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Abstract

We study equilibria of dynamic over-the-counter markets in which agents are
distinguished by their preferences and information. Over time, agents are privately
informed by bids and offers. Investors differ with respect to information quality,
including initial information precision, and also in terms of market “connectivity,”
the expected frequency of their bilateral trading opportunities. We characterize
endogenous information acquisition and show how learning externalities affect in-
formation gathering incentives. More “liquid” markets lead to higher equilibrium
information acquisition when the gains from trade and market duration are suffi-
ciently large. On the other hand, for a small market duration, the opposite may
occur if agents vary sufficiently in terms of their market connectivity.
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1 Introduction

We study equilibria of dynamic over-the-counter double-auction markets in which agents
are distinguished by their preferences, information, and market “connectivity.” Agents
collect information privately over time from the bids and offers of their counterparties.
We characterize the effect of market segmentation associated with the limited “connec-
tivity” of investors caused by search frictions. Agents can choose how much information
to gather on their own, or invest in improvements in their connectivity, allowing them
to more easily trade with specific classes of agents. This limited connectivity can affect
some classes of investors more than others, with endogenous consequences for equilibrium
information gathering incentives.

We show that if there are sufficiently many rounds of trade before pay-off relevant
information is revealed, then there is strategic complementarity in information gathering
and in connectivity. That is, when faced by counterparties that increase their information
gathering or connectivity, a given agent will respond likewise. For a short-lived market,
however, the opposite can occur, in that an agent may cut back on information gathering
or investments in connectivity when other agents are found to increase their information
gathering or connectivity.

In our model, the various classes of agents are distinguished by their preferences
for the asset to be auctioned, by the expected frequency of their trading opportunities
with each of the other classes of agents, and by the quality of their initial information
about a random variable Y that determines the ultimate payoff of the asset.

At each time period, any agent of class ¢ has a trading encounter with probability
Ai. At each such encounter, a counterparty of class j is selected with probability ;.
Any two agents that meet are given the opportunity to trade one unit of the asset in
a double auction. Based on their initial information and on the information they have
gathered from bids in prior auctions with other agents, the two agents typically have
different conditional expectations of Y. Because the two agents’ preference parameters
are commonly observed, it is common knowledge which of them is the prospective buyer
and which is the prospective seller. Trade occurs in the event that the price £ bid by the
buyer is above the seller’s offer price o, in which case the buyer pays o to the seller. This
double-auction format, chosen for tractability, is known as the “seller’s price auction.”

We provide technical conditions under which these double auctions have a unique
equilibrium in bidding strategies that are strictly increasing in the agents’ conditional

expectations of the asset payoff. We show how to compute the offer price o and the bid



price 3, state by state, by solving an ordinary differential equation that depends on the
quality of the information of the buyer and that of the seller at the time of their trading
encounter. Because the bid and offer are strictly increasing with respect to the seller’s
and buyer’s conditional expectations of the asset payoff, they reveal these conditional
expectations to the respective counterparties, who then use them to update their priors
for the purposes of subsequent trading opportunities. The technical conditions that
we impose in order to guarantee the existence of such an equilibrium also imply that
this equilibrium uniquely maximizes expected gains from trade in each auction and,
consequently, total welfare, given the market structure. We also endogenize the market
structure to account for learning and trade incentives.

Because our strictly monotone double-auction equilibrium fully reveals the bidders’
conditional beliefs for Y, we are able to explicitly calculate the evolution over time of the
cross-sectional distribution of posterior beliefs of the population of agents by extending
the results of Duffie and Manso (2007) and Duffie, Giroux, and Manso (2010) to multiple
classes of investors. In order to characterize the solutions, we extend the Wild summation
method of Duffie, Giroux, and Manso (2010) to directly solve the evolution equation for
the cross-sectional distribution of conditional beliefs.

The double-auction equilibrium characterization, together with the characteriza-
tion of the dynamics of the cross-sectional distribution of posterior beliefs of each class
of agents, permits a calculation of the expected lifetime utility of each class of agents,
including the manner in which utility depends on the class characteristics determining
information quality, namely the precision of the initially acquired information and the
connectivity of that agent.

This in turn allows us to characterize the endogenous costly acquisition of infor-
mation. We also characterize, under conditions, the endogenous formation of “trading
channels,” by which agents invest more heavily in the ability to locate agents are more
heavily endowed with information or are known to have themselves invested more heavily

in “trading connectivity” with other agents.

2 Related Literature

A large literature in economics and finance addresses learning from market prices of

transactions that take place in centralized exchanges.! Less attention, however, has

1See, for example, Grossman (1976), Grossman and Stiglitz (1980), Wilson (1977), Milgrom (1981),
Vives (1993), Pesendorfer and Swinkels (1997), and Reny and Perry (2006).



been paid to information transmission in over-the-counter markets. Private information
sharing is typical in functioning over-the-counter markets for many types of financial as-
sets, including bonds and derivatives. In these markets, trades occur at private meetings
in which counterparties offer prices that reveal information to each other, but not to
other market participants.

Wolinsky (1990), Blouin and Serrano (2001), Duffie and Manso (2007), Duffie,
Giroux, and Manso (2010), and Duffie, Malamud, and Manso (2009, 2010), and Golosov,
Lorenzoni, and Tsyvinski (2013), are among the few studies that have investigated learn-
ing in over-the-counter (OTC) markets. The models of search and random matching used
in these studies are unsuitable for the analysis of the effects of segmentation of investors
into groups that differ by connectivity or initial information quality. Further, this prior
work has not considered the implication of endogenous information acquisition. Here, we
are able to study these effects by allowing for classes of investors with distinct preferences,
initial information quality, and market connectivity.

Our finding, that in an OTC market information acquisition can have natural
strategic complementarities, need not apply in a centralized market because the cen-
trally announced price reveals “for free” some of the information that has been gathered
by others, diluting the incentive to gather information at a cost. For example, in the
standard setting of Grossman and Stiglitz (1980), there is never complementarity in in-
formation acquisition. Manzano and Vives (2011) extend Grossman and Stiglitz’s model
to allow for private information about asset payoffs with common and private compo-
nents as well as exposure to an aggregate risk factor. They show that such equilibria are
unstable whenever there is strategic complementarity in information acquisition. Breon-
Drish (2010), however, shows that a relaxation of the normality assumption of Grossman
and Stiglitz can, under some additional conditions, lead to strategic complementarity in
information acquisition in a standard central-market rational expectations equilibrium.
The underlying incentive to gather information in such a model depends on the coop-
eration of “noise traders,” who contribute all of the expected gains from trade obtained
through gathering information.?

In our model, whenever two agents meet, they have the opportunity to participate
in a double auction. Chatterjee and Samuelson (1983) are among the first to study
double auctions. The case of independent private values has been extensively analyzed
by Williams (1987), Satterthwaite and Williams (1989), and Leininger, Linhart, and
Radner (1989). Kadan (2007) studies the case of correlated private values. We extend

2See, also, Barlevi and Veronesi (2000) and other sources cited by Breon-Drish (2010).



these results by providing conditions for the existence of a unique strictly monotone
equilibrium in undominated strategies, for a double auction with common values. Bid
monotonicity is natural in our setting given the strict monotone dependence on the asset
payoff of each agent’s ex-post utility for a unit of the asset. Strictly monotone equilibria
are not typically available, however, in more general double auctions with a common
value component, as indicated by Reny and Perry (2006).

The conditions provided here for fully-revealing double auctions carry over to a
setting in which the transactions prices of a finite sample of trades are publicly revealed,
as is often the case in functioning over-the-counter markets. With this mixture of private
and public information sharing, information dynamics can be analyzed by the methods?
of Duffie, Malamud, and Manso (2009).

Beyond the application to information transmission in over-the-counter markets,
our model can be applied in other settings in which learning occurs through successive
local interactions, such as bank runs, knowledge spillovers, social learning, and technology
diffusion. For example, Banerjee and Fudenberg (2004) and Duffie, Malamud, and Manso
(2009) study social learning through word-of-mouth communication, but do not consider
situations in which agents differ with respect to connectivity. In social networks, agents
naturally differ with respect to connectivity. DeMarzo, Vayanos, and Zwiebel (2003),
Gale and Kariv (2003), Acemoglu, Dahleh, Lobel, and Ozdaglar (2008), and Golub and
Jackson (2010) study learning in social networks. Our model provides an alternative
tractable framework to study the dynamics of social learning when different groups of

agents in the population differ in connectivity with other groups of agents.

3 The Model

This section specifies the economy and solves for the dynamics of information trans-
mission and the cross-sectional distribution of beliefs, fixing the initial distribution of
information and assuming that bids and offers are fully revealing. The following section
characterizes equilibrium bidding behavior, providing conditions for the existence and
uniqueness of a fully revealing equilibrium, again taking as given the initial allocation of
information to agents. Finally, Section 5 characterizes the costly endogenous acquisition
of initial information. Appendix K extends the model so as to allow the endogenous

acquisition of information by any agent not only before the first round of trade, but at

30ne obtains an evolution equation for the cross-sectional distribution of beliefs that is studied by
Duffie, Malamud, and Manso (2010) for the case M = 1, and easily extended to the case of general M.



any time period, based on the outcome of the agent’s conditional beliefs at that time.

Appendix Table 1 is a directory of the locations of proofs.

3.1 The Double Auctions

A probability space (2, F,P) is fixed. An economy is populated by a continuum (a
non-atomic measure space) of risk-neutral agents who are randomly paired over time for
trade, in a manner that will be described. There are M different classes of agents that
differ according to the quality of their initial information, their preferences for the asset
to be traded, and the likelihoods with which they meet each of other classes of agents
for trade, period by period. At some future time 7', the economy ends and the utility

realized by an agent of class ¢ for each additional unit of the asset is
Ui =vY +07(1-Y),

measured in units of consumption, for strictly positive constants v and v; < v, where
Y is a non-degenerate 0-or-1 random variable whose outcome is revealed immediately
after time 7.

Whenever two agents meet, they are given the opportunity to trade one unit of the
asset in a double auction. The auction format allows (but does not require) the agents to
submit a bid or an offer price for a unit of the asset. That agents trade at most one unit
of the asset at each encounter is an artificial restriction designed to simplify the model.
One could suppose, alternatively, that the agents bid for the opportunity to produce a
particular service for their counterparty.

Any bid and offer is observed by both agents participating in the auction, and not
by other agents. If an agent submits a bid price that is higher than the offer price sub-
mitted by the other agent, then one unit of the asset is assigned to that agent submitting
the bid price, in exchange for an amount of consumption equal to the ask price. Certain
other auction formats would be satisfactory for our purposes. We chose this format,
known as the “seller’s price auction,” for simplicity.

When a class-i and a class-j agent meet, their respective classes ¢ and j are observ-
able to both.* Based on their initial information and on the information that they have
received from prior auctions held with other agents, the two agents typically assign dif-

ferent conditional expectations to Y. From the no-speculative-trade theorem of Milgrom

4That is, all of the primitive characteristics, 1;0, A, 5s, and v; of each agent are common knowledge
to them. In a prior version of this paper, we considered variants of the model in which the initial type
density ;0 and the per-period trading probabilities \;x;1, ..., A;k;ar need not be observable.



and Stokey (1982), as extended by Serrano-Padial (2007) to our setting of risk-neutral
investors,® the two counterparties decline the opportunity to bid if they have identical
preferences, that is, if v; = v;. If v; # v;, then it is common knowledge which of the two
agents is the prospective buyer (“the buyer”) and which is the prospective seller (“the
seller”). The buyer is of class j whenever v; > v;.

The seller has an information set Fg that consists of his initially endowed signals
relevant to the conditional distribution of Y, as well any bids and offers that he has
observed at his previous auctions. The seller’s offer price o must be based only on (must
be measurable with respect to) the information set Fg. The buyer, likewise, makes a bid
[ that is measurable with respect to her information set Fp.

The bid-offer pair (£, o) constitute an equilibrium for a seller of class 7 and a buyer
of class j provided that, fixing 3, the offer ¢ maximizes® the seller’s conditional expected
gain,

E[(oc — B(U;i| Fs U{BN)){o<py | Fs] (1)

and fixing o, the bid f maximizes the buyer’s conditional expected gain
E[(E(U;| FpU{c}) — 0)l{ocs) | Fi] . (2)

The seller’s conditional expected utility for the asset, E(U; | Fs U{5}), once having con-
ducted a trade, incorporates the information Fg that the seller held before the auction as
well as the bid § of the buyer. Similarly, the buyer’s utility is affected by the information
contained in the seller’s offer. The information gained from more frequent participation
in auctions with well informed bidders is a key focus here.

In Section 4.1, we demonstrate technical conditions under which there are equilib-
ria in which the offer price ¢ and bid price § can be computed, state by state, by solving
an ordinary differential equation corresponding to the first-order conditions for optimal-
ity. The offer and bid are strictly monotonically decreasing with respect to E(Y | Fg)
and E(Y | Fp), respectively. Bid monotonicity is natural given the strictly monotone
decreasing dependence on Y of U; and U;. Strictly monotone equilibria are not typically
available, however, in more general settings explored in the double-auctions literature,

as indicated by Reny and Perry (2006). Because our strictly monotone equilibria fully

SMilgrom and Stokey (1982) assume strictly risk-averse investors. Serrano-Padial (2007) shows that
for investors with identical preferences, even if risk-neutral, if the distributions of counterparties’ poste-
riors have a density, as here, then there is no equilibrium with a strictly positive probability of trade in
our common-value environment.

6Here, to “maximize” means, as usual, to achieve, almost surely, the essential supremum of the
conditional expectation.



reveal the bidders’ conditional beliefs for Y, we are able to calculate the evolution over
time of the cross-sectional distribution of posterior beliefs of the population of agents.
For this, we extend results from Duffie and Manso (2007) and Duffie, Giroux, and Manso
(2008). This, in turn, permits a characterization of the expected lifetime utility of each
class of agents, including the manner in which utility depends on the quality of the ini-
tial information endowment and the “market connectivity” of that agent. This will also

allow us to examine equilibrium incentives to gather information.

3.2 Information Setting

Agents are initially informed by signals drawn from an infinite pool of 0-or-1 random
variables. Conditional on Y, almost every pair of these signals is independent.” Each
signal is received by at most one agent. Each agent is initially allocated a randomly
selected finite subset of these signals. For almost every pair of agents, the sets of sig-

nals that they receive are independently chosen.®

The random allocation of signals to
agents is also independent of the signals themselves. (The allocation of signals to an
agent is allowed to be deterministic.) The signals need not have the same probability
distributions.

Whenever it is finite, we define the “information type” of an arbitrary finite set K
of random variables to be

PY=0|K P(Y =0
log ﬁ — log ﬁ, (3)
the difference between the conditional and unconditional log-likelihood ratios. The con-
ditional probability that ¥ = 0 given signals with information type 6 is thus
Re?

P(0) = T Rt (4)
where R = P(Y = 0)/P(Y = 1). Thus, the information type of a collection of signals
is one-to-one with the conditional probability that Y = 0 given the signals. Proposition
3 of Duffie and Manso (2007) implies that whenever a collection of signals of type 6 is
combined with a disjoint collection of signals of type ¢, the type of the combined set of
signals is 8 4+ ¢. More generally, we will use the following result from Duffie and Manso

(2007).

"More precisely, there is a continuum of signals, indexed by a non-atomic measure space, say [0, 1].
For almost every signal Z, almost every other signal is conditionally independent of Z given Y.

8Letting Sy denote the set of finite subsets of signals, this means that for almost all pairs (i,5) of
agents, the mappings S; : Q@ — Sp and S; : 8 = Sp determining the signals they receive are independent
random variables.



Lemma 3.1 Let Si,...,5, be disjoint sets of signals with respective types 04, ...,0,.
Then the union Sy U---US, of the signals has type 01 + - - -+ 0,,. Moreover, the type of
the information set {01,0,,...,0,} is also 01 + 0y + -+ - + 0,.

The Lemma has two key implications for our analysis. First, if two agents meet
and reveal all of their endowed signals, they both achieve posterior types equal to the
sum of their respective prior types. Second, for the purpose of determining posterior
types, revealing one’s prior type (or any random variable such as a bid that is strictly
monotone with respect to that type) is payoff-equivalent to revealing all of one’s signals.

For each time t € {0, 1,...,T}, an agent of class i is randomly matched with some
other agent with probability A\; € [0,1). This counterparty is of class-j with probability
kij. Upon meeting, the two agents are given the opportunity to trade one unit of the
asset in a double auction. Without loss of generality for the purposes of analyzing the
evolution of information, we take x;; = 0 whenever v; = v;, because of the no-trade
result for agents with the same preferences.”

As is standard in search-based models of markets, we assume that, for almost every
pair of agents, the matching times and the counterparties of one agent are independent
of those of almost every other agent. Duffie and Sun (2007) and Duffie, Qiao, and Sun
(2014) show the existence of a model with this random matching property, as well as
the associated law of large numbers for random matching (with directed probability)
on which we rely.! There are algebraic consistency restrictions on the random match-
ing parameters \;, k;; and the population masses my, ..., mys of the respective classes.
Specifically, the exact law of large numbers for random matching implies that the total
quantity of matches of agents of a given class 7 with the agents of a given class j is almost

surely mikmij = mj>\jl<&ji.

9If the primitive parameters do not satisfy this property, they can without effect on the results be
adjusted so as to satisfy this property by conditioning, case by case, on the event that the agents matched
have v; # v;.

0Taking G to be the set of agents, we assume throughout the joint measurability of agents’ type
processes {6;; : i € G} with respect to a o-algebra B on € x G that allows the Fubini property that, for
any measurable subset A of types,

/GW“ e A)dy(a)=E (/G I dw(a)) ;

where ~ is the measure on the agent space. We rely on a “richness” condition on B that allows an
application of the exact law of large numbers. In our setting, because almost every pair of types from
{0t : @ € G} is independent, this law implies that E ([, 1g,,cady(a)) = [ lo.,cady(a) almost
surely. Duffie and Sun (2007) prove the existence of a model with this property. Xiang Sun (2012) has
extended these results to cases in which the types of agents can be drawn from a Polish space. In our
setting, information types play no role in the random matching model.



In this random-matching setting, with probability one, a given pair of agents that
have been matched will almost surely never be matched again nor will their respective
lifetime sets of trading counterparties overlap, nor will the counterparties of those coun-
terparties overlap, and so on. Thus, equilibrium bidding behavior in the multi-period
setting is characterized by equilibrium bidding behavior in each individual auction, as
described above. Later, we will provide primitive technical conditions on the preference
parameters v and v;, as well as the cross-sectional distribution of initially endowed
information types, that imply the existence of an equilibrium with strictly monotone
bidding strategies. In this setting, bids therefore reveal types. Lemma 3.1 and induction
thus imply that agents’ types add up from auction to auction. Specifically, an agent
leaves any auction with a type that is the sum of his or her type immediately before the
auction and the type of the other agent bidding at the auction. This fact now allows us

to characterize the dynamics of the cross-sectional evolution of posterior types.

3.3 Evolution of Type Distributions

For each class i, we suppose that the initial cross-sectional distribution of types of the
class- agents has some density 1;o. This initial density may have been endogenously
determined through pre-trade information acquisition decisions, which we analyze in Sec-
tion 5. We do not require that the individual class-i agents have types with the same
probability distribution. Nevertheless, our independence and measurability assumptions
imply the exact law of large numbers, by which the density function ;o has two deter-
ministic outcomes, almost surely, one on the event that ¥ = 0, denoted ¥, the other
on the event that Y = 1, denoted v%. That is, for any real interval (a,b), the fraction
of class-i agents whose type is initially between a and b is almost surely f; ¥ (0) do on
the event that ¥ = 0, and is almost surely ff Yk (0) df on the event that Y = 1. We
make the further assumption that ¢ and %5 have moment-generating functions that
are finite on a neighborhood of zero.

The initial cross-sectional type densities in the high and low states, ¥ and %,

are related by the following result, proved in Appendix A.
Proposition 3.2 For all z,

o(@) = e"vig(z). ()

Appendix Lemma A.2 implies that any pair of probability density functions on the

real line satisfying (5) can be realized as the outcomes 1/ and 1% of the cross-sectional

9



density of beliefs resulting from some allocation of signals to agents. Thus, (5) is a
necessary and sufficient condition for such a pair of densities. In order to create model
examples, moreover, it suffices to pick an arbitrary density function for 1% satisfying
Jg "k (x) dz = 1 and then let ¥} be given by (5). Thus, one can safely skip the step
of specifying the set of signals and their allocation to agents.

Our objective now is to calculate, for any time ¢, the cross-sectional density
of the types of class-i agents. Again by the law of large numbers, this cross-sectional
density has (almost surely) only two outcomes, one on the event Y = 0 and one on the
event Y = 1, denoted ¥ and %, respectively.

Assuming that the equilibrium bids and offers are fully revealing, which will be
confirmed in the next section under explicit technical conditions on model primitives,

the evolution equation for the cross-sectional densities is
M
Vi1 = (1= X)) + Xty * Z Kij Vit iefl,..., M}, (6)
j=1

where * denotes convolution.

We offer a brief explanation of this evolution equation. The first term on the
righthand side reflects the fact that, with probability 1 — \;, an agent of class ¢ does
not meet anybody at time ¢ + 1. Because of the exact law of large numbers, the first
term on the righthand side is therefore, almost surely, the cross-sectional density of the
information types of class-i investors who are not matched. The second term is the cross-
sectional density function of class-i agents that are matched and whose types are thereby
changed by observing bids at auctions. The second term is understood by noting that
auctions with class-j counterparties occur with probability A;x;;. At such an encounter,
in a fully revealing equilibrium, bids reveal the types of both agents, which are then
added to get the posterior types of each. A class-i agent of type # is thus created if a
class-i agent of some type ¢ meets a class-j agent of type 0 — ¢. Because this is true for
any possible ¢, we integrate over ¢ with respect to the population densities. Thus, the
total density of class-i agents of type 6 that is generated by the information released at
auctions with class-j agents is

—+00

Aiﬁij 1/1it(¢)1/fjt(9 - ¢5) do = >\i’fij (1/% * %’t)(@)-

Adding over j gives the second term on the righthand side of the evolution equation (6).
For the case M = 1, a continuous-time analog of this evolution model is motivated and
solved by Duffie and Manso (2007) and Duffie, Giroux, and Manso (2010).

10



The multi-dimensional evolution equation (6) can be solved explicitly by an in-
ductive procedure, a discrete-time multi-dimensional analogue of the Wild summation
method of Duffie, Giroux, and Manso (2010), which is based on continuous-time random
matching and on a single class of investors.

In order to calculate the Wild-sum representation of type densities solving the
evolution equation (6), we proceed as follows. For an M-tuple k = (k1, ..., ky) of non-
negative integers, let a;(k) denote the fraction of class-i agents who by time t have
collected (directly, or indirectly through auctions) the originally endowed signal infor-
mation of k; class-1 agents, of ks class-2 agents, and so on, including themselves. This
means that |k| = ky + - -+ + kjy is the number of agents whose originally endowed infor-
mation has been collected by such an agent. To illustrate, consider an example agent
of class 1 who, by a particular time ¢ has met one agent of class 2, and nobody else,
with that agent of class 2 having beforehand met 3 agents of class 4 and nobody else,
and with those class-4 agents not having met anyone before they met the class-2 agent.
The class-1 agents with this precise scenario of meeting circumstances would contribute
to ay (k) for k = (1,1,0,3,0,0,...,0). We can view a;; as a measure on Z4, the set of
M-tuples of nonnegative integers. By essentially the same reasoning used to explain the

evolution equation (6), we have

M
Qipr1 = (L= X)ai + Niag* Z Kij Qjt, ajo = e, (7)

J=1

where

(@i % az)(k) = > ai(l) az(k —1).

{tezt, I < |k}
Here, 9., is the dirac measure placing all mass on e;, the unit vector whose i-th coordinate
is 1. The definition of a;(k) and Lemma 3.1 now imply the following solution for the

dynamic evolution of cross-sectional type densities.

Theorem 3.3 There is a unique solution of (6), given by

Vi = Z ait(k) wi‘é“ *oeeox ¢$6w7 (8)

kez!

where Y}y denotes n-fold convolution.

This representation captures the percolation of information through “intermedia-

tion chains” between classes that are only indirectly connected with each other. Lemma

11



C.3 provides the asymptotic (long horizon) properties of this evolution of cross-sectional
information distribution in terms of the characteristics of the “network connectivity ma-

trix” ()\m,-j)%:l.

4 The Double Auction Properties

We turn in this section to the equilibrium characterization of bidding behavior. For
simplicity, we assume that there are only two individual private asset valuations, that of

a prospective seller, vy, and that of a buyer, v, > v,. That is, v; € {v,,vs} for all 7.

4.1 Double Auction Solution

Fixing a time ¢, we suppose that a class-i agent and a class-j agent have met, and that
the prospective buyer is of class . We now calculate their equilibrium bidding strategies.
Naturally, we look for equilibria in which the outcome of the offer o for a seller of type 6
is S(#) and the outcome of the bid /5 of a buyer of type ¢ is B(¢), where S(-) and B(-)
are some strictly monotone increasing functions on the real line. In this case, if (o, §) is
an equilibrium, we also say that (.5, B) is an equilibrium.

Given a candidate pair (S, B) of such bidding policies, a seller of type 6 who offers

the price s has an expected increase in utility, defined by (1), of

—+00

wawa$=/‘ (s — 0. — AP0+ 6)) Wy(P(0). 6) dob (9)

B~1(s)

where A, = vl — v, and where U, (P(f), - ) is the seller’s conditional probability density
for the unknown type of the buyer, defined by

Ty(p,d) = peyf (¢) + (1—p)¥i(9). (10)

Likewise, from (2), a buyer of type ¢ who bids b has an expected increase in utility for

the auction of

S~1(b)
vm¢3$=/ (0 + AP0+ 6) — S(0)) Wu(P(9).0)d0. (1)

—00

The pair (S, B) therefore constitutes an equilibrium if, for almost every ¢ and
0, these gains from trade are maximized with respect to b and s by B(¢) and S(#),

respectively.

12



It is convenient for further analysis to recall that the the hazard rate hk () asso-

ciated with % is defined by
L

L i(0)

HiO) = S

where G5(0) = [;° ¥4 (x) dz. That is, given Y = 1, h(0) is the probability density for

the type 6 of a randomly selected buyer, conditional on this type being at least . We

likewise define the hazard rate hil(6) associated with . We say that 1;; satisfies the
hazard-rate ordering if, for all 6, we have hil(0) < hE(0).

Appendix A confirms that property (5) is maintained under mixtures and convo-

lutions. The same property therefore applies to the type densities at any time t > 0.
The likelihood ratio ¥/ (z)/1k(x) = € is therefore always increasing. Appendix A also

provides a proof of the following.

Lemma 4.1 For each agent class i and time t, the type density v;; satisfies the hazard-
rate ordering, hi(0) < hk(0).

We will exploit the following technical regularity condition on initial type densities.

Standing Assumption: The initial type densities are strictly positive and twice con-

tinuously differentiable.

The calculation of an equilibrium is based on the ordinary differential equation
(ODE) stated in the following result for the type V;(b) of a buyer who optimally bids b.
That is, V; is the inverse B~! of the candidate equilibrium bid policy function B.

Lemma 4.2 For any Vy € R, there exists a unique solution Vy(+) on [vy, v) to the ODE

, B 1 Z— U 1 1
Vilz) = o=, (w—z RTV() | RE(A(2)

), Viw) = Vo (12)

This solution, also denoted Vy(Vy, 2), is monotone increasing in both z and Vy. Fur-
ther, lim,_ = V,(Vy,2) = +oo, and the limit V,(—o00,2) = limy,_o Vo(Vo, 2) ezists.

Finally, z — V,(—00, 2) is continuously differentiable.

As shown in the proof of the next proposition, found in Appendix B, the ODE (12)
arises from the first-order optimality conditions for the buyer and seller. The solution
of the ODE can be used to characterize all continuous nondecreasing equilibria in the

double auction, as follows.
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Proposition 4.3 Suppose that (S, B) is a continuous, nondecreasing equilibrium for
which S(0) < v for all @ € R. Let Vo = sup{B~*(v,)} > —oco. Then

B(¢) = V'), & > Vo

Further, S(—o0) = limg_, o S(0) = v, and S(+o0) = limg_, o, S(0) = vH. For any
0, we have S(0) = V.1(0), where

S

Z — Uy

‘/;(Z) = lOg vH — & - %(Z) - 10gR7 z € (Ubva)v (13>

recalling that R =P(Y = 0)/P(Y = 1). If the buyer has type ¢ < Vj, then no trade will
occur. The bidding policy B is not uniquely determined at types below Vj.

In our double-auction setting, welfare is increasing in the probability of trade con-
ditional on Y = 1, because the buyer and seller both have a strictly positive expected
gain from any trade conditional on Y = 1. We are therefore able to rank the equilibria
of our model in terms of welfare, because, from the following corollary of Proposition

4.3, we can rank the equilibria in terms of the probability of trade conditional on Y = 1.

Corollary 4.4 Let (S, B) be a continuous, nondecreasing equilibrium with Vy = sup{ B~ (v,)}.
Then S(¢) is strictly increasing in Vo for all ¢, while B(¢) is strictly decreasing in Vj
for all ¢ > V4. Consequently, the probability of trade conditional on Y = 1 is strictly

decreasing in Vj.

We turn to the study of particular equilibria, providing conditions for the existence
of equilibria in strictly monotone undominated strategies. We also give sufficient condi-
tions for the failure of such equilibria to exist. These welfare-maximizing equilibria will
be our focus of attention in the subsequent sections of the paper.

From Proposition 4.3, the bidding policy B is not uniquely determined at types
below sup{B~!(v;)}, because agents with these types do not trade in equilibrium. Nev-
ertheless, the equilibrium bidding policy B satisfying B(¢) = v, whenever ¢ < V weakly
dominates any other equilibrium bidding policy. That is, an agent whose type is below
Vb and who bids less than v, can increase his bid to vy, thereby increasing the probability
of buying the asset, without affecting the price, which will be at most the lowest valu-
ation v, of the bidder. An equilibrium in strictly monotone undominated strategies is
therefore only possible for the limit case, V; = —oo. We now provide technical conditions

supporting the existence of such a welfare-maximizing equilibrium.

14



We say that a function g(-) on the real line or the integers is of exponential type

a at —oo if, for some constants ¢ > 0 and v > —1,

m 2 _ (14)

T — —00 |x"¥ ear

In this case, we write g(x) ~ Exp__(c, v, a). We use the notation g(z) ~ Exp, (¢, 7, ®)
analogously for the case of © — +o00. Our results regarding strictly monotone bidding
strategies, and thus full revealing equilibria, rely on the following technical regularity

condition on the tails of the initial cross-sectional distribution of beliefs.

Condition 1 There exists an av_ > 2.4 and an oy > 0 such that, for each class i, the
initial type densities satisfy
d u
% 10 (I) ~ EXp—oo(Ci,—f}/i,—aa—)

and p
% g(l') ~ EXp+oo(Czy+a%,+>O‘+)a

for some constants ¢; + > 0 and ~; + > 0.

In order to analyze the propagation of information, it is crucial that the exponential
tail behavior of type densities is maintained at each successive exchange of information
between two agents, when their type densities are both replaced by the convolution
of their respective pre-trade type densities. This is ensured by the following lemma,

demonstrated in Appendix C.

Lemma 4.5 Suppose g1 and g, are densities with gi(x) ~ Exp,(c1,7,—a) and

92(3:) ~ EXp+oo(02>72>_a)‘ Then
g1 *3gs ~ EXp—i—oo(Q’% —Oé),

where v = v1 + 72+ 1 and

cieal'(m +1) (2 + 1)
Ly 472 +2) '

The analogous result applies to the asymptotic behavior of g1 % go at —oo.

The following proposition follows.
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Proposition 4.6 Under Condition 1, for anyt > 0, there exist v > 0 and c¢;; > 0 such
that wzlg ~ EXp+oo(cit7 it —CY)

Proposition 4.6 follows from a straightforward application of Lemma 4.5 to the
equilibrium type dynamics given by (6). Using Lemma 4.5, the tail parameters (c;, i)
of the type densities can be characterized explicitly by a recursive procedure described
in detail in Appendix C. As we show in Appendices E-F, for cases in which gains from
trade are sufficiently large, equilibrium quantities can be approximated by relatively
simple expressions involving only the parameters (c;;, ), allowing us to analyze the
percolation of information at this level of generality. This follows from the fact that
when gains from trade are sufficiently large, an agent’s equilibrium utility is dominated
by terms corresponding to trades with “extreme” (very large and very small) types.
There are two reasons for the important role of extreme types. First, because equilibrium
bids and asks are increasing in type, trading with agents of an “opposite” type leads to
the greatest realized trading gain. Second, trading with an agent whose type is larger
in absolute value type has a greater impact on the post-trade type of the agent. The
expected utility contributions of these extreme types are determined by the tail behavior
of the type distribution, which are characterized by the coefficients v;; > 0 and ¢;; > 0.

We now provide for the existence of a unique fully-revealing equilibrium, provided
that the proportional gain from trade,

Uy — Vg
vH

@:

is sufficiently high.

Theorem 4.7 Suppose that the initial type densities satisfy Condition 1. Then there
exists some G such that for any proportional gain from trade G > G, whenever a buyer
of class i and a seller of class 7 meet at time t, there exists a unique strictly increasing
continuous equilibrium, denoted (Siji(-), Biji(-)). This equilibrium is that characterized
by Proposition 4.3 for the limit case Vy = —oo. In contrast, if G < a;l, then a strictly

increasing equilibrium does not exist.

5 Endogenous Information Acquisition

A recurrent theme in the study of rational-expectations equilibria in centralized markets
is that, absent noise in supply or demand, prices fully reveal the payoff relevant informa-

tion held by investors. This leads to the well-known paradoxes of Grossman (1976) and
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Beja (1976). If prices are fully revealing, then investors would avoid any costly gath-
ering of private information, raising the question of how private information was ever
incorporated into prices.

In our decentralized-market setting, because trade is private, it takes time for
information to become incorporated into prices. Informed investors may therefore prof-
itably invest in gathering information. Furthermore, incentives to gather information

may improve if agents anticipate trading with more informed counterparties.

5.1 Setup

We suppose from this point that agents are endowed with, or endogenously acquire,
information in the form of disjoint “packets” (subsets) of signals. These packets have
a common type density!! @H conditional on {Y = 0} and a common type density @L
conditional on {Y = 1}. We will be relying for simplicity on the following sufficient

condition for Condition 1.

Condition 2 For some o > 1.4 and for some ¢y > 0, %@H(z) ~ Exp_,(co,0,a0 + 1)

and £35" () ~ Bxp.o(co,0,—0).

All agents are initially endowed with Ny, > 0 signal packets. Before trade begins
at time 0, each agent has the option to acquire up to m additional packets, at a cost of
per packet. Given the initial information acquisitions, whenever agents of classes ¢ and
j are in contact at some time t, trade is according to the unique fully-revealing bidding
equilibria (Bjjt, Sijt) characterized by Theorem 4.7.

We focus on symmetric equilibria, those in which agents of the same class acquire
the same number of signal packets. Appendix H analyzes asymmetric equilibria. If
agents of class ¢ each acquire N; signal packets, then the exact law of large numbers

implies that the initial cross-sectional type density of this class is the (N, + V;)-fold

A deterministic finite set of signals has a discretely supported type distribution, so cannot have
a type distribution with a density. Thus, the existence of density in this case implies that a packet
must have a random selection of signals, which allows for a differentiable cumulative type distribution.
For example, we can suppose that the set S of all signals is a non-atomic measure space, and that the
cross-sectional distribution of types of S has the type density ©». Then we can suppose that a packet
consists of one signal drawn randomly from S with the uniform distribution. By this construction, a

—H
packet has a random type with probability density ¢» conditional on ¥ = 0 and probability density

—L
1 conditional on Y = 1. This implies, by the exact law of large numbers, that the cross sectional
distribution of the types of the set of agents who have received a total of k packets of information, for

—ik
any integer k > 1, is almost surely the k-fold convolution 1/)* , which suffices for our application.
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convolution of EH on the event {Y = 0}, and the (Nyi, + N;)-fold convolution of EL on

the event {Y = 1}. This initial cross-sectional density, with two outcomes, is as usual
_*(Nmin+Ni)
denoted v )

Consider an agent of class ¢ who initially acquires n signal packets, and who assumes

a given vector N = (N, ..., Nys) of signal-packet acquisition quantities of each of the M

classes. As a result, this agent has an information-type process denoted O, y, at time

t, and has the initial expected utility

T
ui(n,N) = E <—7Tn + Z Ai Z Kij Vijt(On, Nt Bijt, Sijt)) , (15)
t=1 j
where the gain v;;; associated with a given sort of trading encounter is as defined by (9)
or (11), depending on whether class-i agents are sellers or buyers, respectively.

In equilibrium, given the information acquisition decisions of other agents, each
agent chooses a number of signal packets that maximizes this initial utility. We formalize

this equilibrium concept as follows.

Definition 5.1 A (symmetric) rational expectations equilibrium is: for each class i, a
number N; of acquired signal packets; for each time t and seller-buyer pair (i,j), a pair
(Sijt, Biji) of bid and ask functions; and for each class i and time t, a cross-sectional

type density 1 such that:

Nmin"l‘Ni

(1) The cross-sectional type density 1y is initially 1,y = E*( ) and satisfies the

evolution equation (6).

(2) The bid and ask functions (S;ji, Biji) form the equilibrium uniquely defined by The-

orem 4.7.

(3) The number N; of signal packets acquired by class i solves max,, ¢ (0,7 wi(n, N).

We are now ready to characterize endogenous information acquisition in this set-
ting.
5.2 Strategic Complementarity in Information Acquisition

We say that information acquisition is a strategic complement if, for any agent class 7
and any numbers n and n’ > n of signal packets that could be acquired, the utility gain

ui(n', N) — u;(n, N) is increasing in the assumed amounts (Ny,..., N;_1, Nit1,..., Nys)
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of signal packets acquired by other classes of agents. The main result of this section is

the following.

Theorem 5.2 Suppose Condition 2 holds. There exist § and T > 1 such that for any
proportional gain from trade G > G and market duration T > T, information acquisition

1S a strategic complement.

This theorem describes the effects of information acquisition by others on their
bidding behavior and is responsible for most of the phenomena on which we will now
focus.

In order to understand the general complementary result for large 7', we note that
the incentives to gather information in an OTC market are determined by two basic
effects: a “learning effect” and an opposing “pricing effect.” Specifically, for any class
1 of agents, a change in the information acquisition policy of some other class agents
influences the gain u;(n', N) — u;(n, N) from information acquisition via two channels:
(i) the profit from trade with a counterparty of any given type changes because the
double-auction equilibrium bid and ask prices change (the pricing effect), and (4i) the
distribution of types of future trading counterparties changes (the learning effect).

As we show in Appendix G, the pricing effect always reduces the information
gathering incentives of individual sellers and buyers as their counterparties become better
informed. The intuition is that, in order to avoid missing unconditional expected gains
from trade with buyers that are increasingly well informed, sellers find it optimal to
reduce their ask prices. Therefore, with lower ask prices, a seller’s expected gain from
trade decreases, whereas buyers know that they will get a good price anyway, even
without acquiring additional information. This distinction between buyers and sellers is
a side effect of the seller’s-price double auction.

The learning effect is more subtle. As agents acquire more information, the aver-
age quality of information is improved, but there is also an increased risk of receiving
an unusually misleading bid. That is, the tails of the cross-sectional type densities be-
come fatter at both ends, for some period of time. This is evident from Lemma 4.5.
Specifically, as an agent gathers more and more signal packets, his or her type density is
repeatedly convolved with the type density of a signal packet. By Lemma 4.5, the power
~ correspondingly increases, reflecting greater fatness of both tails of the type density. In
order to mitigate the cost of extreme, albeit unlikely, adverse selection, associated with
ending up on the wrong tail of the type distribution, the learning effect leads agents to

respond by gathering more information.
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Because the percolation of information through bilateral trade occurs at an expo-
nential rate, whereas the pricing effect does not depend as strongly on time, the learning
effect dominates the pricing effect if there are sufficiently many trading rounds, thus
providing enough opportunities for agents to exploit any information that they have ac-
quired. For a sufficiently small number of trading rounds, the pricing effect dominates
the learning effect.

The failure of strategic complementarity for small 7" arises from within-class ex-
ternalities in the information acquisition game. If a given (non-trivial) subset of class-
i agents acquire a lot of information, then their counterparties (agents from opposite
classes) will eventually learn a lot from them. However, because information percolates
at a finite speed, this learning effect is weak when 7" is small, and dominates only when
T is sufficiently large. As Theorem 5.2 shows, this provides an incentive for any class-i
agent to acquire more information. By contrast, if 7" is small enough, this learning ef-
fect is weak, and information acquisition by agents within the same class 7 leads only
to stronger adverse selection in future trades (because, for any given agent of class i,
his counterparties, anticipating that he is better informed, offer him worse prices). This
makes within-class information acquisition a strategic substitute if 7" is small enough,
and may lead to the absence of any equilibria.

Under strategic complementarity, it follows that the amount of information opti-
mally acquired by a given agent is increasing in the amount of information that is con-
jectured to be acquired by other agents. These complementarity effects are responsible
for the existence or non-existence!'? of equilibria for market durations that are above or
below some market-duration threshold 7. The Tarski (1955) fixed point theorem implies

the following result.

Corollary 5.3 Suppose Condition 2 holds. For any proportional gain from trade G > §
and market duration T > T, there exists a symmetric equilibrium. Furthermore, the set
of equilibria is a lattice with respect to the natural partial order on Z%, corresponding to

the number of packets acquired by the M agent classes.

Thus, we can select a maximal and a minimal element of the set of equilibria. These
equilibria can be easily constructed by means of a standard iteration procedure. Namely,
consider the map from conjectured information acquisition policies to the corresponding

optimal responses. Since, by Theorem 5.2, this map is monotone increasing, iterations

21t is well known that, in a game in which players’ choice are discrete and are strategic substitutes,
pure strategy equilibria may fail to exist.
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of this map applied to the initial condition n; = n for all ¢ are monotone decreasing in
the number of iterations and converge to the maximal equilibrium. Similarly, iterations
of this map applied to the initial condition n; = 0 for all ¢ converge to the minimal
equilibrium. '3

Definition 5.4 We say that equilibrium information acquisition is increasing in a given

ordered set of parameters if, for any parameters a; and as > aq, the following are true:

e For any equilibrium information acquisition policy vector N(oy) corresponding to
ay there exists an equilibrium policy vector N(aw) corresponding to as and such
that N(a1) < N(az).

e For any equilibrium information acquisition policy vector N(aw) corresponding to
oy there ezists an equilibrium policy vector N(aq) corresponding to ay and such
that N(Oq) S N(Oég).

The following result characterizes equilibrium incentives for information gathering.

Proposition 5.5 Suppose Condition 2 holds. Suppose also that k;; > 0 for all pairs of
buyer and seller classes. There exist § and T such that for any proportional gain from

trade G > G and market duration T > Tv, the following are true.

1. Equilibrium information acquisition is increasing in each of Ny, 1, and a common

rescaling of the matching probabilities (A1, ..., Ayr).

2. There exists a threshold T > T such that, for any market duration T > T, equilib-
rium information acquisition is increasing in the matching probability A;, for any

class 1.

The intuition here is analogous to that behind Theorem 5.2. Namely, an increase

in meeting intensities increases the speed of information percolation and hence makes

13We have established complementarity only with respect to the information-acquisition policies of
other classes. Within-class information acquisition may be a strategic substitute. Consider a map that,
for each class i, takes as given the information acquisition policies {N; : j # i} of the other classes,
and picks the largest “within-class equilibrium” response, which would be an equilibrium within class i,
fixing these choices of other classes. We show in Appendix G that the “within-class equilibrium” always
exists. Hence, the map is well defined and has the monotonicity properties on which we rely. Iterations
converge to the largest equilibrium. Similarly, choosing the map that picks the smallest “within-class
equilibrium” and iterates leads to the smallest equilibrium.
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traders better informed. In order for this learning effect to dominate, we need sufficiently
many (T > T) trading rounds.

This result illustrates the role of cross-class externalities. Even if a class 7 does
not trade with some class 4, an increase in the trading intensity of class ¢ increases the
information acquisition incentives for class j. This is a “pure” learning externality in
that, if class i trades more frequently, the additional information acquired will eventually
percolate to the trading counterparties of class j. This encourages class j to acquire more
information. This requires an ordered path {ki, ..., k,,} of classes connecting class i = k;
with class j = k;,, via the property that the counterparty selection probability xgz,,, is
non-zero for all £ < m.

If the market duration is moderate in the sense of this Theorem (that is, 7" €
(TV, T)), then the learning effect may not be strong enough. That is, improving the
connectivity of some investor classes may asymmetrically affect the information gath-
ering incentives of other classes of investors, leading to a lower amount of equilibrium

information acquisition. We explore this potential in the next sub-section.

5.3 An Illustrative 3-Class Example

We now illustrate our general results with a three-class example. Classes 1 and 2 are
sellers. Class 3 consists of buyers. The seller classes have contact probabilities A; and
Ao, respectively. Without loss of generality, Ao > A;. The evolution equations (6) for
the cross-sectional distributions of information types are then entirely determined by
the fractions of the populations that are sellers of each class.!* We assume that these
fractions are the same, m € (0,1). As explained in Section 3.2, this implies that the
contact probability of a buyer is (A; + A2)m/(1 — 2m). We take m = 0.25, so that the
buyer contact probability is the simple average of the seller contact probabilities.!® In a
symmetric equilibrium, sellers of classes 1 and 2 acquire N; and N, packets of signals,

respectively. Buyers acquire NV, signal packets.

MThat is, ¥i101 = (1 — Ni)®ie + Niir x by, @ € {1,2}, where “b” denotes buyers. The buy-
ers’ contact probabilities and the evolution equation of the cross-sectional distribution of the buyers’
information types are then determined by the population masses of the two seller classes. Specifically,
letting m; denote the mass of the population consisting of class-i sellers, the exact law of large numbers
for random matching implies that the total quantity of contacts of buyers by sellers in a given period is
A1mi+Aama. Thus, the probability that a given buyer is contacted is Ay = (Aym1+Xama)/(1—mq1—ms).
Likewise, because \;m; = A\ykp;mp, we know that, conditional on the event that a buyer contacts a seller,
the probability that the seller is of type i must be kp; = A\im;/(A1m1 + Aama).

15 This implies that kp; = )\1/()\14—)\2) Thus, 1/}b,t+1 = (1—05()\1+)\2)) Ut +05(/\1 P1e + Ag 1/)2,5)*1/)1715.
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Proposition 5.6 Suppose Condition 2 holds, T > TV, and G > G, for the time T and
the proportional-gain-from-trade threshold g of Theorem 5.2. Then symmetric equilibria

exist. There are at most three distinct such equilibria. In any symmetric equilibrium,
Ny < N».

The fact that better connected sellers acquire more information (N; < Nj) follows
from the fact that they can “amortize” the cost of the information over a higher expected
number of trading opportunities. This result extends to the general class of segmented
market models studied in this paper.

Our final result states that raising market contact rates can reduce equilibrium
information gathering. This can be explained as follows. As class-2 sellers become more
active, buyers learn at a faster rate. The impact of this on the incentive of the “slower”
class-1 sellers to gather information is determined by a “learning effect” and an opposing
“pricing effect.”

The pricing effect works in this three-class example as follows. Buyers become
increasingly well informed by class-2 sellers as Ay increases, and therefore class-1 sellers
find it optimal to reduce their ask prices. This reduces the information gathering incen-
tives of individual sellers and buyers, given the information acquisition decisions of other
agents.

Furthermore, as A\ rises, class-2 sellers transport more information through the
market, giving rise to a learning effect. As we have explained, the pricing effect is
stronger for small T, whereas the learning effect eventually dominates for 7' > T'. This

leads to the following result.

Proposition 5.7 Suppose Condition 2 holds and let g and T be chosen as in Theorem
5.2. If the proportional gain G from trade is larger than G, then there is some time
T e (i T) such that, if T<T< T, the following is true. There exists an information-
cost threshold IC, depending on only the primitive model parameters \i, Ao, Nuyin, 7,
and 1, such that there is an equilibrium in which a non-zero fraction of agents acquire
a non-zero number of signal packets if and only if the cost m per signal packet is less
than or equal to K. This cost threshold IC is strictly monotone decreasing in As. Thus, if
m < K is sufficiently close to IC, then increasing Ao leads to a full collapse of information

acquisition, in the sense that the fraction of agents choosing to acquire signals is zero.

Proposition 5.7 implies that increasing market contact rates does not necessarily

lead to more informative markets. It is instructive to compare with the case of a static
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double auction, corresponding to 7' = 0. With only one round of trade, the learning
effect is absent and the expected gain from acquiring information for class-1 sellers is
proportional to A\; and does not depend on As. Similarly, the gain from information
acquisition for buyers is linear and increasing in As. Consequently, in the static case, an
increase in Ay never leads to less information acquisition in equilibrium, in contrast to
the conclusion of Proposition 5.7.

This result is not an artifact of the artificially fixed amount of the asset exchanged
at each auction, which might suggest a role for increasing 7" through increasing the total
amount of the asset traded. Indeed, our result holds even if we scale the amount of the

asset exchanged by the number T of rounds of trade.

5.4 Further Remarks on Endogenous Information Gathering

Appendix K considers a setting in which information can be gathered dynamically, based
on learning over time. Under natural conditions, in equilibrium an agent acquires an
additional signal packet at some time ¢ provided that the agent’s current information is
sufficiently imprecise, meaning that the agent’s type is neither high enough (above some
deterministic upper threshold depending on ¢), nor low enough (below some deterministic
threshold depending on ). At intermediate types, the value of more information (through
the net effect of price and probability of trade) exceeds the cost.

Given our results, it is natural to address the impact on information gathering in-
centives of public transactions reporting, as currently proposed for U.S. over-the-counter
derivatives markets. The results of Duffie, Manso, Malamud (2011) imply that, under
natural conditions, the public reporting of a (random) selection of individual bids and
offers would speed the rate of convergence of the cross-sectional distribution of beliefs to
perfect information by the mean rate at which these quotes are published. Public quote
reporting would generally reduce the number of welfare-improving trades that do not
occur because of adverse selection. Public reporting could, however, depending on the
parameters of our model, either raise or lower the incentives to gather costly information.
For the limit case in which all quotes are reported publicly, all agents would instantly
learn all payoff-relevant information, and the incentive to gather fundamental information
would completely disappear, returning us to the setting of the Beja-Grossman-Stiglitz
“paradox.” It also bears mentioning that in a setting with risk aversion, the “Hirshleifer

effect” implies that delaying or suppressing the publication of quotes may also benefit
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risk sharing.’® In light of the above discussion, an interesting direction for future re-
search is to study the welfare implications of public information releases in decentralized
markets.!”

In Appendix I we endogenize information gathering by instead allowing the agents
to increase, at a cost, their matching probabilities with other classes of agents. This can
be viewed as “endogenous network formation.” As we show, in equilibrium agents decide
to target their search efforts toward classes of counterparties that are expected to be bet-
ter informed. These better informed classes of agents thus endogenously arise as “hubs”

in the matching structure, and, as consequence, accumulate even more information.

16See Hirshleifer (1971).

T centralized markets, Vives (2011) finds that releasing public information on the common compo-
nent of value improves total surplus. In other social learning settings, previous research has found that
public information releases may crowd out learning (e.g. Burguet and Vives, 2000; Morris and Shin,
2005; Duffie, Malamud, and Manso, 2009; Amador and Weill, 2010; Colombo, Femminis, and Pavan,
2014).
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Appendices

The appendices are organized as follows. Appendices D through L are found in a

supplement, Duffie, Manso, and Malamud (2013).

A.

B.

A characterization of all possible initial type distributions.

A derivation of the ordinary differential equation for the equilibria of the seller’s-

price double auction.

. A demonstration of the exponential tail behavior of the cross-sectional type distri-

butions, as necessary to prove the existence of double-auction equilibria..

. A proof of the existence and uniqueness of a strictly monotone equilibrium of the

double auction.

. An application of results from Appendix D to obtain approximations for the double-

auction equilibrium for the case of large gains from trade.

. An application of the results of Appendix E to derive approximations for the ex-

pected trading profits for the case of large gains from trade.

. An application of the results of Appendix F to approximate the expected gains

from information acquisition for the case of large gains from trade. From this, a
derivation of general properties of equilibrium information acquisition. Appendices
G.1 and G.2 apply these results to special cases of one and two classes of sellers,

respectively.

. An analysis of mixed-strategy equilibria for the special case of two classes.

Results on endogenous investment in matching technology.
Proofs of results in Section I, on endogenous investment in matching technology.

Results for the case of dynamic information acquisition.

. Proofs of results in Appendix K.

Table 1 indicates the locations of proofs of all major results from the text of the paper.
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Table 1: Directory of Locations of Proofs of Main Results. Appendices D through L are
located in an online supplement, Duffie, Manso, and Malamud (2013).

Result Proof location
Proposition 3.2 | Appendix A

Lemma 4.1 Appendix A, Lemma A.1
Lemma 4.2 Appendix B

Proposition 4.3 | Appendix B
Theorem 4.7 Appendix D
Theorem 5.2 Appendix G
Proposition 5.5 | Appendix G
Proposition 5.6 | Appendix G, Proposition G.12
Proposition 5.7 | Appendix G
Theorem 1.2 Appendix J
Proposition 1.4 | Appendix J
Theorem 1.5 Appendix J

A Amenable Cross-Sectional Information Type Densities

This appendix provides for the existence and properties of cross-sectional densities of

information types that are obtained from signals that are Y-conditionally independent.

Proof of Proposition 3.2. First, we say that a pair (F'¥, FL) of cuamulative distribu-

tion functions (CDFs) on the real line is amenable if
dFH(y) = e dF*(y). (16)

It follows directly from (20) and (21) below that if F# and F'* correspond to the con-
ditional type distributions associated with a single fixed signal, then they are amenable.
The claim then follows from Fact 1, stated and proved below. m

The claim of Lemma 4.1 is contained in the following lemma.

Lemma A.1 For each agent class v and time t, the type density 1y satisfies the hazard-
rate ordering, hil(0) > hE(0), and VI () = e E(x). If, in addition, each signal Z
satisfies
PZ=1Y=0)+P(Z=1]Y =1) =1, (17)
then
Ui (2) = ey (—x),  Yi(r) = Y (—x), weR (18)
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Proof of Lemma A.1. First, we say that a pair (F'¥, FL) of cumulative distribution

functions (CDFs) on the real line is symmetric amenable if
dF*(y) = dF"(—y) = e dF (y), (19)

that is, if for any bounded measurable function g,

/_wg(y)dFL(y)zf oog(—y)dF’Lj’(y)zf oo6‘99(@/)dFH(y)-

[e.e] —00 —00

It is immediate that the sets of amenable and symmetric amenable pairs of CDF's

is closed under mixtures, in the following sense.

Fact 1. Suppose (A, A,n) is a probability space and FH : Rx A — [0,1] and F¥ : Rx A —
[0,1] are jointly measurable functions such that, for each o in A, (FH(- a), FL (-, a))
is an amenable (symmetric amenable) pair of CDFs. Then an amenable (symmetric
amenable) pair of CDFs is defined by (FH,FL), where

H L

Fly) = / Fi(y,0)dg(0),  Fl(y) = / Fh(y, a) dn(a).

The set of amenable (symmetric amenable) pairs of CDF's is also closed under finite

convolutions.

Fact 2. Suppose that X;,..., X, are independent random wvariables and Yi,...,Y, are
independent random variables such that, for each i, the CDFs of X; andY; are amenable
(symmetric amenable). Then the CDFs of Xy +-+-+ X, and Yy +---+Y,, are amenable

(symmetric amenable).

For a particular signal Z with type 0z, let F! be the CDF of 6, conditional on
Y =0, and let FZ be the CDF of 6, conditional on Y = 1.

Fact 3. If (F', FL) is an amenable pair of CDFs and if Z satisfies (17), then (FE, FL)

s a symmetric amenable pair of CDFs.

In order to verify Fact 3, we let 6 be the outcome of the type 6 on the event {Z = 1},
so that
P(Y=0|Z=1) P(Y =0 P(Z=1|Y =0)

1 ~1
—1) ®py =1 *®

~— | —
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Further, let

- P(Y =0|Z =0)

P(Z=0|Y =
0 = log ( 0] 0)

P(Y = 0)
~log P(Z=0]Y =1)

P(Y =1|Z = 0) P(Y = 1)

= log

be the outcome of the type 6 on the event {Z = 0} . Then,

0 040

g € —e e —el
e A 2
and _
1—e¢f e —1
L _ -

The amenable property (16) is thus satisfied.
If Z satisfies (17), then —0 is the outcome of 6, associated with observing Z = 0,

SO

0
Fil(y) = ﬁ Lip<yy + ﬁ Lip<yy

and 0
Fp() = T W + 75 Li-osu

These CDF's are each piece-wise constant, and jump only twice, at y = —f and y = 6. We

let AF(y) = F(y) —lim,y, F(2). Aty = —0 and y = 0, we have AFY (—y) = e VAFH (y)
and AFL(y) = AFE(—y), completing the proof of Fact 3.

Now, we recall that a particular agent receives at time 0 a random finite set, say
N, of signals, where N is independent of all else, and can depend on the agent. The
type of the set of signals received by the agent is, by Lemma 3.1, the sum of the types of
the individual signals. Thus, conditional on N, the type 6 of this agent’s signal set has
a CDF conditional on Y = 0, denoted F}#, and a CDF conditional on Y = 1, denoted
FE| that are the convolutions of the conditional distributions of the underlying set N
of signals given Y = 0 and given Y = 1, respectively. Thus, by Fact 2, conditional
on N, (Fff,Fk) is an amenable pair of CDFs. Now, we can average these CDFs over
the distribution of the outcome of N to see by Fact 1 that this agent’s type has CDFs
given Y = 0 and Y = 1, respectively, that are amenable. Under (17), we likewise have
symmetric amenability, using also Fact 3.

Now, let us consider the cross-sectional distribution of agent types of a given class
1 at time 0, across the population. Recall that the agent space is the measure space
(G,G,7). Let v; denote the restriction of 7 to the subset of class-i agents, normalized by

the total mass of this subset. Because of the exact law of large numbers of Sun (2006),
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we have, almost surely, that on the event Y = 0, the fraction v;({« : 0,0 < y}) of class-i

agents whose types are less than a given number v is
Fi(y) = / Fyl (y) dia),
G

where FZ is the conditional CDF of the type 0,0 of agent « given Y = 0. We similarly
define F as the cross-sectional distribution of types on the event Y = 1. Now, by Fact
1, (F®, FL) is an amenable pair of CDFs. By assumption, these CDFs have densities de-
noted ¥ and ¥k, respectively, for class i. The definition (19) of symmetric amenability

also implies, under (17), that

o) = vi(—y) = vi(y)e™,

as was to be demonstrated. That the densities (1], %) correspond for any ¢ to amenable
CDFs, and symmetric amenable CDF's under (17), follows from the facts that amenability
and symmetric amenability are preserved under convolutions (Fact 2) and mixtures (Fact
1). That the hazard-rate ordering property is satisfied for any density satisfying (5)

follows from the calculation (suppressing subscripts for notational simplicity):

GHz) _ [, Wtwdy [Ty T ") dy G ()
ph(z) Yr(x) VH (w - W) Y ()

This completes the proof of the lemma. m

Lemma A.2 For any amenable pair (F*, FL) of CDFs, there exists some initial alloca-
tion of signals such that the initial cross-sectional type distribution is F™ almost surely
on the event H = {Y = 0} and FL almost surely on the event L = {Y = 1}.

Proof. Since

1 = /R dF*(z) = /R e " dF (2),

it suffices to show that any CDF F satisfying

/ e dFH (z) =1 (22)

can be realized from some initial allocation of signals.

Suppose that initially each agent is endowed with one signal Z, but X; = P(Z =
1lY = 0) and Xo = P(Z = 1|L) are distributed across the population according
to a joint probability distribution dv(x1,25) on (0,1) x (0,1). We denote by FI the
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corresponding type distribution conditioned on state H. The case when v is supported
on one point corresponds to the case of identical signal characteristics across agents, in
which case F = F 9{{5 is given by (20). Furthermore, any distribution supported on two
points 0, 6 and satisfying (22) is given by (20). We will now show that any distribution
FH supported on a finite number of points can be realized. To this end, we will show

that any such distribution can be written down as a convex combination of distributions

H
of FM,

=N o F); .
In this case, picking

dv = 3 il a

to be a convex combination of delta-functions with

0; _ 0;+6; 0
xl _ 6 1 6 1 1 xl _

1—e
et — b’
we get the required result.

Fix a finite set S = {6;,...,0k} and consider the set £ of probability distributions
with support S that satisfies (22). If we identify a distribution with the probabilities
p1, - .., P assigned to the respective points in S, then L is isomorphic to the compact

subset of (p1,...,pK) € RE, satisfying

Zpizl, Ze‘eipizl.

i
Because this compact set is convex, the Krein-Milman Theorem (see Krein and Milman
(1940)) implies that it coincides with the convex hull of its extreme points. Thus, it
suffices to show that the extreme points of this set coincide with the measures, supported
on two points. Indeed, pick a measure 7 = (pi,...,pk), supported on at least three
points. Without loss of generality, we may assume that p;, ps, ps > 0. Then, we can pick

an € > 0 such that

—03 6—91 _ 6—92

>O,p3i€m>0.

e~

p1:|:€>0,p2:|:6m

Then, clearly,
1
T = §(W+ +77)
with o, o,

—0
(& (& (&
+
T = +e +re——
<p1 y P2 e—0s _ o—02

_6_92
>p3j:56_93_6_92ap47--'>pK .
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By direct calculation, 7" and 7~ correspond to measures in £. Thus, all extreme points
of L coincide with measures, supported on two points and the claim follows.

Now, clearly, for any measure F'¥ satisfying (22) there exists a sequence FI of
measures, supported on a finite number of points, converging weakly to F'¥!. By the
just proved result, for each F¥ there exists a measure dy; on (0,1) x (0,1), such that
FI' = Fjl . By Helly’s Selection Theorem (Gut (2005), p. 232, Theorem 8.1), the set
of probability measures on (0,1) x (0,1) is weakly compact and therefore there exists
a subsequence of v; converging weakly to some measure v. Clearly, F# = F! and the

proof is complete. m

B The ODE for the Double-Auction Equilibrium

Everywhere in the sequel we will for simplicity assume that the tail characteristics from
Condition 1 satisfy co+ =cp, e =vanda_ =ay +1=a+ 1.
This appendix analyzes the ordinary differential equation determining equilibrium

bidding strategies for the seller’s price double auction.

Proof of Lemma 4.2. By the assumptions made, the right-hand side of equation (12)
is Lipschitz-continuous, so local existence and uniqueness follow from standard results.
To prove the claim for finite V{, it remains to show that the solution does not blow up
for » < v . By Lemma 4.1,

1 - 1
Mt (Vo(2)) — hig(Va(2))”

and therefore

L z— 1 1
Vils) = (UH = RIGE) hfi(%(z))) (23)
1 v —

= W) (0 —00) (07 —2)

For notational parsimony, in the remainder of this proof we write “Gx” and “G” for

G and GL respectively. Thus we have

= (—log Gu(Vi(2) <

Integrating this inequality, we get

Gr(Vh) ) vl —y, 0 — o,
lo < lo .
g <GH<vb<z>> = S




That is,

oy
o — 2\ e
Gu(V(2) = Gul) (=) "
or equivalently,
" ’L}H*’Ub
_ vt —z | s
) < Gt Gnl) (S )
Similarly, we get a lower bound
oy
H vy —v
. v — 2\ s
ViVe2) > a5t | o) (w - Ub) | (24)

The fact that V}, is monotone increasing in 1 follows from a standard comparison theorem
for ODEs (for example, (Hartman (1982), Theorem 4.1, p. 26). Furthermore, as Vj —

—00, the lower bound (24) for Vj, converges to

H

S
G—l
L <’UH — vb)
Hence, V,, stays bounded from below and, consequently, converges to some function
Vi(—00, 2). Since V4 (Vp, 2) solves the ODE (12) for each V; and the right-hand side of

(12) is continuous, V3 (—00, 2) is also continuously differentiable and solves the same ODE
(12). m

Proof of Proposition 4.3. Suppose that (S, B) is a non-decreasing continuous
equilibrium and let Vi(z), V,(z) be the corresponding (strictly increasing and right-
continuous) inverse functions defined on the intervals (ay, A;) and (a2, Ay) respectively,
where one or both ends of the intervals may be infinite.

The optimization problems for auction participants are

max fs(s) = max /+OO (s —vs — AP0+ 9)) Vy(P(0), p) do (25)

5 JIVi(s)

and

Vs (b)
max f5(b) = max /_ (s + AP0+ ¢) — S(0) W.(P(6),0)d6.  (26)

b (o]
First, we note that the assumption that A; < v implies a positive trading volume.

Indeed, by strict monotonicity of S, there is a positive probability that the selling price
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is below v. Therefore, for buyers of sufficiently high type, it is optimal to participate
in trade.
In equilibrium, it can never happen that the seller trades with buyers of all types.

Indeed, if that were the case, the seller’s utility would be

‘4<a—%—wxpw+¢»wxpwx@d¢

which is impossible because the seller can then attain a larger utility by increasing
s slightly. Thus, a; > ay. Furthermore, given the assumption S < v, buyers of
sufficiently high types find it optimal to trade with sellers of arbitrarily high types. That
is, Ay = supy B(#) > supy S(0) = A;. Thus,

A22A1>a12a2.

Let 0, = Viy(ar), 6, = Vp(Ay). (Each of these numbers might be infinite if either
Ay = A or ay = ay.) By definition, Vi(a;) = —oo, Vs(A;) = +oo. Furthermore, f5(b) is

locally monotone increasing in b for all b such that

v + A P(Vi(b) + ¢) — S(Vi(b) > 0.
Further, fz(b) is locally monotone decreasing in b if

v + A P(Vi(b) + ¢) — S(Vs(b)) < 0.
Hence, for any type ¢ € (0,,60,), B(¢) solves the equation

v+ Ay P(Vi(B(9)) + ¢)) = B(9).
Letting B(¢) = z € (a1, A1), we get that

v+ A PV(E) + Va(2) = =, (1)
Now, as ¢ 1 0, we have B(¢) T A; and therefore V,(B(¢)) 1 +oc. Thus,
Ay = lim B(¢) = lim(v, + A, P(Vi(B(¢)) + ¢))) = v,

¢10n ¢10n

and similarly, a; = v,

We now turn to the first-order condition of the seller. Because V}, is strictly in-
creasing, it is differentiable Lebesgue-almost everywhere by the Lebesgue Theorem (for
example, Theorem 7.2 of Knapp (2005), p. 359). Let X C (ag, As) be the set on which V}/
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exists and is finite. Then, for all § € V(X)) the first-order condition holds for the seller.
For a seller of type 6, because the offer price s affects the limit of the integral defining
the seller’s utility (9) as well as the integrand, there are two sources of marginal utility
associated with increasing the offer s: (i) losing the gains from trade with the marginal
buyers, who are of type B~!(s)), and (ii) increasing the gain from every infra-marginal
buyer type ¢. At an optimal offer S(0), these marginal effects are equal in magnitude.

This leaves the seller’s first-order condition
Ty (P(0), Vio(S(0)) = V,(S(0)) (S(0) — vs — Ay P(6 4 V4(S(0)))) WW(P(0), S(6)), (28)
where oo
Ly(p,z) = / Uy(p,y) dy.
Letting z = S(0), we have § = V,(z) and hence

[y (P(Vi(2)), Vo(2))
Uy (P(Va(2)), Vi(2))

= V/(2) (2 — vy — A P(Vi(2) + Vi(2))). (29)

Now, if Vj(z) were not absolutely continuous, it would have a singular component and
therefore, by the de la Valée Poussin Theorem (Saks (1937), p.127) there would be a point
2o where V)/(z9) = +o0. Let 8 = Vi(zp). Then, S(f) could not be optimal because
the first order condition (28) could not hold, and there would be a strict incentive to
deviate. Thus, V,(z) is absolutely continuous and, since the right-hand side of (29) is
continuous and (29) holds almost everywhere in (aq, As), identity (29) actually holds for
all z € (ag, As).

Now, using the first order condition (27) for the buyer, we have

A _
2 v = APG(E) + V() = 2 == 3 w) = et - 2). (30)
Furthermore, (27) implies that
R eVS(Z)-I-Vb(Z) Z— U
P(Vi(z) + Vi(2)) = 1 + ReV-@tvls) vH —
That is,
Z — Uy
Vi) + Vilz) = log ot~ log R,
or equivalently,
Z — Up
Vi(z) = log 57— — Vi(2) — log K.
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Therefore,

—V Z—
b(2) H_b

. vl —z _ (Z — ’Ub)
P(Vi(2) = 1+ e V() oo — e BE (2 — )

—z

6_%(2)

Using the fact that UZ(V;(2)) = e @& W (V,(2)), we get

Uy (P(Vi(2), Vi(2)) = P(Vi(2)) B/ (Vi(2)) + (1= P(Vi(2))) Ty (Vi(2))
(2 — vp) e V()

vl — 2 + eV (2 — )
(v — 2) e V(®)

vl — 2 + e V(2) (2 — vy)

v — 2 + e V(3 (2 — )

+

Similarly,

Ty (P(Vi(2)),Vi(2)) = P(Vi(2)) Gu(Va(2)) + (1 — P(Vi(2))) GL(Vi(2))
(z = wp)e "D G (Vi(2) + (0" = 2) GL(Vi(2)) (31)
vl — 2 4+ e V() (2 — ) '

Consequently,

Lo(P(Vi(2), Vi(2)) _ P(V(2) G
Uy(P(Va(2)), Vil2))  P(Vi(2)) ¥

Thus, by (30), the ODE (29) takes the form
[y (P(Vi(2)), Vi(2))

H—v -1 Z— # vH—z 1 1
= W -w) (( V) ’hé(%@)) B (T~ )

—vp

B 1 Z— U 1 1 Y e (a "
TR <vﬂ—zhgf(w,<z)) ’ th(V},(z)))’ € (ad) = (w,v7).

Consequently, V,(2) solves (12). By Lemma 4.2, Vj(v) = +00. Thus Ay = v and the

proof is complete. m

Vi(z) =
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Proof of Corollary 4.4. By Proposition 4.3, V;,(Vj, 2) is monotone increasing in Vj.

Consequently, B = V, ' is monotone decreasing in V;. Similarly,

zZ —
Vi(Vo,2) = log—— = Vi(V,2) — log R

is monotone decreasing in Vj and therefore S = V7! is monotone increasing in V;.

C Exponential Tails of the Type Distribution

This appendix proves the dynamic preservation of our exponential tail condition on type
densities.

Proof of Lemma 4.5. We will use the decomposition

(1 5 )& (/ /m) (i — 5 n(y) dy

Now, we fix an € > 0 and pick some constant A so large that

a(y)

Y e (1146
C2e—ayy“{2

for all y > A. Then,

T (= y) Ua(y) dy
¢ [ il —y) emvyrdy

for all x. Changing variables, applying L.’Hopital’s rule, and using the induction hypoth-

€ (1—g1+4¢)

esis, we get
o —Q z—A —a(r—=z
p @y eyrdy L [L h@ et @ mde g
:(:—1>1’-|{100 gntrtl g—ax a x—l>r—iI-100 rk e—ox :

Now, using the same asymptotic argument, we conclude that, for any fixed B > 0, the
contribution from the integral coming from values of z below B is negligible and therefore
we can replace f by f and replace 1 (z) by ¢;27e**. Thus, we need to calculate

the asymptotic, using the change of variables from z/z to y, of

z—A 1-A/x
/ (22" (1= 2/2)™ d(z]z) = / (1= )y dy
B B/:C (33)
— / M1 -y)?dy = Blm+1,7%+1).

Finally, using the Lebesgue dominated convergence theorem we get that the part [ io U (z—
y)e(y) dy is also asymptotically negligible. The claim follows. m
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Using these asymptotic results, we now show that, for the case of sufficiently large
gains from trade G, the dependence of equilibrium utilities on the density of types can
be characterized in terms of the asymptotic parameters c;, v;; of Proposition 4.6. In the
setting of Section 5, let N, be the largest number of signal packets acquired in equilibrium
by a seller class, and, similarly, N, the largest number of packets acquired by a buyer

class. Let
S:{Sl,...,Sys}, b:{bl,...,bub}

be the set of seller classes with N; = N, and the set of buyers with N; = Nj, respec-
tively. Let also \yy = Mg kp and let Ay, € R”"** and A, € R**”s be the matrices
{Asin, } and {5, } of matching probabilities between the respective classes. Then, the
consistency conditions mg, A;; = m;A;; imply that M AS./\/lb_1 = A/, where A, denotes
the transposed matrix. Let also ¢ = {c,,+}72, and ® = {e 1},

We will need the following assumption.
Assumption C.1 k;; > 0 for all pairs of buyer and seller classes.
The following lemma is a direct consequence of Lemma 4.5.

Lemma C.2 We have

(AN, t is even

s — K(t,N
“ (¢ ){(AsAb)t—lAsl, t is odd

and, similarly,
ApAy)tt1 t is even
b — K(t,N (Ao, ’
(t, N) (ApA)IAL ) tis odd

for all t > 2, where K(t,N) is a universal combinatorial function. For a seller class
i s, we have ¢;y = K; Zj Aip; }’,t_l and, similarly, ¢;; = K; Zj Niys;C3i1 for a buyer of

class 1 € b, with come constants K;, independent of the matching probabilities.

Now, using the Perron-Frobenius Theorem (see Meyer (2000), chapter 8, page 668),
we show in the Appendix that the following is true.

Lemma C.3 The matriz A;Ay has a unique largest positive eigenvalue e”. Furthermore,

lim L log L Jim log — &
m — 10 ————— = —1mIog ———mm = 7.
Bt PKEN) | tive P K N)

The eigenvalue 1 is strictly monotone increasing in X;, for any class i.

38



By analogy with DeMarzo, Vayanos and Zwiebel (2003), one could call 7 the rate
of social influence. This rate captures the endogenous non-linear nature of cross-class
learning externalities. In particular, more “central” classes have a larger impact on r, and
therefore have a stronger impact on other classes’ behaviour. The proof of Proposition
5.5 implies that for sufficiently large time horizon 7' the leading asymptotic term in the
logarithm of the gains from information acquisition is proportional to r, and therefore
monotonicity of r with respect to \; directly implies monotonicity of the gains from

information acquisition.
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This supplement of Duffie, Malamud, and Manso (2013) houses the following ap-
pendices of our paper, “Information Percolation in Segmented Markets.” Appendices A

through C are found in the main paper.

Supplementary Appendices

D. A proof of the existence and uniqueness of a strictly monotone equilibrium of the

double auction.

E. An application of results from Appendix D to obtain approximations for the double-

auction equilibrium for the case of large gains from trade.

F. An application of the results of Appendix E to derive approximations for the ex-

pected trading profits for the case of large gains from trade.

G. An application of the results of Appendix F to approximate the expected gains
from information acquisition for the case of large gains from trade. From this, a
derivation of general properties of equilibrium information acquisition. Appendices
G.1 and G.2 apply these results to special cases of one and two classes of sellers,

respectively.
H. The two-class model.
I. Results on endogenous investment in matching technology.
J. Proofs of results in Section I, on endogenous investment in matching technology.
K. Results for the case of dynamic information acquisition.

L. Proofs of results in Appendix K.



D Existence of Equilibrium for the Double Auction
Existence of equilibrium follows from Proposition 4.6 and the following general result.

Proposition D.1 Fiz a buyer class b and a seller class s such that

Uy (2) ~ Expo(c, 7, —a) (1)

for some c,a > 0 and some v € R. If a < 1, then there is no equilibrium associated

with Vo = —oo. Suppose, however, that o > «o* and that

(a+1)loga
log(a+ 1) —loga’
log(a? — a) 2%

-y < if @ < 2.
7 log(aw+ 1) — loga’ na

ifa > 2

Then, if the gain from trade G is sufficiently large, there exists a unique strictly monotone
equilibrium with Vo = —oo. This equilibrium is in undominated strategies, and mazimizes

total welfare among all continuous nondecreasing equilibrium bidding policies.
In order to prove Proposition D.1, we apply the following auxiliary result.

Lemma D.2 Suppose that B,S : R — (v, v") are strictly increasing and that their

nverses Vg and Vy, satisfy
vy + AbP(Vs(z) + Vb(z)) = Z.

Suppose further that V}/(z) solves (12) for all z € (vy,v™). Then (B, S) is an equilibrium.

Proof. Recall that the seller maximizes

) = [ (s AP0 +0) WAPO),0)d0 )

Vi(s)

To show that S(€) is indeed optimal, it suffices to show that fi(s) > 0 for s < S(0)
and that f{(s) < 0for s > S(0). We prove only the first inequality. A proof of the
second is analogous. So, let s < S(0) < Vi(s) < 6. Then,

fs(s) = Vi(s) (=s + vs + AP0+ Vi(s))) Wu(P(0), Va(s)) + Go(P(0), Vi(s))

= VJ(s)Wy(P(0), Vi(s)) (—s s+ BP0+ Vifs)) + Vb’(S)hb(Pl(H) vb<s>>) '
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By Lemma 4.1, hy(p, V4(s)) is monotone decreasing in p. Therefore, by (29),

1 1
VIS (PO)Vi(s)) — Vi(s) la(P(Va(S)), Vi(s))

Hence,
f5(s) = Vi(s) Wy(P(0), Vi(s))
X (=s+vs +ALPEO+Vi(s) + s — vy — Ay P(Vi(s) + Vi(s))) > 0,

= s — vy — Ay P(Vi(s) + Vi(s)).

because 6 > V(s).
For the buyer, it suffices to show that

Vi(b)
ful®) = max [ (o + MuP(O+ ) S(6)) W(P(0),6) db 3)
satisfies f5(b) > 0for b < B(¢), and satisfies f5(b) < 0 for b > B(¢). That is,
v + Ay P(¢ + Vi(b)) — S(Vi(b)) = v + Ay P(¢ + Vi(b)) —b = 0

for b < B(¢), and the reverse inequality for b > B(¢). For b < B(¢), we have ¢ > V,(b)

and therefore
vy + Dy P(¢ + Vi(b) — b > vy + Ay P(Vy(b) + Vi(b)) — b = 0,
as claimed. The case of b > B(¢) is analogous. =

Proof of Proposition D.1. It follows from Proposition 4.3 and Lemma D.2 that a

strictly monotone equilibrium in undominated strategies exists if and only if there exists

a solution V4 (2) to (12) such that Vj(v,) = —oo and
Vi(z) = log 5= = Vi(2) — logR
vl — 2
is monotone increasing in z and satisfies Vi(v,) = —oo , Vi(v!) = +o00. Furthermore,
such an equilibrium is unique if the solution to the ODE (12) with V4(v,) = —o0 is
unique.

Fix a t < T and denote for brevity v = ~;; , ¢ = ¢;;. Let also

g(z) = elat) Vi(2)
Then, a direct calculation shows that Vj(2) solves (12) with Vj(v,) = —oo if and only
if g(z) solves
9'(2)
a+1 z— 1 1 (4)
= g(z) — H _ H —1 T T -1 ’
vp—vs \ V7 — 2z b ((a+1)"tlogg(z))  hy((a+1)"Tlogg(z))

4



with g(v,) = 0. By assumption and Lemma 4.1,
(V) ~ ¢ |[V]Te™Y and hf(V) ~ ¢ |V[T e (5)

as V — —oo because both Gf (V) and GE(V) converge to 1. Hence, the right-hand
side of (4) is continuous and the existence of a solution follows from the Euler theorem.
Furthermore, when studying the asymptotic behavior of g(z) as z | vy, we can replace
h{ and h} by their respective asymptotics (5).

Indeed, let us consider

1 zZ— U 1
~/ _ 1 ~
§() (o + >g(z)vb—vs (UH—ZC((oz—i-l)_llogl/g)“fg
(6)
N 1
(a+ D) o 1/7) ga/<a+1>> |
with the initial condition g(v,) = 0. We consider only values of z sufficiently close to

vp, so that log g(z) < 0.
It follows from standard ODE comparison arguments and the results below that

for any € > 0 there exists a Z > v, such that

9(2) '

— =1 +

‘9(2)

for all z € (v, 2) . The assumptions of the Proposition guarantee that the same asymp-

—1' < e (7)

totics hold for the derivatives of the hazard rates, which implies that the estimates
obtained in this manner are uniform.

First, we will consider the case of general (not necessarily large) v, — vs and show
that, when a < 1, g(z) decays so fast as z | v, that V(2) cannot remain monotone in-
creasing. A similar argument then implies that V,(z) cannot remain monotone increasing
when Go < 1.

At points in the proof, we will define suitable positive constants denoted Cy, Cs,
(s, ... without further mention.

Denote
(a+ 1)+

c(vp —vg)

¢ = (8)

Then, we can rewrite (6) in the form

i) — C = Uy ~1/(a+1)
7O = Toe1gy (vH—z o ) o



From this point, throughout the proof, without loss of generality, we assume that v, = 0.
Furthermore, after rescaling if necessary, we may assume that v — v, = 1. Then, the
same asymptotic considerations as above imply that, when studying the behavior of g

H

as z | vy, we may replace v — z ~ v — v, in (6) by 1.

Let A(z) be the solution to

A(z)
z = / ¢ (=logx) VD qg
0

A direct calculation shows that

a—+1

B(z) def / ¢ (=loga) z Vet gg ~ ¢ (—logz)Y z2/(@FD) |
0
Conjecturing the asymptotics

A(z) ~ K (—logz)vet/a ylatl)/a (10)

and substituting these into B(A(z)) = z, we get

(y+D(a+l)

K — 2 (@ ’
¢ <a+1)

Standard considerations imply that this is indeed the asymptotic behavior of A(z). It is

then easy to see that

a—+1

A(z) ~ K (—log z)letb/a J1/a (11)

By (9),
g/(z) > C ~1/(a+1)
(log1/g)”

Integrating this inequality, we get g(z) > A(z). Now, the factor (log1/g)” is asymptot-

ically negligible as z | v,. Namely, for any € > 0 there exists a C; > 0 such that

C Gl/(atetl) - C ql/(a+1) ~ C_l ~1/(a—a+1)‘
v ~ Qogtjgy? T

Thus,

/
(@) = &
Integrating this inequality, we get that

a—e+1

g(z) > Cs(z—1yp) o= . (12)



Let

Then, for small z, by (10),
l’(z) = §’(z) C—l (_logg)vg—l/(a—i—l) 1
= (og1/3)7 \oF + gl/( +1) ¢ 1(—logg)”’g +1) _ 1

z 1
=2 G »

< 1
1—z (A(I(2) 4 2)) /4D

< 1
1— 2z (A(l(2)))V/(@tD)

IN

where we have used the fact that [(z) > 0 because h(0) = 0 and I'(z) > 0. Integrating

this inequality, we get that, for small z,
Z(Z) < C4 Z2(a—€)/(a—€+1).
Hence, for small z,

9(2) = A(l(z) + 2) < A((Cy+ 1)/ e=etl)y < oy p2e, (14)

C(z) , -
/0 (—logx)’dxr = C/o I_Idx.

A calculation similar to that for the function A(z) implies that

Let C(z) solve

C(z) ~ Cg(—logz)"2* (15)

as z — 0. Integrating the inequality

we get that

9(z) = C(2).
Let now a < 1. Then, (14) immediately yields that the second term in the brackets in
(6) is asymptotically negligible and, consequently,

¢ z
(log1/g)7 1 -2

(I1+e)¢ =z

<96 < fogijpy T2

(16)



holds for sufficiently small z. Integrating this inequality implies that
Clz) < g(2) < (1+¢)C(2).
Now, (16) implies that
(1-¢)2C0(2)z7" < §(2) < 2(1+¢)C(z)2"

for sufficiently small' 2.
Using the asymptotics (5) and repeating the same argument implies that g(z) also

satisfies these bounds. (The calculations for g are lengthier and omitted here.)

Now,
/ g/(Z) 2 -1
= ——— 7 > (1- .
W) = e = e e
Therefore,
/ o 1 /

for sufficiently small z. Thus, V;(z) cannot be monotone increasing and the equilibrium
does not exist.

Let now o > 1. We will now show that there exists a unique solution to (4) with
g(0) = 0. Since the right-hand side loses Lipschitz continuity only at z = 0, it suffices to
prove local uniqueness at z = 0. Hence, we need only consider the equation in a small
neighborhood of z = 0. (It is recalled that we assume v, = 0.)

As above, we prove the result directly for the ODE (6), and then explain how the
argument extends directly to (4).

Suppose, to the contrary, that there exist two solutions §; and g» to (6). Define
the corresponding functions ; and Iy via [; = B(g;) — z. Both functions solve (13).

Integrating over a small interval [0, ], we get

Tz 1 1
@) = k@) < /0 T2 (A0 1 )V~ (Al(z) 1 2) V@

Now, we will use the following elementary inequality: There exists a constant Cg > 0
such that

dz. (17)

C@ (CL — b)
- gla—1)/a + pla=1)/c
for a > b > 0. Indeed, let z = b/a and 5 = 1/a. Then, we need to show that

al/a . bl/a (18)

(1+2)(1 - 2°) < Cs(1 —2)

'We are using the same ¢ in all of these formulae. This can be achieved by shrinking if necessary the
range of z under consideration.



for x € (0,1). That is, we must show that
7P — 2P < (Cs—1)(1 —x).

By continuity and compactness, it suffices to show that the limit
lim —
z—1 1—2x
is finite. This follows from L’Hopital’s rule.
By (10) and (11), we can replace the function A(z) in (17) by its asymptotics (10)

at the cost of getting a finite constant in front of the integral. Thus, for small z,

() — la(2)]

© |~ gl + )" (4 + )V — ((~logla+ ) o Ve[ (1)
< G /0 - ' ((=log(ly + 2))7 (Iy + 2))Y2((=log(ly + 2))7 (I3 + 2)) Y/ az.

By (18),

[((=log(ly + 2))7 (I + 2))* = (= log(lz + 2))7 (I + 2)) /]
< c [(=log(ly +2))7 (L + 2) — (=log(la + 2))7 (I2 + 2)| (20)
= T ol 2))7 -+ 2)e e 4 (Tog(la + 2))7 (la + 2) @
Now, consider some v > 0. Then, for any sufficiently small a > b > 0, a direct calculation
shows that

0 < (log(1/a))"a — (log(1/))"b < ((log(1/a))” + (log(1/b))") (a = b).

If, instead, v < 0, then the function a — (log(1/a))” a is continuously differentiable at

a = 0, and hence
0 < (log(1/a))”a — (log(1/b))"b < Cs(a—Db).

Since a > 1, the same calculation as that preceding (16) implies that, for sufficiently
small z,

A(z) < gi(2) = Alz+1i(2) < (I1+e)A(2), i =1, 2.
Thus, for z € [0, &],

‘ ((=log(l +2))7 (I + 2))"/* — (= log(ls + 2))7 (I + 2))"/*
((—log(l + 2))7 (h + 2))V/*((—log(lz + 2))7 (2 + 2)) V/*

1
< Golh(2) = L) ormm= (21)
1
< Gy (251[156_] l(2) — l2(z)|> S(atD)/a)—<"

9



Thus, (19) implies that

z€10,¢]

v 1
lli(x) — l(z)] < Cyo <sup ll1(z) — lg(z)|>/ zmdz
’ (22)

= Cu (&)= ° sup |h(z) — lo(2)]

z €10,¢]

for all I < &. Taking the supremum over [ € [0, £], we get

sup 11(2) — bo(2)] < Ci(8)F ~ sup [1(2) — ha(2)].
z€[0,8] z€[0,£]

Picking & so small that Cy; (£)% —° < 1 immediately yields that {; = I, on [0,2] and
hence, since the right-hand side of (6) is Lipschitz continuous for z 1 # 0, we have l; = Iy
for all z by a standard uniqueness result for ODEs.

The fact that the same result holds for the original equation (4) follows by the
same arguments as above.

It remains to prove the last claim, namely the existence of equilibrium for suffi-

ciently large v, — vs. By Proposition 4.3, it suffices to show that

Vi) = g - W) > 0 (23)

for all z € (0, 1) provided that v, — vy is sufficiently large.
It follows from the proof of Lemma 4.1 that

¢ (-2 ) < Vi) <63t (-2 ).

Thus, as v, — vs T +00, Vj(z) converges to —oo uniformly on compact subsets of [0, 1).

By assumption,

lim ! ! lim ! !
1 = — 1 == .
V=400 hf(V) [0 ’ V=400 hé(V) o+ 1
Thus, as z 171,
1 1 1
Vy(2)

avp—vs) 1 —2 = 2(1—2)

Fixing a sufficiently small ¢ > 0, we will show below that there exists a threshold W
such that (23) holds for all v, — vy > W and all z such that V,(z) < —e™'. Since,
by the assumptions made, 1/hf (V') and 1/h{(V) are uniformly bounded from above for
V > —e~! it will immediately follow from (12) that (23) holds for all z with V,(z) > —&~*

as soon as v, — v, is sufficiently large.

10



Thus, it remains to prove (23) when V,(z) < —e~!. We pick an ¢ so small that we
can replace the ODE (4) by (6) when proving (23). That is, once we prove the claim for
the “approximate” solution §(z), the actual claim will follow from (7).

Let

_ B ¢ Ly el s _
1) = e IO Y 1) ¢

Then, (4) is equivalent to the ODE

oy log(1/¢) R L p ek
e = <log(1/C)+1og(1/f(Z))> (1_2“ /) ) (24

As v, — vy — 400, we get that (,e — 0. Let

fo(2) 24 /OZ T dr = —log(l—2) — z.

1—=x

Using bounds analogous to that preceding (16), it is easy to see that

lm  f(z) = fol2) . lim  f(z) = fil2),

Vp—Vs—>+00 Vp—Vs—>+00
and that the convergence is uniform on compact subsets of (0, 1). Fixing a small £, > 0,
we have, for z > g1,

~/
1‘ ! — 1 g (Z)
vb—il;?ioo ‘/b(z) vb—tliri)oo (Oé —+ 1) (Z)

g

)

wviseo (@ + 1S (2)
K

@ UAG)

(a+1)(1—2)(—log(l—2)—2z)

We then have

T —log(1-2) = —— > 1
a2 8 )= (1—2)2 —
Therefore, by Taylor’s formula,
1
—log(l—2)—2z > 522

Hence,
z 2 1

(a+1)(1—=2)(—log(l—2)—2) = a+1z(1-2)

Therefore (23) holds for large v, — vs because o > 1. This argument does not work as

z — 0 because f(0) = fy(0) = 0. So, we need to find a way to get uniform upper bounds

11



for f'(2)/f(z) when z is small. By the comparison argument used above, and picking &,
sufficiently small, since our goal is to prove inequality (23), we can replace 1 — z by 1 in
(24).

In this part of the proof, it will be more convenient to deal with g instead of f. By
the above, we may replace g by the function g; solving

gi(z) = m (z " gl&il) '

d(z) = /0 (log (%))de,

D(z) = d7'(z), and k(2) = D(gi(z)). Then, we can rewrite the ODE for g; as

Let

K(z) = ¢ (2 + (DE())V) , k(0) =0.
Define L(z) via
L(2)
| @@y e —
0
and let .
6:) = DC2) + 3¢ > L)
Then, by the monotonicity of D(z),
¢'(z) = CL'(C2) + ¢z = ¢ (2 + (DLEC))VEV) < ((z + (D(g(¢2))V D).
By a comparison theorem for ODEs (for example, Hartman (1982), Theorem 4.1, p.
26),2 we have
k(z) > ¢(2) & g1(z) = D(k(2)) = D(é(2)). (25)
Therefore, since the functions x(— log z)” and o/ (at1) (—log x)7 are monotone increasing

for small x, we have

b 9(2)
(I+a)Vj(2) = (2
91(2)
Py S| 2%
_ (1+e)ez (1 +e)¢ -
 ai(=logg)r g/ (Log g )y
(14+¢e)C= (1+¢)¢

IN

D() (~ 108 D))" | D@D (~log D(3(2)))7

2Even though the right-hand side of the ODE in question is not Lipschitz continuous, the proof of
this comparison theorem easily extends to our case because of the uniqueness of the solution, due to
(22).

12



Thus, it suffices to show that

¢z N ¢z
D(¢(2)) (=log D(¢(2)))" ~ D(¢(2))*/>D (—log D(¢(2)))”

for some € > 0, and for all sufficiently small z and ¢. Now, a direct calculation similar
to that for the functions A(z) and C(z) implies that

d(z) ~ z(—logz)”

< (1—-e)(1+a)

and therefore that
D(z) ~ z(—logz)™"

Thus, it suffices to show that

¢
¢(2) (—log )7 (—log(é(z) (—log ¢)=7))7
n ¢z (27)
(¢(2) (—log ¢)=7)/ (@t 1) (—log(¢(2) (—log ¢) 7))
< (1-9)(1+a).

Leaving the leading asymptotic term, we need to show that

sz + CZ _ (1_5)(1+ )
o(z) | (¢(2))/ @D (—log(d(z)))/ @D ).
We have . 1
/ (D(x))—l/(a+1)dx ~ %Za/(a+l) (—logz)'Y/(a“).
0
Therefore
o (a+1)/a e
Lz) ~ <a+lz> (—log 2) -

Hence, we can replace ¢(z

Mé(

(a+1)/ax 1
) oG+ et

Let
r = ¢z
(C2)\ V™ (= log(¢z)) /e
Then,
<Z2 X (z
o(2) (¢(2))2/ (@) (= log((2)))r/(@+D)
_ ! —log(¢z) )" z
) a ) e/t ( —log ¢ ) T '
((Q—H) o+ O.5:17> (a+1) + 0.5z

13



We have

] 0\ @D/
log(¢) = log(¢z) + log ((—) ()Y (=log(C2))™ Y + 0.5 z)

a—+1
< log(¢z)

for small (, z. Furthermore, for any € > 0 there exists a € > 0 such that

a (a+1)/a
<a+1> (C2)"* (= log(¢2)) ™ > (¢z)V@)

for all (z < e. Hence,

a—ec = log(¢z)

< —= < 1
a—ce—+1 —log ¢

for all sufficiently small (, z. Consequently, to prove (26) it suffices to show that

sup x(z) < 1+ a,

x>0
where .
T
x(@) = at1 afrDy o ’
((ai—i-l) o 4 051’) (a——i-l) + 0.52
with
0\ e
A, = max ) ,1p .
a—+1
Let
atl
K= (-2 )"
- \a+1 '
Then,

0.5 A, « 1 K

X (z) = a+1 (K~ 0.5z)@ /@D * (K +0.52)%
Thus, x'(z.) = 0 if and only if
a+l
K +0.52, = (0.5{1&) ;
a+tl
which means that ot

14



Then,

x(z4)

1 Ty
= AQ’ + a+1

ol a/(+1) e
(G2)™ + 052.) (%)= + 05z,

1 . 2 ((2)" 1) o) @)
(242 (af (@ + Dy @D 2o ¥ G (affa + D)err

AN\ a+1 A\ Ao+l
S (i A, +2— 2 (22 - 2 o
(2) o * (2) * 2%«

There are three candidates for « that achieve a maximum of x, namely z =0, * = 400,
and z = x,, which is positive if and only if A, < 2.
If v >0, then A, = 1, so x = 0 and * = +o0 satisfy the required inequality as

soon as o > 1, whereas x(z.) < o+ 1 if and only if @ > «, where

1
=1 .
“ * o, 2
A calculation shows that o* € (1.30,1.31).
If v < 0, then
a+1)A,
w0 = @A) =,

and this gives the condition A, < a. If A, > 2, that is, if

log 2
log((a+1)/a)’

then we are done. Otherwise, we need the property

-y > (a+1)

Aotl log ((a® — a) 2%)
2 a 1 & — .
T oen ST TS Yogat 1)/a)

E The Behavior of the Double Auction Equilibrium

Let (4 1)
o
G = (29)
and
e = o . (30)

(|log Git| /(e + 1))t
Clearly, both (;; and €;; are small when G is large.

15



Proposition E.1 Let S; = S, j;, By = B, and ¢, = €. We have, as G — o0,

1
St(e) ~ 8 (9 + a+110g8t) )

where S(0) is the inverse of the function in z defined by

Z— U 1 1
logvH—z - o1 log(logUH_z — (z—vb)).

Similarly,

B,(6) ~ B(H -

1 g
oge
1 !

where B(z) is the inverse of the function in z defined by

1 1
] log<logUH_z - (z—vb)) :

Corollary E.2 For any buyer-and-seller class pair (i,7), S;;(0) is monotone decreasing
in t and in any meeting probability X\;, whereas B; ;(6) is monotone increasing in t and

any A;.

Proof. Without loss of generality, we assume for simplicity that R = 1. (This merely
adds a constant to the inverse of the ask function, by Proposition 4.3.) We fix a time
period ¢ > 0 and omit the time index everywhere and write V, = V}; , Vi = Vi, for the
inverses of the bid and ask functions. We also let v =, , ¢ = ¢.

Let

B (a1t
As in the proof of Proposition D.1, we define
o ; ¢ def
9(z) = elo TV — W f(z) = ef(2).

Then, as we have shown in the proof of Proposition D.1, we may assume that, for large

G,

’ _ 10g(1/<) ! 2=y T () o o) =
e = <log(1/C)+1og(1/f(Z))) (vﬂ—z” 1) ) flen) = 0. (31)

See (24). Furthermore, as G — oo, we have (,e — 0,

lim f(z) = fo(2),

G—00
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where "
VT — Uy

folz) = (0¥ =) log T — (z =),

and the convergence is uniform on compact subsets of [v,, v7).
From this point, for simplicity we take the case v = 0. The general case follows by

similar but lengthier arguments. Hence, we assume that f solves

Z—v
f/(z) _ UH_I; 4+ gl/atl fl/(a—l—l)' (32)

Since the solution f(z) to (32) is uniformly bounded on compact subsets of [v,, v?), by
integrating (32) we find that

1

0 < f(z) = folz) = O™ (z = w)),

uniformly on compact subsets of [vy, vf) . Furthermore, fo(2) < Cy (2 —vp)?, uniformly

on compact subsets of [vy, v7) . Substituting these bounds into (32), we get

1) = folz) < Chpemm / (VM (2 — ) + (2 — o))Vt dz
Vb
< (G T (2 — vp) (,51/(cv+1)2 (z — o)D) (2 — )2/ @FD),

Let now

1/a+1
_ af(a+1) € @,
i) = 1) (- u),
Then,
1/a+1
/ _ « ’ —1/(a+1) _ 15 (0]
lz) a+1f(z)f a+1
o« Z—
B o 1/ 33
(2 o — ) +1(2) %)
« Z—
< 1/a”
a+1(i(z))
Integrating this inequality, we get
1 2
I(z) < §(z—vb) ,
and therefore
f(z) < Cal(z—w)® + & (z =)@ TV/®) (34)

Consequently,



uniformly on compact subsets of [vy, v) . Therefore,

e—0 a+1

lim <Vb(z) - P

logE) - ! log fo(2),

uniformly on compact subsets of (v, v?).

Now, since V, — —oo uniformly on compact subsets of [vy, v*),

Z — Up

Vi(2) = log b — Vi(2)

converges to +o0o, uniformly on compact subsets of (vy,, v*) . Since S(—o00) = v, standard
arguments imply that S(#) converges to v, uniformly on compact subsets of [—o0, +00)

(with —oo included). Furthermore,

1 Z— 1 def
1 = 1 — 1 =
| ogs) 08 g, ~ o3 08hlz) = M),

lim (V;(z) +

e—0

uniformly on compact subsets of (vy, v7). Let S(z) = M~'(z). We claim that

) 1
}:l_I)I(l) S (9 - 110g5) = §(0), (36)
uniformly on compact subsets of R. Indeed, S ( — a%rl log 5) is the unique solution to
the equation in y given by
1
= 1 .
0 Vi(y) + o ese

Since the right-hand side converges uniformly to the strictly monotone function M (),

this unique solution also converges uniformly to §(#). Furthermore, the equality
v+ A P(Vi(2) + Vi(2)) = 2z <o+ A PO+ Vi(S(0) = S(9)

implies that
1 S—Ub 1
%(S(G—a+1loga))—log<UH_S)—9+a

and therefore
1 3(9) — Up
— 1 1 — ] — 4.
llogét)) P oge — log <UH—S(9))

%(S(G— !
a

We have

Z — Up

(vH — 2) ((UH — ) log (%) — (z— )

M(z) = log >1/(a+1)

18



Now, for z ~ vy,

v — zZ— U zZ— U 1/ z—w 2
1 = —1 1 - ~ — 37
Og(UH—z) og( UH—Ub) UH—Ub+2<UH—vb) ’ (37)
and therefore
1 " a—1 Z— Uy
M(z) ~ (14 a)  log(2(v" —w)) + o log (vH—vb) (38)

as z — v,. Consequently, as § — —oo, we have

a+1 0

S0) ~ v, + Keat

for some constant K = K(«). =

F The Behavior of Some Important Integrals

For simplicity, many results in this section will be established under technical conditions
on «. The general case can be handled similarly, but is significantly more messy. As
above, we fix a pair (i,7) = (b, s) and use S; and B; to denote the corresponding double
auction equilibrium. Recall that ¢ is the cross-sectional density of the information type
of sellers at time ¢.

As previously, we consider the case of large G and use the notation A ~ B to
denote that A/B — 1 when G — oo.

Lemma F.1 Let

a-+1 -
a—1 @
Then
_a 10 g ar —a
[ = s ety ~ ene [FET s ey
R ‘I’Oé R
and
/w—&m>aww=dﬁw
R
as G — oo.

Proof. In the following, we handle the cases of ¥/ and ¥ simultaneously by using the
H,L »

sT °

4@—&@)%@@

1 1
foot (o= grns) (s (o g )

19

notation “i Changing variables, we get

(39)




Furthermore, by Lemma G.6,

loge |
14+«

—{a,a+1}/(a+1)

YsT
lim ¢! e YL <y _ log 5) — o lwatl}y
e—0 1

By (36),

1
vb—ST(y—a+1log5) — v — S(y).

In order to conclude that
1
loga) (vb - S, (y— ] loga)) dy
“ (40)

lim g~¢/(e+1)
e—0 8

= CST/ ))dy>
and that

1 1
L . 1 — S, . 1 dy = a/(a+1)
/R T (y a+1 oge) (Ub S (y a1 e J ofe )

we will show that the integrands

—a/(«a 1 1
I(y) = g~o/(etD) g(y—a+1log5) (vb—ST(y—a+1log5))
e/l L [y — L loge ) vy — S- |y — L log e
T a+1 T a+1

have an integrable majorant for some ¢ > 0. Then, (40) will follow from the Lebesgue

and

dominated convergence theorem.

We decompose the integral in question into three parts, as

1+a loge A
/ Li(y) dy + / 1
> 1+al

and prove the required limit behavior for each integral separately. To this end, we will
need to establish sharp bounds for S(#) and V,(9).

5@@+/mmww

A

loge

Lemma F.2 Let Q C R2 be a bounded open set and L(0,e) € C*(Q) be a bounded,

continuous function. Then we have

1
S<9_ a+1

log5> < v, + Cy L(O,¢) (41)

20



for all (g,0) € Q if and only if

o log f(vy + L(0,¢)) — log(L(0,e)) < Cy — 6. (42)
If (41) holds, we have
1 log e
- < — 0. 4
Vb<5<9 a+llog5)) S T4a + C5 + log L(0,e) — 6 (43)

Proof. Applying V to both sides of (41) and using the fact that Vj is strictly increasing,

we see that the desired inequality is equivalent to

0 — Oéilloga < Vi(uy + C1 L)
Now,
Vis(z) + ! loge = log S Vi(2) + ! loge = log AiC log f(2) .
a+1 vl — 2 a+1 vl —z  a+1
The claim follows because we are in the regime when v" — z is uniformly bounded away
from zero.
Furthermore,
_ llofz + V(S) = log <5H__U;) —6—logR. (44)

If 0 is bounded from above, then S is uniformly bounded away from v, and hence

1og<5_“b) — 9 < Oy + log(S — ) — 6.

v — §

The claim follows. =

Lemma F.3 Suppose that € > 0 is sufficiently small. Fiz an A > 0. Then, for

1

l 4 45
9€(a+10g€, ) (45)

we have
5(0- —loge) < v+ CefH? (46)

a+1 & = b 5 ,
and for
1
0 < 110g5, 4
we have that 1
I

S (9 — a1 log€) < vy + Cgelethla=D 6‘1*19, (48)
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Proof. By Lemma F.2, inequality (48) is equivalent to

1
a—+1

Under the condition (47),

max {(z — vb)2 ’ gl/a (z — Ub)(a+1)/a } _ 61/a (z . Ub)(a-‘,—l)/a

for

1 a
7z = CyelineT1 ga-1

Hence, by (34),
f(2) < Coel/™(z — )@t/

Consequently,

1 o . .
log (v + Co=@ED ¢317) — log (Cy e ¢777)
a+1 g (v 6 ) g | Ce

#10 +l @ 0 + L lo
atrDa 25T ala—1" T arDa—1) ®°

— a 0 + L lo
a—1 " (a+D@—1) 8°
- _H + ClOa

< Ci +

and (48) follows.

Similarly, when 6 satisfies (45), a direct calculation shows that
max {(z — v)%, €/ (z —vp) @TV) = (2 — )

for

atlyg
z = v + Csea—1",

Since Therefore, by (34),

1 o a
) log f(vy, + Cs eTﬂa) — log(Cs eTﬂe)
2 1
§011+ 9_a+9:_9+cll7
a—1 a—1

and (46) follows. m

log f(vy + Co e a°1%) — log(Cye™ma D ea"1%) < —0 + C;.

(52)

(53)

As above, we recall that 12 is the cross-sectional density of the information type

of sellers at time 7. As above, we handle the cases of ¥ and X simultaneously by

w  \H,L »

using the notation “y,;~.
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Lemma F.4 If
a+1

a—1

> «,

then

/a;“bge YIE (g — L ~s(o- Lo df = o(e™/(@+D)
. ST a+1 ge Up o+l ge = e .

Proof. By (47), since ¥:F is bounded, we get

ST

/alﬂbge mr (g 1 Y R 0
o o atl %)\ at+1 8¢

% loge
’ e eat1? df
(a+1)(a—1) a—1
< Oy € e (54)
— 0o
1 — 1 4 a
= glatD)(a-1) glatD(a=1) " (at+D)(a—1)

(0%
= o/ (@)

Lemma F.5 [If
a+1

a—1

> q,
then

A
a 1 1
S— H(y_ _ _
lim &7 e /1 o (9 a+1log5) (vb 5(9 a+1log5)) df

a+1

. /_ ! (vy — S(0)) e~ d0

[e.9]

A 1 1
L . . . _ a/(a+1)
/1 v <9 1 log5> <vb S (9 1 loge)) df = o(e ).

a+1

and

Proof. By assumption, as z — oo,

VH () ~ ey

ST

The claim follows from (36) and (45), which provides an integrable majorant. m

The same argument implies the following result.
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Lemma F.6 We have

o +oo 1 1
lim e a1 o - 1 - — 1
Ea /A T (9 a+1 ogg) <Ub S<9 a+1 oge)) 40

= Csr / (vp — S(6)) e~ do
A
and
/+OO ’LpL 0 — 1 ] _sle— 1 1 16 — ( a/(a-i—l))
: o a+1og5 Uy a+10g5 = ofe )
]
We define, for K € {H, L},
K +oo K .
Gnv‘ZO,‘rfl(x) :/m (™ * qor—1)(y)dy (57)

FE — (z)=1 — GE_ (z),

7,90,7—1 1,90,7—1
where qp = gi 0 is the density of increment to information type that an agent of class
i will get during the time interval [0, 7] from trading with counterparties of class j. That
is,
gio00 = (1 —=X)do + Xitjo.
and
Gior+1 = (1 =XN)gior + N Z Kij Gi0r * Vjr+1.

J
Furthermore, everywhere in the sequel we assume that the density 7 of the type of an
acquired signal packet satisfies n! ~ Exp_ . (c,,7,, —a) for some ¢,, v, > 0. This is
without loss of generality by Condition 2 and Lemma 4.5 on p. 29, which together imply
that any number of acquired signal packets satisfies this condition. That is, a convolution
of densities satisfying the specified tail condition also satisfies the same condition. The

same argument also implies that

H
4o, ™ EXP 4 o0 (1,075 Vi0,7, —¥)

for some ¢; ¢ -, vio,r > 0 and

" kgl ~ Expoo(Cinor Yior + 7 + 1, —a)

for some Cj, 0, > 0.
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Lemma F.7 Suppose that
1 2
OFEDT S a1

a—1

Then,

Cs0r—
/ wg—(:U) (UH - ST(y)) Ffﬁ]o,7—71(‘/b7'(57(y)>) dy ~ R_(OH_I) Csr 0;0—7}— ]_1 CS,7770,T—1
R

FYST+’YS,O,T*1+FY7]+1 S( . a+1
H y) — v —y(20+1) 4
fur s ()t

(58)
log e

1+«

o Csore
[ ) (5:0) = ) Pl Vin(Sc )y ~ R B2 Clyay

Vst +s,0,r—1+Vn+1 S(y) — «a
_ SN —y(2a+1)

(59)

Proof. As ¢ — —oo, we have

H7L 057077—_1 Cs7777077— T Oé-‘rl,a
FHL (1) ~ S07217sn0r

'Ys,(),‘rfl'i"yn"l‘l
17,90,7—1 {O{ + 17 O{}

|z

The claim follows by the arguments used in the proof of Lemma F.1. Special care is

needed only because (v — S)~! blows up as 0 1 +oo.
By (44),

1
H
E o <Vb (S (9 i logg)))
S—u _\*! S—uvy _g 1
< Clge?( e ) log ’L}H—Se g+l

v — §
Thus, to get an integrable majorant in a neighborhood of +oo, it would suffice to have

(60)

Vs,0,7—1+Vn+1

a bound
v =8 > Cye™

with some [ > 0 such that Sa < 2a + 1, because this would guarantee that

S = v e™? ’ lo Sl e Pt
vl — 8 S\vi — 5

for some € > 0. By the argument used in the proof of Lemma F.2, it suffices to show

V¥s,0,7—1+Yn+1 B B
6—a6 S C14e—50

that for sufficiently large 6,

1
a—+1

logf(vH — C14 6_60) S C15 + (5 — 1)9
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Now, it follows from (32) that

/ 1/(a+1) v —
() < f(2) T

Since, for sufficiently small €, f(z) is uniformly bounded away from zero on compact
"]

subsets of (v, v"], we get

d

%(f(z)a/(aﬂ)) < Cig(1+ (" =2)7"),

for some K > 0 when z is close to v. Integrating this inequality, we get
f(2)/ D)< Cir (1 = log(v™ — 2)).

Consequently,

] log f(vg — Crue™™) < Ciglogh

if 6 is sufficiently large. Hence, the required inequality holds for any § > 1 with a

sufficiently large C'4, and the claim follows. m

Lemma F.8 Let

a—+1
«.
a—1
Then
/ (S-(y) —w) x (" =gl _))(y—0)dy
R
(61)
Cht,r— loge Yotr—1+Yn+l _a —aly—
~ at+ 11 bn,0,7—1 T+ a gotl R(S(y) —up)e (v=6) dy
and
log e Vo, 7 —1+H¥n+1 o
/(ST(y) —w) X (" gl )y —0)dy = o < . gatt | . (62)
R + «

as G — oo.

Lemma F.9 Let
(a+ 1)«

a—1
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Then we have, as G — oo,

/ (Sr(y) = vs) Fyr (Vor (- () (0" * ¢)(y — O)dy ~ ey R™Cly 0,716’
R

b,t,7T—1 n « (63)
loge [t Hga%loz +1 /6—(2a+l)y S(y) — vy dy
1+a o Je vH — S(y)
and
/R (0" = S, (5)) F (Vin (52 (9))) (" 5 WL )y — B)dy
< 10g8 Vo,t,r—1+1n+1 L) (64>
= 0 Ea+1
1+«

G Proofs for Case of Initial Information Acquisition

For any given agent i, the expected utility U, . from trading during the time interval
[t, 7] is

Ui,t,T(H) - Z ui,t,r(9)7
r=t

where wu;,, is the expected utility from trading at time r conditional on the agent’s
information at time ¢, evaluated at the information type outcome 6.

We denote further by w;,.(6;7n) the expected utility from trading at time r con-
ditional on the agent’s information at time t after the agent has made the decision to
acquire a signal packet with type density n™%, before the type of the acquired signal
is observed. With this notation, u;;,(6) = u;,(0;d). The following lemma provides
expressions for wu;,,.(6;n). These expressions follows directly from the definition of the

double-auction trading mechanism.

Lemma G.1 For a given buyer with posterior information type 6 at time 0,

wor(0:m) = P(O)A / (0" — S, () G (Vin(S () — 0) () dy
B (65)

+ (1 PE)A / (0 — 5. (9)) G, (Vir(S,(4)) — 6) . (y) dy.

R

whereas a seller’s utility s
uso-(051) = P(0) )\ / (S-(y) —v") G (Vi (S-(9))) (0™ * q5Lr—1) (y — 0) dy
R

+ (L=PO)A | (S:(y) — vs) G (Var (S-(1))) (0" a5 1) (y — 6) dy.

(66)

N

Here, by convention, we set qfy_, = &.
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The next result provides approximate expressions for the gains from information
acquisition when G is sufficiently large. Recall that the asymptotic behaviour for large
G in the double auction between a class i of buyers and a class j of seller is determined

by

N CES))
Czt - Cité .

Lemma G.2 Let b be a buyer of class i. Denote by s the set of seller classes with which

buyers of class i trade and let

Vst max y;r.

JES
Further, let

Sm = {J €S I Vjr = Yer) -

Let also v, = .. Then

—ab P—a ) _ at1
Ub,07—r(9;77) —Ub,();r(@) ~ € R [galn)\ / (’UH o S(y)) (M) 6—y(2a+1) dy,
R

1+ Re? ? S
(67)
as G — oo, where
= Y a S log [P flogg [
o= 2 ey \Toeelar ) [ital 0 ira
_ _ |log¢, 1
X (Cb,n,o,T(Nb,Ns) 1Jgr<a 1
= Z Cs #Ci?illc . X ].Og CT PYb'O’Til_aLH'YT""('YjT—'yT)
o~ Tala+1)” T l+a
JESm
__log¢ |t
x (Cb,n,oT(Nb,Ns) 1ii )
(69)

Lemma G.3 Let s be a seller of class 1. Denote by b the set buyer classes with which

seller of class i trade and let
Vr = maxjr.
Further, let
b, = {j€b : =}
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Then (0110 e
c i I8 % G,

Usor(031) = us0r(0) ~ =t IS

as G — 0o, where

Go=x [ (5t =) - Loy (%)) eV dy

Y+l
— 1] &or—1

Lemmas G.2 and G.3 follow directly from Lemmas F.1-F.9 above. The following

and

o
Vs,0,7 =17 17T

lOg CjT
14+«

log C]T
1+«

[;gain — Z j(;'? (Cb,n,O,T(NbaNs)

Jj€Ebm

result is then an immediate consequence.

Corollary G.4 For buyers and sellers, the utility gain from acquiring information is
convex in the number of signal packets acquired. Consequently, any optimal pure strategy

is either to acquire the mazimum number n of signal packets, or to acquire none.
The next lemma is a direct consequence of Lemma 4.5.

Lemma G.5 Suppose that \;j = \iki; # 0 for all i, j.* Let N, be the mazimal number
of signal packets for sellers, and N, the mazimal number of signals for buyers. Then,
for any class 1,
Y1 = Ni+ Lie;Ny + 1N,
and thus, for allt > 2,
Vit = 2t_1(Nb+NS) -1+ Nz - ]—iEst - 1i6bNb>

where we write © € b if class i is a buyer class, and similarly for the sellers’ classes.
Furthermore,

Yior—1 = Vit — N; .

Proof of Theorem 5.2. It follows from Lemmas G.2-G.3 that it suffices to show
that the exponents for | log (| are monotone increasing in N if T is sufficiently large. For
buyers, we have

200 + 1
a—+1

Yo0,r-1 Yr+ % = —No — Vor + Vjr

a—+1

3The case when some of the matching probabilities are zero can be studied by a limiting procedure.
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whereas, for sellers, we need to show that

«
a—+1

is monotone increasing in the number of acquired signals. This follows directly from

Vs,0,7—1 — Vr

Lemma G.5. m
We will now study examples illustrating our general model. We will first treat the

case of one class of sellers, and then consider the case of two classes of sellers.

G.1 One Class of Sellers

In order to calculate the equilibria, we will first need to determine the dependence of the
cross-sectional type distributions on the model parameters. Suppose that buyers and
sellers acquire N, and N, signal packets respectively. Then, let N; = Ny, + N; be the
total number of signals packets that class ¢ possesses. The maximum feasible number of
signal packets is Nyax = Npin + 7. Using Lemma 4.5, we immediately get the following

two technical lemmas.

Lemma G.6 Suppose that at time 0 buyers and seller acquire Ny, and N, signals respec-
twely. Then, ¢y = csg = ¢ and Vo = Vst = Y S0 that Vg , Yy ~ Exp__ (¢, v, a0+ 1)
for allt > 1, where y; = Ny + N, — 1. 1t follows that v = 2y,_1 + 1 fort > 2,
(N, — DN, — 1)!

(Ng+ N, — 1)!

€1 = ACs0Cho

nd
a 2

—~

%!)
%+1!

Cry1 = )\cf
In particular,
v o= 27 (N + Ny) — 1
and
¢ = Dy, n,(1) cgtfl(NﬁN") A2
for a model-independent combinatorial function Dy, y.(t).
Lemma G.7 Fori=2"b ori=s, we have qfoﬁ ~ Exp_.(¢ior Yior @+ 1), where

Yior = (27 — 1)(Ny+ Ny) — 1+ N;

and

T4+1__
cior = Diw,m.(0,7,c0) X7
s4VDsy

Y

for model-independent combinatorial functions Dy, y.(t,7) and D; 5, 5.(0,7) .
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Proof of Lemma C.3. By the Perron-Frobenius Theorem (see Meyer (2000),
chapter 8, page 668), we have

(AsAb>t_1 ~ 7’2_ 1ps QST

where ps and ¢4 are right and left Perron eigenvectors of AjA, respectively, and ry is the

corresponding Perron eigenvalue. Similarly,
(MA) ~ o)

where p, and ¢, are the right and left Perron eigenvectors of A,A, respectively, and ry is
the corresponding Perron eigenvalue. Now, applying Ay to the identity A;Ayps = rops, we
get that Ayp, is a positive right eigenvector of A, A, corresponding to a positive eigenvalue
rs. Uniqueness part of the Perron-Frobenius Theorem (see Meyer (2000), chapter 8, page
667) implies that ry = 7,. To prove the last statement, we note that, by the Collatz-
Wielandt formula (see Meyer (2000), chapter 8, page 667),

o . (AsAbz)z o . (AsAbps)i
rs = maxmin ——— = min ————
z v Xy ¢ Psi

If we increase one of the elements of A, or Ay, all coordinates of A;Ayp, become strictly
larger since ps > 0, and hence the Collatz-Wielandt formula implies that r, also strictly
increases. m

Proof of Proposition 5.5. The claim of monotonicity in N.;, and n follows
directly from Lemmas F.1-F.9 and the proof of Theorem 5.2. Furthermore, for large ¢,
Csit/ c‘;;/ i‘”*” is monotone increasing in A, 5, if and only if so does the principal eigenvalue
rs, and hence the claim follows from Lemma C.3.

This completes the proof of the claim for seller and buyer classes from s and b.

For a seller class i ¢ s, we have ¢;; = Zj )‘Lbjcg,t—l by Lemma C.2, and the claim
follows. A similar argument applies for a buyer of class i € b, with the only exception
that A; ;; appear in the denominator leading to within-class strategic substitutability of
matching probabilities. The latter however is offset by the factor \; entering the expected

gains from trade. m
We will also need the following auxiliary lemma, whose proof is straightforward.

Lemma G.8 Fori € {b, s}, let Gain;(N,, N},) denote the utility gain from acquiring the

mazimum number . = Npax — Nmin 0f signal packets, for a market in which all other
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buyers and sellers have N, and N, signal packets, respectively. Let

m1 = Gaing(Nmax, Nmin), T2 = Gaing(Nuin, Nmin),
73 = Gaing(Nmax; Nmax), T4 = Gain(Npax, Nmin)- (69)
Then:
® (Nuax, Nmin) s an equilibrium if and only if ™ € [m4, m].
® (Nmax, Nmax) 8 an equilibrium if and only if m < 3.
® (Nuin, Nmin) s an equilibrium if and only if m > .

Lemma G.9 Let T = logy(av+ 1) + 1. Then, the following are true:

o I[f T =0 then my = my > w4 > w3. Thus, an equilibrium exists if and only if

T & (73, m4).

o IfO<T < T then m > mo > my > w3, and an equilibrium exists if and only if

T & (73, m4).
o [ft> T then m > Ty > My > Ty, and an equilibrium always exists.

e For all i, m; is increasing i Ny, and in n.

Proof. For small values of ¢, the constants m, mo, 73, and 7, satisfy

T 9’[2(07 NS7 Nb) Zi(O7NS7Nb>7

for corresponding pairs of Ny, N,. Here,

Nmax

_ _ 1Og<’ lOgC Nmin
Qli(oaNmNb) = (Nmax - .Nvmin)_1 (ijrleax70’T 1+a JMN 1 05T 1+a ) )
(70)
where j = s when ¢ = b, and where j = b when ¢ = s. Furthermore,
R—CV 1 2a+11
VN NN 2T 1 o
Zb(O,NS,Nb) ~ A 1+R©b(0,CO,Nb,NS,Oé)>\ <)\2T—16)
y )\QT_l ‘log(@)‘(ﬂil — 1) (Np+Ns) = 14+ Ns— 357 27 H(Np+Ns)—1)
(71)
R 2T (a41)42041 2041

— 1+R©b(O7CO7Nb,NS’O[) AT (G)_ —
R
x |log G| avt Mot No)=No— gy
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for some function D;(0, co, Ny, N,, ). Similarly,

o R
Zs(07 NS7 Nb) ~

_ 2T —(a+1)42a+1 o
©S 07 7N Y NS’ >\ atl G _TH
T g 2e(0:c0 Mo, Ny ) ) (72)

L (N4 No)—Np— L
« |1Ogg|a—+1( b+ Ne)=No—oi

for some function D,(cy, Ny, Ny, ). For T = 0, there is only one trading round and

therefore
Z5(0, Ny, Nyy) = f:;@b(co, No, Ny, @) A (G) 7557 | log (@) |~ Vo= e/ (@)
and
Zy(0, Ny, Ny) = e D,(co, Ny, Ny, a)MG) at1 |log G|~ Ne=De/ (ot Dt(Ns =Ny

1+ R
When G is sufficiently large, Z, > Z;, and the impact of ®; and C;, o.,(Ny, N;) is small

and does not affect the monotonicity results. The claim follows by direct calculation. m

G.2 Two Classes of Sellers

As above, we denote by N; = Npin+ N, the total number of signal packets held by agents
of class 7. We have the following results.
Let N, = max{N;, Ny} and let m € {1,2} be the corresponding seller class that

acquired more information and —m be the other seller class. Then,

~ [05M, Ny # Ny
05()\1"‘)\2) 5 Nl :Ng.

Lemma G.10 We have ¢y ~ Exp_.(ci, v, + 1) for I € {sy1, 9,0} for all t > 1,
where vs, 1 = N+ Ny —1 and v,y = N,+ Ny — 1, and where, fort > 2,

Vort =  Vspt—1+ Vor—1+1 (73)
Yot = Voi—1 Tt Vspi—1+ 1 (74)
and where further

(N, — D!V (N, — 1)! (N, — ) (N, — 1)!

C = )\CS C = = , Cs = A Cs;,,0C 7 < )
b1 0Ch0 (V. + N, — 1) ol k Cs,,0Cb0 (Ve t N, — 1)
Corr1 = Vor! Vsmit! | A Comits N # Ny
,t - t _ _
i ’}/b,t—i-l! 05 ()\l Csl,t _l_ )\2 Cszﬂf) 3 Nl - N27
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and
Vot! %Wt!
Cspt+1 = Cut 1 A Csp it
Tbt41:
Consequently,

Vot = Vsmit — 2t_1(Nb+Ns) —1
and, fort > 2,
Voomt = 27 Ny +N,) =1 + N, — N,
Thus, for Ny # Ny,

e = Dy, n,(t) Cg () (0-5)\m)2t_1 , Csut = Dy nyw,(t) AL (0.5)\m)2t_t_1,

for some combinatorial functions Dy, 5 (t), Dy 5, 5,.5,(t) -
However, when N; = Ny, we get
t—1

et = dyw,m (8) N+ X)) TTOT+ )%
1

T

and
t—1
r r t—r—1
Cspt = ds,Nb,Ns (t) )\Z H ()\1 + )\2)2 )
r=1
for some combinatorial functions dy, y, 5. (t) and dg 5, §.(1).

Now, we need to calculate ; ;.

Lemma G.11 We have hl{{m ~ Exp_(¢itryVer,a+ 1), where

Csptt — Ak Chts Yt = Vot
and B B
O5>\m Cspm t N1 % N2
bt — _ _
0-5()\1051,t + )\2 Csz,t) s Nl = Ng .

Then we define inductively

Vs t,T ! Vo, r+1 !

Cskvtﬂ—""l = )\k Csk,t,T Cb77—+1 | ) 7870,T+1 = VS,O,T _'_/ybﬂ'-i-l _'_1
Vs,0,7+1-
and
c c fyb,t,r! 'Vsm,r—i-l! 0~5)\mcsm,r+1 ) Nl 7é N2
bt,r+1 — Cbtr — _ _
7b7t,7'+1! 0.5 ()\1051,7—4_1 + )\2 68277_’_1) , N1 = NQ,
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and

Vot r4+1 = Vot,r + Vsm,m+1 + 1.

In particular, fort > 0,
Yier = (27 — 2D (N, + N,) — 1, 1€ {sy,59,b},
Fort =20,
Yoo = 27 = DN+ N,) = 1+ Ny y mor = (27 = (N +Ny) = 1+ N,
If Ny # Ny then

J— _ 2T+1—2t . o 27’+1_2t
Cb,t,‘r - Db,Nb,NS(t>T> CO) )‘m ) CSm,t,T - Ds,Nb,NS(t>T> CO) )\m )

—t+1
A\
Cs_pt,r — Csp b7
7 >\m

for allt >0, for some combinatorial functions Dy, 5 (t,7) and D, g, 5.(0,7).
When Nl = NQ,

and

t—1 T
Coptr = Ay, (TN (H(AHAS)W‘?”) [T n+ x>

r=1 r=t
and
)\T+1 ‘I‘ )\T+1 = r r\2T T — —r—1 . r r\27T T
Cotr = db,]\_/b,]\_fs(ta T)W H()‘1 + )\2)2 . H (AT + )\2)2
1 2 r=1 r=t

for all t >0, for some combinatorial functions dy, 5, 5. (t,7) and dy, 5, 5. (t, 7).

Proposition G.12 Suppose that T > T. Let A < Ao. In equilibrium, we always have
N, < Ny < N,. Furthermore, there exist constants m > mg > T3 > Ty > 5 > Tg such

that the following are true:
1. If 7 > m then the unique equilibrium is (Ny, Ny, Na) = (Nuins Nmin, Nomin)-
2. If 1 > m > my then there are two equilibria:

L (NbaNlaN2) - (NminaNminaNmin)
L (Nb7N17N2) = (NminaNmaxaNmax>-
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3. If mg > m > w3 then there are three equilibria:

d (NbaNlaN2) - (NminaNminaNmin)
d (NbaNlaN2) - (NminaNmaxaNmax)
L (Nb7N17N2) = (NminuNminuNmax)-

4. If m1g3 > m > 7y then there are two equilibria:

) = (NminaNminaNmin)
) - (NminaNmavamax>-

5. If mqy > m > w5 then there is a unique equilibrium

(Nb, N17N2) = (Nminvaaxa Nmax)-

6. If m5 > m > mg there are two equilibria:

d (NbaNlaN2) - (NmaXaNmaxaNmax)
d (NbaNlaN2) - (NminaNmaX>Nmax)-

7. If mg > m then there is a unique equilibrium

(NbaNla N2) - (Nmaxa NmaxaNmax)~

Proof. Denote by Gaini(Nb, Ny, Ng) the gains from acquiring the maximal number of
signals for an agent of class 7, conditional on the numbers of signals packets acquired by

all other agents. As in Lemma G.8, we define

™ = Gainl(Nminu Nmam Nmax)7 Ty = Gain2(Nmin7 Nmim Nmax)
T3 = Gainl(Nmina Nmim Nmax)> T4 = Gain2(Nmina Nmirn Nmin) (75)
s = Gainb(Nmaxa Nma)u Nmax>7 Te = Gainb(Nminv Nmaxa Nmax) .

Then, it suffices to prove that m; are monotone decreasing in 7. As in the proof of Lemma
G.9, we have
o~ A 7y,

and it remains to study the asymptotic behavior of Z;. We have
Zb(07 Nlﬂ Nh NQ) == Z§1(07 Nb7 Nh N2) + Z§2(07 Nb7 Nh N2)7
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where

R—a
1+ R

- P
X Chor_1 | logGr{b,O,T—l “HOT

Zsk(OaNbaNlaNZ) ~ 05)\k @b(O,CO,Nb,NS,O&) Cyr (

1 atl
Cyr é) (76)

for some function (0, co, Ny, N,, ). Similarly,

—

i)s(oa Co, Nb> Ns> Oé) )\k Cs;,,0,T—1 (CbT 6)_&L7L1

- - = R
Zsk(OaNbaNlaNQ) ~ 1+R

x |log G

(77)

«
Vs,0,T =17 5371 IT

We first study equilibria with N; = Npin < No = Npax. Since, for both seller
classes, the surpluses from acquiring information are of comparable magnitude and are
much larger than those of the buyers, we ought to have N, = Ny, . This will be an

equilibrium if
7 > (2, (0, Niin, Nmins Nmax) + Z52(0, Ninin, Nimins Ninax)) s,
but this automatically follows from
w3 ~ AZs, (0, Nminy, Nminy Nmax) < 7™ < 2AZ,(0, Niin, Niminy Nmax) ~ 7.

Since Z,,/Zs, = (A1/A2)7", this is only possible if \; < A. Furthermore,

R~ - AT ) e
Zs OaNminaNminaNmax ~ ,»Ds)\ ~ )\a+1 G ottt
X |10g§|(2T?1 - 1) (Nmin+lelax) - 1+Nmin_%ﬂ(2T71(Nmin+Nmax)_1).
(78)
Now, N1 = Ny = Npax, Ny = Npin forms an equilibrium if and only if
™ > T (Zlfl (07 Nmim Nmaxa Nmax) + Zlf2 (07 Nmina Nmaxa Nmax)) le
and
T o~ Zsl (07 Nminv Nmaxa Nmax)
R™ - )‘{ i r r\——=2T—"
Y TER M T E A D [T 5+ 2= (79)

1

r=
X E_QLH| log§|(2’r71 - 1) (Nmin+Nmax) - 1+Nmin_aLH(2T71(Nmin+Nmax)_1)
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Next, Ny = Ny = Ny = Npin is an equilibrium if and only if

™ > Ty ZSQ(O, Nmin> Nmina Nmin)

R~ - A3
IR sy aney:

1+ R (AT + AJ)e/ (o)

-1
x TT O+ 25) 72 G log G2 = 1) = 14 N (7 20oin) = 1)

~

S

1

%
Il

(80)
Finally, N, = Ny = Ny = Npay is an equilibrium if and only if

7T<7T5 ~ (Zlfl(ouNmavamavamax) + Z§2(07Nmax7NmaxaNmax>>le- (81>

The fact that m; decreases with 7 follows directly from their asymptotic expressions. m

Lemma G.13 There exists a unique solution T > max{2, T} to the equation (a+1)T =

2T — 1, and a unique solution T to the equation (2cc +1)T = 2T — 1. Furthermore,

[T O+ )2
(AT + AD)e

e is monotone decreasing in Ay for all \o > Xy if T'< T.

e is monotone increasing in Ay for all Ao > Ny if T > T.

Proof. The fact that 7 exists and is unique follows directly from the convexity of the
function 27. To prove that T' < 7', we need to show that (a+1)7 > 27 — 1. Substituting

T =logy(a+ 1)+ 1, we get
2f—1—(a+1)f: 20a+1)—1—(a+1)(logy(a+1)+1) =a—(a+1)logy(a+1) <0,

because a + 1 > 2 implies that log,(a + 1) > 1.
Let now # = A\y/A; > 1. Then, by homogeneity, it suffices to show that

[, (1+an)? 7
(14 2T)

is monotone decreasing in z. Differentiating, we see that we need to show that

T—-1 l’r [L’T
Z of=l=-rp._ = < T .
— 1+ 2" 1427

38




Since x > 1, we have

T LUT

v«
1+2m = 1427

Therefore, using the simple identity

T—-1
d oty = 2T 1T,

r=1

we get

T-1 L
oT—1=r < 2 —-1-T
; " 14+2m — ( )

forall T < 7. Similarly, since

x >1 - 1 27
14+2r =2 = 21427
we get that
T—1
S s ol -
14+ a7 21 +aT — 1+ 2T

forall T>T. m

The next proposition gives the partial-equilibrium impact on the information gath-
ering incentives of class-1 sellers of increasing the contact probability Ay of the more active

sellers.

Proposition G.14 Suppose Condition 2 holds and i < Xg. Fixing the numbers Ny,
Ny, and Ny of signal packets gathered by all agents, consider the utility uy, — uin, of
a particular class-1 seller for gathering n signal packets. There exist integers T and T,
larger than the time T of Proposition 5.6 such that, for any n > Ny, the utility gain
U, — UiN, Of acquiring additional signal packets is decreasing in Ao for 0 < T < T and

is increasing in Ay for T > T.

Proofs of Propositions G.14 and 5.7. Monotonicity of the gains Gain; follows
from Lemma G.13 and the expressions for this gain, provided in the proof of Proposition

G.12. Proposition 5.7 follows from Lemma G.13 if we set L =m;. m
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H Two-Class Case

This appendix focuses more closely on information acquisition externalities by specializ-
ing to the case in which all investors have the same contact probability A. In this case,
there are only two classes of investors, buyers b and sellers s. For a small time horizon T,
the lack of complementarity suggested by Proposition 5.7 implies that symmetric equi-
libria may fail to exist. For larger T, symmetric equilibria always exist and are generally

non-unique.

Definition H.1 An asymmetric rational expectations equilibrium is: for each class i €
{b, s}, the masses py,,n = 0,...,n, where py, is the mass of the sub-group of group i that
acquires exactly n packets; for each time t and seller-buyer pair (i, j), a pair (Si;, Bijt) of
bid and ask functions; and for each class i and time t, a cross-sectional type distribution
Wy such that:

Nmin"l‘n)

(1) The cross-sectional type distribution 1y is initially 1,y = ZZZO pm@*( and

satisfies the evolution equation (6).

2) The bid and ask functions (S, Bijt) form the equilibrium uniquely defined by The-
jt> Bij

orem 4.7.

(3) Eachn € {0,...,n} with p; > 0 solves max,, c (0,7} Uin, for each class i.

It turns out that, in all asymmetric equilibria, agents in each sub-group either do
not acquire information at all or acquire the maximal number 7 of signal packets. We
will denote the corresponding strategy (7, p;), meaning that a group of mass p; of agents
of class i acquires the maximal number n of packets and the other sub-group (of mass

1 — p;) does not acquire any information.

Proposition H.2 There exist thresholds T > 7 > @ such that the following are true.
1. If T < T then:

o A symmetric equilibrium exists if and only if T & (m, 7).

o An asymmetric equilibrium exists if and only if 1 > .
2. If T > T, then:

o A symmetric equilibrium always exists.
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o Asymmetric equilibria exist if and only if 1 < 7.

Furthermore, there is always at most one equilibrium in which different sub-groups of
sellers acquire different amounts of information, and at most one equilibrium in which

different sub-groups of buyers acquire different amounts of information.

In order to determine how the equilibrium mass of those agents who acquire in-
formation depends on the model parameters, we need to study the behavior of the gain
from acquiring information. The next proposition studies externalities from information
acquisition by other agents on the information acquisition incentives of any given agent

in an out-of-equilibrium setting.
Proposition H.3 For all i, the gain
Gain; = mgac{(um — up)/n}

from information acquisition is increasing in Ny, N, and \. Fiz an 1 and suppose that
only a subgroup of mass p; of class-i agents acquire information. Let us also fix the

information acquisition policy of the other class.
1. IfT > T, then Gain;/p; is monotone increasing in p;.

2. If T < T, then Gain;/p; is monotone decreasing in p;.

Proof of Proposition H.3. Let @ = m; > m = w. Suppose that a mass p of buyers
acquire . packets and the rest (mass 1 — p) do acquire no packets. For our asymptotic
formulae, this is equivalent to simply multiplying ¢, by p'/Mmax for the initial density
of the buyers’ type distribution. Furthermore, the same recursive calculation as above
implies that ¢; ; is proportional to p¥ ' for 7 > 0 whereas Cio.- is proportional to p* ~1.
By the same argument as above, sellers always acquire more information and therefore
we ought to have that Ny = Npax. The equilibrium condition is just the indifference
condition for a buyer,

pr = Gaing,

because then a seller will always acquire information since the gain from doing so is always
higher for him. Substituting the asymptotic expressions for the gains of information

acquisition, we get the asymptotic relation

min{1,27 141} pmax{2T*1—1,0} N 205l min{1,27-1} 3.

pm ~ P
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For T' < TV, this gives a unique equilibrium value of p for any # > m3. For T > TV, this
gives a unique value of p for all 7 < 3.
Similarly, for the case when different groups of sellers acquire different amounts of

information, the equilibrium condition is

T~ pmax{2T’1,1}p—%ﬂ min{1,27-1} -
For T < T , this gives a unique equilibrium value for p for any # > 7. For T > T, this
gives a unique value for p for all 7 < 7.

The fact that there are no equilibria in which both buyers and sellers acquire
information asymmetrically follows from the expressions for the asymptotic size of the

gains of information acquisition. m

The intuition behind Proposition H.3 is similar to that behind Proposition G.14.
An increase in the mass p gives rise to both a learning effect and a pricing effect. The
learning effect dominates the pricing effect if and only if there are sufficiently many
trading rounds, that is, when 7" > T.

Now, the equilibrium indifference condition, determining the mass p; is given by
© = p;t Gaing(pi, A, Nin, 7). (82)
Proposition H.3 immediately yields the following result.

Proposition H.4 The following are true:*
o IfT > T then equilibrium masses py and ps are decreasing in A, Nyin, 1;

o IfT < T then equilibrium masses py, and ps are increasing in X, Ny, 1.

We note that a stark difference between the monotonicity results of Propositions
G.14 and H.3. By Proposition H.3, in the two-class model, gains from information acqui-
sition are always increasing in the “market liquidity” parameter \. By contrast, Propo-
sition G.14 shows that, with more than two classes, this is not true anymore. Gains
may decrease with liquidity. The effect of this monotonicity of gains differs, however,
between symmetric and asymmetric equilibria. In symmetric equilibiria, the effect goes

in the intuitive direction: Since gains increase with A, so does the equilibrium amount

4Recall that, by Proposition H.2, equilibrium masses p, and ps are always unique (if they exist).
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of information acquisition. By contrast, equation (82) shows that, for asymmetric equi-
libria, the effect goes in the opposite direction: Since the gains increase in both A and
the mass p of agents that acquire information (when 7" > TV), this mass must go down in
equilibrium in order to make the agents indifferent between acquiring and not acquiring
information.

From this result, we can also consider the effect of “education policies” such as the

following.

e Educating agents before they enter the market by increasing the number N, of

endowed signal packets.

e Increasing the number 7 of signal packets that can be acquired.

Proposition H.4 implies that, in a dynamic model with sufficiently many trading
rounds, both policies improve market efficiency. By contrast, a static model that does
not account for the effects of information percolation would lead to the opposite policy

implications.

I Endogenous Investment in Matching Technology

In this section, we take initial information endowments as given and instead focus on
endogenous investment in matching technologies. In particular, the initial type densities
are characterized by a fixed vector N = (Ny, ..., Ny) of initially acquired signal packets.
Before the initial signals are revealed to each agent, agents in class ¢ individually choose
an amount x;; € K = {x,X} to invest in a technology for meeting investors of class j,
for some minimum investment y > 0 and maximum investment X > x. We examine the
case of symmetric choices within classes, so that agents of class ¢ commonly choose the
investment x;;. Given these choices, in each period the probability with which an agent of
class i meets some agent in class j is fi;(xi;, X;i), for a given function f;; : K x K — (0,1).

By the exact law of large numbers, this technology satisfies
m fii (X Xgi) = 0 f5i(Xji Xij)-
We always make the non-satiation assumption that

> fix) < 1.

J#i
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Given the M x (M — 1) matching-technology investments x = (;;), the cross-

sectional type density ¢;; of the class-i agents satisfies the evolution equation

Vigy1 = (1 - Z fij(Xiijji)) Yip + Z fii(Xij Xji) Yie * Y- (83)
i el

Similarly, given y, a particular agent of class ¢ who makes the technology choice ¢ €

KM= has a Markov type process whose probability density 1;"* at time ¢ satisfies the

Kolmogorov forward equation

1 = <1 - Z fij(CJ'ani)) YrX o+ Z Fig(ejs X)W * P (84)

J#i J#i
We will be applying the following technical assumption.

Condition 3 . For any integer T > 1 and any pair (i,7) of agent classes, the function

e (fi;(6Ge)" = (fij(x. )" is nonnegative and monotone increasing in c.

This assumption guarantees that the increase in matching probabilities associated
with investing in a more effective matching technology is increasing in the investments in
matching technology by other agents. The complementarity property holds, for example,
for the constant-returns-to-scale technology of Duffie, Malamud and Manso (2009), by
which fi; (Xij, Xji) = kijXijX;i for some constant k;;. The idea is natural: the greater the
efforts of other agents at being matched, the more easily are they found by improving

one’s own search technology.

Definition I.1 A (symmetric) rational expectations equilibrium consists of matching
technology investments x = (xi;); for each time t and each seller-buyer pair (i, j), a pair
(Sijt, Biji) of bid and ask functions; and for each class i and time t, a cross-sectional

type density 1 such that:

1. The cross-sectional type density 1y, satisfies the evolution equation (83).

2. The bid and ask functions (S;;i, Biji) are the equilibrium bidding strategies uniquely
defined by Theorem 4.7.
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3. The matching-technology investments x; = (Xi1,-- -, Xim) of class © mazimize, for
any agent of class i, the expected total trading gains net of matching-technology

costs. That is, x; solves

sup Ui(ca X)>

ce KM-1

where
T
Ui(e,x) = B <Z Z fig(cjs x4i) vige(©FX; Bije, Sijt)) — (X1 + -+ xam),  (85)
t=1

where the agent’s type process Oy has probability density ¥, satisfying (84) and
the expected gain v associated with a given sort of trading encounter is as de-
fined by (9) or (11), depending on whether class-i agents are sellers or buyers,

respectively.

We say that search is a strategic complement if, for any agent class i and any
matching technology investments y = (x;;), the utility gain U;(¢, x) —Ui(c, x) associated
with increasing the matching technology investments from ¢ to ¢ > ¢ is increasing in x_;,
the matching-technology investments of classes j # . The main result of this section is

the following theorem.

Theorem 1.2 Suppose Conditions 2 and 3 hold. Let T and g be as in Proposition 5.5.
Then, for any proportional gain from trade G > G and market duration T > T, search is

a strategic complement.

The intuition for this result is analogous to that of Proposition 5.5. If other agents
are assumed to have increased their ability to find counterparties, and thereby collect
more information from trading encounters, then under the stated conditions a given
agent is encouraged to do the same in order to mitigate adverse selection in trade with
better informed counterparties.

This complementarity can be responsible for the existence or non-existence of equi-
libria, depending on the duration 7" of markets, just as in the previous section. The Tarski

(1955) fixed point theorem implies the following analogue of Corollary 5.3.

Corollary 1.3 Suppose Conditions 2 and 3 hold. For any proportional gain from trade
G > G and market duration T > T, there exists a symmetric equilibrium. Furthermore,
the set of equilibria investments in matching technology is a lattice with respect to the

natural partial order on KM*(M=1),
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Just as with the discussion following Corollary 5.3, a maximal and a minimal
element of the set of equilibria can be selected by the same standard iteration procedure.

We also have the following comparative-statics variant of Proposition 5.5.

Proposition 1.4 Under Conditions 2 and 3, there exist some G and T such that for any
proportional gain from trade G > G and market duration T > T, equilibrium investment

in matching technology is increasing in the initial vector N of acquired signal packets.

The intuition behind this result is analogous to that behind Theorem 5.2. If traders
are initially better informed and 7' is large, then the learning effect dominates, giving
agents an incentive to invest more in search technologies.

This result also illustrates the role of cross-class externalities. FEven if agents in
class j do not trade with those in class ¢, an increase in the initial information endowment
of class 7 increases the search incentives of class j. This is a “pure” learning externality in
that, if class ¢ is better informed, this information will eventually percolate to the trading
counterparties of class j. This encourages class j to have a better search technology.’

We also consider the incentive effects for the formation of “trading networks.”
(Because our model is based on a continuum agents, the network effect is with respect to
agent classes, not individual agents.) With respect to information gathering incentives,
agents prefer to trade with better informed agents. This incentive can even overcome

the associated direct impact of adverse selection.

Condition 4 (Symmetry). Classes are symmetric in the sense that they have equal

masses m; = m; and f;; does not depend on (3, j).

Theorem 1.5 Suppose that class-i agents are initially better informed than those of class
J, that is, N; > N;. Under Conditions 2, 3, and 4, there exists some g and some T such
that for any proportional gain from trade G > g and market duration T > T, in any

equilibrium:

1. There is more investment in matching with class © than with class j. That 1is,

Xei = Xpg Jor all k.

2. Class-i agents invest more in matching technology than do class-j agents. That is,

Xi = Xj-

5As before, this is based on the assumption that there is an ordered path of classes connecting class
1 with class j.
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The incentive effects associated with this result naturally support the existence
of “hub-spoke trading networks,” with better informed agents situated in the “center,”
and with other agents trading more with central agents by virtue of establishing trading
relationships, meaning investment in the associated matching technologies. As a result,
one expects a positive correlation between the frequency of trade of a class of agents
and its information quality. While this effect accounts for learning opportunities, pricing
effects, and adverse selection, we do not capture some other important effects, such as
those associated with size variation in trades and risk aversion.

Finally, we note that if the market duration is moderate, meaning that 1" € (T, T),
the learning effect may not be strong enough to create the complementarity effects that
we have described. Indeed, there are counterexamples for the 3-class model of the pre-

vious section.

J Proofs: Endogenous Matching Technology

Proof of Theorem 1.2. To prove the theorem, we need to show that, for any k& # i, the
utility gain for an agent of class ¢ from searching more for agents of class k is monotone

increasing in the search efforts of all other agents. This utility gain is given by

Z Z fij(Xij,in)/O5( zgt(e)thtH( il 0)+7T2]t(‘9)tht+1( S ,0)) do

=0 jik
T
5 X / 0.5(xH (BT, (X5F.0) + 7L, Ok, (5. 0)) B
(86)
T
Y ) / 0502 ()R, (X5, 0) + mLs (O)hE, 1 (X" 0)) do

t=0 j#ik

T
- Z fik(Xani)/RO-5(7T (e)hzt+1( o >9)‘|‘7Tz‘L,j,t(9)hzt+1(Xz ~0))do,
t=0

where Xf’i coincides with x;, but with x;, replaced by x and Y, respectively. Lemmas
G.2-G.3 imply that the leading asymptotic term of this gains from search can be written

as

T
Z fzk X X (fzk(&a X))t)Kijt>
t=0

for some nonnegative coefficients K;;; that do not depend on x;;. Furthermore, a slight

modification of the proof of Proposition 5.5 implies that these coefficients Kj;;; are mono-
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tone increasing in the matching-technology investments of other classes whenever T is

sufficiently large. The claim follows. m

Proof of Proposition 1.4. The proof follows directly from the arguments in the
proof of Theorem 1.2 because the coefficients Kj; are monotone in the initial amount of

information. =

Proof of Theorem 1.5. It follows from Lemmas G.2-G.3 that the expected profit
from trading with better informed classes is always larger when T is sufficiently large,
and that these profits are larger for initially better informed agents. The claim follows.

K Dynamic Information Acquisition

For settings in which side investment in information gathering can be done dynamically,
based on learning over time, we are able to get analytical results only with a sufficiently
low cost of information acquisition, corresponding to a per-packet cost of signals of
my > 7, the case considered in the previous appendix.

In this case, we can show that there is a “threshold equilibrium,” characterized
by thresholds X, < X, such that agents of type i acquire additional information only
when their log-likelihood is in the interval (X, X ;).

The timing of the game is as follows. At the beginning of each period ¢, an agent
may acquire information . Trading then takes place after an agent meets a counterparty
with probability A\. Without loss of generality, when they acquire information, they
choose between N, and Np.. packets. Otherwise, there will be multiple thresholds
for each intermediate level number of signals. This is feasible to model, but much more
complicated.

We let 1);, denote the cross-sectional density of types after information acquisition,
and before trading takes place, and let x;; denote the cross-sectional density of types

after the auctions take place. Thus,

Yigrr = (g ](Ei,tﬂ,yi,tﬂ)) * N T (Xt IR\(&i,thi,tH)) * TINoi

is the density that determines the bid and ask functions, and

Xit+1 = (1=2X) Vit + >\¢E§+1 * s 041

is the cross-sectional density of types after the auctions took place.
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We now denote by Q; ¢, (6, ) the cross-sectional type density at time 7 right before
the auctions take place of an agent of class ¢ conditional on his type being # at time
t after the information has been acquired. Then, conditional on his type being 6 at
time t before information has been acquired, depending on whether the agent acquires

N; € {Nmax, Nmin} signals, his type density at time 7 is

Rfv’;T(H,x) = /RUN@-(Z_Q) Qitr(z,2)dz.

Furthermore, Q;;,(z, z) satisfies the recursion

Qitrr1(0,2) = <Qi,t,‘r(9’ ')[[X Yi,rﬂ}) * DNoaxe T (%,t,’r(ea ')[[X Yi,rﬂ}) 1IN

24,7410 24,7410

where
Qi,t,T(ea ) = A Qi,t,‘r(ea ) * wj,‘r + (1 - )\) Qi,t;r .

We will also need the following additional technical condition.
Condition 3. Suppose there exist K, e > 0 such that
0" (=)t — o] + [ (@)e™ — o] < K (87)
for all x > 0.

Theorem K.1 There exist A, g > 0 such that, for all G > g and all 7 < =A% there

exists a threshold equilibrium.

We let M" note the mass of agents of class i who acquire information at time ¢,

indicating with a superscript the corresponding outcome of Y, H or L.

Theorem K.2 There exists a critical time t* such that the following hold in any thresh-

old equilibrium under the conditions of Theorem K.1.

o Sellers:

— For both H and L, the mass MsIt{’L 15 monotone decreasing with t, and increas-
ing in 5_1, T, Niax-

— M " is monotone increasing in A for t < t* and is monotone decreasing in
A fort > t*.
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e Buyers:

HIL - . . .. . .

— The mass M, is monotone decreasing in t and is increasing in T, Ny ax.
. : ==
— M{I is monotone increasing in G .

— M is monotone increasing in A for t < t* and is monotone decreasing in \
fort > t*.

, =
— M is monotone decreasing in G .

L Proofs: Dynamic Information Acquisition

In this section we study asymptotic equilibrium behavior when G and 7~! become large.
Furthermore, we will assume that 7! is significantly larger than G, so that 7! /@A is
large for a sufficiently large A > 0. Throughout the proof, we will constantly use the
notation X >> Y if, asymptotically, X —Y — +o0.

L.1 Exponential Tails
Note that, by Lemma 4.5,
Xg(x) = (1-2X) 2{(0 + )\wfo * wfo ~ cpe T |g|PNmaTl = g eTOT g0
Furthermore, as we show below, in any equilibrium we always have
Xy << Xppg << X << X1 (88)

and
X1 << Xpp << Xgp1 << X . (89)

Lemma L.1 Suppose that x — +o0o and X;; — +oo in such a way that
7b,t+1 << Xy << Ys,t+1 << Xy

for all t and such that, for any fived i,t, the difference x — X, either stays bounded or

converges to +00 or converges to —oo. Then,
¢it (l’) ~ sz 6_(0!+IL)SC x'yg]

and

— X
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where

and

The powers m}f’,

%ZZ} - Nmax_‘_%?(—l

7= 29 + 1.

mY with which X enters C¥X satisfy

mf=2ml +1, md=m),.

Furthermore, there exists a constant K such that

and

u(z)| < Ry e (@HDT 08

()] < Ry et g

In addition, there exists a d;; > 0 such that

for all x > A.

|¢it(a:)e°‘xat_# —C’Zﬁ| < Rye 0w

Proof. The proof is by induction. Recall that

—x N
N o= ¢

Fix a sufficiently large A > 0. Then,

Xit+1

/R Up (v —y) Yaly) dy = /_ ) V(7 — y) s (y) dy

+ V(7 —y) Yot (y) dy

T
“+oo

0
[ vutnte =y + / oo ()bl — 1) dy
+00

/O U @m(e —9)dy + | vu(y)ulz —y) dy

A

0
T / o)l — ) dy
L + I, + I3.
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Pick an A so large that v can be replaced by its asymptotic from the induction hy-
pothesis. Note that we can only take the “relevant” asymptotic coming from the values
of y satisfying y < X, because the tail behavior coming from “further away” regimes
are asymptotically negligible. Then,

—+00

I, = Yo (Y)s(x — y) dy

A

+o0 "
- / C e @t ot g (o — ) dy
A

rz—A
— (e (ot :):# / elatin)y |1 _ y/xpfwst(y) dy . (9())

Now, applying I’Hopital’s rule and using the induction hypothesis, we get that

z—A (o
f_oo elatiy wst(y) dy
OF + D)t

~ st-

Thus, we have proved the required asymptotic for the term Is.

To bound the term I, we again use the induction hypothesis and get

A A
/ Vot (Y)ba(r —y)dy < & / Yo (y)e @HEY g W dy ~ e g
0 0

for some constant Cs, so the term I; is asymptotically negligible relative to Is.

Finally, for the term I3, we have

+oo
@Dbt(f— )wst / Q/szt @bst €T — ) (91)

xT

Now, picking a sufficiently large A > 0 and using the same argument as above, we can
replace the integral by f? 4 and then use the induction hypothesis to replace ¥y (z — )
by Cye~ et )@=y |y — y|”’zp. Therefore,

0 0
/ o) — y) dy ~ / Une(y) Coge™@HE) | _ ¥ gy

(92)
~ C € —(a+Ip)x T / wb a+IL Y dy7

52



which is negligible relative to 5. Thus, we have completed the proof of the induction

step for ;. It remains to prove it for ;. We have

yit iit
Yin(z) = / Xit—1 (Y)MNar (2 — ) dy + / Xit—1(Y) N (T — Y1) dy
Xt —0
e H H
T / Yt (x —y)dy
Xit
<. . (93)
- / Xt (0T (& — ) dy — / Nora (2 — ) dy
Ku —+00
+ / oo ()N (T — ) dy + /_ Xio (Y) NN (T — ) dy .
—o0 Xi1

Since X,;; — —o0, the induction hypothesis implies that

Xit X@'t

—00

0
= et N / 2o )X )
—0o0

P
%‘,pl) .

The same argument as above (the induction step for x;;) implies that

X —
Y+ Xy 1= (y +Xit)/x|N Yy

— 0 <e—(a+IL)x N1 (201X,

Xit

/ Xt (W) (@ —y)dy ~ C e @HLD g +N
R

Now, we will have to consider two different cases. If + — X;; — -+o00, we can replace

nf(z — y) in the integral below by ¢} |z — y|V~'e=*==%) and get

/ () (e — y) dy
= _ (95)

Xi1
~ Ne(tiL)e |a:|N_1/ i1 (y) €T |1 — gy /aN " dy

—00

Using I’'Hopital’s rule and the induction hypothesis, we get

Xit o

— 00

It remains to consider the case when = — X;; stays bounded from above. In this case,

/ Xii—1(y)n(r —y)dy = / io Xit—1(z — 2)nn(2) dy . (96)

—0o0 _Xit
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Xio(x — 2)ny (2) dy is asymptot-
ically negligible relative to f;_o%l Yio(r — 2)nk(2) dy because x — X;; is bounded from

Now, the same argument as in (94) implies that fx—Yn

—0oQ
above. Therefore,

400 —+00
/  arar(@ — 2w () dy ~ / V= 2mll(z) dy ~ C e gtV |

_Xit —0o0
The induction step follows now from (93). The proof of the upper bounds for the densities

is analogous. m

The arguments in the proof of Lemma L.1 also imply the following result.

Lemma L.2 Under the hypothesis of Lemma L.1, we have that, when 6 — +00 so that

0—x— +00,
Gior(0,2) ~ CI elotlm@=0) |, _ g

i,t,T

Qiir(0,2) ~ C2_elotlm@=o) | _ gt (97)

2,0, T

N; (9,1’) -~ C.R’Ni e(a—i—IH)(:c—G) |Zl§' . 9|’Y,?T+Ni’

it T it T

where o
Ver = e +p 1
. (98)
’Yt;r - 737_1 + Nmax .
Lemmas L.1 and L.2 immediately yield the next result.
Lemma L.3 We have:
%Zz} = (2t+1 - 1)Nmax -1
T = (27 = 2)Nipax — 1
ro= ) (99)

%?,T - (2T+2 - 2t+1 - 1)Nmax —1
Vt?'r = (2T+1 - 2t+1>Nmax —1.

Furthermore, the powers my, of A\ with which \ enters the corresponding coefficients c;

and Cy ; are given by:
my = 271 —1

my = 2'—1
q _ T+1 t
mtT — 2 _2

me = 27— 2,

(100)
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L.2 Gains from Information Acquisition

For any given agent i, the expected utility U, . from trading during the time interval

from t to 7 immediately before information is acquired can be represented as

Ui,t,‘r(e) - Z ui,t,r(e)-
r=t

Suppose that, at time ¢, an agent of type ¢ with posterior # makes a decision to acquire
information with type density 7. Then, the agent knows that his type at time 7, at

the moment when the next auction takes place, his posterior will be distributed as

0p * M * gﬁﬁ_l.
We will use the following notation:
“+oo
GEM(0.0) = [ RENO)dy . FEM0.0) = 1 - GE(0.0),

for K € {H, L}.
The following analog of Lemma G.1 holds.

Proposition L.4 For a given buyer with posterior 0 at time t, before the time-t auction

takes place,

Unr(N.0) = P(O)X / (0 — S, (y)) GI2N (0, Vi (S, (4))) () dy

(101)
© (1 PO)A / (05 — S (y)) GERN(60, Vi (S, (1)) ¥ (y) dy,
whereas for a seller,
wnes(N,6) = P(B) / (S1(y) — o) G (Vi (S, (4))) RN (0, ) dy
K (102)

© (1 P@)A / (S,(y) — v2) GE(Vin (S+(9))) BEY (0, ) dy.

R

Thus, the gain from acquiring additional information is given by

Z(ui,t,T(Nmaxa 9) - ui,t,‘r(Nmina 9)) .

T>t

The following lemma provides asymptotic behavior of these gains for extreme type values.
Lemma L.5 We have

55



e For a buyer:
— As 0 — 400,

ub7t,7'(Nmax, 9) _ ub,t;r(Nmin, 9) ~ C;?tyi\—fmaxe—(a"rl)e|9|’YST+Nmax

Se(y) — v\ _ (103)
« [ @'~ s, (7) oW 8 () dy,
[ = s (2 U () dy
— As ) — —o0,
ub,t,T(Nmaxae)_ub,t,T(Nmime) ~ C{fi;i\—[max Re(a+1)6|9|'}/37.+Nmax
Sr(y) — v\ (104)
X v — S (y <7) e i (y) dy.
f o = s (2 )
e For a seller, as  — —o0,°
us,O,T(Nmaxae)_us,O,T(Nmime) ~ Cff){\q[—max Re(a—i_l)g|6)|FY§’2T+Nmax
X S(y) — v) + (W = S-(y)) FE (Vi (S v
/ ((( (5) =) + (07 = S2()) F (Vir (1)) .

+ ((S:(y) = ) + (v, = S-(y) FbLT(wT(sT(y))))) et gy,

Furthermore, the derivatives of i+ (Nmax, 0) — Wit (Nmin, 0) with respect to 0 have the
same asymptotic behavior, but with all constants on the right-hand sides multiplied by
a+ 1 when § — —oo and by —(a + 1) when 6 — +o0.

Proof. Throughout the proof, we will often interchange limit and integration without
showing the formal justification, which is based the same arguments as in the case of
initial information acquisition considered above. However, the calculations are lengthy
and omitted for the reader’s convenience.

We have

/R (0 = 8, () GIN (6, Vi (S, () 62 () dy = (0 — )

n / (00— S, (4)) ¥l (y) dy — / (07 — S, (y)) FLRN (0, Vi (S, (1)) ¢ (3) dy
(106)

5The case # — 400 will be considered separately below.
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and

/R (o — S, () GEEN (8, Vi (S, (9))) 2 () dy

- / (00— S, (4)) V% (y) dy — / (o — S,(4)) FLPN (0, Vi (S, (9))) 5 () dy.
(107)

By Lemma L.2, for a fixed x, we have

FEN(0, Vi (S (1)) ~ CEBN glotm) Vi (5:0)=0) it 4N

b,t,T

and the first claim follows from the identity

Vir(S:(y)) = 10g%

The case of the limit § — —oo is completely analogous.

_y'

It remains to consider the case of a seller. The term corresponding to state H gives
[ (5:) = ) G500 B 0.0) dy
R

= (Ub - 'UH) + /R ((ST(y) - Ub) + ('UH - S‘r(y)) Fblj(‘/b'r(sr(y)))) RI{:;'N(ea y) dy
(108)

In the limit as 8 — —o0,
(510 = v + 07 = 5.0)) e (5. 6)))) RE (6. 9) dy
& . (109)
~ ISt P [ (8100 =)+ (0 = 5.0) FEVin (S, 0)) )

The term corresponding to state L gives
[ (510) = ) GE (5000 BEY 0.0
R

= =)+ [ (800 = )+ (0= S.0) FEVh (S 0)) RE (0. 0)
(110)
In the limit as 8 — —o0,

/R ((Se(w) = v0) + (v, = S (1)) FE(Vin (S () ) BN (0,) dy

Q —(a
~ CIN ot )0 |9|“Yw+N/ ((Sf(y) — wp) + (s —Sf(y))Fbﬁ(%T(ST(y))))e (v gy,
R
(111)
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This completes the proof.

The claim concerning the derivatives with respect to 6 is proved analogously. m

The arguments of the proof of Lemmas F.1-F.9 imply the following result.

Lemma L.6 Let
(a+1)?

a—1

> Q.

Then

loge |" S(y) — v, \* (112)
- 2(21+11 H — Up —(2a+1)y
Cor | B /R< S(y) <UH_5(y)) oGty gy,
Similarly, we have the following result.
Lemma L.7 Let
a+1 .
a—1 '
Then
/R (((ST@) — )+ (0 = S,(y)) (Ve (S-(1))) )
+ ((Se(y) = w) + (s = S:(v) Fﬁ(%x&(y)»)) et dy (113)
~ it ey — AL ey (S) —w )"
g+ /R<(S(y) vp)e ¢ o —S(y) dy.

In order to prove the next asymptotic result, we will need the following auxiliary

lemma.

Lemma L.8 Let f(z) solve

g log(1/¢) T4 e )
e = (log(1/<)+log(1/f(z>)) (= + e 125). (114)

with f(0) = 0. Then, r-(y) = flea1y)e2/@V converges to the function r(y) that is
the unique solution to

Py) =y + () r(0)=0.



Proof. We have
1 1
Ly) = e a1 fl(evTy)

_ log(1/¢) T
o <log<1/<>+1og<1/f<eﬁy>>> (7570 + T HEDT) 1

<10g(1/<) +11(z>gg((1g/—2<a—1> /n(y))) (y + (Te(y))a%l) :

The right-hand side of this equation converges to y + (r.(y))Y @Y. The fact that r.(y)

converges to r(y) follows from the uniqueness part of the proof of Proposition D.1 and

standard continuity arguments. m

Lemma L.9 We have
H S:(y) — v - ay  H
[ = s (SEZE) vt ay

. (116)
~ g—a/(a—l)/ y—a—l ¢ST (y—l T(y>1/(a+1)) dy,
0

where
Osr(y) = y “wi(—logy).

Proof. For simplicity, we make the normalization v = 1, v, = 0.
We make the change of variable S;(y) =z, v = Vi.(2), dy = V! (2)dz. Using
the identity Vi-(z) = log % — Vir(2), we get

1

VS/T(Z) = m

— Vir(2) -

We will also use the notation g(z) = e@*DV%-() from the proof of Proposition D.1.

Then, we have

[ = s (SE) ety

/01 12 (1;z)“ VO Yl (Vir (2)) Vi (2) dz
= /01 (1—2)e Vil (log 1 j B WW(Z)) (z(l 1— 2) VI;T(Z)) =
| a=sgt sl (10% - k)gg(z)) (z( 5w <z>) -

1
1—2 a+1
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As we have shown in the proof of Proposition D.1, g(z)/e converges to a limit fy(z)
when ¢ — 0. A direct calculation based on the dominated convergence theorem and the

bounds for f(z) established in the proof of Proposition D.1 imply that the limit

=) (e ) -

exists and is finite for any r > 0. By contrast, as we will show below,

st [ttt (los 5 - 220 (g - )

blows up to 400 as € — 0. Therefore, the part frl of the integral is asymptotically

1
lim g+t / (1—2)g(z) el (log 1

e—0

negligible and we will in the sequel only consider the integral for with a sufficiently small
r > 0. Then, it follows from the proof of Proposition D.1 that we may assume that
g(2z) = ef(z) where f(z) solves the ODE (114). For the same reason, we may replace
1 — 2z by 1. It also follows from the proof of Proposition D.1 that

Ky D(g(2)) < g(z) < K1D(q(2)) (118)

for some K; > K5 > 0, where

with v = ~,, and
1
a() = (PR ORI (Clog(a) e 4 (2

for some constant C > 0.

Denote
¢(e™) = e ().
We have ¢ (z) ~ ce @[ when 2 — +oo and ¥ (2) ~ ¢ e @]z when

x — —o0. Therefore,
oy) =y Pa(—logy) ~ coy e T logy|" = ey llogy[”
when y — 0 and, similarly,
d(y) ~ cory> logy|™
as y — +00.
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With this notation, we have

[ a=asr et (s - 20 (S5 - ) o (119

_ " —1 1/(a+1 1 g'(2)
= [ et ) (e - i) o
By (118), for some K3 > 0,

%( log(Cz)) D+ 2

CH/eCzt (~log(C2)) ™/ (22 +
= M 2) 1.2 (120)

(T C e (108(C2))
x (—logq(2))™" (1 + v (=logq(z))™").

Since we are in the regime when both z and ¢ are small, 1 + v (—logq(z))™* ~ 1, so
we can ignore this factor when we determine the asymptotic behavior. Furthermore, for

the same reason,

a1 _ QIO (~log(¢a) T (S + X (~log(¢)T) + = _
a T (Ve C zlet/a (—log(Cz)) /e + 22 -

for small (, z. Therefore, since for small (, z (—logq(z))~" is sufficiently small, we have

~ = (121)

for small z, (.
Making the transformation z = (V@Y (~log()™/(@ Yy, standard dominated

convergence arguments together with Lemma L.8 imply that

/T —a— 1¢( -1 1/(a+1)) dz
0
~1/(a=1)

—a/(a—1) r(%)
- <%) /0( | y o (v () Y) dy  (122)

—af(a-1) oo
~ (@) /0 y o (y r(y)V ) dy,

completing the proof. m

Lemma L.10 We have

as z 11, for some constant K (¢).
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Proof. As above, we will everywhere use the normalization v = 1, v, = 0. For brevity,

let KL = hg’L. We have

/ — (! ~ ! !
i) = O (7 ey + )

and therefore

o z Y 1 1
Voe) = Vinla) + @ (1—th<vbT<y>> ' hLmT(y)))dy

20

for any zo € (0,1). A direct application of I’'Hopital’s rule implies that
1 G (x) -1

) )
as r — +o00. Using the identity

CUw) Ly ey ey ) — e @) dy
() e YH () ’
it is possible to show that this will converge to zero at least as fast as 7. Indeed,
condition (87) implies that we can replace ey~ 7 (y) by its limit value ¢, as the

difference will be asymptotically negligible. Thus, it remains to consider

400 [e’e) [e’e)
/ e ((y/a)? — 1) dy = / (1 +yfa) —1)dy < a7 / e~y dy.
T 0 0

Therefore, we can write

B o z Y 1 1
Vir(2) = Vir(z0) + (@) / <1-yhﬂ<v;ﬁ<y>> N hL(wy)))dy

= Vir(20) + é(—z — log(1 — 2) — (=20 — log(1 — 29))) (123)

re) (137; (hH(v;(y» ‘é) : m) W

Consequently, when z T 1,

1
Vir(2) ~ To log

K

“ (124)

and the claim follows. =
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Lemma L.11 When G becomes large, K(¢) converges to

K - A—/A o~ B (2) de + /+oo(1—hH(x)/a)d:c

—00 A

Proof. Based on the change of variables

Vir(y) =, dy:Bi(x)de=5<1 Blo) L1 -, 1@)_ :

%&(fQ<mw&w‘é)+ﬁﬁiw)@

we have

B (x) 11 1 (125)
[T B (hH(x) a) + e J
= Brl@) 1 1 -
Vir(20) 1—-B,(z) hf(z) hL(x)

When G — oo, B,(r) — v# = 1. Hence the leading asymptotic of the integrand is given
by 1 — hfl(z)/a. Therefore, for any A > 0,

Br(x
oo 1_3(7&) (hHl(gc) _$> + hLl(m)
B-(z) 1 1 dx
Vi (20) —B.(2) i@ T W@
—+00
~ / (1— h(z) /) do
Vir (20) (126)
A +o00
= A— Vi (20) —/ ot (z) dr + / (1—nr"(z)/a)dx
Vir (20) A
A 400
~ A—Vy(2) —/ a 'R (x)dx + / (1—hrf(2)/a)dx
e A

and the claim follows. =

Lemma L.12 When 6 — +oo and G — oo in such a way that 6 —loge/(a+1) — 400,

we have
us,O,T(NmaXa 9) - us,O,T(Nmina 9) ~ _(a+1 Ga—1 |9|Fy‘r
and p .
o+ —(a—l—l
Ao \Usor Nmaxae — Us,0,7 Nminae ~ = -1lo|mZ
O (e (N 0) — 0 (Vo 0) ~ — L o

for some constant Z > 0.
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Proof. When y — oo we have S, (y) — 1. Thus,

a+1

S,
Y = VielSi(y)) = log v (5,(y)
1
log—— — K(e).
( Ga) CTs
Therefore,
1 — Sf(y+9) ~ 6—(y+€+K(€))/(1—i)
when # — oo and 61+ K(©)
y+0+K(€
Vi (So(y+0)) ~ LR E gy,
br(S-(y +0)) [~ (G (y+0)
Hence
H Cr ~ _qyt0+GaK
GLLVin(S, (4 0) ~ o 85
Therefore, in the high state, we get
[ (51 0) = 1) GIEWin(S:( -+ 00) REE (0.5 +0) dy
R
~ =2l / e~ 0K/ (1-85) G5 RN (g 4y 4 ) dy (128)
R
= —|gpre @DESKE —9<‘152*?>% / ety RN (9, y + 6) dy.
R
In the low state, using S,(y + 6) — v, ~ G, we get
[ (81l +0) = ) GEin(S. 5+ 00) B (0.+ 0)dy
R
~ G|9|"Ta—+1 / e_(aﬂ)iy%:??KRf;N(ﬁ,y+9) dy (129)
~ Ge TV o / TOVTTREN (0, y + 0) dy.

Thus, in the limit as G — 0, the gain in the low state from acquiring information satisfies

(1) 20ex op- Ger /e (a+1) 52 F(RENR (0, y 1 0) — REN=(0,y + 0)) dy
R

1

—(a —(a+1)=2— -
~ e T e, [ (K, ) (),
R

(130)

whereas the loss in the H state is asymptotically negligible because the additional factor
G is missing. m

The following lemma completes the proof of Theorem K.1.
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Lemma L.13 There exist g, A > 0 such that a threshold equilibrium ezists whenever
G > g and 7 < A% In any such equilibrium, conditions (88) and (89) hold as 7', G —

Q.

Proof. Fix a threshold acquisition policy {7%,& i tiebst>1 of all the agents in the
market. It follows from the above (Lemmas L.1, L.3, L.5 and L.12) that there exist
constants a, g, B > 0 such that the gains from information acquisition are monotone

decreasing in |f| when || > B, G > g and
win{anin [, min X, )} > oG

Therefore, the optimal acquisition policy for any agent is also of threshold type, given
by {iit, X}, whenever 7 is sufficiently small. Tt follows from the proofs of Lemmas L.5
and L.12 that, in fact, there exists an A > 0 such that 7 < e 4 is sufficient for this.
Clearly, choosing A > 0 sufficiently big, we can achieve that

min{min (Xl min | X[} > oG
1, 1,

Making the change of variables § — Re’/(1 + Re’), we immediately get that the
mapping from { X, X;; bizpss>1 tO {iit,zit}i:b,sﬁl maps bounded convex set into it-
self. Therefore, existence of a threshold equilibrium follows by the Brower fixed point
Theorem. The fact that any equilibrium satisfies (88) and (89) follows by a careful
examination of alternative cases, is very lengthy and is therefore omitted. m
We can now calculate approximations for the optimal acquisition thresholds. Though

we cannot prove that an equilibrium is unique, the next result implies that the equilib-
rium is asymptotically unique, in the sense that the asymptotic behavior of the equilib-

rium thresholds is the same for any equilibrium.

Lemma L.14 For any equilibrium, in the limit when G — oo and © — 0 in such a way

that m < e=C | the optimal information acquisition thresholds satisfy

200+ 1
+1

(a4 1) Xy ~ Kpir + <mf?T — %m;ﬁ) log A + log(7 ™) log G
’ «

(131)

2a+1

+ (77 + Ninax) log(log(n™'G™ =71 )) — a%w% loglog G.
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—(a+1)X, ~ K, +logR + (log(n™") + (3% + Nunax) log(log(r "))

(6% — o __
+ p— logG + <%?T + Nmax + ﬁﬁ) log log G.
(132)
3. o o
(a+1) Xy =~ (Ga—1)
_ Ga—1 _ 133
<log(7r_1) + K01 + vrlog ( a (log(w‘l) + K&O,T)) ) ) (133)
a—+1
4.
(@ DXy = Ko, + (- S logh + gt )
” ’ a—+1
- i 1og G+ (9 + Ninax) log(log(n~1G*1)) (134)

o _
- a—+17$ loglog G,

where vy = (27! — 1) Nyax — 1 and 7% = (27+ — 241 Ny — 1.

Proof. The proof follows directly from Lemma L.5 and Lemmas L.6-1..12. =

Proof of Theorem K.2. This theorem follows from substituting the asymptotic
expressions of Lemma L.14 into the asymptotic formulae of Lemma L.1 for the tail

behaviour of the densities of type distributions. m

66



References
Duffie, Darrell, Semyon Malamud, and Gustavo Manso. 2009. “Information Percolation
with Equilibrium Search Dynamics.” FEconometrica, 77: 1513-1574.

Duffie, Darrell, Semyon Malamud, and Gustavo Manso. 2013. “Information Percolation
in Segmented Markets,” Working paper, Stanford University, EPFL, and MIT, November
2013.

Hartman, Philip. (1982). Ordinary Differential Equations (Second Edition). Boston:

Birkhaiiser.
Meyer, Carl D. 2000. Matrixz Analysis and Applied Linear Algebra. SIAM, Philadelphia.

Tarski, Alfred. 1955. “A Lattice-Theoretical Fixpoint Theorem and its Applications,”
Pacific Journal of Mathematics, 5(2): 285-309.

67



	Introduction
	Related Literature
	The Model
	The Double Auctions
	Information Setting
	Evolution of Type Distributions

	The Double Auction Properties
	Double Auction Solution

	Endogenous Information Acquisition
	Setup
	Strategic Complementarity in Information Acquisition
	An Illustrative 3-Class Example
	Further Remarks on Endogenous Information Gathering

	Amenable Cross-Sectional Information Type Densities
	The ODE for the Double-Auction Equilibrium
	Exponential Tails of the Type Distribution
	Existence of Equilibrium for the Double Auction
	The Behavior of the Double Auction Equilibrium
	The Behavior of Some Important Integrals
	Proofs for Case of Initial Information Acquisition
	One Class of Sellers
	Two Classes of Sellers

	Two-Class Case
	Endogenous Investment in Matching Technology
	Proofs: Endogenous Matching Technology
	Dynamic Information Acquisition
	Proofs: Dynamic Information Acquisition
	Exponential Tails
	Gains from Information Acquisition


