Together with

study sections’ insistence on preliminary results, this has led many NIH grantees to submit

research that is already quite developed. In contrast, HHMI insists on funding “people, not

projects.” This allows HHMI researchers to quickly reallocate effort and resources away from

avenues that do not bear fruit. The economics literature (e.g., Aghion et al., 2005) views

unfettered control over one’s research agenda as the key distinguishing feature of innovative

activities performed in academia (relative to the private sector). Variation in the unit of

selection reminds us that the degree of effective control experienced by academic researchers

often depends on the arcane details of funding mechanisms. Though not part of Manso’s

(2007) initial analysis, we extend his model in the Appendix to show that providing the re-

searcher greater latitude in her search activities encourages exploration. Table 1 summarizes

the main differences between the two sources of funding.
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NIH
R01 Grants

HHMI
Investigator Program

3-year funding 5-year funding

first review is similar
to any other review

first review is
rather lax

funds dry up
upon non-renewal

two-year phase-down
upon non-renewal

some feedback in
the renewal process

feedback from
renowned scientists

funding is for a
particular project

“people, not projects”

Table 1: Comparison between the two sources of funding.

2 Data and Sample Characteristics

This section provides a detailed description of the process through which the data used in

the econometric analysis were assembled. In order, we describe (1) the Howard Hughes

Medical Investigator sample; (2) the set of control investigators against which the HHMI

scientists will be compared; and (3) our metrics of scientific creativity. We also present

relevant descriptive statistics.

2.1 HHMI Sample

We focus on the 1994 and 1997 cohorts of HHMI investigators, which include 131 researchers

(65 in the 1994 cohort; 66 in the 1997 cohort). 94 scientists were appointed following national

competitions; 37 were “out-of-competition” appointments. Until the early 1990s, HHMI

allocated nomination slots to a small number of elite institutions, which then nominated

researchers for HHMI appointment. While HHMI still reserved the right to reject a nominee,

in practice the Institute often deferred to the host institutions’ choices. As a result, until a
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relatively recent past, HHMI’s selection practices were perceived as relatively opaque, with

connections to administrators playing a role in shaping the nomination process. Formal

competitions and independent evaluations changed the nature of the institute, bringing its

practices more closely in line with meritocratic principles. Out-of-competition appointments

were progressively phased out. This evolution reached its natural conclusion in 2007, when

HHMI announced that in all future competitions, scientists would apply directly to the

Institute, thus bypassing the initial nomination step.

It is important to lay out the criteria necessary for nomination and appointment as an

HHMI investigator. To be eligible, a scientist must be tenured or on the tenure-track at a

major research university, academic medical center, or research institute.4 The nominee must

have an MD or a PhD. The subfields of the life sciences of interest to HHMI are not cast in

stone, but in the recent past the Institute has shunned clinical and epidemiological research,

and concentrated on the fields of cell and molecular biology, neurobiology, immunology, and

biochemistry. Career-stage considerations have varied over time. Traditionally, HHMI has

focused its appointments on relatively early and mid-career investigators, but not so early

that their output would be hard to distinguish from that of their postdoctoral or graduate

school adviser. While this is true of the investigators appointed after the 1994 and 1997

competitions, the out-of-competition nominees include more senior scientists as well as a few

scientists appointed immediately upon the completion of their postdoctoral fellowship.

Upon receipt of nominations from participating institutions, HHMI empanels a jury that

reviews these nominations in two sequential steps. In a first step, the number of nominees

is whittled down to a more manageable number of about 100 scientists, mostly based on

observable characteristics. For example, NIH-funded investigators have an advantage because

the panel of judges interprets receipt of federal grants as a signal of management ability. The

jury also looks for evidence that the nominee has stepped out of the shadow cast by his/her

mentors: an independent research agenda, and a “big hit,” i.e., a high-impact publication in

which the mentor’s name does not appear on the coauthorship list. In a second step, each

remaining nominee’s credentials and future plans are given an in-depth qualitative look.

4There were 154 nominating institutions in the 1994 competition, and 226 in the 1997 competition.
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While an input into this process is a letter grade, the review does not provide a continuous

score that could be used in a regression discontinuity-type framework. Moreover, the cutoff

that separates successful from unsuccessful nominees is endogenous in the sense that it

depends on the overall quality of the applicant pool. In the words of a senior administrator

of the program: “We look for our own discontinuity.5”

Finally, until recently, appointment contracts varied in their initial length. Assistant

Investigators (Assistant Professors in their home institution) were appointed for three years;

Associate Investigators, for five years; and Investigators, for seven years. In our sample,

each of these categories account for about a third of the total number of scientists in the

treatment group. Of course, such variation raises the specter that appointment length might

be endogenous. Senior HHMI administrators have assured us that it is not the case, and we

verify this empirically below.

Six out of 131 appointed investigators withdrew from the program voluntarily.6 They do

so for two reasons. Some accept a top administrative position such as a deanship; HHMI

rules prevent investigators to hold major administrative posts. Others desire to move to an

institution that has no relationship with HHMI, such as the Scripps Research Institute in La

Jolla, CA. Still others wish to move to a different institution during their first appointment.

To prevent the eruption of bidding wars over HHMI investigators, the Institute forces these

investigators to resign their appointment.

2.2 Control Samples

In the absence of information on the runners-up of the HHMI competitions, we must rely on

observable characteristics to create viable control groups. The main challenge is that HHMI

investigators are extremely accomplished at the time of their appointment. Controls should

not only be well-matched with HHMI investigators in terms of fields, age, gender, and host

5HHMI administrators recognize that at the margin, their appointment decisions may deviate from what
a pure numerical ranking would imply in one respect: the Institute wants to maintain a cadre of physician-
scientists who do “translational research,” i.e., physicians whose research attempts to evaluate the clinical
implications of insights gleaned from laboratory research.

6In addition, one investigator passed away.
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institutions; their accomplishments should also be comparable at baseline. In practice, we

draw on two set of academic life scientists to construct our control groups: Pew and Searle

Scholars on the one hand; MERIT awardees from the NIH on the other hand.

Pew and Searle Scholars. The Pew and Searle Scholarships are two early-career prizes

that target scientists in the same life science subfields and similar research institutions as

HHMI. Every year, the Pew and Searle charitable trusts provide seed funding to 40 life

scientists in the first two years of their careers as independent investigators, the period during

which they are building a laboratory. The Pew and Searle scholarships are among the most

prestigious accolades that young researchers can receive at the start of their careers, but they

differ from HHMI investigatorships in one essential respect: they are structured as one-time

grants ($60,000 a year over 4 years for the Pew Scholarship; $80,000 a year for 3 years for the

Searle Scholarship). These amounts are relatively small, roughly corresponding to 35% of a

typical NIH R01 grant. As a result, Pew and Searle scholars must still attract grants from

other funding sources (especially NIH) if they intend to further their independent research

career. After a screen to eliminate investigators whose age place them outside the age range

of the treatment group, a second screen to exclude researchers that go on to be appointed

HHMI investigators, and a final screen to eliminate researchers working in idiosyncratic

fields, we are left with 277 scientists awarded a Pew or Searle scholarship between 1985 and

1998.

MERIT awardees. Initiated in 1987, the MERIT (Method to Extend Research in Time)

R37 Award program extends funding for up to 5 years (but typically 3 years) to a select

number of NIH-funded investigators “who have demonstrated superior competence, outstand-

ing productivity during their previous research endeavors and are leaders in their field with

paradigm-shifting ideas.” The specific details vary across the component institutes of the

NIH, but the essential feature of the program is that only researchers holding an R01 grant

in its second or later cycle are eligible. Further, the application for renewal must be scored

in the top percentile in a given funding cycle. While the MERIT designation is a prestigious

award for mid-career investigators, it pertains to a particular project, not to the scientists’s
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overall portfolio of projects. To construct the MERIT control group, we start from the set

of all scientists whose R01 grants receive the R37 designation between 1993 and 1999. We

eliminate from this set scientists whose highest doctoral degree was obtained prior to 1974;

scientists employed in institutions that are not HHMI host institutions; scientists working

in fields not targeted by HHMI; and scientists who are eventually appointed HHMI investi-

gators. There are 134 scientists meeting these criteria in the final sample, 10 of whom are

also Pew and Searle scholars.

Before presenting descriptive statistics, it is useful to discuss broad features of these

control groups that will influence the interpretation of the treatment effect. The Pew/Searle

sample comprises scientists who show great promise at the very start of their independent

career, when it is difficult to distinguish their output from that of their postdoctoral mentor.

In contrast, the modal HHMI investigator stands at the cusp of the tenure decision when

s/he is appointed. As a result, there is more variability in the expected performance of Pew

and Searle scholars than is the case among HHMI investigators, but as we will show, it is

possible to cull from this group a subsample of scientists whose characteristics match well

those of HHMI scientists at baseline.

Conversely, MERIT awardees must have, by design, completed successfully at least

one R01 funding cycle when they receive the R37 designation. This means that they are

older on average, relative to HHMI investigators. Furthermore, one should think of the

HHMI/MERIT contrast as a comparison between two programs, rather than an evaluation

of the effectiveness of the HHMI program in fostering exploration. The HHMI and MERIT

program have at their core a common feature: the extension of the time horizon available

to scientists before they must show evidence of actual accomplishments. But since the R37

designation is specifically attached to particular project, this program curtails researchers’

ability to branch out in novel directions. As well, it has has no impact on the depth and

quality of the feedback provided to the researcher. Therefore, comparing MERIT awardees

with HHMI investigators can help us ascertain whether shifting the time horizon is enough

on its own to foster exploration and scientific creativity.
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2.3 Measuring Scientific Creativity

Creativity is a loaded term. The wikipedia entry informs us that more than 60 different

definitions can be found in the psychological literature, none of which is particularly au-

thoritative. Furthermore, there exists no agreed-upon measurement metrics or techniques to

measure creative outputs.

The perspective adopted in this paper is very pragmatic, and guided by the constraints

put on us by the availability of data. Amabile (1996) suggests that while innovation “begins

with creative ideas...creativity by individuals and teams is a starting point for innovation; the

first is a necessary but not sufficient condition for the second.” While we certainly agree with

this view at a conceptual level, the measurement of scientific productivity — an already well-

established discipline — makes it hard to recognize this nuance. A crucial development in

the bibliometric literature has been the use of citation information to adjust raw publication

counts for quality. Such an approach is not entirely satisfying here, as both “humdrum”

and “breakthrough” research generate publications and citations. Moreover, some types of

publications, like review articles, tend to generate a number of citations not commensurate

with their degree of originality. It has long been noted that the distributions of publications

and citations at the individual level is extremely skewed, and typically follows a power law

(Lotka, 1926). The distribution of citations at the article level is even more skewed, and this

leads us to measure creative output by summing the number of distinct contributions that

fall into the higher quantiles (top quartile, top ventile, or top percentile) of the article-level

distribution of citations, for an individual scientist in a given time period.

One practical hurdle is truncation: older articles have had more time to be cited, and

hence are more likely to reach the tail of the citation distribution. To overcome this issue, we

compute a different empirical cumulative distribution function for each year.7 For example,

in the life sciences broadly defined, an article published in 1980 would require at least 98

citations to fall into the top ventile of the distribution; an article published in 1990, 94

citations; and an article published in 2000, only 57 citations (this is illustrated in Figure 1).

7We thank Stefan Wuchty and Ben Jones from Northwestern University for performing these computa-
tions.
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With these empirical distributions in hand, it becomes meaningful to count the number of

articles that fall, for example, in the top percentile over a scientist’s career.8 Counting the

number of contributions that fall “in the tail” is predicated on the idea that exploration is

more likely to result in high-impact publications, relative to exploitation.9

We rely on two additional metrics of scientific excellence. We tabulate elections to two of

the most prestigious scientific societies: the Institute of Medicine and the National Academy

of Sciences. We also measure the number of students and fellows trained in a scientist’s lab

that go on to win a Pew or Searle scholarship early in their independent career.10

Conflating the creative process with creative outcomes in this way raises two objections.

First, it is possible that exploration might also fatten the left-hand tail of the outcome

distribution: pushing the boundaries of one’s field is a riskier endeavor than cruising along an

already-established scientific trajectory. Second, it seems intuitive that scientists would need

to change the direction of their research endeavors when they take on higher-risk projects,

independently of the success or failure of these projects. To address the first objection, we

compute the number of contributions that fall in the bottom quartile of the vintage-specific,

article-level distribution of citations (about three citations or less).11 To address the second

objection, we calculate the degree of overlap in the MeSH keywords corresponding to articles

published after selection into the program, relative to before selection.12 Our conjecture is

8The Top 5 life scientists according to this metric are Solomon Snyder, a neuroscientist at Johns Hopkins;
Walter Willett and Meir Stampfer, two epidemiologists at the Harvard School of Public Health; Robert
Lefkowitz, a molecular biologist at Duke University and an HHMI investigator; and Michael Karin, a phar-
macologist at UCSD.

9We exclude review articles, editorials, and letters from the set when computing these measures. We
also eliminate articles with more than 20 authors. However, we are unable to tell purely methodological
contributions apart from more substantive ones. The former are said to receive a disproportionate amount
of citations.

10We do not focus on the award of Prizes, such as the Nobel Prize, the Lasker Award, and the E.B. Wilson
Medal (awarded by the American Society for Cell Biology), because there are simply too few of them to
produce meaningful variation. We ignore approved pharmaceutical products with which a scientist may be
associated for the same reason. Finally, we do not take advantage of patent data because many patents
applied for during the period of this study have not been granted yet; many more still have not had the time
to garner citations that would enable us to distinguish “blockbuster” patents from worthless ones.

11Too few investigators exit science altogether to make exit a useful indicator of failure.
12MeSH is the National Library of Medicine’s controlled vocabulary thesaurus. It consists of sets of terms

naming descriptors in a hierarchical structure that permits searching at various levels of specificity. At the
most general level of the hierarchical structure are very broad headings such as “Anatomy” or “Mental
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that explorative behavior should result in a lower degree of keyword overlap for a given

scientist.

2.4 Descriptive Statistics

For each scientist, we gathered employment and basic demographic data from CVs, some-

times complemented by Who’s Who profiles or faculty web pages. We record the following

information: degrees (MD, PhD, or MD/PhD); year of graduation; mentors during graduate

school or post-doctoral fellowship; gender; and department(s).

We obtain publication and citation data from PubMed and Thomson Scientific’s Web

of Science, respectively. We also collect patent data from the USPTO database. Funding

information stems from HHMI, NIH’s Compound Applicant Grant File (CGAF), as well as

a number of non-profits that are active in the funding of basic biomedical research: The

Pew, Searle, Beckman, MacArthur, March of Dimes, and Sloan foundations. We sum the

direct costs awarded to each scientist across funding source to create our measure of overall

research funding.13

Finally, we categorize the type of laboratory run by each scientist into four broad types:

macromolecular labs, cellular labs, organismal labs, and translational labs. For the first

three types, the taxonomy is based on the level of analysis at which most of the research

is performed in the lab. Some scientists work mostly at the molecular level (i.e., in test

tubes). This type of research does not require living cells, and includes fields such as molec-

ular biology, biochemistry, and structural biology. Others do most of their research at the

cellular level (i.e., in petri dishes), and ask questions that require living cells. Prominent

subfields include subcellular trafficking, cell morphology, cell motility, and some aspects of

cell signaling. Yet others work with model organisms (mice, flies, monkeys, worms, etc.),

asking questions that require, if not a whole organism, at least the interaction of multiple

Disorders.” More specific headings are found at more narrow levels of the eleven-level hierarchy, such as
“Ankle” and “Conduct Disorder.” There are 24,767 descriptors in the 2008 MeSH.

13This measure fails to capture industrial sources of funding or start-up funds provided by the employing
institution, if any.
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cells. The translational label is given to labs run by physician-scientists whose research have

both a laboratory and a clinical component.

Demographic characteristics. The distributions of fixed traits for control and treatment

scientists are presented in Tables 2 and 3. The HHMI sample is more gender-balanced; it also

contains more scientists with dual MD/PhD degrees. Turning our attention to laboratory

type, HHMI investigators are slightly less likely to work primarily at the cellular level, and

slightly more likely to be engaged in “translational” research.

HHMI and control samples at baseline. Table 4 presents baseline descriptive statistics.

Panel A pertains to the 1994 cohort; Panel B to the 1997 cohort. Focusing on Panel A,

approximately 37% of the HHMI sample is female, versus 22% of the Pew/Searle sample,

and 19.4% of the MERIT sample. HHMI investigators are of the same career age on average

as the Pew/Searle scholars, but are significantly younger than the MERIT awardees. They

are much better funded than Pew/Searle scholars at baseline ($1.45 million vs. $0.83 million

on average), but much less well funded than MERIT awardees ($1.45 million vs. $2.93

million on average). In terms of raw publication output, the pattern is very similar, with

HHMI investigators lagging significantly MERIT awardees, but leading Pew/Searle scholars.

As one looks at the rate of high-impact publications, the differences between the HHMI

and MERIT samples disappear, indicating that HHMI investigators have a much higher “hit

rate” than MERIT awardees, even at baseline. The patterns in Panel B (for the 1997 cohort)

are very similar.

Of course, these averages tell only part of the story. Figures 3A and 3B plot the distribu-

tions of baseline publications in the top 5% of the citation distribution for the 1994 cohort

(plots for the 1997 cohort paint a very similar picture). Note that we are only including here

publications for which the scientist is the senior author, i.e., where s/he appears in last po-

sition on the authorship list. The distribution for Pew/Searle scholars appears significantly

more skewed than that for HHMI investigators. The contrast with MERIT awardees is less

sharp: the two distributions have roughly the same shape. Similarly, Figures 4A and 4B

plot the distributions of NIH funding at baseline for treatment and control scientists. The
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distribution for the MERIT sample is, almost by construction, less skewed than that of the

HHMI sample. In contrast, the shape of the distributions for HHMIs and Pew/Searle schol-

ars are very similar. In summary, characteristics that determine selection into the HHMI

program are not especially well-balanced at baseline between treatment and control scien-

tists. However, the region of common support is wide, indicating that it should be possible

to create “synthetic” control scientists that will be good matches for HHMI investigators on

these important dimensions.

Career achievement. While the differences between treatment and control samples are

relatively modest at baseline, their magnitude increases when we examine achievements over

the entire career (up to 2005). In Table 5 we see that HHMI scientists publish approxi-

mately 7 more career papers relative to control scientists, with this output of higher quality

by all measures. Their work generates more than 9,000 citations on average, and many of

their contributions belong in the right-hand tail of the citation distribution. We also compute

the h index due to Hirsch (2005): h is the highest integer such that an individual has at least

h publications cited at least h times. In the HHMI sample, h is approximately 42, relative to

35 among the controls. HHMI scientists also hold about twice as many career patents than

control scientists, on average. Of course, these accomplishments should be viewed in light of

their tremendous funding advantage: HHMI scientists receive approximately $12 million in

funding, versus $5.5 million on average for the controls.

When we focus on discrete career accolades (Table 6), we observe an even greater contrast

between HHMI and control scientists. Approximately 29% of the HHMI investigators are

elected members of the National Academy of Sciences; 15% are elected members of the

Institute of Medicine. This is in contrast to 4% and 3%, respectively, for the control sample.

Our 131 HHMI investigators train 72 future Pew or Searle scholars. This is only one less

that the number produced by 477 control scientists.

Since averages can mask a great deal of heterogeneity, we also plot histograms for the

distributions of various metrics of scientific excellence. Figures 5 through 8 reveal a greater

mass in the right tail of the distribution for HHMI scientists, relative to controls, in terms
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of high-impact publications (top ventile, top percentile), overall funding, and cumulative

number of citations, respectively. This is even more pronounced if one focuses solely on

the “after” period, as in Figures 9A through 9D. These plot the distribution of HHMI and

control scientists’ “hit rate,” i.e., the proportion of their articles published that fall in the top

percentile of the article-level distribution of citations. In each case, we observe that many

more HHMI investigators than controls belong to the right-hand tail of the distribution.

Finally, in Table 7, we present a descriptive assessment of the program’s aggregate out-

comes. From the funder’s standpoint, the program could be valuable even if most agents

fail to create real breakthroughs, as long as a few succeed in producing sufficiently valuable

ideas. Both HHMI and control scientists become more successful in the post-selection pe-

riod, but these improvements appear to be more dramatic for the HHMI investigators. Their

magnitudes are also significantly larger for the 1994 cohort. Since our data end in 2005, it

is certainly possible that an additional 3 years of follow-up data would have brought the

results of the 1997 cohort in line with those of the 1994 cohort. Lastly, it is immediately

apparent that, per dollar of funding, HHMI investigators do not exhibit greater output than

control scientists. Of course, one should not interpret this result as providing evidence that

the program is not cost-effective: if the additional exploration efforts induced were enough

to produce even a single idea on the scale of, for instance, recombinant DNA technology,

then the welfare benefits of the program might well dwarf the additional level of resources

provided to HHMI investigators in the aggregate.

3 Econometric Considerations

In order to estimate the treatment effect of the HHMI investigator program, we must con-

front a basic identification problem: appointment might be mostly driven by expectations

about the creative potential of scientists, and selected investigators might have experienced

very similar outcomes had they not been appointed. As a result, traditional econometric

techniques, which assume that assignment into the program is random, cannot recover causal

effects. The standard approach for this type of problem is instrumental variable estimation.
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Yet, the credibility of IV estimates hinges on the validity of the associated exclusion restric-

tion(s). At this juncture, the elite of academic life science is not a setting that provides

many (or in fact any) sources of exogenous variation in the probability of selection. In what

follows, we will simply assume that a good instrument is not available.

A second approach is to rely on within-scientist variation to identify the program’s treat-

ment effect. Scientist fixed effects purge estimates from any influence of unobserved hetero-

geneity that is constant over time. However, it is well-known that for difference-in-differences

estimation to be valid, it must be the case that the average outcome for the treated and

control groups would have followed parallel paths over time in the absence of treatment. This

assumption is implausible if pretreatment characteristics that are thought to be associated

with the dynamics of the outcome variable are unbalanced between treatment and control

units. Below, we provide strong evidence that selection into the program is influenced by

transitory shocks to scientific opportunities. In this respect, estimating the causal effect of

HHMI appointment on research output presents similar challenges to that of estimating the

effect of a job training program on wages. In the job training example, treated individuals

have lower earnings on average (relative to their pre-treatment average) in the year imme-

diately preceding enrollment into the program; therefore, the fixed effects estimator is likely

to overestimate the treatment effect. Conversely, we will show that HHMI scientists have

higher output in the years immediately preceding their appointment; as a result, the fixed

effect estimator is likely to underestimate the effect of the program on scientific achievement.

As an attempt to overcome this challenge, we estimate the effects of the program using

Inverse Probability of Treatment Weighted (IPTW) estimation (Robins et al., 2000; Hernán

et al., 2001). This technique is closely related to propensity-score matching (Rosenbaum and

Rubin, 1983; Dehejia and Wahba, 2002). Both techniques make the (untestable) assumption

that selection into the program is based on variables that are observable to the econome-

trician, but IPTW extends the idea of matching on observables to the case of time-varying

treatments. In particular, IPTW estimation allows one to recover average treatment effects

even in the presence of time-varying confounders, i.e., variables that predict selection into

treatment and are correlated with future values of the dependent variable.
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Inverse Probability of Treatment Weighted (IPTW) estimation: A Primer. Con-

sider a program in which treatment decisions are made in T + 1 distinct periods 0, 1, . . . , T.

At each time t, for each individual i, an outcome of interest yit is measured, and a discrete

treatment TREATit ∈ {0, 1} can begin. We will model initiation of treatment as an absorb-

ing state, i.e., once begun, treatment is never interrupted. In practice, this means that we

will ignore the termination decision when evaluating the program, focusing purely on the

effect of the “intent to treat.” Also measured at each point in time are a set of exogenous

covariates Xit and time-varying confounders Zit. (X, Z) are prognostic factors for treatment.

For any variable W, denote W̃it its history up to time t.

Let ya
it be the value of y that would have been observed at time t had i chosen treatment

sequence ãit = (ai0, ai1, . . . , ait) rather than his observed treatment history ˜TREAT it.

By definition, the average treatment effect of treatment history ã on the outcome y is

the difference E[ya]− E[y0], the average difference between outcomes when following ã and

outcomes when never treated. We model the mean of ya conditional on treatment and

exogenous covariates X as:

E[ya
it| ˜TREATit, Xit] = β0 + β

′

1Xit + β2TREATit (1)

where TREATit is a regime indicator variables that switches from 0 to 1 upon treatment

initiation. Following Robins (1999), we introduce the Sequential Conditional Independence

Assumption (SCIA), which provides a formal way to extend the assumption of selection on

observables to the case of dynamic treatments:

ya
it q TREATit| ˜TREAT i,t−1, Z̃i,t−1, X̃it

for all i and t, where the q sign denotes statistical independence. Robins (1999) shows that

under SCIA, the average treatment effect β2 is identified and can be recovered by estimating

yit = β0 + β
′

1Xit + β2TREATit + εit (2)

by weighted least squares, where the weights correspond to the inverse probability of following

actual treatment history ˜TREATit for individual i. Note that (2) differs from (1) in that

the observed outcomes y have been substituted for the counterfactual outcomes ya.
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Implementing IPTW estimation is relatively straightforward. Under SCIA, the selection

bias can be removed by weighting the regression by:

wit =
1

t∏
τ=0

Prob(TREATiτ | ˜TREAT i,τ−1, Z̃i,τ−1, X̃iτ )

Each factor in the denominator is the probability that the researcher received her own ob-

served treatment at time τ , conditional on her past treatment history and on her past history

of “prognosis factors” for treatment, whether time-varying or fixed over time. Therefore,

the denominator of wit represents the conditional probability that an individual followed

his or her own history of treatment up to time t. Suppose that all relevant time-varying

confounders are observed and included in Z. Then, weighting by wit effectively creates a

pseudo-population in which Z no longer predicts selection into treatment and the causal

association between treatment and outcome is the same as in the original population. We

refer to β̂2 when eqn. (2) is weighted by wit as the Inverse Probability of Treatment Weighted

(IPTW) estimator of β2.
14

Estimation of the weights. Estimating the weights is particularly straightforward in

the case examined here, for two reasons. First, appointment is a discrete regime change:

HHMIit is uniformly equal to zero in the years preceding selection, and uniformly equal to

one after selection. Second, a “before” and “after” period can be unambiguously defined for

both control and treatment scientists, since all scientists are only at risk of appointment when

an HHMI competition takes place (in practice, we will evaluate each competition separately).

As a result, only the cross-section corresponding to the year in which the competition takes

place is necessary to estimate the weights, and we can drop the index t from swit ≡ swi. We

estimate a logit model for

Prob(HHMIi = 1) = α0 + α1Zi,baseline + α2Xi (3)

14One might worry about performing statistical inference using “second stage” IPTW estimates, since the
weights that are used as input in the outcome equation are themselves estimated. In contrast to two-step
selection correction methods, Wooldridge (2002) has shown that the standard errors obtained in this case
are conservative.
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where the vector X includes exogenous characteristics of the scientists (such as career age

at baseline, gender, degree, and laboratory type, etc.) and the vector Z includes two time

varying confounders: NIH grantee status at baseline, and number of senior-authored, high-

impact publications at baseline. Our estimate of swi is 1
1−p̂i

if scientist i is a control, and 1
p̂i

if scientist i is selected by HHMI as an investigator, where p̂i is the predicted probability of

appointment implied by (3).

Sequential Conditional Independence: An Econometric Free Lunch? IPTW esti-

mation relies on the assumption that selection into treatment occurs solely on the basis of

factors observed by the econometrician. This will appear to many readers as a strong as-

sumption — one that is unlikely to be literally true. Despite the strength of the assumption,

we consider the IPTW estimates to be a useful component of our overall approach. Past re-

search in the program evaluation literature has shown that techniques that assume selection

on observables perform well (in the sense of replicating an experimental benchmark) when

(1) researchers use a rich list of covariates to model the probability of treatment; (2) units are

drawn from similar labor markets, and (3) outcomes are measured in the same way for both

treatment and control groups (Dehejia and Waba, 2002; Smith and Todd, 2005). Conditions

(2) and (3) are trivially satisfied here, but one might wonder about condition (1), namely the

extent to which the analysis accounts for the relevant determinants of HHMI appointment.

Through interviews with HHMI senior administrators, we have sought to identify the cri-

teria that increase the odds of appointments, conditional on being nominated. In particular,

the Institute appears focused on making sure that its new investigators have stepped out of

the shadow cast by their graduate school or postdoctoral mentors. They also want to ensure

that these investigators have the leadership and managerial skills required to run a successful

laboratory, and interpret receipt of NIH funding as a important signal of possessing these

skills. In practice, we capture the “stepping out” criteria by counting the number of last-

authored, high-impact contributions the scientist has made since the beginning of his/her

independent career.15 We measure leadership skills with an indicator variable for principal

15A robust social norm in the life sciences systematically assigns last authorship to the principal investi-
gator, first authorship to the junior author who was responsible for the actual conduct of the investigation,
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investigatorship on at least one R01 grant at baseline. Of course, our selection equation also

includes important demographic characteristics, such as gender, laboratory type, degree, and

career age.

Despite these efforts, the conclusion that our list of proxies for the determinants of se-

lection is exhaustive, i.e., that there is no residual selection on unobservables, is premature

without further evidence. In particular, we are hard-pressed to control for the true creative

potential of the research agenda laid out by these scientists in their grant applications, regard-

less of funding source. Unobserved heterogeneity of this type is likely to bias upwards IPTW

estimates. As a result, we contrast results of cross-sectional IPTW specifications with those

of specifications that include scientist fixed effects. Since HHMI scientists exhibit higher

output in the years immediately preceding selection (relative to their pre-appointment aver-

age), fixed effects models likely underestimate the effect of HHMI appointment on scientific

achievement. In combination, however, these two techniques implicitly define a confidence

interval, with the fixed-effects estimate providing a lower bound, and the IPTW estimate

providing an upper bound. The evidence presented below will show that, in at least some

cases, these bounds are sufficiently tight to pin down the sign of the treatment effect.

4 Results

Our presentation of results is organized in three sets of tables. Tables 8 through 10 pertain

solely to HHMI investigators, and validate empirically some of the purported distinctive fea-

tures of the program. Table 11 presents evidence on the determinants of HHMI appointment.

Finally, Tables 12 through 14 present estimates of the program’s effects.

HHMI appointments: rhetoric and practice. We begin by validating our claims about

the terms of the HHMI investigator award. Table 8 reports results of OLS regressions in which

the dependent variable is the log of the number of days elapsed between initial appointment

and the first renewal decision, for the 127 HHMI investigators who did not withdraw from the

and apportions the remaining credit to authors in the middle of the authorship list, generally as a decreasing
function of the distance from the extremities of the list.
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program voluntarily. The results demonstrate that variation in the length of initial HHMI

appointment is determined by career age, rather than by accomplishments at the time of

the appointment. This is true whether we measure accomplishments with the raw number

of publications at baseline (column 1); the JIF-weighted number of publications at baseline

(column 2); the total number of cites as of 2007 to all original research articles written up

to the baseline year (column 3); or the number of publications in the top ventile and top

percentile of the citation distribution (columns 4 and 5). Other important demographic

characteristics, such as lab type, gender, degree, and whether the appointment was out-of-

competition, also have no bearing on the length of the initial appointment. As a result,

the rest of the paper will maintain the assumption that appointment length is exogenous,

conditional on career age.

Table 9 confirms that the unconditional probability of reappointment is high: 84% of

investigators are reappointed at the end of the first appointment; the figure is only 77% at

the end of the second appointment. The latter figure is also less precisely estimated, since

only a small number of HHMI investigators appointed following the 1997 competition had

come up for second review at the time we collected the data. However, our contention that

the first review is laxer than the second has implications for the conditional probability of

first and second reappointment. Specifically, if the perception of the program’s administra-

tors and investigators is accurate, the probability of second reappointment should be more

responsive to achievements during the preceding term than the probability of first reappoint-

ment. Table 10 provides evidence consistent with this hypothesis. It reports estimates from

logit models of reappointment as explained by various indicators of achievement during the

preceding term. We find a consistent pattern, regardless of the achievement variable on the

right-hand side: higher achievement significantly increases the likelihood of renewal at the

end of the second term, but not at the end of the first term. This difference is all the more

remarkable since, as previously explained, only 70 investigators have come up for second

review in our data, as opposed to 127 for first review. Regrettably, the evidence does not

enable us to isolate any observable factor that explains the decision to not renew an HHMI’s

investigator at the end of his/her first term.
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From these results, we conclude that the HHMI program conforms both in its stated and

actual practices with the features that Manso (2007) predicts should encourage exploration.

Determinants of selection. We now turn to the observable determinants of selection into

the HHMI program (Table 11). We break down the analysis by cohort (1994 and 1997),

and by control group (Pew/Searle scholars and MERIT awardees). For each combination

of cohort and control group, we present the results for logit specifications that include only

demographic characteristics (columns 1a, 1c, 2a, 2c) and for specifications that add to these

demographic controls time-varying confounders (columns 1b, 1d, 2b, 2d). Among the demo-

graphic characteristics, the only consistent pattern is the higher appointment probability of

female scientists in the 1994 cohort, regardless of control group. Consistent with the quali-

tative evidence on the selection process, we find that the number of “hit papers” published

as last author at baseline is highly predictive of appointment (except in the case of the 1997

cohort when MERIT awardees form the control group). We find inconsistent evidence re-

garding the effect of holding an R01 grant at baseline. There is no effect with the Pew/Searle

control group, and a negative effect with the MERIT control group. The latter result simply

reflects the fact that MERIT awardees must, by construction, already receive NIH funds in

order to receive the R37 designation.

In the results presented below, we weight the observations corresponding to each sci-

entist by his/her inverse probability of appointment as implied by the results of Table 11,

columns 1b, 1d, 2b, and 2d.

An econometric side-note. The number of articles published, the number of keywords

overlapping between articles published in two different periods, or NIH grants awarded are

examples of count dependent variables — non-negative integers with many zeros and ones.

For example, 8.25% of the scientist/year observations in the data correspond to years with

no publication output; the figure climbs to 37.08% if one focuses on the count of publications

in the top ventile of the citation distribution; and to 66.83% if one focuses on the count of

publications in the top percentile. Following a long-standing tradition in the study of scien-

tific and technical change, we present quasi-maximum likelihood estimates of the outcome
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equations of interest. Because the Poisson model is in the linear exponential family, the coef-

ficient estimates remain consistent as long as the mean of the dependent variable is correctly

specified (Gouriéroux et al., 1984). Further, “robust” standard errors are consistent even if

the underlying data generating process is not Poisson. In fact QML Poisson estimation can

be used with any non-negative dependent variables, whether of a count or continuous nature

(Wooldridge, 1996; Santos Silva and Tenreyro, 2006), as long as the variance/covariance

matrix is computed using the outer product of the gradient vector.16

Effects of HHMI appointment. Our main goal is to estimate the effect of HHMI appoint-

ment on scientific excellence — the outputs of the creative process. But taken literally, the

Manso (2007) model does not predict that “pay-for-future performance” incentives will re-

sult in better outcomes; it simply asserts that agents subject to those incentives will increase

their rates of exploration, relative to agents who receive piece rates. As a result, we begin

our investigation of the program’s effects by asking whether HHMI appointment increases

the number of publication keywords that overlap between the set of articles published in

the “before period” (i.e., the interval [yearbln − 5; yearbln]), and the “after” period (i.e., the

interval [yearbln + 3; 2005]). We reason that if scientists alter the risk profile and time hori-

zon of the projects they begin following appointment, this could translate in articles with

somewhat different research foci, regardless of their ultimate scientific impact. We allow for

a three-year “wash-out” period following the baseline year because we expect publications

immediately following appointment will report the results of projects that began before the

scientists were eligible for HHMI appointment.

For each combination of cohort/control group, we report both the results of a “näıve”

specification in which the extent of keyword overlap between HHMI investigators and control

scientists is assessed (columns 1a, 1c, 2a, 2c); and the results of a specification which incor-

porates inverse probability of treatment weights (columns 1b, 1d, 2b, 2d). In each model,

we include an offset for the number of papers published in the “before” period, so that what

16In other words, inference on the coefficient estimates presented below do not make use of the Poisson
variance assumption. We assume only that the conditional mean of our dependent variables can be written
E[y|X] = exp(X

′
β), a requirement we consider fairly innocuous, given the non-negative nature of the

outcomes considered here.
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is being analyzed is a normalized rate of keyword overlap. All estimates are presented in the

form of incidence rate ratios; the formula (eβ − 1) × 100% (where β denotes an estimated

coefficient) provides a number directly interpretable in terms of elasticity. Model (1b), for

instance, implies that the rate of keyword overlap is (1.114 − 1.000) × 100 = 11.4% higher

for HHMI investigators, relative to Pew/Searle scholars in the 1994 cohort. In contrast, the

rate of is overlap is (1.000− 0.907)× 100 = 9.93% lower for HHMI investigators, relative to

MERIT awardees (column 2b). At this juncture, we do not have an explanation for these

contradictory results.

In Tables 13A and 13B, we pool cohorts and contrast cross-sectional estimates of the pro-

gram’s effect with estimates that include scientist fixed-effects, using the conditional fixed

effect poisson model of Hausman et al. (1984). As noted earlier, these estimates are likely

to understate the causal effect of HHMI appointment. Table 13A compares HHMI investi-

gators with Pew/Searle scholars. We find that the fixed-effects estimates are always much

smaller than the corresponding cross-sectional estimates. Relative to Pew/Searle scholars,

HHMI investigators increase the raw number of publications by 11.5% after appointment,

the number of publications in the top quartile by 11.5%, and the number of publications

in the top ventile and top percentile by about 15% (statistically insignificant in the latter

case). The magnitudes in Table 13B are smaller, with a relative increase of about of 10%

in the number of publications in the top quartile (statistically significant only at the 10%

level), and statistically insignificant increases of 6% and 3% for the number of publications

in the top ventile and top percentile, respectively. In other words, the lower bounds for the

average treatment effect provided by the fixed-effects estimates are not always informative.

Our final set of tables (Table 14, panels A through D) present inverse probability of

treatment-weighted (IPTW) estimates, each time contrasting them with the näıve pooled

cross-sectional estimates. In each case, inference is based on robust (QML) standard errors,

clustered at the scientist level. Under the sequential conditional independence assumption,

these estimates correspond to the average treatment effect of the program on the outcome

of interest. Panels A and B use Pew and Searle scholars as a control group, for the 1994
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and 1997 cohort respectively. Panels C and D perform a similar exercise but use MERIT

awardees as the control group.

We discuss the results displayed in Panels A and C in detail. The substantive conclusions

drawn from the results for the 1997 cohort are consistent with those for the 1994 cohort,

but with smaller magnitudes.17 We observe a positive and statistically significant 26.4%

increase for the raw number of articles published in Panel A. The corresponding number

is an insignificant 11.9% in Panel B. As a whole, the results in these panels yield three

important and relatively robust conclusions: (a) regardless of the outcome measured, the

estimated effect of the HHMI investigator program is in most cases positive and statistically

significant; (b) the magnitude of the effect is lower once we account for selection into the

program based on observable characteristics; and (c) the program has a bigger effect on

the upper tail of the distribution of accomplishments. These results strongly support our

hypothesis that the HHMI program, and the incentives for exploration incentives it embodies,

leads to a higher rate of path-breaking innovation. Recall that MERIT awardees benefit from

longer time horizons, before they must show evidence of achievements, relative to other NIH

grantees. The fact that even compared with this population, one can still find an effect of

HHMI appointment implies that the program’s other features (rich and detailed feedback;

“people, not projects”) are important as well.

However, we find no support for another implication of the model: that exploration in-

centives also result in higher rates of failure, relative to the effect of “exploitation incentives”

embodied by the NIH grant funding mechanism. We measure failure by the rate of publica-

tions in the bottom quartile of the citation distribution. In this case, the treatment effects we

measure fail to reach statistical significance, are relatively small in magnitude, and negative

in sign, contrary to our expectations.

17Of course, there is only a relatively short period to evaluate the effects of the program in that case,
which may explain some of the discrepancies we observe.
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5 Discussion and Conclusion

We examine the creative outputs of two groups of scientists whose research was funded under

mechanisms with rather distinct incentive features: HHMI investigatorship on the one hand;

NIH funding on the other hand. We find that HHMI appointments are associated with

higher rates of output, especially when we constrain our outcome measures to lie far in the

right-hand tail of the achievement distribution. Because the HHMI program is comparatively

tolerant of early failure, provides rigorous feedback to researchers, and lets them reallocate

resources quickly from failed to promising avenues of enquiry, our results provide support

for the main comparative statics found in Manso (2007).

All our results depend on the maintained assumption that selection into the program

operates solely on the basis of observable factors. As in many observational studies, this

assumption cannot be tested from the data. It is obviously better to include a large set of

potential confounders to model the probability of selection, but we recognize that the sequen-

tial conditional independence assumption may still not be precisely or even approximately

tenable. We are currently examining the feasibility of using alternative methodologies, in-

cluding using the nomination stage of the appointment process as a source of exogenous

variation in the probability of selection.

Even if our estimates of HHMI appointments’ treatment effects can be given a causal

interpretation, ascribing them to the program’s distinctive incentive features requires an

interpretive leap. First, we are unable to ascertain the extent to which the program increases

productivity, rather than output. A quick glance at the descriptive statistics suffices to show

that, per dollar of funding, HHMI investigators do not publish more papers than researchers

funded by the NIH. Of course, if the supply of genuinely creative ideas is very inelastic, then

publications per dollar of funding will not adequately measure researchers’ productivity. In a

recent paper, Jacob and Lefgren (2007) estimate that the elasticity of citations to R01 grant

funding is quite small in magnitude, and often insignificantly different from 0. Given the

regression-discontinuity design followed in their paper, it would be hazardous to import their

estimate for the analysis of the scientist population analyzed in the present study. To our
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knowledge, there exists no credible estimate of the parameters of an idea production function

that would enable us to distinguish the effects of the program on scientific productivity, rather

than output.

Second, the prestige conferred by HHMI appointment might have independent effects

on scientists’ achievements, either by increasing exposure to their research, or through a

dynamic of ascription that has long been the focus of sociologists of science (Merton, 1968).

Of course, the magnitude of the program’s “anointment effects” is an empirical question, best

answered in a separate study. Third, collaboration between scientists in the treatment and

control groups might threaten the validity of the comparisons drawn in the analysis. This

will be the case if there are peer effects from coauthorship (Azoulay et al., 2008). Fourth, it

is possible that NIH grant and HHMI funding mechanisms complement one another in ways

we cannot account for. HHMI investigators remain eligible for NIH grants, and 82% (107)

of those in our sample have at least some NIH funding at the end of the observation period.

As such, our results are most informative about funding decisions at the margin, those that

help determine the optimal mix of “exploration” and “exploitation” incentives necessary to

stimulate the creation of particularly valuable scientific knowledge.

Finally, our results should not be interpreted as a critique of NIH and its funding policies.

While “exploration” incentive contracts appear to stimulate creativity in this setting, it is

unclear how easily, and at what cost, the program could be scaled up. Only scientists showing

exceptional promise are eligible for HHMI appointment, and our results may not generalize

to the overall population of scientists eligible for grant funding, which include gifted as

well as those with more modest talent. Moreover, HHMI provides detailed evaluation and

feedback to its investigators. The richness of this feedback consumes a great deal of resources,

particularly the time of the elite scientists that serve on review panels, and its quality might

degrade if the program were expanded drastically.

Much more could be done to explore the impacts of contract design on research output in

this setting. For example, do the quality of peers at these investigators’ institution temper or

magnify these effects? Do the effects of exploration-style incentives exhibit hysteresis, i.e., do
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they lead scientists to be more creative under more conventional contractual arrangements?

Answering these questions are the next steps of our research agenda.
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Tables & Figures 
 
Figure 1: Measuring the Tail of the Distribution of Citations 
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Figure 2: Length of NIH R01 Grants 
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Figure 3A: Baseline Number of “Hits” as PI — 1994 Cohort 
  Pew/Searle Scholars vs. HHMI 
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Figure 3B: Baseline Number of “Hits” as PI— 1994 Cohort 

  MERIT Awardees vs. HHMI 
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Figure 4A: Baseline NIH Funding — 1994 Cohort 
       Pew/Searle Scholars vs. HHMI 
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Figure 4B: Baseline NIH Funding — 1994 Cohort 
     NIH MERIT Awardees vs. HHMI 
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Figure 5: Pubs. in the Top Ventile of the Distribution of Citations 
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Figure 6: Pubs. in the Top Percentile of the Distribution of Citations 
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Figure 7: Career Funding, All Sources 
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Figure 8: Career Number of Citations 
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Figure 9A: Treatment Period “Hit Rate” — 1994 Cohort 
  Pew/Searle Scholars vs. HHMI 
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Figure 9B: Treatment Period “Hit Rate”— 1997 Cohort 
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Figure 9C: Treatment Period “Hit Rate” — 1994 Cohort 
  NIH MERIT Awardees vs. HHMI 
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Figure 9D: Treatment Period “Hit Rate”— 1997 Cohort 
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Table 2: Demographic Characteristics 
  Female MD PhD MD/PhD US Born 

Controls 477 104 50 362 65 380 
(21.80%) (10.50%) (75.90%) (13.60%) (79.70%) 

HHMIs 131 40 12 94 25 108 
(30.50%) (9.20%) (71.80%) (19.10%) (82.40%) 

       

Total 608 144 62 456 90 488 
(23.70%) (10.20%) (75.00%) (14.80%) (80.30%) 

 
 
 
 
Table 3: Lab Type 
  Macromolecular Cellular Organismal Translational

Controls 477 149 114 155 59 
(31.20%) (23.90%) (32.50%) (12.40%) 

HHMIs 131 46 22 42 21 
(35.10%) (16.80%) (32.10%) (16.00%) 

      

Total 608 195 136 197 80 
(32.10%) (22.40%) (32.40%) (13.20%) 
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Table 4A: Descriptive Statistics at Baseline — 1994 Cohort 
  Mean Std. Dev Min. Max.
Pew/Searle Scholars (n=277) 
 Degree Year 1984.285 3.39 1974 1991 
 Female 0.22 0.415 0 1 
 Cum. NIH Funding (excl. P01, etc.) $827,135 $963,611 $0 $10,698,334 
 Cum. Nb. of Pubs. 22.278 17.563 2 200 
 Cum. Nb. of Pubs. in the Top 5% 8.924 6.28 0 42 
 Cum. Nb. of Pubs. in the Top 1% 3.412 3.174 0 16 
 Nb. Keywords Overlap before/after 42.516 22.724 2 154 
      

NIH MERIT Awardees (n=134) 
 Degree Year 1978.112 2.988 1974 1988 
 Female 0.194 0.397 0 1 
 Cum. NIH Funding (excl. P01, etc.) $2,930,903 $1,844,661 $0 $9,366,733 
 Cum. Nb. of Pubs. 60.806 33.448 14 227 
 Cum. Nb. of Pubs. in the Top 5% 20.336 15.408 0 89 
 Cum. Nb. of Pubs. in the Top 1% 7.015 7.71 0 41 
 Nb. Keywords Overlap before/after 83.007 37.025 21 221 
      

HHMIs (n=65) 
 Degree Year 1983.723 4.002 1974 1991 
 Female 0.369 0.486 0 1 
 Cum. NIH Funding (excl. P01, etc.) $1,455,499 $1,684,935 $0 $7,220,260 
 Cum. Nb. of Pubs. 30.169 26.117 1 172 
 Cum. Nb. of Pubs. in the Top 5% 15.862 16.834 0 119 
 Cum. Nb. of Pubs. in the Top 1% 8.092 10.464 0 73 
 Nb. Keywords Overlap before/after 60.292 35.264 3 216 
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Table 4B: Descriptive Statistics at Baseline — 1997 Cohort 
  Mean Std. Dev Min. Max.
Pew/Searle Scholars (n=333) 
 Degree Year 1985.393 4.019 1974 1994 
 Female 0.234 0.424 0 1 
 Cum. NIH Funding (excl. P01, etc.) $1,225,889 $1,228,677 $0 $12,826,429 
 Cum. Nb. of Pubs. 28.502 22.265 4 250 
 Cum. Nb. of Pubs. in the Top 5% 11.132 7.847 0 56 
 Cum. Nb. of Pubs. in the Top 1% 4.219 3.932 0 23 
 Nb. Keywords Overlap before/after 43.742 25.151 0 164 
      

NIH MERIT Awardees (n=134) 
 Degree Year 1978.112 2.988 1974 1988 
 Female 0.194 0.397 0 1 
 Cum. NIH Funding (excl. P01, etc.) $4,189,175 $2,337,379 $0 $11,931,537 
 Cum. Nb. of Pubs. 79.53 43.161 25 317 
 Cum. Nb. of Pubs. in the Top 5% 27.284 20.539 0 129 
 Cum. Nb. of Pubs. in the Top 1% 9.455 9.888 0 50 
 Nb. Keywords Overlap before/after 84.164 39.758 31 225 
      

HHMIs (n=66) 
 Degree Year 1984.439 4.811 1974 1994 
 Female 0.242 0.432 0 1 
 Cum. NIH Funding (excl. P01, etc.) $1,905,030 $1,670,714 0 $7,341,554 
 Cum. Nb. of Pubs. 40.076 25.93 6 141 
 Cum. Nb. of Pubs. in the Top 5% 19.561 12.054 3 68 
 Cum. Nb. of Pubs. in the Top 1% 8.652 6.583 0 24 
 Nb. Keywords Overlap before/after 64.409 28.154 14 147 
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Table 5: Descriptive Statistics — Career Achievement 
  Mean Std. Dev Min. Max.
Controls (n=477) 
 Career NIH Funding $6,448,440 $6,393,926 $0 $52,104,756 
 Career NIH Funding (excl. P01, etc.) $5,116,235 $3,739,049 $0 $26,333,260 
 Career HHMI Funding $0 $0 $0 $0 
 Career Total Funding $5,351,768 $3,680,351 $0 $26,333,260 
 Cum. Nb. of Cites 5,853 5,332 626 37,672 
 h Index 34.954 15.917 8 104 
 Cum. Nb. of Pubs 76.472 56.722 11 450 
 Cum. Nb. of Pubs in the Bottom 25% 2.002 2.475 0 18 
 Cum. Nb. of Pubs. in the Top 25% 57.48 42.582 5 339 
 Cum. Nb. of Pubs. in the Top 5% 27.528 23.385 1 165 
 Cum. Nb. of Pubs. in the Top 1% 9.897 11.001 0 84 
 Cum. Nb. of Pubs. in the Top 5‰ 5.998 7.552 0 59 
 Cum. Nb. of Pubs. in the Top 1‰ 1.543 2.695 0 21 
 Cum. Nb. of Patents 1.507 3.661 0 36 

HHMIs (n=131) 
 Career NIH Funding $4,774,888 $4,883,070 $0 $32,025,670 
 Career NIH Funding (excl. P01, etc.) $3,626,550 $2,691,153 $0 $14,973,205 
 Career HHMI Funding $8,223,618 $2,625,364 $2,410,360 $17,205,788 
 Career Total Funding $11,957,585 $4,566,230 $4,048,120 $28,469,912 
 Cum. Nb. of Cites 9,125 11,415 473 117,316 
 h Index 41.878 17.77 5 141 
 Cum. Nb. of Pubs 83.351 46.764 7 313 
 Cum. Nb. of Pubs in the Bottom 25% 1.481 1.516 0 7 
 Cum. Nb. of Pubs. in the Top 25% 68.45 40.043 2 277 
 Cum. Nb. of Pubs. in the Top 5% 40.015 27.868 1 219 
 Cum. Nb. of Pubs. in the Top 1% 18.092 17.669 0 142 
 Cum. Nb. of Pubs. in the Top 5‰ 11.87 13.841 0 119 
 Cum. Nb. of Pubs. in the Top 1‰ 3.74 6.528 0 60 
 Cum. Nb. of Patents 3.366 10.51 0 103 

Total (n=608) 
 Career NIH Funding $6,087,855 $6,135,159 $0 $52,104,756 
 Career NIH Funding (excl. P01, etc.) $4,795,267 $3,590,277 $0 $26,333,260 
 Career HHMI Funding $1,771,865 $3,595,362 $0 $17,205,788 
 Career Total Funding $6,775,061 $4,740,851 $0 $28,469,912 
 Cum. Nb. of Cites 6,558 7,212 473 117,316 
 h Index 36.446 16.565 5 141 
 Cum. Nb. of Pubs 77.954 54.766 7 450 
 Cum. Nb. of Pubs in the Bottom 25% 1.89 2.311 0 18 
 Cum. Nb. of Pubs. in the Top 25% 59.844 42.257 2 339 
 Cum. Nb. of Pubs. in the Top 5% 30.219 24.931 1 219 
 Cum. Nb. of Pubs. in the Top 1% 11.663 13.158 0 142 
 Cum. Nb. of Pubs. in the Top 5‰ 7.263 9.57 0 119 
 Cum. Nb. of Pubs. in the Top 1‰ 2.016 3.955 0 60 
 Cum. Nb. of Patents 1.908 5.895 0 103 
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Table 6: Accolades 
  Pew/Searle 

Scholars Trained 
Nobel Prize

Winners 
Lasker

Awardees 
Members of 
the NAS 

Members of 
the IoM 

Controls 477 73 1 1 21 16 
(0.20%) (0.20%) (4.40%) (3.40%) 

HHMIs 131 72 3 2 38 15 
(2.30%) (1.50%) (29.00%) (11.50%) 

       

Total 608 145 4 3 59 31 
(0.70%) (0.50%) (9.70%) (5.10%) 
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Table 7A: Aggregate Outcomes — 1994 Cohort 

 
 

Total Number of 
Pubs in Top 5% 

Total Number of 
Pubs in Top 1% Total Patents Total Funding 

  Before 
Selection 

After 
Selection 

Before 
Selection 

After 
Selection 

Before 
Selection 

After 
Selection 

Before 
Selection 

After 
Selection 

Pew/Searle 
(N=246) 

Scientist Avg. 5.224 11.747 1.791 3.877 0.332 0.892 $1,091,028 $3,282,611 
Total 1,447.00 3,254.00 496 1,074.00 92 247 $302,214,685 $909,283,265 

MERIT 
(N=122) 

Scientist Avg. 18.284 24.007 6.299 8.478 0.94 1.56 $2,944,875 $5,361,533 
Total 2,450.00 3,217.00 844 1,136.00 126 209 $394,613,198 $718,445,469 

HHMIs 
(N=65) 

Scientist Avg. 12.431 25.877 6.354 11.323 1.692 2.6 $1,930,957 $10,685,114 
Total 808 1,682 413 736 110 169 $125,512,181 $694,532,396 

 
 
 
 
 
 
Table 7B: Aggregate Outcomes — 1997 Cohort 

  Total Number of 
Pubs in Top 5% 

Total Number of 
Pubs in Top 1% Total Patents Total Funding 

  Before 
Selection 

After 
Selection 

Before 
Selection 

After 
Selection 

Before 
Selection 

After 
Selection 

Before 
Selection 

After 
Selection 

Pew/Searle 
(N=302) 

Scientist Avg. 7.237 8.892 2.483 2.931 0.646 0.402 $1,506,266 $2,564,071 
Total 2,410.00 2,961.00 827 976 215 134 $501,586,602 $853,835,644 

MERIT 
(N=122) 

Scientist Avg. 25.231 17.06 8.739 6.037 1.716 0.784 $4,203,147 $4,103,261 
Total 3,381.00 2,286.00 1,171.00 809 230 105 $563,221,698 $549,836,970 

HHMIs 
(N=66) 

Scientist Avg. 16.00 18.758 7.015 8.136 1.348 0.955 $2,461,152 $8,847,924 
Total 1,056 1,238 463 537 89 63 $162,436,035 $583,962,998 
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Table 8: 
Determinants of HHMI First Appointment Length (OLS) 
 (1) (2) (3) (4) (5) 

Cum. Nb. of Pubs. 1.001     
[0.13]     

Cum. Nb. of Pubs (JIF-weighted)  1.000    
 [0.69]    

Cum. Nb. of Cites   1.000   
  [0.87]   

Cum. Nb. of Pubs. in the Top 5%    0.995  
   [0.54]  

Cum. Nb. of Pubs. in the Top 1%     0.991 
    [0.64] 

Nb. of Years since Start as a PI 1.135** 1.156** 1.145** 1.149** 1.145** 
[3.33] [3.88] [4.75] [4.04] [4.67] 

Female 0.727 0.703 0.708 0.704 0.703 
[1.30] [1.42] [1.42] [1.41] [1.42] 

PhD 1.085 1.033 1.046 1.045 1.046 
[0.15] [0.06] [0.08] [0.08] [0.08] 

MD/PhD 0.948 0.918 0.913 0.922 0.923 
[0.10] [0.16] [0.17] [0.16] [0.15] 

Translational Lab 1.106 1.150 1.165 1.159 1.160 
[0.18] [0.25] [0.28] [0.26] [0.27] 

Organismal Lab 1.028 1.021 1.022 1.024 1.029 
[0.09] [0.07] [0.07] [0.08] [0.09] 

Macromolecular Lab 1.433 1.471 1.438 1.451 1.444 
[1.01] [1.07] [1.03] [1.05] [1.04] 

Out-of-Competition Appointment 0.595 0.592 0.590 0.587 0.587 
[1.60] [1.61] [1.61] [1.62] [1.63] 

Nb. Scientists 127 127 127 127 127 
Adjusted R2 0.26 0.26 0.26 0.26 0.26 

Note: The dependent variable is the log of the length of the first appointment period, measured in days, 
among 127 HHMI investigators who did not terminate their appointment voluntarily. 
Robust t-statistics in parantheses. †significant at 10%; *significant at 5%; **significant at 1%.  

 
 
 
 

Table 9: Univariate Termination Data 
 End of First 

Appointment 
End of Second 
Appointment 

Reappointed 106 54 
(83.46%) (77.14%) 

Terminated 21 16 
(16.54%) (22.86%) 

Note: Only a small proportion of investigators appointed in 1997 had 
come up for second review at the time of the analysis. 
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Table 10: Sensitivity of Reappointment to Performance [Logit Models] 
 Pubs JIF-weighted Pubs Pubs. in Top Ventile Pubs. in Top Percentile 
 (1a) (1b) (2a) (2b) (3a) (3b) (3c) (3d) 
 First 

Reappt. 
Second 
Reappt. 

First 
Reappt. 

Second 
Reappt. 

First 
Reappt. 

Second 
Reappt. 

First 
Reappt. 

Second 
Reappt. 

Cum. Nb. of Pubs. during 
relevant period 

1.007        
[0.42]        

 0.804**       
 [2.85]       

Cum. Nb. of JIF-weighted 
Pubs. during relevant 
period 

  0.998      
  [0.96]      
   0.980*     
   [2.54]     

Cum. Nb. of Pubs. in the 
Top 5% during relevant 
Period 

    0.974    
    [0.88]    
     0.816†   
     [1.94]   

Cum. Nb. of Pubs. in the 
Top 1% during relevant 
period 

      0.960  
      [0.79]  
       0.645† 
       [1.82] 

Female 0.323 0.985 0.302† 1.139 0.296† 0.664 0.300† 0.522 
[1.64] [0.02] [1.71] [0.13] [1.75] [0.48] [1.73] [0.77] 

Associate 0.325 0.650 0.329 0.468 0.307 0.756 0.310 0.626 
[1.57] [0.43] [1.52] [0.73] [1.61] [0.30] [1.60] [0.51] 

Full 0.351 1.174 0.406 0.813 0.392 0.875 0.390 1.073 
[1.46] [0.08] [1.24] [0.11] [1.30] [0.08] [1.31] [0.04] 

Nb. Scientists 127 70 127 70 127 70 127 70 
Log Quasi-Likl. -48.25 -18.73 -47.84 -19.28 -47.92 -23.71 -47.99 -23.61 
Pseudo-R2 0.15 0.50 0.16 0.49 0.16 0.37 0.16 0.37 

Note:  The dependent variable is the probability of being reappointed, whether at the end of the first term, or at the end of the second term, among 127 
HHMI investigators who did not terminate their appointment voluntarily. 
Robust z-statistics in parantheses. †significant at 10%; *significant at 5%; **significant at 1%.  
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Table 11: 
Determinants of Selection into the HHMI Program [Logit Models] 
 Pew/Searle Control Group MERIT Control Group 
 1994 Cohort 1997 Cohort 1994 Cohort 1997 Cohort 
 (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) 

Nb. of “Hit Papers” as PI  1.602**  1.493**  1.183**  1.062 
 [5.07]  [6.02]  [3.34]  [1.59] 

NIH Funding  1.081  1.229  0.725†  0.765** 
 [0.49]  [1.04]  [1.76]  [2.58] 

Female 2.314** 3.683** 1.281 2.117* 3.378* 4.623** 1.168 1.327 
[2.74] [3.78] [0.77] [2.09] [2.52] [3.12] [0.27] [0.48] 

PhD 1.395 1.110 0.467 0.435 0.341† 0.419 1.159 1.373 
[0.42] [0.12] [1.18] [1.25] [1.66] [1.26] [0.26] [0.54] 

MD/PhD 1.923 1.321 1.237 1.318 0.814 0.829 0.985 1.185 
[0.97] [0.36] [0.34] [0.40] [0.23] [0.20] [0.03] [0.26] 

Macromolecular Lab 1.115 1.331 1.845 1.661 2.348 4.339* 3.465† 4.725* 
[0.28] [0.67] [1.40] [1.07] [1.39] [2.30] [1.95] [2.22] 

Organismal Lab 0.930 0.993 2.284† 2.666* 1.413 2.093 1.564 1.770 
[0.18] [0.02] [1.91] [2.15] [0.54] [1.13] [0.66] [0.76] 

Translational Lab 1.432 3.003 1.400 1.586 0.536 0.811 2.513 3.019 
[0.49] [1.31] [0.53] [0.66] [0.68] [0.22] [1.23] [1.33] 

Nb. Scientists 342 342 399 399 199 199 200 200 
Log likelihood -159.19 -136.85 -169.70 -140.72 -75.97 -70.09 -80.76 -77.65 
Pseudo R2 0.04 0.18 0.05 0.21 0.40 0.44 0.36 0.39 

Notes: 
(1) The “cellular lab” indicator variable is omitted. All models include a cubic spline in career age. 
(2) Robust z-statistics in parentheses. 
(3) †significant at 10%; *significant at 5%; **significant at 1%.  
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Table 12: 
Effects of HHMI Appointment on Changes in Research Topic [QML Poisson Models]  
 Pew/Searle Control Group MERIT Control Group 
 1994 Cohort 1997 Cohort 1994 Cohort 1997 Cohort 
 (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) 

HHMI 1.236** 1.114* 1.237** 1.202** 0.902* 0.907* 0.907* 0.904** 
[3.65] [1.97] [4.34] [4.27] [2.23] [1.98] [2.53] [2.62] 

Female 0.898* 0.917† 0.923† 0.919† 0.941 0.946 1.054 1.055 
[2.23] [1.76] [1.91] [1.75] [1.23] [1.11] [1.19] [1.22] 

PhD 1.088 1.081 1.058 1.053 0.921 0.911 0.867** 0.865** 
[0.81] [0.72] [0.76] [0.61] [1.36] [1.53] [2.69] [2.73] 

MD/PhD 1.063 1.093 1.072 1.073 0.990 1.005 1.008 1.017 
[0.63] [0.88] [0.95] [0.85] [0.16] [0.08] [0.15] [0.30] 

Macromolecular Lab 0.951 0.944 0.969 1.021 0.915† 0.907† 0.945 0.943 
[0.99] [1.08] [0.60] [0.33] [1.74] [1.88] [1.11] [1.15] 

Organismal Lab 0.914 0.871* 0.926 0.908† 0.862* 0.850* 0.824** 0.816** 
[1.54] [2.28] [1.39] [1.66] [2.40] [2.55] [3.31] [3.46] 

Translational Lab 1.114 1.121 1.172* 1.253** 0.990 0.969 1.035 1.024 
[1.13] [1.06] [2.11] [2.92] [0.15] [0.45] [0.53] [0.36] 

Nb. Scientists 342 342 399 399 199 199 200 200 
Log quasi-likelihood -1,999.67 -1,964.55 -2,314.24 -2,399.53 -1,213.68 -1,209.01 -1,087.77 -1,084.23 

Notes: 
(1) The “cellular lab” indicator variable is omitted. All models include a cubic spline in career age, and an offset for the number of publications in the 

1989-1994 period (models 1a, 1b, 2a, and 2b) or 1992-1997 years (models 1c, 1d, 2c, and 2d). 
(2) Robust z-statistics in parentheses. 
(3) †significant at 10%; *significant at 5%; **significant at 1%.  
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Table 13A: Effect of HHMI Appointment on Scientific Output — Pooled Cohorts 
Pew/Searle Scholars Control Group [QML Poisson Models] 

 Publications Pubs. in Bttm. 
Quartile 

Pubs. in Top 
Quartile 

Pubs. in Top 
Ventile 

Pubs. in Top 
Percentile 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

 X-
Section 

Fixed 
Effects 

X-
Section 

Fixed 
Effects 

X-
Section 

Fixed 
Effects 

X-
Section 

Fixed 
Effects 

X-
Section 

Fixed 
Effects 

HHMI 1.495** 1.115* 0.885 0.768 1.625** 1.115* 2.019** 1.154* 2.606** 1.146 
[6.75] [2.07] [0.87] [1.20] [7.80] [2.08] [9.25] [2.05] [8.87] [1.39] 

Female 0.747**  0.766†  0.734**  0.677**  0.567**  
[5.38]  [1.85]  [5.41]  [5.49]  [5.44]  

PhD 0.842  1.245  0.793  0.688*  0.598*  
[0.98]  [0.65]  [1.39]  [2.22]  [2.49]  

MD/PhD 0.987  1.126  0.925  0.789  0.706  
[0.09]  [0.44]  [0.52]  [1.44]  [1.61]  

Macromolecular Lab 1.143*  1.253  1.109  0.977  0.943  
[2.05]  [1.54]  [1.48]  [0.26]  [0.44]  

Organismal Lab 1.031  1.099  1.020  1.002  0.975  
[0.39]  [0.51]  [0.26]  [0.02]  [0.19]  

Translational Lab 1.318*  2.264**  1.208  1.079  1.133  
[2.01]  [3.04]  [1.40]  [0.51]  [0.66]  

Nb. Scientists 465 465 465 273 465 465 465 463 465 428 
Nb. of Observations 7,656 7,656 7,656 4,749 7,656 7,656 7,656 7,634 7,656 7,048 
Log Quasi-Likl. -18,437 -13,538 -2,114 -1,349 -16,550 -12,310 -12,499 -9,121 -7,520 -5,045 

Notes: 
(1) All models control for calendar year indicator variables, and 5 career age indicator variables (career age < 5 is the omitted category). 
(2) The “cellular lab” indicator variable is omitted,as is the indicator variable for investigators holding a MD degree. 
(3) Incidence Rate ratios are displayed, with robust z-statistics in parentheses, clustered around scientists for the cross-sectional models. 
(4) †significant at 10%; * significant at 5%; ** significant at 1%.  
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Table 13B: Effect of HHMI Appointment on Scientific Output — Pooled Cohorts 
MERIT Awardees Control Group [QML Poisson Models] 

 Publications Pubs. in Bttm. 
Quartile 

Pubs. in Top 
Quartile 

Pubs. in Top 
Ventile 

Pubs. in Top 
Percentile 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

 X-
Section 

Fixed 
Effects 

X-
Section 

Fixed 
Effects 

X-
Section 

Fixed 
Effects 

X-
Section 

Fixed 
Effects 

X-
Section 

Fixed 
Effects 

HHMI 0.911 1.123* 0.631** 0.911 0.991 1.097† 1.179 1.060 1.492* 1.032 
[1.33] [2.29] [2.90] [0.42] [0.12] [1.70] [1.62] [0.78] [2.48] [0.28] 

Female 0.838*  1.233  0.806**  0.709**  0.592**  
[2.30]  [1.46]  [2.75]  [3.69]  [4.07]  

PhD 0.848  0.708*  0.833  0.795†  0.723†  
[1.51]  [2.00]  [1.62]  [1.68]  [1.77]  

MD/PhD 1.015  0.868  0.983  0.880  0.777  
[0.15]  [0.89]  [0.16]  [1.02]  [1.48]  

Macromolecular Lab 1.040  1.080  1.028  0.936  0.855  
[0.52]  [0.48]  [0.34]  [0.59]  [0.94]  

Organismal Lab 0.860†  0.931  0.795*  0.713**  0.600**  
[1.70]  [0.42]  [2.50]  [3.01]  [3.26]  

Translational Lab 1.128  1.193  1.078  1.029  1.024  
[1.13]  [1.07]  [0.68]  [0.20]  [0.12]  

Nb. Scientists 265 265 265 203 265 265 265 264 265 251 
Nb. of Observations 5,490 5,490 5,490 4,355 5,490 5,490 5,490 5,478 5,490 5,183 
Log Quasi-Likl. -14,805 -11,277 -1,899 -1,378 -13,447 -10,341 -10,617 -7,939 -6,771 -4,714 

Notes: 
(1) All models control for calendar year indicator variables, and 5 career age indicator variables (career age < 5 is the omitted category). 
(2) The “cellular lab” indicator variable is omitted,as is the indicator variable for investigators holding a MD degree. 
(3) Incidence Rate ratios are displayed, with robust z-statistics in parentheses, clustered around scientists for the cross-sectional models. 
(4) †significant at 10%; * significant at 5%; ** significant at 1%.  
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Table 14A: Effect of HHMI Appointment on Scientific Output — 1994 Cohort 
Pew/Searle Scholars Control Group [QML Poisson Models] 

 Publications Pubs. in Bttm. 
Quartile 

Pubs. in Top 
Quartile 

Pubs. in Top 
Ventile 

Pubs. in Top 
Percentile 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

 X-
Section IPTW X-

Section IPTW X-
Section IPTW X-

Section IPTW X-
Section IPTW 

HHMI 1.558** 1.264* 0.991 0.942 1.738** 1.386** 2.250** 1.704** 3.047** 2.106** 
[5.49] [2.44] [0.05] [0.32] [6.53] [3.25] [7.84] [4.30] [7.49] [4.32] 

Female 0.700** 0.722** 0.650* 0.662* 0.685** 0.710** 0.623** 0.658** 0.495** 0.549** 
[5.64] [4.98] [2.54] [2.31] [5.53] [4.98] [5.40] [4.80] [5.40] [4.61] 

PhD 0.782 0.681 1.423 1.896 0.732 0.629 0.642* 0.557* 0.582* 0.516* 
[1.14] [1.28] [0.85] [1.41] [1.53] [1.60] [2.18] [2.12] [2.32] [2.35] 

MD/PhD 0.922 0.902 1.268 1.430 0.839 0.810 0.673† 0.652† 0.578* 0.567* 
[0.42] [0.42] [0.72] [1.06] [0.90] [0.88] [1.84] [1.76] [1.98] [2.07] 

Macromolecular Lab 1.125 1.101 1.228 1.355† 1.088 1.046 0.942 0.872 0.886 0.763† 
[1.55] [1.27] [1.22] [1.76] [1.03] [0.55] [0.55] [1.28] [0.77] [1.72] 

Organismal Lab 1.037 1.021 1.216 1.284 1.016 0.982 0.971 0.898 0.938 0.787 
[0.40] [0.18] [0.93] [1.09] [0.18] [0.17] [0.27] [0.86] [0.40] [1.34] 

Translational Lab 1.196 1.123 2.469** 3.199** 1.074 0.987 0.901 0.813 0.896 0.773 
[1.02] [0.49] [2.82] [3.40] [0.41] [0.06] [0.52] [0.84] [0.43] [0.90] 

Nb. Scientists 343 343 343 343 343 343 343 343 343 343 
Nb. of Observations 5,951 5,951 5,951 5,951 5,951 5,951 5,951 5,951 5,951 5,951 
Log Quasi-Likl. -14,346 -14,115 -1,678 -1,643 -12,748 -12,435 -9,369 -9,063 -5,467 -5,184 

Notes: 
(1) All models control for calendar year indicator variables, and 5 career age indicator variables (career age < 5 is the omitted category). 
(2) The “cellular lab” indicator variable is omitted,as is the indicator variable for investigators holding a MD degree. 
(3) Incidence Rate ratios are displayed, with robust z-statistics in parentheses, clustered around scientists for the cross-sectional models. 
(4) †significant at 10%; * significant at 5%; ** significant at 1%.  
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Table 14B: Effect of HHMI Appointment on Scientific Output — 1997 Cohort 
Pew/Searle Scholars Control Group [QML Poisson Models] 

 Publications Pubs. in Bttm. 
Quartile 

Pubs. in Top 
Quartile 

Pubs. in Top 
Ventile 

Pubs. in Top 
Percentile 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

 X-
Section IPTW X-

Section IPTW X-
Section IPTW X-

Section IPTW X-
Section IPTW 

HHMI 1.470** 1.119 0.777 0.941 1.582** 1.158 2.005** 1.334** 2.580** 1.622** 
[5.43] [1.08] [1.31] [0.25] [6.30] [1.51] [7.72] [2.65] [7.81] [3.29] 

Female 0.766** 0.693** 0.692* 0.589* 0.757** 0.696** 0.728** 0.681** 0.661** 0.634** 
[4.39] [4.83] [2.08] [2.42] [4.45] [4.92] [4.03] [4.38] [3.68] [3.74] 

PhD 0.883 0.427** 1.279 4.302† 0.851 0.395** 0.782 0.363** 0.708 0.350** 
[0.54] [4.75] [0.61] [1.96] [0.73] [5.98] [1.10] [6.88] [1.26] [6.16] 

MD/PhD 1.069 0.692* 1.026 1.652 1.020 0.633** 0.903 0.561** 0.835 0.564** 
[0.38] [2.07] [0.09] [1.45] [0.12] [2.74] [0.57] [3.40] [0.79] [2.91] 

Macromolecular Lab 1.174* 1.223* 1.203 1.185 1.149† 1.186† 1.020 1.066 1.024 1.087 
[2.25] [2.46] [1.12] [0.99] [1.86] [1.95] [0.21] [0.59] [0.17] [0.54] 

Organismal Lab 1.061 1.372** 1.158 1.294 1.049 1.312* 1.023 1.262* 0.994 1.296† 
[0.67] [2.58] [0.71] [0.75] [0.56] [2.57] [0.23] [2.10] [0.04] [1.71] 

Translational Lab 1.365† 0.920 2.551** 5.892** 1.265 0.816 1.169 0.740 1.349 0.838 
[1.78] [0.44] [2.81] [2.88] [1.35] [1.11] [0.82] [1.59] [1.27] [0.80] 

Nb. Scientists 400 400 400 400 400 400 400 400 400 400 
Nb. of Observations 6,487 6,487 6,487 6,487 6,487 6,487 6,487 6,487 6,487 6,487 
Log Quasi-Likl. -15,289 -17,727 -1,791 -1,909 -13,560 -15,338 -9,979 -11,277 -5,733 -6,465 

Notes: 
(1) All models control for calendar year indicator variables, and 5 career age indicator variables (career age < 5 is the omitted category). 
(2) The “cellular lab” indicator variable is omitted,as is the indicator variable for investigators holding a MD degree. 
(3) Incidence Rate ratios are displayed, with robust z-statistics in parentheses, clustered around scientists for the cross-sectional models. 
(4) †significant at 10%; * significant at 5%; ** significant at 1%.  
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Table 14C: Effect of HHMI Appointment on Scientific Output — 1994 Cohort 
MERIT Awardees Scholars Control Group [QML Poisson Models] 

 Publications Pubs. in Bttm. 
Quartile 

Pubs. in Top 
Quartile 

Pubs. in Top 
Ventile 

Pubs. in Top 
Percentile 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

 X-
Section IPTW X-

Section IPTW X-
Section IPTW X-

Section IPTW X-
Section IPTW 

HHMI 0.917 0.913 0.615** 0.606** 1.023 1.004 1.267† 1.208 1.689* 1.516* 
[0.91] [1.01] [2.60] [2.65] [0.22] [0.04] [1.70] [1.51] [2.34] [2.09] 

Female 0.810* 0.815* 1.183 1.195 0.774** 0.775** 0.666** 0.663** 0.531** 0.521** 
[2.30] [2.17] [1.04] [1.09] [2.70] [2.64] [3.55] [3.60] [3.95] [4.09] 

PhD 0.847 0.845 0.732 0.740 0.829 0.825 0.805 0.802 0.751 0.762 
[1.37] [1.37] [1.63] [1.60] [1.47] [1.49] [1.38] [1.39] [1.35] [1.26] 

MD/PhD 1.012 1.011 0.902 0.866 0.971 0.978 0.853 0.885 0.728 0.782 
[0.10] [0.10] [0.60] [0.82] [0.24] [0.19] [1.05] [0.85] [1.54] [1.28] 

Macromolecular Lab 1.034 1.011 1.086 1.099 1.018 0.989 0.919 0.870 0.823 0.752 
[0.38] [0.12] [0.45] [0.53] [0.18] [0.11] [0.62] [1.01] [0.95] [1.36] 

Organismal Lab 0.874 0.859 1.018 1.056 0.796* 0.773* 0.692** 0.652** 0.583** 0.522** 
[1.33] [1.44] [0.10] [0.29] [2.13] [2.31] [2.79] [3.15] [2.95] [3.46] 

Translational Lab 1.107 1.051 1.231 1.276 1.050 0.981 0.986 0.879 0.932 0.785 
[0.84] [0.41] [1.14] [1.34] [0.38] [0.15] [0.08] [0.81] [0.29] [1.09] 

Nb. Scientists 199 199 199 199 199 199 199 199 199 199 
Nb. of Observations 4,358 4,358 4,358 4,358 4,358 4,358 4,358 4,358 4,358 4,358 
Log Quasi-Likl. -12,011 -1,1945 -1,594 -1,571 -10,898 -10,837 -8,490 -8,446 -5,290 -5,285 

Notes: 
(1) All models control for calendar year indicator variables, and 5 career age indicator variables (career age < 5 is the omitted category). 
(2) The “cellular lab” indicator variable is omitted,as is the indicator variable for investigators holding a MD degree. 
(3) Incidence Rate ratios are displayed, with robust z-statistics in parentheses, clustered around scientists for the cross-sectional models. 
(4) †significant at 10%; * significant at 5%; ** significant at 1%.  
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Table 14D: Effect of HHMI Appointment on Scientific Output — 1997 Cohort 
MERIT Awardees Control Group [QML Poisson Models] 

 Publications Pubs. in Bttm. 
Quartile 

Pubs. in Top 
Quartile 

Pubs. in Top 
Ventile 

Pubs. in Top 
Percentile 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b) 

 X-
Section IPTW X-

Section IPTW X-
Section IPTW X-

Section IPTW X-
Section IPTW 

HHMI 0.867† 0.880 0.611* 0.646* 0.913 0.920 1.055 1.051 1.247 1.246 
[1.88] [1.61] [2.27] [2.04] [1.13] [1.02] [0.51] [0.48] [1.47] [1.46] 

Female 0.918 0.917 1.268 1.267 0.889 0.886 0.815† 0.812† 0.746* 0.743* 
[0.94] [0.90] [1.42] [1.39] [1.26] [1.25] [1.83] [1.87] [2.00] [2.01] 

PhD 0.829 0.842 0.696* 0.689* 0.816† 0.831 0.786 0.802 0.711† 0.731 
[1.60] [1.48] [2.04] [2.06] [1.66] [1.54] [1.60] [1.50] [1.66] [1.55] 

MD/PhD 1.074 1.095 0.848 0.855 1.045 1.065 0.944 0.962 0.844 0.870 
[0.62] [0.78] [1.00] [0.94] [0.38] [0.55] [0.44] [0.31] [1.00] [0.85] 

Macromolecular Lab 1.052 1.043 1.010 0.996 1.055 1.045 0.974 0.968 0.894 0.886 
[0.58] [0.48] [0.05] [0.02] [0.56] [0.46] [0.20] [0.24] [0.56] [0.58] 

Organismal Lab 0.845† 0.836† 0.975 0.959 0.764* 0.753** 0.652** 0.639** 0.494** 0.477** 
[1.66] [1.73] [0.14] [0.23] [2.52] [2.60] [3.24] [3.35] [4.06] [4.20] 

Translational Lab 1.074 1.078 1.228 1.241 1.020 1.021 0.963 0.956 0.940 0.920 
[0.60] [0.62] [1.19] [1.24] [0.16] [0.17] [0.25] [0.29] [0.31] [0.41] 

Nb. Scientists 200 200 200 200 200 200 200 200 200 200 
Nb. of Observations 4,321 4,321 4,321 4,321 4,321 4,321 4,321 4,321 4,321 4,321 
Log Quasi-Likl. -11,694 -11,685 -1,578 -1,568 -10,519 -10,496 -8,166 -8,124 -5,005 -4,955 

Notes: 
(1) All models control for calendar year indicator variables, and 5 career age indicator variables (career age < 5 is the omitted category). 
(2) The “cellular lab” indicator variable is omitted,as is the indicator variable for investigators holding a MD degree. 
(3) Incidence Rate ratios are displayed, with robust z-statistics in parentheses, clustered around scientists for the cross-sectional models. 
(4) †significant at 10%; * significant at 5%; ** significant at 1%. 



Appendix

We develop a simple model to contrast the “specific project” and the “people, not projects” approaches to
scientific funding. The researcher lives for two periods. In each period, she chooses a project i ∈ I, producing
output S (“success”) with a probability pi or output F (“failure”) with probability 1−pi. The probability pi

of success when the researcher chooses project i may be unknown. To obtain information about pi, she must
engage in experimentation. We let E[pi] denote the unconditional expectation of pi, E[pi|S, j] denote the
conditional expectation of pi given a success on project j, and E[pi|F, j] denote the conditional expectation
of pi given a failure on project j.

When the researcher chooses project i ∈ I, she only learns about the probability pi, so that

E[pj ] = E[pj |S, i] = E[pj |F, i] for j 6= i.

The central concern that arises is the tension between exploration of new ideas and the exploitation of
already existing ideas along conventional lines (March, 1991). To focus on the tension between exploration
and exploitation, we assume that in each period the researcher chooses between two projects. Project 1, the
“conventional” research project, has a known probability p1 of success, such that

p1 = E[p1] = E[p1|S, 1] = E[p1|F, 1].

Project 2, the innovative research project, has an unknown probability p2 of success such that

E[p2|F, 2] < E[p2] < E[p2|S, 2].

We assume that the innovative research project is of an exploratory nature. This means that when the
researcher experiments with the innovative research project, she is initially not as likely to succeed as when
she treads a well-trodden path, as is the case with the conventional research project. However, if she succeeds
with the innovative project, she updates her beliefs about p2, so that choosing the innovative project becomes
perceived as superior to choosing the conventional project. This is captured by:

E[p2] < p1 < E[p2|S, 2]. (4)

The researcher is risk-neutral and has a discount factor normalized to one. Her objective function R assigns
some weight α to the outcome produced by his research as well as some weight to her private preferences
between the two projects. These private preferences are represented with a cost ci that is incurred by the
researcher whenever she pursues project i. The researcher thus chooses an action plan 〈i

j
k
〉 to maximize her

total expected payoff

R(〈i
j
k
〉) = {E[pi]S + (1− E[pi])F − ci}

+ E[pi] {E[pj |S, i]S + (1− E[pj |S, i])F − cj}
+ (1− E[pi]) {E[pk|F, i]S + (1− E[pk|F, i])F − ck} (5)

where i is the first-period action, j is the second-period action in case of success in the first period, and k
is the second-period action in case of failure in the first period. We assume that the researcher gets enough
funding to perform research during the two periods. We consider two funding mechanisms: the “specific
project” approach and the “people, not projects” approach.

The “Specific Project” approach. Under this approach the researcher must choose one project to submit
for funding and must work on that project during the two periods. Two action plans need to be considered:
〈1 1

1 〉 and 〈2 2
2 〉. If the researcher chooses action plan 〈1 1

1 〉 his total expected payoff is

R(〈1 1
1 〉) = {E[p1]S + (1− E[p1])F − c1}

+ E[p1] {E[p1]S + (1− E[p1])F − c1}
+ (1− E[p1]) {E[p1]S + (1− E[p1])F − c1} (6)
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If the researcher chooses action plan 〈2 2
2 〉 his total expected payoff is

R(〈2 2
2 〉) = {E[p2]S + (1− E[p2])F − c2}

+ E[p2] {E[p2|S, 2]S + (1− E[p2|S, 2])F − c2}
+ (1− E[p2]) {E[p2|F, 2]S + (1− E[p2|F, 2])F − c2} (7)

From Bayes’ rule, the payoff R(〈2 2
2 〉) is higher than the payoff R(〈1 1

1 〉) if and only if

α(E[p2]− p1)(S − F ) ≥ (c2 − c1). (8)

The “People, not Projects” approach. Under this approach, the researcher can choose any of the two
projects in each period. Two action plans need to be considered: 〈1 1

1 〉, and action plan 〈2 2
1 〉. If the researcher

chooses action plan 〈1 1
1 〉, her total expected payoff is

R(〈1 1
1 〉) = {E[p1]S + (1− E[p1])F − c1}

+ E[p1] {E[p1]S + (1− E[p1])F − c1}
+ (1− E[p1]) {E[p1]S + (1− E[p1])F − c1} (9)

If the researcher chooses action plan 〈2 2
1 〉, her total expected payoff is

R(〈2 2
1 〉) = {E[p2]S + (1− E[p2])F − c2}

+ E[p2] {E[p2|S, 2]S + (1− E[p2|S, 2])F − c2}
+ (1− E[p2]) {E[p1]S + (1− E[p1])F − c1} (10)

The payoff R(〈2 2
1 〉) is higher than R(〈1 1

1 〉) if and only if

α{(E[p2](E[p2|S, 2]− p1) + (E[p2]− p1)}(S − F ) ≥ (1 + E[p2])(c2 − c1) (11)

The following proposition contrasts exploration under “specific project” funding and “people, not projects”
funding.

Proposition 1 If the agent explores under “specific project” funding, he also explores under “people, not
projects” funding. However, there are situations in which the agent explores under “people, not projects”
funding, but exploits under “specific project” funding.

Proof The first statement follows from the fact that (8) implies (11). For the second statement, we construct
the following example. If c2 > c1, (8) implies that the agent never explores under the “specific project”
approach. However, from (11), if the payoff from exploration is sufficiently high, the agent will explore under
the “people, not projects” approach.
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