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Abstract
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1 Introduction

We study equilibria of dynamic over-the-counter double-auction markets in which agents

are distinguished by their preferences, information, and market “connectivity.” Agents

collect information privately over time from the bids and offers of their counterparties.

We characterize the effect of market segmentation associated with the limited “connec-

tivity” of investors caused by search frictions. Agents can choose how much information

to gather on their own, or invest in improvements in their connectivity, allowing them

to more easily trade with specific classes of agents. This limited connectivity can affect

some classes of investors more than others, with endogenous consequences for equilibrium

information gathering incentives.

We show that if there are sufficiently many rounds of trade before pay-off relevant

information is revealed, then there is strategic complementarity in information gathering

and in connectivity. That is, when faced by counterparties that increase their information

gathering or connectivity, a given agent will respond likewise. For a short-lived market,

however, the opposite can occur, in that an agent may cut back on information gathering

or investments in connectivity when other agents are found to increase their information

gathering or connectivity.

In our model, the various classes of agents are distinguished by their preferences

for the asset to be auctioned, by the expected frequency of their trading opportunities

with each of the other classes of agents, and by the quality of their initial information

about a random variable Y that determines the ultimate payoff of the asset.

At each time period, any agent of class i has a trading encounter with probability

λi. At each such encounter, a counterparty of class j is selected with probability κij .

Any two agents that meet are given the opportunity to trade one unit of the asset in

a double auction. Based on their initial information and on the information they have

gathered from bids in prior auctions with other agents, the two agents typically have

different conditional expectations of Y . Because the two agents’ preference parameters

are commonly observed, it is common knowledge which of them is the prospective buyer

and which is the prospective seller. Trade occurs in the event that the price β bid by the

buyer is above the seller’s offer price σ, in which case the buyer pays σ to the seller. This

double-auction format, chosen for tractability, is known as the “seller’s price auction.”

We provide technical conditions under which these double auctions have a unique

equilibrium in bidding strategies that are strictly increasing in the agents’ conditional

expectations of the asset payoff. We show how to compute the offer price σ and the bid
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price β, state by state, by solving an ordinary differential equation that depends on the

quality of the information of the buyer and that of the seller at the time of their trading

encounter. Because the bid and offer are strictly increasing with respect to the seller’s

and buyer’s conditional expectations of the asset payoff, they reveal these conditional

expectations to the respective counterparties, who then use them to update their priors

for the purposes of subsequent trading opportunities. The technical conditions that

we impose in order to guarantee the existence of such an equilibrium also imply that

this equilibrium uniquely maximizes expected gains from trade in each auction and,

consequently, total welfare, given the market structure. We also endogenize the market

structure to account for learning and trade incentives.

Because our strictly monotone double-auction equilibrium fully reveals the bidders’

conditional beliefs for Y , we are able to explicitly calculate the evolution over time of the

cross-sectional distribution of posterior beliefs of the population of agents by extending

the results of Duffie and Manso (2007) and Duffie, Giroux, and Manso (2010) to multiple

classes of investors. In order to characterize the solutions, we extend the Wild summation

method of Duffie, Giroux, and Manso (2010) to directly solve the evolution equation for

the cross-sectional distribution of conditional beliefs.

The double-auction equilibrium characterization, together with the characteriza-

tion of the dynamics of the cross-sectional distribution of posterior beliefs of each class

of agents, permits a calculation of the expected lifetime utility of each class of agents,

including the manner in which utility depends on the class characteristics determining

information quality, namely the precision of the initially acquired information and the

connectivity of that agent.

This in turn allows us to characterize the endogenous costly acquisition of infor-

mation. We also characterize, under conditions, the endogenous formation of “trading

channels,” by which agents invest more heavily in the ability to locate agents are more

heavily endowed with information or are known to have themselves invested more heavily

in “trading connectivity” with other agents.

2 Related Literature

A large literature in economics and finance addresses learning from market prices of

transactions that take place in centralized exchanges.1 Less attention, however, has

1See, for example, Grossman (1976), Grossman and Stiglitz (1980), Wilson (1977), Milgrom (1981),
Vives (1993), Pesendorfer and Swinkels (1997), and Reny and Perry (2006).
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been paid to information transmission in over-the-counter markets. Private information

sharing is typical in functioning over-the-counter markets for many types of financial as-

sets, including bonds and derivatives. In these markets, trades occur at private meetings

in which counterparties offer prices that reveal information to each other, but not to

other market participants.

Wolinsky (1990), Blouin and Serrano (2001), Duffie and Manso (2007), Duffie,

Giroux, and Manso (2010), and Duffie, Malamud, and Manso (2009, 2010), and Golosov,

Lorenzoni, and Tsyvinski (2013), are among the few studies that have investigated learn-

ing in over-the-counter (OTC) markets. The models of search and random matching used

in these studies are unsuitable for the analysis of the effects of segmentation of investors

into groups that differ by connectivity or initial information quality. Further, this prior

work has not considered the implication of endogenous information acquisition. Here, we

are able to study these effects by allowing for classes of investors with distinct preferences,

initial information quality, and market connectivity.

Our finding, that in an OTC market information acquisition can have natural

strategic complementarities, need not apply in a centralized market because the cen-

trally announced price reveals “for free” some of the information that has been gathered

by others, diluting the incentive to gather information at a cost. For example, in the

standard setting of Grossman and Stiglitz (1980), there is never complementarity in in-

formation acquisition. Manzano and Vives (2011) extend Grossman and Stiglitz’s model

to allow for private information about asset payoffs with common and private compo-

nents as well as exposure to an aggregate risk factor. They show that such equilibria are

unstable whenever there is strategic complementarity in information acquisition. Breon-

Drish (2010), however, shows that a relaxation of the normality assumption of Grossman

and Stiglitz can, under some additional conditions, lead to strategic complementarity in

information acquisition in a standard central-market rational expectations equilibrium.

The underlying incentive to gather information in such a model depends on the coop-

eration of “noise traders,” who contribute all of the expected gains from trade obtained

through gathering information.2

In our model, whenever two agents meet, they have the opportunity to participate

in a double auction. Chatterjee and Samuelson (1983) are among the first to study

double auctions. The case of independent private values has been extensively analyzed

by Williams (1987), Satterthwaite and Williams (1989), and Leininger, Linhart, and

Radner (1989). Kadan (2007) studies the case of correlated private values. We extend

2See, also, Barlevi and Veronesi (2000) and other sources cited by Breon-Drish (2010).
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these results by providing conditions for the existence of a unique strictly monotone

equilibrium in undominated strategies, for a double auction with common values. Bid

monotonicity is natural in our setting given the strict monotone dependence on the asset

payoff of each agent’s ex-post utility for a unit of the asset. Strictly monotone equilibria

are not typically available, however, in more general double auctions with a common

value component, as indicated by Reny and Perry (2006).

The conditions provided here for fully-revealing double auctions carry over to a

setting in which the transactions prices of a finite sample of trades are publicly revealed,

as is often the case in functioning over-the-counter markets. With this mixture of private

and public information sharing, information dynamics can be analyzed by the methods3

of Duffie, Malamud, and Manso (2009).

Beyond the application to information transmission in over-the-counter markets,

our model can be applied in other settings in which learning occurs through successive

local interactions, such as bank runs, knowledge spillovers, social learning, and technology

diffusion. For example, Banerjee and Fudenberg (2004) and Duffie, Malamud, and Manso

(2009) study social learning through word-of-mouth communication, but do not consider

situations in which agents differ with respect to connectivity. In social networks, agents

naturally differ with respect to connectivity. DeMarzo, Vayanos, and Zwiebel (2003),

Gale and Kariv (2003), Acemoglu, Dahleh, Lobel, and Ozdaglar (2008), and Golub and

Jackson (2010) study learning in social networks. Our model provides an alternative

tractable framework to study the dynamics of social learning when different groups of

agents in the population differ in connectivity with other groups of agents.

3 The Model

This section specifies the economy and solves for the dynamics of information trans-

mission and the cross-sectional distribution of beliefs, fixing the initial distribution of

information and assuming that bids and offers are fully revealing. The following section

characterizes equilibrium bidding behavior, providing conditions for the existence and

uniqueness of a fully revealing equilibrium, again taking as given the initial allocation of

information to agents. Finally, Section 5 characterizes the costly endogenous acquisition

of initial information. Appendix K extends the model so as to allow the endogenous

acquisition of information by any agent not only before the first round of trade, but at

3One obtains an evolution equation for the cross-sectional distribution of beliefs that is studied by
Duffie, Malamud, and Manso (2010) for the case M = 1, and easily extended to the case of general M .
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any time period, based on the outcome of the agent’s conditional beliefs at that time.

Appendix Table 1 is a directory of the locations of proofs.

3.1 The Double Auctions

A probability space (Ω,F ,P) is fixed. An economy is populated by a continuum (a

non-atomic measure space) of risk-neutral agents who are randomly paired over time for

trade, in a manner that will be described. There are M different classes of agents that

differ according to the quality of their initial information, their preferences for the asset

to be traded, and the likelihoods with which they meet each of other classes of agents

for trade, period by period. At some future time T , the economy ends and the utility

realized by an agent of class i for each additional unit of the asset is

Ui = viY + vH(1− Y ),

measured in units of consumption, for strictly positive constants vH and vi < vH , where

Y is a non-degenerate 0-or-1 random variable whose outcome is revealed immediately

after time T .

Whenever two agents meet, they are given the opportunity to trade one unit of the

asset in a double auction. The auction format allows (but does not require) the agents to

submit a bid or an offer price for a unit of the asset. That agents trade at most one unit

of the asset at each encounter is an artificial restriction designed to simplify the model.

One could suppose, alternatively, that the agents bid for the opportunity to produce a

particular service for their counterparty.

Any bid and offer is observed by both agents participating in the auction, and not

by other agents. If an agent submits a bid price that is higher than the offer price sub-

mitted by the other agent, then one unit of the asset is assigned to that agent submitting

the bid price, in exchange for an amount of consumption equal to the ask price. Certain

other auction formats would be satisfactory for our purposes. We chose this format,

known as the “seller’s price auction,” for simplicity.

When a class-i and a class-j agent meet, their respective classes i and j are observ-

able to both.4 Based on their initial information and on the information that they have

received from prior auctions held with other agents, the two agents typically assign dif-

ferent conditional expectations to Y . From the no-speculative-trade theorem of Milgrom

4That is, all of the primitive characteristics, ψi0, λi, κi, and vi of each agent are common knowledge
to them. In a prior version of this paper, we considered variants of the model in which the initial type
density ψi0 and the per-period trading probabilities λiκi1, . . . , λiκiM need not be observable.
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and Stokey (1982), as extended by Serrano-Padial (2007) to our setting of risk-neutral

investors,5 the two counterparties decline the opportunity to bid if they have identical

preferences, that is, if vi = vj . If vi 6= vj, then it is common knowledge which of the two

agents is the prospective buyer (“the buyer”) and which is the prospective seller (“the

seller”). The buyer is of class j whenever vj > vi.

The seller has an information set FS that consists of his initially endowed signals

relevant to the conditional distribution of Y , as well any bids and offers that he has

observed at his previous auctions. The seller’s offer price σ must be based only on (must

be measurable with respect to) the information set FS. The buyer, likewise, makes a bid

β that is measurable with respect to her information set FB.

The bid-offer pair (β, σ) constitute an equilibrium for a seller of class i and a buyer

of class j provided that, fixing β, the offer σ maximizes6 the seller’s conditional expected

gain,

E
[
(σ − E(Ui | FS ∪ {β}))1{σ<β} | FS

]
, (1)

and fixing σ, the bid β maximizes the buyer’s conditional expected gain

E
[
(E(Uj | FB ∪ {σ})− σ)1{σ<β} | FB

]
. (2)

The seller’s conditional expected utility for the asset, E(Ui | FS ∪{β}), once having con-

ducted a trade, incorporates the information FS that the seller held before the auction as

well as the bid β of the buyer. Similarly, the buyer’s utility is affected by the information

contained in the seller’s offer. The information gained from more frequent participation

in auctions with well informed bidders is a key focus here.

In Section 4.1, we demonstrate technical conditions under which there are equilib-

ria in which the offer price σ and bid price β can be computed, state by state, by solving

an ordinary differential equation corresponding to the first-order conditions for optimal-

ity. The offer and bid are strictly monotonically decreasing with respect to E(Y | FS)

and E(Y | FB), respectively. Bid monotonicity is natural given the strictly monotone

decreasing dependence on Y of Ui and Uj . Strictly monotone equilibria are not typically

available, however, in more general settings explored in the double-auctions literature,

as indicated by Reny and Perry (2006). Because our strictly monotone equilibria fully

5Milgrom and Stokey (1982) assume strictly risk-averse investors. Serrano-Padial (2007) shows that
for investors with identical preferences, even if risk-neutral, if the distributions of counterparties’ poste-
riors have a density, as here, then there is no equilibrium with a strictly positive probability of trade in
our common-value environment.

6Here, to “maximize” means, as usual, to achieve, almost surely, the essential supremum of the
conditional expectation.
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reveal the bidders’ conditional beliefs for Y , we are able to calculate the evolution over

time of the cross-sectional distribution of posterior beliefs of the population of agents.

For this, we extend results from Duffie and Manso (2007) and Duffie, Giroux, and Manso

(2008). This, in turn, permits a characterization of the expected lifetime utility of each

class of agents, including the manner in which utility depends on the quality of the ini-

tial information endowment and the “market connectivity” of that agent. This will also

allow us to examine equilibrium incentives to gather information.

3.2 Information Setting

Agents are initially informed by signals drawn from an infinite pool of 0-or-1 random

variables. Conditional on Y , almost every pair of these signals is independent.7 Each

signal is received by at most one agent. Each agent is initially allocated a randomly

selected finite subset of these signals. For almost every pair of agents, the sets of sig-

nals that they receive are independently chosen.8 The random allocation of signals to

agents is also independent of the signals themselves. (The allocation of signals to an

agent is allowed to be deterministic.) The signals need not have the same probability

distributions.

Whenever it is finite, we define the “information type” of an arbitrary finite set K

of random variables to be

log
P(Y = 0 |K)

P(Y = 1 |K)
− log

P(Y = 0)

P(Y = 1)
, (3)

the difference between the conditional and unconditional log-likelihood ratios. The con-

ditional probability that Y = 0 given signals with information type θ is thus

P (θ) =
Reθ

1 +Reθ
, (4)

where R = P(Y = 0)/P(Y = 1). Thus, the information type of a collection of signals

is one-to-one with the conditional probability that Y = 0 given the signals. Proposition

3 of Duffie and Manso (2007) implies that whenever a collection of signals of type θ is

combined with a disjoint collection of signals of type φ, the type of the combined set of

signals is θ + φ. More generally, we will use the following result from Duffie and Manso

(2007).

7More precisely, there is a continuum of signals, indexed by a non-atomic measure space, say [0, 1].
For almost every signal Z, almost every other signal is conditionally independent of Z given Y .

8Letting SF denote the set of finite subsets of signals, this means that for almost all pairs (i, j) of
agents, the mappings Si : Ω → SF and Sj : Ω → SF determining the signals they receive are independent
random variables.

7



Lemma 3.1 Let S1, . . . , Sn be disjoint sets of signals with respective types θ1, . . . , θn.

Then the union S1 ∪ · · · ∪ Sn of the signals has type θ1 + · · ·+ θn. Moreover, the type of

the information set {θ1, θ2, . . . , θn} is also θ1 + θ2 + · · ·+ θn.

The Lemma has two key implications for our analysis. First, if two agents meet

and reveal all of their endowed signals, they both achieve posterior types equal to the

sum of their respective prior types. Second, for the purpose of determining posterior

types, revealing one’s prior type (or any random variable such as a bid that is strictly

monotone with respect to that type) is payoff-equivalent to revealing all of one’s signals.

For each time t ∈ {0, 1, . . . , T}, an agent of class i is randomly matched with some

other agent with probability λi ∈ [0, 1) . This counterparty is of class-j with probability

κij . Upon meeting, the two agents are given the opportunity to trade one unit of the

asset in a double auction. Without loss of generality for the purposes of analyzing the

evolution of information, we take κij = 0 whenever vi = vj, because of the no-trade

result for agents with the same preferences.9

As is standard in search-based models of markets, we assume that, for almost every

pair of agents, the matching times and the counterparties of one agent are independent

of those of almost every other agent. Duffie and Sun (2007) and Duffie, Qiao, and Sun

(2014) show the existence of a model with this random matching property, as well as

the associated law of large numbers for random matching (with directed probability)

on which we rely.10 There are algebraic consistency restrictions on the random match-

ing parameters λi, κij and the population masses m1, . . . , mM of the respective classes.

Specifically, the exact law of large numbers for random matching implies that the total

quantity of matches of agents of a given class i with the agents of a given class j is almost

surely miλiκij = mjλjκji.

9If the primitive parameters do not satisfy this property, they can without effect on the results be
adjusted so as to satisfy this property by conditioning, case by case, on the event that the agents matched
have vi 6= vj .

10Taking G to be the set of agents, we assume throughout the joint measurability of agents’ type
processes {θit : i ∈ G} with respect to a σ-algebra B on Ω×G that allows the Fubini property that, for
any measurable subset A of types,

∫

G

P(θαt ∈ A) dγ(α) = E

(∫

G

1θαt∈A dγ(α)

)
,

where γ is the measure on the agent space. We rely on a “richness” condition on B that allows an
application of the exact law of large numbers. In our setting, because almost every pair of types from
{θαt : α ∈ G} is independent, this law implies that E

(∫
G
1θαt∈A dγ(α)

)
=
∫
G
1θαt∈A dγ(α) almost

surely. Duffie and Sun (2007) prove the existence of a model with this property. Xiang Sun (2012) has
extended these results to cases in which the types of agents can be drawn from a Polish space. In our
setting, information types play no role in the random matching model.
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In this random-matching setting, with probability one, a given pair of agents that

have been matched will almost surely never be matched again nor will their respective

lifetime sets of trading counterparties overlap, nor will the counterparties of those coun-

terparties overlap, and so on. Thus, equilibrium bidding behavior in the multi-period

setting is characterized by equilibrium bidding behavior in each individual auction, as

described above. Later, we will provide primitive technical conditions on the preference

parameters vH and vi, as well as the cross-sectional distribution of initially endowed

information types, that imply the existence of an equilibrium with strictly monotone

bidding strategies. In this setting, bids therefore reveal types. Lemma 3.1 and induction

thus imply that agents’ types add up from auction to auction. Specifically, an agent

leaves any auction with a type that is the sum of his or her type immediately before the

auction and the type of the other agent bidding at the auction. This fact now allows us

to characterize the dynamics of the cross-sectional evolution of posterior types.

3.3 Evolution of Type Distributions

For each class i, we suppose that the initial cross-sectional distribution of types of the

class-i agents has some density ψi0. This initial density may have been endogenously

determined through pre-trade information acquisition decisions, which we analyze in Sec-

tion 5. We do not require that the individual class-i agents have types with the same

probability distribution. Nevertheless, our independence and measurability assumptions

imply the exact law of large numbers, by which the density function ψi0 has two deter-

ministic outcomes, almost surely, one on the event that Y = 0, denoted ψHi0 , the other

on the event that Y = 1, denoted ψLi0. That is, for any real interval (a, b), the fraction

of class-i agents whose type is initially between a and b is almost surely
∫ b
a
ψHi0 (θ) dθ on

the event that Y = 0, and is almost surely
∫ b
a
ψLi0(θ) dθ on the event that Y = 1. We

make the further assumption that ψHi0 and ψLi0 have moment-generating functions that

are finite on a neighborhood of zero.

The initial cross-sectional type densities in the high and low states, ψHi0 and ψLi0,

are related by the following result, proved in Appendix A.

Proposition 3.2 For all x,

ψHi0 (x) = ex ψLi0(x) . (5)

Appendix Lemma A.2 implies that any pair of probability density functions on the

real line satisfying (5) can be realized as the outcomes ψHi0 and ψLi0 of the cross-sectional
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density of beliefs resulting from some allocation of signals to agents. Thus, (5) is a

necessary and sufficient condition for such a pair of densities. In order to create model

examples, moreover, it suffices to pick an arbitrary density function for ψLi0 satisfying∫
R
exψLi0(x) dx = 1 and then let ψHi0 be given by (5). Thus, one can safely skip the step

of specifying the set of signals and their allocation to agents.

Our objective now is to calculate, for any time t, the cross-sectional density ψit

of the types of class-i agents. Again by the law of large numbers, this cross-sectional

density has (almost surely) only two outcomes, one on the event Y = 0 and one on the

event Y = 1, denoted ψHit and ψLit, respectively.

Assuming that the equilibrium bids and offers are fully revealing, which will be

confirmed in the next section under explicit technical conditions on model primitives,

the evolution equation for the cross-sectional densities is

ψi,t+1 = (1− λi )ψit + λi ψit ∗
M∑

j=1

κij ψjt, i ∈ {1, . . . ,M}, (6)

where ∗ denotes convolution.

We offer a brief explanation of this evolution equation. The first term on the

righthand side reflects the fact that, with probability 1 − λi, an agent of class i does

not meet anybody at time t + 1. Because of the exact law of large numbers, the first

term on the righthand side is therefore, almost surely, the cross-sectional density of the

information types of class-i investors who are not matched. The second term is the cross-

sectional density function of class-i agents that are matched and whose types are thereby

changed by observing bids at auctions. The second term is understood by noting that

auctions with class-j counterparties occur with probability λiκij . At such an encounter,

in a fully revealing equilibrium, bids reveal the types of both agents, which are then

added to get the posterior types of each. A class-i agent of type θ is thus created if a

class-i agent of some type φ meets a class-j agent of type θ− φ. Because this is true for

any possible φ, we integrate over φ with respect to the population densities. Thus, the

total density of class-i agents of type θ that is generated by the information released at

auctions with class-j agents is

λiκij

∫ +∞

−∞

ψit(φ)ψjt(θ − φ) dφ = λiκij(ψit ∗ ψjt)(θ).

Adding over j gives the second term on the righthand side of the evolution equation (6).

For the case M = 1, a continuous-time analog of this evolution model is motivated and

solved by Duffie and Manso (2007) and Duffie, Giroux, and Manso (2010).
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The multi-dimensional evolution equation (6) can be solved explicitly by an in-

ductive procedure, a discrete-time multi-dimensional analogue of the Wild summation

method of Duffie, Giroux, and Manso (2010), which is based on continuous-time random

matching and on a single class of investors.

In order to calculate the Wild-sum representation of type densities solving the

evolution equation (6), we proceed as follows. For an M-tuple k = (k1, . . . , kM) of non-

negative integers, let ait(k) denote the fraction of class-i agents who by time t have

collected (directly, or indirectly through auctions) the originally endowed signal infor-

mation of k1 class-1 agents, of k2 class-2 agents, and so on, including themselves. This

means that |k| = k1 + · · ·+ kM is the number of agents whose originally endowed infor-

mation has been collected by such an agent. To illustrate, consider an example agent

of class 1 who, by a particular time t has met one agent of class 2, and nobody else,

with that agent of class 2 having beforehand met 3 agents of class 4 and nobody else,

and with those class-4 agents not having met anyone before they met the class-2 agent.

The class-1 agents with this precise scenario of meeting circumstances would contribute

to a1t(k) for k = (1, 1, 0, 3, 0, 0, . . . , 0). We can view ait as a measure on Z
M
+ , the set of

M-tuples of nonnegative integers. By essentially the same reasoning used to explain the

evolution equation (6), we have

ai,t+1 = (1− λi) ait + λi ait ∗
M∑

j=1

κij ajt, ai0 = δei, (7)

where

(ait ∗ ajt)(k) =
∑

{l∈Z
M
+ , |l| ≤ |k|}

ait(l) ajt(k − l).

Here, δei is the dirac measure placing all mass on ei, the unit vector whose i-th coordinate

is 1. The definition of ait(k) and Lemma 3.1 now imply the following solution for the

dynamic evolution of cross-sectional type densities.

Theorem 3.3 There is a unique solution of (6), given by

ψit =
∑

k∈Z
M
+

ait(k)ψ
∗k1
10 ∗ · · · ∗ ψ∗kM

M0 , (8)

where ψ∗n
i0 denotes n-fold convolution.

This representation captures the percolation of information through “intermedia-

tion chains” between classes that are only indirectly connected with each other. Lemma

11



C.3 provides the asymptotic (long horizon) properties of this evolution of cross-sectional

information distribution in terms of the characteristics of the “network connectivity ma-

trix” (λiκij)
M
i,j=1.

4 The Double Auction Properties

We turn in this section to the equilibrium characterization of bidding behavior. For

simplicity, we assume that there are only two individual private asset valuations, that of

a prospective seller, vs, and that of a buyer, vb > vs. That is, vi ∈ {vb, vs} for all i.

4.1 Double Auction Solution

Fixing a time t, we suppose that a class-i agent and a class-j agent have met, and that

the prospective buyer is of class i. We now calculate their equilibrium bidding strategies.

Naturally, we look for equilibria in which the outcome of the offer σ for a seller of type θ

is S(θ) and the outcome of the bid β of a buyer of type φ is B(φ), where S( · ) and B( · )

are some strictly monotone increasing functions on the real line. In this case, if (σ, β) is

an equilibrium, we also say that (S,B) is an equilibrium.

Given a candidate pair (S,B) of such bidding policies, a seller of type θ who offers

the price s has an expected increase in utility, defined by (1), of

vjit(θ;B, S) =

∫ +∞

B−1(s)

(s− vs −∆sP (θ + φ)) Ψb(P (θ), φ) dφ, (9)

where ∆s = vH − vs and where Ψb(P (θ), · ) is the seller’s conditional probability density

for the unknown type of the buyer, defined by

Ψb(p, φ) = p ψHit (φ) + (1− p)ψLit(φ). (10)

Likewise, from (2), a buyer of type φ who bids b has an expected increase in utility for

the auction of

vijt(φ;B, S) =

∫ S−1(b)

−∞

(
vb + ∆bP (θ + φ) − S(θ)

)
Ψs(P (φ), θ) dθ. (11)

The pair (S,B) therefore constitutes an equilibrium if, for almost every φ and

θ, these gains from trade are maximized with respect to b and s by B(φ) and S(θ),

respectively.
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It is convenient for further analysis to recall that the the hazard rate hLit(θ) asso-

ciated with ψLit is defined by

hLit(θ) =
ψLit(θ)

GL
it(θ)

,

where GL
it(θ) =

∫∞

θ
ψLit(x) dx. That is, given Y = 1, hLit(θ) is the probability density for

the type θ of a randomly selected buyer, conditional on this type being at least θ. We

likewise define the hazard rate hHit (θ) associated with ψHit . We say that ψit satisfies the

hazard-rate ordering if, for all θ, we have hHit (θ) ≤ hLit(θ).

Appendix A confirms that property (5) is maintained under mixtures and convo-

lutions. The same property therefore applies to the type densities at any time t ≥ 0.

The likelihood ratio ψHit (x)/ψ
L
it(x) = ex is therefore always increasing. Appendix A also

provides a proof of the following.

Lemma 4.1 For each agent class i and time t, the type density ψit satisfies the hazard-

rate ordering, hHit (θ) ≤ hLit(θ).

We will exploit the following technical regularity condition on initial type densities.

Standing Assumption: The initial type densities are strictly positive and twice con-

tinuously differentiable.

The calculation of an equilibrium is based on the ordinary differential equation

(ODE) stated in the following result for the type Vb(b) of a buyer who optimally bids b.

That is, Vb is the inverse B−1 of the candidate equilibrium bid policy function B.

Lemma 4.2 For any V0 ∈ R, there exists a unique solution Vb( · ) on [vb, v
H) to the ODE

V ′
b (z) =

1

vb − vs

(
z − vb
vH − z

1

hHit (Vb(z))
+

1

hLit(Vb(z))

)
, Vb(vb) = V0. (12)

This solution, also denoted Vb(V0, z), is monotone increasing in both z and V0. Fur-

ther, limz→vH Vb(V0, z) = +∞ , and the limit Vb(−∞, z) = limV0→−∞ Vb(V0, z) exists.

Finally, z 7→ Vb(−∞, z) is continuously differentiable.

As shown in the proof of the next proposition, found in Appendix B, the ODE (12)

arises from the first-order optimality conditions for the buyer and seller. The solution

of the ODE can be used to characterize all continuous nondecreasing equilibria in the

double auction, as follows.
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Proposition 4.3 Suppose that (S,B) is a continuous, nondecreasing equilibrium for

which S(θ) ≤ vH for all θ ∈ R. Let V0 = sup{B−1(vb)} ≥ −∞. Then

B(φ) = V −1
b (φ), φ > V0.

Further, S(−∞) ≡ limθ→−∞ S(θ) = vb and S(+∞) ≡ limθ→−∞ S(θ) = vH . For any

θ, we have S(θ) = V −1
s (θ), where

Vs(z) = log
z − vb
vH − z

− Vb(z) − logR , z ∈ (vb, v
H), (13)

recalling that R = P(Y = 0)/P(Y = 1). If the buyer has type φ < V0, then no trade will

occur. The bidding policy B is not uniquely determined at types below V0.

In our double-auction setting, welfare is increasing in the probability of trade con-

ditional on Y = 1, because the buyer and seller both have a strictly positive expected

gain from any trade conditional on Y = 1. We are therefore able to rank the equilibria

of our model in terms of welfare, because, from the following corollary of Proposition

4.3, we can rank the equilibria in terms of the probability of trade conditional on Y = 1.

Corollary 4.4 Let (S,B) be a continuous, nondecreasing equilibrium with V0 = sup{B−1(vb)}.

Then S(φ) is strictly increasing in V0 for all φ, while B(φ) is strictly decreasing in V0

for all φ > V0. Consequently, the probability of trade conditional on Y = 1 is strictly

decreasing in V0.

We turn to the study of particular equilibria, providing conditions for the existence

of equilibria in strictly monotone undominated strategies. We also give sufficient condi-

tions for the failure of such equilibria to exist. These welfare-maximizing equilibria will

be our focus of attention in the subsequent sections of the paper.

From Proposition 4.3, the bidding policy B is not uniquely determined at types

below sup{B−1(vb)}, because agents with these types do not trade in equilibrium. Nev-

ertheless, the equilibrium bidding policy B satisfying B(φ) = vb whenever φ < V0 weakly

dominates any other equilibrium bidding policy. That is, an agent whose type is below

V0 and who bids less than vb can increase his bid to vb, thereby increasing the probability

of buying the asset, without affecting the price, which will be at most the lowest valu-

ation vb of the bidder. An equilibrium in strictly monotone undominated strategies is

therefore only possible for the limit case, V0 = −∞. We now provide technical conditions

supporting the existence of such a welfare-maximizing equilibrium.
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We say that a function g( · ) on the real line or the integers is of exponential type

α at −∞ if, for some constants c > 0 and γ > −1,

lim
x→−∞

g(x)

|x|γ eαx
= c. (14)

In this case, we write g(x) ∼ Exp−∞(c, γ, α).We use the notation g(x) ∼ Exp+∞(c, γ, α)

analogously for the case of x → +∞. Our results regarding strictly monotone bidding

strategies, and thus full revealing equilibria, rely on the following technical regularity

condition on the tails of the initial cross-sectional distribution of beliefs.

Condition 1 There exists an α− ≥ 2.4 and an α+ > 0 such that, for each class i, the

initial type densities satisfy

d

dx
ψHi0 (x) ∼ Exp−∞(ci,−, γi,−, α−)

and
d

dx
ψHi0 (x) ∼ Exp+∞(ci,+, γi,+, α+),

for some constants ci,± > 0 and γi,± ≥ 0.

In order to analyze the propagation of information, it is crucial that the exponential

tail behavior of type densities is maintained at each successive exchange of information

between two agents, when their type densities are both replaced by the convolution

of their respective pre-trade type densities. This is ensured by the following lemma,

demonstrated in Appendix C.

Lemma 4.5 Suppose g1 and g2 are densities with g1(x) ∼ Exp+∞(c1, γ1,−α) and

g2(x) ∼ Exp+∞(c2, γ2,−α). Then

g1 ∗ g2 ∼ Exp+∞(c, γ,−α),

where γ = γ1 + γ2 + 1 and

c =
c1 c2 Γ(γ1 + 1) Γ(γ2 + 1)

Γ(γ1 + γ2 + 2)
.

The analogous result applies to the asymptotic behavior of g1 ∗ g2 at −∞.

The following proposition follows.
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Proposition 4.6 Under Condition 1, for any t ≥ 0, there exist γit > 0 and cit > 0 such

that ψHit ∼ Exp+∞(cit, γit,−α).

Proposition 4.6 follows from a straightforward application of Lemma 4.5 to the

equilibrium type dynamics given by (6). Using Lemma 4.5, the tail parameters (cit, γit)

of the type densities can be characterized explicitly by a recursive procedure described

in detail in Appendix C. As we show in Appendices E-F, for cases in which gains from

trade are sufficiently large, equilibrium quantities can be approximated by relatively

simple expressions involving only the parameters (cit, γit), allowing us to analyze the

percolation of information at this level of generality. This follows from the fact that

when gains from trade are sufficiently large, an agent’s equilibrium utility is dominated

by terms corresponding to trades with “extreme” (very large and very small) types.

There are two reasons for the important role of extreme types. First, because equilibrium

bids and asks are increasing in type, trading with agents of an “opposite” type leads to

the greatest realized trading gain. Second, trading with an agent whose type is larger

in absolute value type has a greater impact on the post-trade type of the agent. The

expected utility contributions of these extreme types are determined by the tail behavior

of the type distribution, which are characterized by the coefficients γit > 0 and cit > 0.

We now provide for the existence of a unique fully-revealing equilibrium, provided

that the proportional gain from trade,

G =
vb − vs
vH − vb

is sufficiently high.

Theorem 4.7 Suppose that the initial type densities satisfy Condition 1. Then there

exists some g such that for any proportional gain from trade G > g, whenever a buyer

of class i and a seller of class j meet at time t, there exists a unique strictly increasing

continuous equilibrium, denoted (Sijt( · ), Bijt( · )). This equilibrium is that characterized

by Proposition 4.3 for the limit case V0 = −∞. In contrast, if G < α−1
+ , then a strictly

increasing equilibrium does not exist.

5 Endogenous Information Acquisition

A recurrent theme in the study of rational-expectations equilibria in centralized markets

is that, absent noise in supply or demand, prices fully reveal the payoff relevant informa-

tion held by investors. This leads to the well-known paradoxes of Grossman (1976) and
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Beja (1976). If prices are fully revealing, then investors would avoid any costly gath-

ering of private information, raising the question of how private information was ever

incorporated into prices.

In our decentralized-market setting, because trade is private, it takes time for

information to become incorporated into prices. Informed investors may therefore prof-

itably invest in gathering information. Furthermore, incentives to gather information

may improve if agents anticipate trading with more informed counterparties.

5.1 Setup

We suppose from this point that agents are endowed with, or endogenously acquire,

information in the form of disjoint “packets” (subsets) of signals. These packets have

a common type density11 ψ
H

conditional on {Y = 0} and a common type density ψ
L

conditional on {Y = 1}. We will be relying for simplicity on the following sufficient

condition for Condition 1.

Condition 2 For some α ≥ 1.4 and for some c0 > 0, d
dx
ψ
H
(x) ∼ Exp−∞(c0, 0, α + 1)

and d
dx
ψ
H
(x) ∼ Exp+∞(c0, 0,−α).

All agents are initially endowed with Nmin > 0 signal packets. Before trade begins

at time 0, each agent has the option to acquire up to n additional packets, at a cost of π

per packet. Given the initial information acquisitions, whenever agents of classes i and

j are in contact at some time t, trade is according to the unique fully-revealing bidding

equilibria (Bijt, Sijt) characterized by Theorem 4.7.

We focus on symmetric equilibria, those in which agents of the same class acquire

the same number of signal packets. Appendix H analyzes asymmetric equilibria. If

agents of class i each acquire Ni signal packets, then the exact law of large numbers

implies that the initial cross-sectional type density of this class is the (Nmin + Ni)-fold

11A deterministic finite set of signals has a discretely supported type distribution, so cannot have
a type distribution with a density. Thus, the existence of density in this case implies that a packet
must have a random selection of signals, which allows for a differentiable cumulative type distribution.
For example, we can suppose that the set S of all signals is a non-atomic measure space, and that the
cross-sectional distribution of types of S has the type density ψ. Then we can suppose that a packet
consists of one signal drawn randomly from S with the uniform distribution. By this construction, a

packet has a random type with probability density ψ
H

conditional on Y = 0 and probability density

ψ
L

conditional on Y = 1. This implies, by the exact law of large numbers, that the cross sectional
distribution of the types of the set of agents who have received a total of k packets of information, for

any integer k ≥ 1, is almost surely the k-fold convolution ψ
∗k
, which suffices for our application.
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convolution of ψ
H
on the event {Y = 0}, and the (Nmin +Ni)-fold convolution of ψ

L
on

the event {Y = 1}. This initial cross-sectional density, with two outcomes, is as usual

denoted ψ
∗(Nmin+Ni)

.

Consider an agent of class i who initially acquires n signal packets, and who assumes

a given vector N = (N1, . . . , NM) of signal-packet acquisition quantities of each of theM

classes. As a result, this agent has an information-type process denoted Θn,N,t at time

t, and has the initial expected utility

ui(n,N) = E

(
−πn +

T∑

t=1

λi
∑

j

κij vijt(Θn,N,t;Bijt, Sijt)

)
, (15)

where the gain vijt associated with a given sort of trading encounter is as defined by (9)

or (11), depending on whether class-i agents are sellers or buyers, respectively.

In equilibrium, given the information acquisition decisions of other agents, each

agent chooses a number of signal packets that maximizes this initial utility. We formalize

this equilibrium concept as follows.

Definition 5.1 A (symmetric) rational expectations equilibrium is: for each class i, a

number Ni of acquired signal packets; for each time t and seller-buyer pair (i, j), a pair

(Sijt, Bijt) of bid and ask functions; and for each class i and time t, a cross-sectional

type density ψit such that:

(1) The cross-sectional type density ψit is initially ψi0 = ψ
∗(Nmin+Ni)

and satisfies the

evolution equation (6).

(2) The bid and ask functions (Sijt, Bijt) form the equilibrium uniquely defined by The-

orem 4.7.

(3) The number Ni of signal packets acquired by class i solves maxn∈{0,...,n} ui(n,N).

We are now ready to characterize endogenous information acquisition in this set-

ting.

5.2 Strategic Complementarity in Information Acquisition

We say that information acquisition is a strategic complement if, for any agent class i

and any numbers n and n′ > n of signal packets that could be acquired, the utility gain

ui(n
′, N) − ui(n,N) is increasing in the assumed amounts (N1, . . . , Ni−1, Ni+1, . . . , NM)
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of signal packets acquired by other classes of agents. The main result of this section is

the following.

Theorem 5.2 Suppose Condition 2 holds. There exist g and T̃ > 1 such that for any

proportional gain from trade G > g and market duration T > T̃ , information acquisition

is a strategic complement.

This theorem describes the effects of information acquisition by others on their

bidding behavior and is responsible for most of the phenomena on which we will now

focus.

In order to understand the general complementary result for large T, we note that

the incentives to gather information in an OTC market are determined by two basic

effects: a “learning effect” and an opposing “pricing effect.” Specifically, for any class

i of agents, a change in the information acquisition policy of some other class agents

influences the gain ui(n
′, N) − ui(n,N) from information acquisition via two channels:

(i) the profit from trade with a counterparty of any given type changes because the

double-auction equilibrium bid and ask prices change (the pricing effect), and (ii) the

distribution of types of future trading counterparties changes (the learning effect).

As we show in Appendix G, the pricing effect always reduces the information

gathering incentives of individual sellers and buyers as their counterparties become better

informed. The intuition is that, in order to avoid missing unconditional expected gains

from trade with buyers that are increasingly well informed, sellers find it optimal to

reduce their ask prices. Therefore, with lower ask prices, a seller’s expected gain from

trade decreases, whereas buyers know that they will get a good price anyway, even

without acquiring additional information. This distinction between buyers and sellers is

a side effect of the seller’s-price double auction.

The learning effect is more subtle. As agents acquire more information, the aver-

age quality of information is improved, but there is also an increased risk of receiving

an unusually misleading bid. That is, the tails of the cross-sectional type densities be-

come fatter at both ends, for some period of time. This is evident from Lemma 4.5.

Specifically, as an agent gathers more and more signal packets, his or her type density is

repeatedly convolved with the type density of a signal packet. By Lemma 4.5, the power

γ correspondingly increases, reflecting greater fatness of both tails of the type density. In

order to mitigate the cost of extreme, albeit unlikely, adverse selection, associated with

ending up on the wrong tail of the type distribution, the learning effect leads agents to

respond by gathering more information.
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Because the percolation of information through bilateral trade occurs at an expo-

nential rate, whereas the pricing effect does not depend as strongly on time, the learning

effect dominates the pricing effect if there are sufficiently many trading rounds, thus

providing enough opportunities for agents to exploit any information that they have ac-

quired. For a sufficiently small number of trading rounds, the pricing effect dominates

the learning effect.

The failure of strategic complementarity for small T arises from within-class ex-

ternalities in the information acquisition game. If a given (non-trivial) subset of class-

i agents acquire a lot of information, then their counterparties (agents from opposite

classes) will eventually learn a lot from them. However, because information percolates

at a finite speed, this learning effect is weak when T is small, and dominates only when

T is sufficiently large. As Theorem 5.2 shows, this provides an incentive for any class-i

agent to acquire more information. By contrast, if T is small enough, this learning ef-

fect is weak, and information acquisition by agents within the same class i leads only

to stronger adverse selection in future trades (because, for any given agent of class i,

his counterparties, anticipating that he is better informed, offer him worse prices). This

makes within-class information acquisition a strategic substitute if T is small enough,

and may lead to the absence of any equilibria.

Under strategic complementarity, it follows that the amount of information opti-

mally acquired by a given agent is increasing in the amount of information that is con-

jectured to be acquired by other agents. These complementarity effects are responsible

for the existence or non-existence12 of equilibria for market durations that are above or

below some market-duration threshold T̃ . The Tarski (1955) fixed point theorem implies

the following result.

Corollary 5.3 Suppose Condition 2 holds. For any proportional gain from trade G > g

and market duration T > T̃ , there exists a symmetric equilibrium. Furthermore, the set

of equilibria is a lattice with respect to the natural partial order on Z
M
+ , corresponding to

the number of packets acquired by the M agent classes.

Thus, we can select a maximal and a minimal element of the set of equilibria. These

equilibria can be easily constructed by means of a standard iteration procedure. Namely,

consider the map from conjectured information acquisition policies to the corresponding

optimal responses. Since, by Theorem 5.2, this map is monotone increasing, iterations

12It is well known that, in a game in which players’ choice are discrete and are strategic substitutes,
pure strategy equilibria may fail to exist.
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of this map applied to the initial condition ni = n̄ for all i are monotone decreasing in

the number of iterations and converge to the maximal equilibrium. Similarly, iterations

of this map applied to the initial condition ni = 0 for all i converge to the minimal

equilibrium.13

Definition 5.4 We say that equilibrium information acquisition is increasing in a given

ordered set of parameters if, for any parameters α1 and α2 > α1, the following are true:

• For any equilibrium information acquisition policy vector N(α1) corresponding to

α2 there exists an equilibrium policy vector N(α2) corresponding to α2 and such

that N(α1) ≤ N(α2).

• For any equilibrium information acquisition policy vector N(α2) corresponding to

α1 there exists an equilibrium policy vector N(α1) corresponding to α1 and such

that N(α1) ≤ N(α2).

The following result characterizes equilibrium incentives for information gathering.

Proposition 5.5 Suppose Condition 2 holds. Suppose also that κij > 0 for all pairs of

buyer and seller classes. There exist g and T̃ such that for any proportional gain from

trade G > g and market duration T > T̃ , the following are true.

1. Equilibrium information acquisition is increasing in each of Nmin, n̄, and a common

rescaling of the matching probabilities (λ1, . . . , λM).

2. There exists a threshold T̄ > T̃ such that, for any market duration T > T̄ , equilib-

rium information acquisition is increasing in the matching probability λi, for any

class i.

The intuition here is analogous to that behind Theorem 5.2. Namely, an increase

in meeting intensities increases the speed of information percolation and hence makes

13We have established complementarity only with respect to the information-acquisition policies of
other classes. Within-class information acquisition may be a strategic substitute. Consider a map that,
for each class i, takes as given the information acquisition policies {Nj : j 6= i} of the other classes,
and picks the largest “within-class equilibrium” response, which would be an equilibrium within class i,
fixing these choices of other classes. We show in Appendix G that the “within-class equilibrium” always
exists. Hence, the map is well defined and has the monotonicity properties on which we rely. Iterations
converge to the largest equilibrium. Similarly, choosing the map that picks the smallest “within-class
equilibrium” and iterates leads to the smallest equilibrium.
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traders better informed. In order for this learning effect to dominate, we need sufficiently

many (T > T̄ ) trading rounds.

This result illustrates the role of cross-class externalities. Even if a class j does

not trade with some class i, an increase in the trading intensity of class i increases the

information acquisition incentives for class j. This is a “pure” learning externality in

that, if class i trades more frequently, the additional information acquired will eventually

percolate to the trading counterparties of class j. This encourages class j to acquire more

information. This requires an ordered path {k1, . . . , km} of classes connecting class i = k1

with class j = km via the property that the counterparty selection probability κkℓkℓ+1
is

non-zero for all ℓ < m.

If the market duration is moderate in the sense of this Theorem (that is, T ∈

(T̃ , T̄ )), then the learning effect may not be strong enough. That is, improving the

connectivity of some investor classes may asymmetrically affect the information gath-

ering incentives of other classes of investors, leading to a lower amount of equilibrium

information acquisition. We explore this potential in the next sub-section.

5.3 An Illustrative 3-Class Example

We now illustrate our general results with a three-class example. Classes 1 and 2 are

sellers. Class 3 consists of buyers. The seller classes have contact probabilities λ1 and

λ2, respectively. Without loss of generality, λ2 ≥ λ1. The evolution equations (6) for

the cross-sectional distributions of information types are then entirely determined by

the fractions of the populations that are sellers of each class.14 We assume that these

fractions are the same, m̄ ∈ (0, 1). As explained in Section 3.2, this implies that the

contact probability of a buyer is (λ1 + λ2)m̄/(1 − 2m̄). We take m̄ = 0.25, so that the

buyer contact probability is the simple average of the seller contact probabilities.15 In a

symmetric equilibrium, sellers of classes 1 and 2 acquire N1 and N2 packets of signals,

respectively. Buyers acquire Nb signal packets.

14That is, ψi,t+1 = (1 − λi)ψit + λi ψit ∗ ψbt, i ∈ {1, 2}, where “b” denotes buyers. The buy-
ers’ contact probabilities and the evolution equation of the cross-sectional distribution of the buyers’
information types are then determined by the population masses of the two seller classes. Specifically,
letting mi denote the mass of the population consisting of class-i sellers, the exact law of large numbers
for random matching implies that the total quantity of contacts of buyers by sellers in a given period is
λ1m1+λ2m2. Thus, the probability that a given buyer is contacted is λb = (λ1m1+λ2m2)/(1−m1−m2).
Likewise, because λimi = λbκbimb, we know that, conditional on the event that a buyer contacts a seller,
the probability that the seller is of type i must be κbi = λimi/(λ1m1 + λ2m2).

15This implies that κbi = λi/(λ1+λ2). Thus, ψb,t+1 = (1−0.5(λ1+λ2))ψbt +0.5(λ1 ψ1t + λ2 ψ2t)∗ψbt.
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Proposition 5.6 Suppose Condition 2 holds, T > T̃ , and G > g, for the time T̃ and

the proportional-gain-from-trade threshold g of Theorem 5.2. Then symmetric equilibria

exist. There are at most three distinct such equilibria. In any symmetric equilibrium,

N1 ≤ N2.

The fact that better connected sellers acquire more information (N1 ≤ N2) follows

from the fact that they can “amortize” the cost of the information over a higher expected

number of trading opportunities. This result extends to the general class of segmented

market models studied in this paper.

Our final result states that raising market contact rates can reduce equilibrium

information gathering. This can be explained as follows. As class-2 sellers become more

active, buyers learn at a faster rate. The impact of this on the incentive of the “slower”

class-1 sellers to gather information is determined by a “learning effect” and an opposing

“pricing effect.”

The pricing effect works in this three-class example as follows. Buyers become

increasingly well informed by class-2 sellers as λ2 increases, and therefore class-1 sellers

find it optimal to reduce their ask prices. This reduces the information gathering incen-

tives of individual sellers and buyers, given the information acquisition decisions of other

agents.

Furthermore, as λ2 rises, class-2 sellers transport more information through the

market, giving rise to a learning effect. As we have explained, the pricing effect is

stronger for small T , whereas the learning effect eventually dominates for T > T̄ . This

leads to the following result.

Proposition 5.7 Suppose Condition 2 holds and let g and T̃ be chosen as in Theorem

5.2. If the proportional gain G from trade is larger than g, then there is some time

T̂ ∈ (T̃ , T̄ ) such that, if T̃ < T < T̂ , the following is true. There exists an information-

cost threshold K, depending on only the primitive model parameters λ1, λ2, Nmin, n̄,

and ψ, such that there is an equilibrium in which a non-zero fraction of agents acquire

a non-zero number of signal packets if and only if the cost π per signal packet is less

than or equal to K. This cost threshold K is strictly monotone decreasing in λ2. Thus, if

π < K is sufficiently close to K, then increasing λ2 leads to a full collapse of information

acquisition, in the sense that the fraction of agents choosing to acquire signals is zero.

Proposition 5.7 implies that increasing market contact rates does not necessarily

lead to more informative markets. It is instructive to compare with the case of a static
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double auction, corresponding to T = 0. With only one round of trade, the learning

effect is absent and the expected gain from acquiring information for class-1 sellers is

proportional to λ1 and does not depend on λ2. Similarly, the gain from information

acquisition for buyers is linear and increasing in λ2. Consequently, in the static case, an

increase in λ2 never leads to less information acquisition in equilibrium, in contrast to

the conclusion of Proposition 5.7.

This result is not an artifact of the artificially fixed amount of the asset exchanged

at each auction, which might suggest a role for increasing T through increasing the total

amount of the asset traded. Indeed, our result holds even if we scale the amount of the

asset exchanged by the number T of rounds of trade.

5.4 Further Remarks on Endogenous Information Gathering

Appendix K considers a setting in which information can be gathered dynamically, based

on learning over time. Under natural conditions, in equilibrium an agent acquires an

additional signal packet at some time t provided that the agent’s current information is

sufficiently imprecise, meaning that the agent’s type is neither high enough (above some

deterministic upper threshold depending on t), nor low enough (below some deterministic

threshold depending on t). At intermediate types, the value of more information (through

the net effect of price and probability of trade) exceeds the cost.

Given our results, it is natural to address the impact on information gathering in-

centives of public transactions reporting, as currently proposed for U.S. over-the-counter

derivatives markets. The results of Duffie, Manso, Malamud (2011) imply that, under

natural conditions, the public reporting of a (random) selection of individual bids and

offers would speed the rate of convergence of the cross-sectional distribution of beliefs to

perfect information by the mean rate at which these quotes are published. Public quote

reporting would generally reduce the number of welfare-improving trades that do not

occur because of adverse selection. Public reporting could, however, depending on the

parameters of our model, either raise or lower the incentives to gather costly information.

For the limit case in which all quotes are reported publicly, all agents would instantly

learn all payoff-relevant information, and the incentive to gather fundamental information

would completely disappear, returning us to the setting of the Beja-Grossman-Stiglitz

“paradox.” It also bears mentioning that in a setting with risk aversion, the “Hirshleifer

effect” implies that delaying or suppressing the publication of quotes may also benefit
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risk sharing.16 In light of the above discussion, an interesting direction for future re-

search is to study the welfare implications of public information releases in decentralized

markets.17

In Appendix I we endogenize information gathering by instead allowing the agents

to increase, at a cost, their matching probabilities with other classes of agents. This can

be viewed as “endogenous network formation.” As we show, in equilibrium agents decide

to target their search efforts toward classes of counterparties that are expected to be bet-

ter informed. These better informed classes of agents thus endogenously arise as “hubs”

in the matching structure, and, as consequence, accumulate even more information.

16See Hirshleifer (1971).
17In centralized markets, Vives (2011) finds that releasing public information on the common compo-

nent of value improves total surplus. In other social learning settings, previous research has found that
public information releases may crowd out learning (e.g. Burguet and Vives, 2000; Morris and Shin,
2005; Duffie, Malamud, and Manso, 2009; Amador and Weill, 2010; Colombo, Femminis, and Pavan,
2014).
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Appendices

The appendices are organized as follows. Appendices D through L are found in a

supplement, Duffie, Manso, and Malamud (2013).

A. A characterization of all possible initial type distributions.

B. A derivation of the ordinary differential equation for the equilibria of the seller’s-

price double auction.

C. A demonstration of the exponential tail behavior of the cross-sectional type distri-

butions, as necessary to prove the existence of double-auction equilibria..

D. A proof of the existence and uniqueness of a strictly monotone equilibrium of the

double auction.

E. An application of results from Appendix D to obtain approximations for the double-

auction equilibrium for the case of large gains from trade.

F. An application of the results of Appendix E to derive approximations for the ex-

pected trading profits for the case of large gains from trade.

G. An application of the results of Appendix F to approximate the expected gains

from information acquisition for the case of large gains from trade. From this, a

derivation of general properties of equilibrium information acquisition. Appendices

G.1 and G.2 apply these results to special cases of one and two classes of sellers,

respectively.

H. An analysis of mixed-strategy equilibria for the special case of two classes.

I. Results on endogenous investment in matching technology.

J. Proofs of results in Section I, on endogenous investment in matching technology.

K. Results for the case of dynamic information acquisition.

L. Proofs of results in Appendix K.

Table 1 indicates the locations of proofs of all major results from the text of the paper.
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Table 1: Directory of Locations of Proofs of Main Results. Appendices D through L are
located in an online supplement, Duffie, Manso, and Malamud (2013).

Result Proof location
Proposition 3.2 Appendix A
Lemma 4.1 Appendix A, Lemma A.1
Lemma 4.2 Appendix B
Proposition 4.3 Appendix B
Theorem 4.7 Appendix D
Theorem 5.2 Appendix G
Proposition 5.5 Appendix G
Proposition 5.6 Appendix G, Proposition G.12
Proposition 5.7 Appendix G
Theorem I.2 Appendix J
Proposition I.4 Appendix J
Theorem I.5 Appendix J

A Amenable Cross-Sectional Information Type Densities

This appendix provides for the existence and properties of cross-sectional densities of

information types that are obtained from signals that are Y -conditionally independent.

Proof of Proposition 3.2. First, we say that a pair (FH , FL) of cumulative distribu-

tion functions (CDFs) on the real line is amenable if

dFH(y) = ey dFL(y) . (16)

It follows directly from (20) and (21) below that if FH and FL correspond to the con-

ditional type distributions associated with a single fixed signal, then they are amenable.

The claim then follows from Fact 1, stated and proved below.

The claim of Lemma 4.1 is contained in the following lemma.

Lemma A.1 For each agent class i and time t, the type density ψit satisfies the hazard-

rate ordering, hHit (θ) ≥ hLit(θ), and ψ
H
it (x) = ex ψLit(x) . If, in addition, each signal Z

satisfies

P(Z = 1 | Y = 0) + P(Z = 1 | Y = 1) = 1, (17)

then

ψHit (x) = exψHit (−x), ψLit(x) = ψHit (−x), x ∈ R. (18)
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Proof of Lemma A.1. First, we say that a pair (FH , FL) of cumulative distribution

functions (CDFs) on the real line is symmetric amenable if

dFL(y) = dFH(−y) = e−y dFH(y), (19)

that is, if for any bounded measurable function g,

∫ +∞

−∞

g(y) dFL(y) =

∫ +∞

−∞

g(−y) dFH(y) =

∫ +∞

−∞

e−yg(y) dFH(y).

It is immediate that the sets of amenable and symmetric amenable pairs of CDFs

is closed under mixtures, in the following sense.

Fact 1. Suppose (A,A, η) is a probability space and FH : R×A→ [0, 1] and FL : R×A→

[0, 1] are jointly measurable functions such that, for each α in A, (FH( · , α), FL( · , α))

is an amenable (symmetric amenable) pair of CDFs. Then an amenable (symmetric

amenable) pair of CDFs is defined by (F
H
, F

L
), where

F
H
(y) =

∫

A

FH(y, α) dη(α), F
L
(y) =

∫

A

FL(y, α) dη(α).

The set of amenable (symmetric amenable) pairs of CDFs is also closed under finite

convolutions.

Fact 2. Suppose that X1, . . . , Xn are independent random variables and Y1, . . . , Yn are

independent random variables such that, for each i, the CDFs of Xi and Yi are amenable

(symmetric amenable). Then the CDFs of X1+ · · ·+Xn and Y1+ · · ·+Yn are amenable

(symmetric amenable).

For a particular signal Z with type θZ , let F
H
Z be the CDF of θZ conditional on

Y = 0, and let FL
Z be the CDF of θZ conditional on Y = 1.

Fact 3. If (FH
Z , F

L
Z ) is an amenable pair of CDFs and if Z satisfies (17), then (FH

Z , F
L
Z )

is a symmetric amenable pair of CDFs.

In order to verify Fact 3, we let θ be the outcome of the type θZ on the event {Z = 1},

so that

θ = log
P(Y = 0 |Z = 1)

P(Y = 1 |Z = 1)
− log

P(Y = 0)

P(Y = 1)
= log

P(Z = 1 | Y = 0)

P(Z = 1 | Y = 1)
.
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Further, let

θ̃ = log
P(Y = 0 |Z = 0)

P(Y = 1 |Z = 0)
− log

P(Y = 0)

P(Y = 1)
= log

P(Z = 0 | Y = 0)

P(Z = 0 | Y = 1)

be the outcome of the type θZ on the event {Z = 0} . Then,

FH
Z =

eθ − eθ+θ̃

eθ − eθ̃
1θ≤y +

eθ+θ̃ − eθ̃

eθ − eθ̃
1θ̃≤y (20)

and

FL
Z =

1− eθ̃

eθ − eθ̃
1θ≤y +

eθ − 1

eθ − eθ̃
1θ̃≤y. (21)

The amenable property (16) is thus satisfied.

If Z satisfies (17), then −θ is the outcome of θZ associated with observing Z = 0,

so

FH
Z (y) =

eθ

1 + eθ
1{θ≤ y} +

1

1 + eθ
1{−θ≤ y}

and

FL
Z (y) =

1

1 + eθ
1{θ≤ y} +

eθ

1 + eθ
1{−θ≤ y}.

These CDFs are each piece-wise constant, and jump only twice, at y = −θ and y = θ. We

let ∆F (y) = F (y)− limz↑y F (z). At y = −θ and y = θ, we have ∆FH
Z (−y) = e−y∆FH

Z (y)

and ∆FL
Z (y) = ∆FH

Z (−y), completing the proof of Fact 3.

Now, we recall that a particular agent receives at time 0 a random finite set, say

N , of signals, where N is independent of all else, and can depend on the agent. The

type of the set of signals received by the agent is, by Lemma 3.1, the sum of the types of

the individual signals. Thus, conditional on N , the type θ of this agent’s signal set has

a CDF conditional on Y = 0, denoted FH
N , and a CDF conditional on Y = 1, denoted

FL
N , that are the convolutions of the conditional distributions of the underlying set N

of signals given Y = 0 and given Y = 1, respectively. Thus, by Fact 2, conditional

on N , (FH
N , F

L
N) is an amenable pair of CDFs. Now, we can average these CDFs over

the distribution of the outcome of N to see by Fact 1 that this agent’s type has CDFs

given Y = 0 and Y = 1, respectively, that are amenable. Under (17), we likewise have

symmetric amenability, using also Fact 3.

Now, let us consider the cross-sectional distribution of agent types of a given class

i at time 0, across the population. Recall that the agent space is the measure space

(G,G, γ). Let γi denote the restriction of γ to the subset of class-i agents, normalized by

the total mass of this subset. Because of the exact law of large numbers of Sun (2006),
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we have, almost surely, that on the event Y = 0, the fraction γi({α : θα0 ≤ y}) of class-i

agents whose types are less than a given number y is

FH(y) ≡

∫

G

FH
α (y) dγi(α),

where FH
α is the conditional CDF of the type θα0 of agent α given Y = 0. We similarly

define FL as the cross-sectional distribution of types on the event Y = 1. Now, by Fact

1, (FH , FL) is an amenable pair of CDFs. By assumption, these CDFs have densities de-

noted ψHi0 and ψLi0, respectively, for class i. The definition (19) of symmetric amenability

also implies, under (17), that

ψLi0(y) = ψHi0 (−y) = ψHi0 (y) e
−y ,

as was to be demonstrated. That the densities (ψHit , ψ
L
it) correspond for any t to amenable

CDFs, and symmetric amenable CDFs under (17), follows from the facts that amenability

and symmetric amenability are preserved under convolutions (Fact 2) and mixtures (Fact

1). That the hazard-rate ordering property is satisfied for any density satisfying (5)

follows from the calculation (suppressing subscripts for notational simplicity):

GL(x)

ψL(x)
=

∫ +∞

x
ψL(y) dy

ψL(x)
=

∫ +∞

x
ψH(y) e(x−y) dy

ψH(x)
≤

∫ +∞

x
ψH(y) dy

ψH(x)
=

GH(x)

ψH(x)
.

This completes the proof of the lemma.

Lemma A.2 For any amenable pair (FH , FL) of CDFs, there exists some initial alloca-

tion of signals such that the initial cross-sectional type distribution is FH almost surely

on the event H = {Y = 0} and FL almost surely on the event L = {Y = 1}.

Proof. Since

1 =

∫

R

dFL(x) =

∫

R

e−x dFH(x),

it suffices to show that any CDF FH satisfying
∫

R

e−x dFH(x) = 1 (22)

can be realized from some initial allocation of signals.

Suppose that initially each agent is endowed with one signal Z, but X1 = P (Z =

1 | Y = 0) and X2 = P (Z = 1 |L) are distributed across the population according

to a joint probability distribution dν(x1, x2) on (0, 1) × (0, 1) . We denote by FH
dν the
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corresponding type distribution conditioned on state H. The case when ν is supported

on one point corresponds to the case of identical signal characteristics across agents, in

which case FH = FH
θ,θ̃

is given by (20). Furthermore, any distribution supported on two

points θ, θ̃ and satisfying (22) is given by (20). We will now show that any distribution

FH supported on a finite number of points can be realized. To this end, we will show

that any such distribution can be written down as a convex combination of distributions

of FH
θ,θ̃
,

FH =
∑

i

αi F
H
θi,θ̃i

.

In this case, picking

dν =
∑

i

αi δ(xi1,xi2)

to be a convex combination of delta-functions with

xi1 =
eθi − eθi+θ̃i

eθi − eθ̃i
, xi2 =

1− eθ̃

eθ − eθ̃
,

we get the required result.

Fix a finite set S = {θ1, . . . , θK} and consider the set L of probability distributions

with support S that satisfies (22). If we identify a distribution with the probabilities

p1, . . . , pK assigned to the respective points in S, then L is isomorphic to the compact

subset of (p1, . . . , pK) ∈ R
K
+ , satisfying

∑

i

pi = 1,
∑

i

e−θi pi = 1 .

Because this compact set is convex, the Krein-Milman Theorem (see Krein and Milman

(1940)) implies that it coincides with the convex hull of its extreme points. Thus, it

suffices to show that the extreme points of this set coincide with the measures, supported

on two points. Indeed, pick a measure π = (p1, . . . , pK), supported on at least three

points. Without loss of generality, we may assume that p1, p2, p3 > 0. Then, we can pick

an ε > 0 such that

p1 ± ε > 0 , p2 ± ε
e−θ1 − e−θ3

e−θ3 − e−θ2
> 0 , p3 ± ε

e−θ1 − e−θ2

e−θ3 − e−θ2
> 0 .

Then, clearly,

π =
1

2
(π+ + π−)

with

π± =

(
p1 ± ε , p2 ± ε

e−θ1 − e−θ3

e−θ3 − e−θ2
, p3 ± ε

e−θ1 − e−θ2

e−θ3 − e−θ2
, p4, . . . , pK

)
.
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By direct calculation, π+ and π− correspond to measures in L. Thus, all extreme points

of L coincide with measures, supported on two points and the claim follows.

Now, clearly, for any measure FH satisfying (22) there exists a sequence FH
n of

measures, supported on a finite number of points, converging weakly to FH . By the

just proved result, for each FH
i there exists a measure dνi on (0, 1) × (0, 1), such that

FH
i = FH

dνi
. By Helly’s Selection Theorem (Gut (2005), p. 232, Theorem 8.1), the set

of probability measures on (0, 1) × (0, 1) is weakly compact and therefore there exists

a subsequence of νi converging weakly to some measure ν. Clearly, FH = FH
ν and the

proof is complete.

B The ODE for the Double-Auction Equilibrium

Everywhere in the sequel we will for simplicity assume that the tail characteristics from

Condition 1 satisfy c0,± ≡ c0 , γ± ≡ γ and α− = α+ + 1 ≡ α + 1.

This appendix analyzes the ordinary differential equation determining equilibrium

bidding strategies for the seller’s price double auction.

Proof of Lemma 4.2. By the assumptions made, the right-hand side of equation (12)

is Lipschitz-continuous, so local existence and uniqueness follow from standard results.

To prove the claim for finite V0, it remains to show that the solution does not blow up

for z < vH . By Lemma 4.1,

1

hHbt (Vb(z))
≥

1

hLbt(Vb(z))
,

and therefore

V ′
b (z) =

1

vb − vs

(
z − vb
vH − z

1

hHbt (Vb(z))
+

1

hLbt(Vb(z))

)

≤
1

hHbt (Vb(z))

vH − vb
(vb − vs) (vH − z)

.

(23)

For notational parsimony, in the remainder of this proof we write “GH” and “GL” for

GH
bt and G

L
bt respectively. Thus we have

d

dz
(− logGH(Vb(z))) ≤

vH − vb
(vb − vs) (vH − z)

.

Integrating this inequality, we get

log

(
GH(V0)

GH(Vb(z))

)
≤

vH − vb
vb − vs

log
vH − vb
vH − z

.
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That is,

GH(Vb(z)) ≥ GH(V0)

(
vH − z

vH − vb

) vH−vb
vb−vs

,

or equivalently,

Vb(V0, z) ≤ G−1
H


GH(V0)

(
vH − z

vH − vb

) vH−vb
vb−vs


 .

Similarly, we get a lower bound

Vb(V0, z) ≥ G−1
L



GL(V0)

(
vH − z

vH − vb

) vH−vb
vb−vs



 . (24)

The fact that Vb is monotone increasing in V0 follows from a standard comparison theorem

for ODEs (for example, (Hartman (1982), Theorem 4.1, p. 26). Furthermore, as V0 →

−∞, the lower bound (24) for Vb converges to

G−1
L



(
vH − z

vH − vb

) vH−vb
vb−vs


 .

Hence, Vb stays bounded from below and, consequently, converges to some function

Vb(−∞, z). Since Vb(V0, z) solves the ODE (12) for each V0 and the right-hand side of

(12) is continuous, Vb(−∞, z) is also continuously differentiable and solves the same ODE

(12).

Proof of Proposition 4.3. Suppose that (S,B) is a non-decreasing continuous

equilibrium and let Vs(z), Vb(z) be the corresponding (strictly increasing and right-

continuous) inverse functions defined on the intervals (a1, A1) and (a2, A2) respectively,

where one or both ends of the intervals may be infinite.

The optimization problems for auction participants are

max
s
fS(s) ≡ max

s

∫ +∞

Vb(s)

(s− vs −∆sP (θ + φ)) Ψb(P (θ), φ) dφ (25)

and

max
b
fB(b) ≡ max

b

∫ Vs(b)

−∞

(
vb + ∆bP (θ + φ) − S(θ)

)
Ψs(P (φ), θ) dθ. (26)

First, we note that the assumption that A1 ≤ vH implies a positive trading volume.

Indeed, by strict monotonicity of S, there is a positive probability that the selling price
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is below vH . Therefore, for buyers of sufficiently high type, it is optimal to participate

in trade.

In equilibrium, it can never happen that the seller trades with buyers of all types.

Indeed, if that were the case, the seller’s utility would be
∫

R

(s− vs −∆sP (θ + φ)) Ψb(P (θ), φ) dφ,

which is impossible because the seller can then attain a larger utility by increasing

s slightly. Thus, a1 ≥ a2. Furthermore, given the assumption S ≤ vH , buyers of

sufficiently high types find it optimal to trade with sellers of arbitrarily high types. That

is, A2 = supθ B(θ) ≥ supθ S(θ) = A1. Thus,

A2 ≥ A1 > a1 ≥ a2.

Let θl = Vb(a1), θh = Vb(A1). (Each of these numbers might be infinite if either

A2 = A1 or a2 = a1.) By definition, Vs(a1) = −∞, Vs(A1) = +∞. Furthermore, fB(b) is

locally monotone increasing in b for all b such that

vb + ∆bP (Vs(b) + φ) − S(Vs(b)) > 0.

Further, fB(b) is locally monotone decreasing in b if

vb + ∆bP (Vs(b) + φ) − S(Vs(b)) < 0.

Hence, for any type φ ∈ (θl, θh), B(φ) solves the equation

vb + ∆b P (Vs(B(φ)) + φ)) = B(φ).

Letting B(φ) = z ∈ (a1, A1), we get that

vb + ∆b P (Vs(z) + Vb(z)) = z . (27)

Now, as φ ↑ θh, we have B(φ) ↑ A1 and therefore Vs(B(φ)) ↑ +∞. Thus,

A1 = lim
φ↑θh

B(φ) = lim
φ↑θh

(vb + ∆b P (Vs(B(φ)) + φ))) = vH ,

and similarly, a1 = vb

We now turn to the first-order condition of the seller. Because Vb is strictly in-

creasing, it is differentiable Lebesgue-almost everywhere by the Lebesgue Theorem (for

example, Theorem 7.2 of Knapp (2005), p. 359). Let X ⊂ (a2, A2) be the set on which V ′
b

34



exists and is finite. Then, for all θ ∈ Vs(X) the first-order condition holds for the seller.

For a seller of type θ, because the offer price s affects the limit of the integral defining

the seller’s utility (9) as well as the integrand, there are two sources of marginal utility

associated with increasing the offer s: (i) losing the gains from trade with the marginal

buyers, who are of type B−1(s)), and (ii) increasing the gain from every infra-marginal

buyer type φ. At an optimal offer S(θ), these marginal effects are equal in magnitude.

This leaves the seller’s first-order condition

Γb(P (θ), Vb(S(θ))) = V ′
b (S(θ))

(
S(θ) − vs − ∆s P (θ + Vb(S(θ)))

)
Ψb(P (θ) , S(θ)), (28)

where

Γb(p, x) =

∫ +∞

x

Ψb(p, y) dy.

Letting z = S(θ), we have θ = Vs(z) and hence

Γb(P (Vs(z)), Vb(z))

Ψb(P (Vs(z)), Vb(z))
= V ′

b (z)
(
z − vs − ∆s P (Vs(z) + Vb(z))

)
. (29)

Now, if Vb(z) were not absolutely continuous, it would have a singular component and

therefore, by the de la Valée Poussin Theorem (Saks (1937), p.127) there would be a point

z0 where V ′
b (z0) = +∞. Let θ = Vs(z0). Then, S(θ) could not be optimal because

the first order condition (28) could not hold, and there would be a strict incentive to

deviate. Thus, Vb(z) is absolutely continuous and, since the right-hand side of (29) is

continuous and (29) holds almost everywhere in (a2, A2), identity (29) actually holds for

all z ∈ (a2, A2).

Now, using the first order condition (27) for the buyer, we have

z − vs − ∆s P (Vs(z) + Vb(z)) = z − vs −
∆s

∆b
(z − vb) =

vb − vs
vH − vb

(vH − z). (30)

Furthermore, (27) implies that

P (Vs(z) + Vb(z)) =
ReVs(z)+Vb(z)

1 + ReVs(z)+Vb(z)
=

z − vb
vH − vb

.

That is,

Vs(z) + Vb(z) = log
z − vb
vH − z

− logR,

or equivalently,

Vs(z) = log
z − vb
vH − z

− Vb(z) − logR .
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Therefore,

P (Vs(z)) =
e−Vb(z) z−vb

vH−z

1 + e−Vb(z) z−vb
vH−z

=
(z − vb)e

−Vb(z)

vH − z + e−Vb(z) (z − vb)
.

Using the fact that ΨL
b (Vb(z)) = e−Vb(z)ΨH

b (Vb(z)), we get

Ψb(P (Vs(z)), Vb(z)) = P (Vs(z)) Ψ
H
b (Vb(z)) + (1− P (Vs(z))) Ψ

L
b (Vb(z))

=
(z − vb) e

−Vb(z)

vH − z + e−Vb(z) (z − vb)
ΨH
b (Vb(z))

+
(vH − z) e−Vb(z)

vH − z + e−Vb(z) (z − vb)
ΨH
b (Vb(z))

=
vH − vb

vH − z + e−Vb(z) (z − vb)
ΨL
b (Vb(z)) .

Similarly,

Γb(P (Vs(z)), Vb(z)) = P (Vs(z))GH(Vb(z)) + (1− P (Vs(z)))GL(Vb(z))

=
(z − vb)e

−Vb(z)GH(Vb(z)) + (vH − z)GL(Vb(z))

vH − z + e−Vb(z) (z − vb)
.

(31)

Consequently,

Γb(P (Vs(z)), Vb(z))

Ψb(P (Vs(z)), Vb(z))
=

P (Vs(z))GH(Vb(z)) + (1− P (Vs(z)))GL(Vb(z))

P (Vs(z)) Ψ
H
b (Vb(z)) + (1− P (Vs(z))) Ψ

L
b (Vb(z))

=
(z − vb)e

−Vb(z)GH(Vb(z)) + (vH − z)GL(Vb(z))

(vH − vb) Ψ
L
b (Vb(z))

= (vH − vb)
−1

(
(z − vb)

1

hHb (Vb(z))
+ (vH − z)

1

hLb (Vb(z))

)
.

Thus, by (30), the ODE (29) takes the form

V ′
b (z) =

Γb(P (Vs(z)), Vb(z))

Ψb(P (Vs(z)), Vb(z))
(
z − vs − ∆s P (Vs(z) + Vb(z))

)

= (vH − vb)
−1

(
(z − vb)

1

hHb (Vb(z))
+ (vH − z)

1

hLb (Vb(z))

)
1

vb− vs
vH−vb

(vH − z)

=
1

vb − vs

(
z − vb
vH − z

1

hHb (Vb(z))
+

1

hLb (Vb(z))

)
, z ∈ (a1, A1) = (vb, v

H).

Consequently, Vb(z) solves (12). By Lemma 4.2, Vb(v
H) = +∞. Thus A2 = vH and the

proof is complete.
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Proof of Corollary 4.4. By Proposition 4.3, Vb(V0, z) is monotone increasing in V0.

Consequently, B = V −1
b is monotone decreasing in V0. Similarly,

Vs(V0, z) = log
z − vb
vH − z

− Vb(V0, z) − logR

is monotone decreasing in V0 and therefore S = V −1
s is monotone increasing in V0.

C Exponential Tails of the Type Distribution

This appendix proves the dynamic preservation of our exponential tail condition on type

densities.

Proof of Lemma 4.5. We will use the decomposition

(ψ1 ∗ ψ2)(x) =

(∫ A

−∞

+

∫ +∞

A

)
ψ1(x− y)ψ2(y) dy.

Now, we fix an ε > 0 and pick some constant A so large that

ψ2(y)

c2 e−αyyγ2
∈ (1− ε, 1 + ε)

for all y > A. Then,
∫ +∞

A
ψ1(x− y)ψ2(y) dy

c
∫ +∞

A
ψ1(x− y) e−αy yγ2dy

∈ (1− ε, 1 + ε)

for all x. Changing variables, applying L’Hôpital’s rule, and using the induction hypoth-

esis, we get

lim
x→+∞

∫ +∞

A
ψ1(x− y) e−αy yγ2 dy

xγ1+γ2+1 e−αx
= lim

x→+∞

∫ x−A
−∞

ψ1(z) e
−α(x−z) (x− z)γ2 dz

xk e−αx
. (32)

Now, using the same asymptotic argument, we conclude that, for any fixed B > 0, the

contribution from the integral coming from values of z below B is negligible and therefore

we can replace
∫ x−A
−∞

by
∫ x−A
C

and replace ψ1(z) by c1z
γ1eαz. Thus, we need to calculate

the asymptotic, using the change of variables from z/x to y, of

∫ x−A

B

(z/x)γ1 (1− z/x)γ2 d(z/x) =

∫ 1−A/x

B/x

(1− y)γ1yγ2 dy

→

∫ 1

0

yγ1 (1− y)γ2 dy = B(γ1 + 1, γ2 + 1) .

(33)

Finally, using the Lebesgue dominated convergence theorem we get that the part
∫ A
−∞

ψ1(x−

y)ψ2(y) dy is also asymptotically negligible. The claim follows.
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Using these asymptotic results, we now show that, for the case of sufficiently large

gains from trade G, the dependence of equilibrium utilities on the density of types can

be characterized in terms of the asymptotic parameters cit, γit of Proposition 4.6. In the

setting of Section 5, let N̄s be the largest number of signal packets acquired in equilibrium

by a seller class, and, similarly, N̄b the largest number of packets acquired by a buyer

class. Let

s = {s1, . . . , sνs} , b = {b1, . . . , bνb}

be the set of seller classes with N̄i = N̄s and the set of buyers with N̄i = N̄b, respec-

tively. Let also λkl ≡ λk κkl and let Λs ∈ R
νs×νb and Λb ∈ R

νb×νs be the matrices

{λsi,bj} and {λbi,sj} of matching probabilities between the respective classes. Then, the

consistency conditions msiλij = mjλji imply that Ms ΛsM
−1
b = Λ⊤

b , where Λ⊤
b denotes

the transposed matrix. Let also cst = {csi,t}
νs
i=1 and cbt = {cbi,t}

νb
i=1.

We will need the following assumption.

Assumption C.1 κij > 0 for all pairs of buyer and seller classes.

The following lemma is a direct consequence of Lemma 4.5.

Lemma C.2 We have

cst = K(t, N)

{
(ΛsΛb)

t−11 , t is even

(ΛsΛb)
t−1Λs1 , t is odd

and, similarly,

cbt = K(t, N)

{
(ΛbΛs)

t−11 , t is even

(ΛbΛs)
t−1Λs1 , t is odd

for all t ≥ 2, where K(t, N) is a universal combinatorial function. For a seller class

i 6∈ s, we have ci,t = Ki

∑
j λi,bjc

b

j,t−1 and, similarly, ci,t = Ki

∑
j λi,sjc

s

j,t−1 for a buyer of

class i 6∈ b, with come constants Ki, independent of the matching probabilities.

Now, using the Perron-Frobenius Theorem (see Meyer (2000), chapter 8, page 668),

we show in the Appendix that the following is true.

Lemma C.3 The matrix ΛsΛb has a unique largest positive eigenvalue er. Furthermore,

lim
t→∞

1

t
log

cbt
K(t, N)

=
1

t
lim
t→∞

log
cst

K(t, N)
= r .

The eigenvalue r is strictly monotone increasing in λi, for any class i.
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By analogy with DeMarzo, Vayanos and Zwiebel (2003), one could call r the rate

of social influence. This rate captures the endogenous non-linear nature of cross-class

learning externalities. In particular, more “central” classes have a larger impact on r, and

therefore have a stronger impact on other classes’ behaviour. The proof of Proposition

5.5 implies that for sufficiently large time horizon T the leading asymptotic term in the

logarithm of the gains from information acquisition is proportional to r, and therefore

monotonicity of r with respect to λi directly implies monotonicity of the gains from

information acquisition.
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Information Percolation in Segmented Markets

Darrell Duffie, Semyon Malamud, and Gustavo Manso

November, 2013

Abstract: This supplement to “Information Percolation in Segmented Markets” houses

Appendices D through L of the main paper, Duffie, Malamud, and Manso (2013).
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This supplement of Duffie, Malamud, and Manso (2013) houses the following ap-

pendices of our paper, “Information Percolation in Segmented Markets.” Appendices A

through C are found in the main paper.

Supplementary Appendices

D. A proof of the existence and uniqueness of a strictly monotone equilibrium of the

double auction.

E. An application of results from Appendix D to obtain approximations for the double-

auction equilibrium for the case of large gains from trade.

F. An application of the results of Appendix E to derive approximations for the ex-

pected trading profits for the case of large gains from trade.

G. An application of the results of Appendix F to approximate the expected gains

from information acquisition for the case of large gains from trade. From this, a

derivation of general properties of equilibrium information acquisition. Appendices

G.1 and G.2 apply these results to special cases of one and two classes of sellers,

respectively.

H. The two-class model.

I. Results on endogenous investment in matching technology.

J. Proofs of results in Section I, on endogenous investment in matching technology.

K. Results for the case of dynamic information acquisition.

L. Proofs of results in Appendix K.
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D Existence of Equilibrium for the Double Auction

Existence of equilibrium follows from Proposition 4.6 and the following general result.

Proposition D.1 Fix a buyer class b and a seller class s such that

ψHb (x) ∼ Exp+∞(c, γ,−α) (1)

for some c, α > 0 and some γ ∈ R. If α < 1, then there is no equilibrium associated

with V0 = −∞. Suppose, however, that α > α∗ and that

−γ <
(α + 1) logα

log(α+ 1)− logα
, if α ≥ 2

−γ <
log(α2 − α) 2α

log(α+ 1)− logα
, if α < 2.

Then, if the gain from trade G is sufficiently large, there exists a unique strictly monotone

equilibrium with V0 = −∞. This equilibrium is in undominated strategies, and maximizes

total welfare among all continuous nondecreasing equilibrium bidding policies.

In order to prove Proposition D.1, we apply the following auxiliary result.

Lemma D.2 Suppose that B, S : R → (vb, v
H) are strictly increasing and that their

inverses Vs and Vb satisfy

vb + ∆b P (Vs(z) + Vb(z)) = z.

Suppose further that V ′
b (z) solves (12) for all z ∈ (vb, v

H). Then (B , S) is an equilibrium.

Proof. Recall that the seller maximizes

fS(s) =

∫ +∞

Vb(s)

(s− vs −∆sP (θ + φ)) Ψb(P (θ), φ) dφ. (2)

To show that S(θ) is indeed optimal, it suffices to show that f ′
S(s) ≥ 0 for s ≤ S(θ)

and that f ′
S(s) ≤ 0 for s ≥ S(θ) . We prove only the first inequality. A proof of the

second is analogous. So, let s ≤ S(θ) ⇔ Vs(s) ≤ θ. Then,

f ′
S(s) = V ′

b (s) (−s + vs +∆sP (θ + Vb(s))) Ψb(P (θ), Vb(s)) + Gb(P (θ), Vb(s))

= V ′
b (s)Ψb(P (θ), Vb(s))

(
−s+ vs +∆sP (θ + Vb(s)) +

1

V ′
b (s)hb(P (θ), Vb(s))

)
.
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By Lemma 4.1, hb(p, Vb(s)) is monotone decreasing in p. Therefore, by (29),

1

V ′
b (s) hb(P (θ), Vb(s))

≥
1

V ′
b (s) hb(P (Vs(S)), Vb(s))

= s − vs − ∆s P (Vs(s) + Vb(s)).

Hence,

f ′
S(s) ≥ V ′

b (s) Ψb(P (θ), Vb(s))

× (−s+ vs +∆sP (θ + Vb(s)) + s − vs − ∆s P (Vs(s) + Vb(s))) ≥ 0,

because θ ≥ Vs(s) .

For the buyer, it suffices to show that

fB(b) = max
b

∫ Vs(b)

−∞

(
vb + ∆bP (θ + φ) − S(θ)

)
Ψs(P (φ), θ) dθ (3)

satisfies f ′
B(b) ≥ 0 for b ≤ B(φ), and satisfies f ′

B(b) ≤ 0 for b ≥ B(φ) . That is,

vb + ∆b P (φ + Vs(b)) − S(Vs(b)) = vb + ∆b P (φ + Vs(b)) − b ≥ 0

for b ≤ B(φ), and the reverse inequality for b ≥ B(φ). For b ≤ B(φ), we have φ ≥ Vb(b)

and therefore

vb + ∆b P (φ + Vs(b)) − b ≥ vb + ∆b P (Vb(b) + Vs(b)) − b = 0,

as claimed. The case of b ≥ B(φ) is analogous.

Proof of Proposition D.1. It follows from Proposition 4.3 and Lemma D.2 that a

strictly monotone equilibrium in undominated strategies exists if and only if there exists

a solution Vb(z) to (12) such that Vb(vb) = −∞ and

Vs(z) = log
z − vb
vH − z

− Vb(z) − logR

is monotone increasing in z and satisfies Vs(vb) = −∞ , Vs(v
H) = +∞. Furthermore,

such an equilibrium is unique if the solution to the ODE (12) with Vb(vb) = −∞ is

unique.

Fix a t ≤ T and denote for brevity γ = γit , c = cit. Let also

g(z) = e(α+1) Vb(z) .

Then, a direct calculation shows that Vb(z) solves (12) with Vb(vb) = −∞ if and only

if g(z) solves

g′(z)

= g(z)
α + 1

vb − vs

(
z − vb
vH − z

1

hHb ((α + 1)−1 log g(z))
+

1

hLb ((α + 1)−1 log g(z))

)
,

(4)
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with g(vb) = 0. By assumption and Lemma 4.1,

hHb (V ) ∼ ci |V |
γ e(α+1)V and hLb (V ) ∼ ci |V |

γ eαV (5)

as V → −∞ because both GH
b (V ) and GL

b (V ) converge to 1. Hence, the right-hand

side of (4) is continuous and the existence of a solution follows from the Euler theorem.

Furthermore, when studying the asymptotic behavior of g(z) as z ↓ vb, we can replace

hHb and hLb by their respective asymptotics (5).

Indeed, let us consider

g̃′(z) = (α+ 1) g̃(z)
1

vb − vs

(
z − vb
vH − z

1

c ((α + 1)−1 log 1/g̃)γ g̃

+
1

c((α+ 1)−1 log 1/g̃)γ g̃α/(α+1)

)
,

(6)

with the initial condition g̃(vb) = 0. We consider only values of z sufficiently close to

vb, so that log g̃(z) < 0.

It follows from standard ODE comparison arguments and the results below that

for any ε > 0 there exists a z̄ > vb such that

∣∣∣∣
g(z)

g̃(z)
− 1

∣∣∣∣ +

∣∣∣∣
g′(z)

g̃′(z)
− 1

∣∣∣∣ ≤ ε (7)

for all z ∈ (vb, z̄) . The assumptions of the Proposition guarantee that the same asymp-

totics hold for the derivatives of the hazard rates, which implies that the estimates

obtained in this manner are uniform.

First, we will consider the case of general (not necessarily large) vb − vs and show

that, when α < 1, g(z) decays so fast as z ↓ vb that Vs(z) cannot remain monotone in-

creasing. A similar argument then implies that Vs(z) cannot remain monotone increasing

when Gα < 1.

At points in the proof, we will define suitable positive constants denoted C1, C2,

C3, . . . without further mention.

Denote

ζ =
(α + 1)γ+1

c (vb − vs)
. (8)

Then, we can rewrite (6) in the form

g̃′(z) =
ζ

(log 1/g̃)γ

(
z − vb
vH − z

+ g̃1/(α+1)

)
. (9)
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From this point, throughout the proof, without loss of generality, we assume that vb = 0.

Furthermore, after rescaling if necessary, we may assume that vH − vb = 1. Then, the

same asymptotic considerations as above imply that, when studying the behavior of g̃

as z ↓ vb, we may replace vH − z ∼ vH − vb in (6) by 1.

Let A(z) be the solution to

z =

∫ A(z)

0

ζ−1 (− log x)γ x−1/(α+1) dx .

A direct calculation shows that

B(z)
def
=

∫ z

0

ζ−1 (− log x)γ x−1/(α+1) dx ∼ ζ−1α + 1

α
(− log z)γ zα/(α+1) .

Conjecturing the asymptotics

A(z) ∼ K (− log z)γ(α+1)/α z(α+1)/α (10)

and substituting these into B(A(z)) = z, we get

K = ζ
α+1
α

(
α

α + 1

) (γ+1)(α+1)
α

.

Standard considerations imply that this is indeed the asymptotic behavior of A(z). It is

then easy to see that

A′(z) ∼ K
α+ 1

α
(− log z)γ(α+1)/α z1/α. (11)

By (9),

g̃′(z) ≥
ζ

(log 1/g̃)γ
g̃1/(α+1).

Integrating this inequality, we get g̃(z) ≥ A(z). Now, the factor (log 1/g̃)γ is asymptot-

ically negligible as z ↓ vb. Namely, for any ε > 0 there exists a C1 > 0 such that

C1 g̃
1/(α+ε+1) ≥

ζ

(log 1/g̃)γ
g̃1/(α+1) ≥ C−1

1 g̃1/(α−ε+1).

Thus, (
(g̃)

α−ε
1+α−ε

)′
≥ C2 .

Integrating this inequality, we get that

g̃(z) ≥ C3 (z − vb)
α−ε+1
α−ε . (12)
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Let

l(z) = B(g̃(z)) − z .

Then, for small z, by (10),

l′(z) = g̃′(z) ζ−1 (− log g̃)γ g̃−1/(α+1) − 1

=
ζ

(log 1/g̃)γ

(
z

vH − z
+ g̃1/(α+1)

)
ζ−1 (− log g̃)γ g̃−1/(α+1) − 1

=
z

1− z

1

g̃1/(α+1)

=
z

1− z

1

(A(l(z) + z))1/(α+1)

≤
z

1− z

1

(A(l(z)))1/(α+1)
,

(13)

where we have used the fact that l(z) ≥ 0 because h(0) = 0 and l′(z) ≥ 0. Integrating

this inequality, we get that, for small z,

l(z) ≤ C4 z
2(α−ε)/(α−ε+1).

Hence, for small z,

g̃(z) = A(l(z) + z) ≤ A((C4 + 1)z2(α−ε)/(α−ε+1)) ≤ C5 z
2−ε. (14)

Let C(z) solve ∫ C(z)

0

(− log x)γ dx = ζ

∫ z

0

x

1− x
dx .

A calculation similar to that for the function A(z) implies that

C(z) ∼ C6 (− log z)γ z2 (15)

as z → 0. Integrating the inequality

g̃′(z) ≥
ζ

(− log g̃)γ
z

1− z
,

we get that

g̃(z) ≥ C(z).

Let now α < 1. Then, (14) immediately yields that the second term in the brackets in

(6) is asymptotically negligible and, consequently,

ζ

(log 1/g̃)γ
z

1− z
≤ g̃′(z) ≤

(1 + ε) ζ

(log 1/g̃)γ
z

1− z
(16)
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holds for sufficiently small z. Integrating this inequality implies that

C(z) ≤ g̃(z) ≤ (1 + ε)C(z).

Now, (16) implies that

(1− ε) 2C(z)z−1 ≤ g̃′(z) ≤ 2 (1 + ε)C(z) z−1

for sufficiently small1 z.

Using the asymptotics (5) and repeating the same argument implies that g(z) also

satisfies these bounds. (The calculations for g are lengthier and omitted here.)

Now,

V ′
b (z) =

g′(z)

(α + 1) g(z)
≥ (1− ε)

2

α + 1
z−1.

Therefore,

V ′
s (z) =

1

z (1− z)
− V ′

b (z) < 0

for sufficiently small z. Thus, Vs(z) cannot be monotone increasing and the equilibrium

does not exist.

Let now α > 1. We will now show that there exists a unique solution to (4) with

g(0) = 0. Since the right-hand side loses Lipschitz continuity only at z = 0, it suffices to

prove local uniqueness at z = 0. Hence, we need only consider the equation in a small

neighborhood of z = 0. (It is recalled that we assume vb = 0.)

As above, we prove the result directly for the ODE (6), and then explain how the

argument extends directly to (4).

Suppose, to the contrary, that there exist two solutions g̃1 and g̃2 to (6). Define

the corresponding functions l1 and l2 via li = B(g̃i) − z. Both functions solve (13).

Integrating over a small interval [0, l], we get

|l1(x) − l2(x)| ≤

∫ x

0

z

1− z

∣∣∣∣
1

(A(l1(z) + z))1/(α+1)
−

1

(A(l2(z) + z))1/(α+1)

∣∣∣∣ dz . (17)

Now, we will use the following elementary inequality: There exists a constant C6 > 0

such that

a1/α − b1/α ≤
C6 (a− b)

a(α−1)/α + b(α−1)/α
(18)

for a > b > 0. Indeed, let x = b/a and β = 1/α. Then, we need to show that

(1 + x1−β) (1 − xβ) ≤ C6 (1− x)

1We are using the same ε in all of these formulae. This can be achieved by shrinking if necessary the
range of z under consideration.
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for x ∈ (0, 1) . That is, we must show that

x1−β − xβ ≤ (C6 − 1) (1− x).

By continuity and compactness, it suffices to show that the limit

lim
x→1

x1−β − xβ

1− x

is finite. This follows from L’Hôpital’s rule.

By (10) and (11), we can replace the function A(z) in (17) by its asymptotics (10)

at the cost of getting a finite constant in front of the integral. Thus, for small z,

|l1(x) − l2(x)|

≤ C7

∫ x

0

z

∣∣∣∣
((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α

((− log(l1 + z))γ (l1 + z))1/α((− log(l2 + z))γ (l2 + z))1/α

∣∣∣∣ dz .
(19)

By (18),

|((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α|

≤ C6
|(− log(l1 + z))γ (l1 + z) − (− log(l2 + z))γ (l2 + z)|

((− log(l1 + z))γ (l1 + z))(α−1)/α + ((− log(l2 + z))γ (l2 + z))(α−1)/α
.

(20)

Now, consider some γ > 0. Then, for any sufficiently small a > b > 0, a direct calculation

shows that

0 < (log(1/a))γ a − (log(1/b))γ b ≤ ((log(1/a))γ + (log(1/b))γ) (a− b).

If, instead, γ ≤ 0, then the function a 7→ (log(1/a))γ a is continuously differentiable at

a = 0, and hence

0 < (log(1/a))γ a − (log(1/b))γ b ≤ C8 (a− b) .

Since α > 1, the same calculation as that preceding (16) implies that, for sufficiently

small z,

A(z) ≤ g̃i(z) = A(z + li(z)) ≤ (1 + ε)A(z) , i = 1, 2.

Thus, for z ∈ [0, ε̄],
∣∣∣∣
((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α

((− log(l1 + z))γ (l1 + z))1/α((− log(l2 + z))γ (l2 + z))1/α

∣∣∣∣

≤ C9 |l1(z) − l2(z)|
1

z((α+1)/α)−ε

≤ C9

(
sup

z ∈ [ 0, ε̄ ]

|l1(z) − l2(z)|

)
1

z((α+1)/α)−ε
.

(21)
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Thus, (19) implies that

|l1(x) − l2(x)| ≤ C10

(
sup
z ∈ [0,ε̄]

|l1(z) − l2(z)|

)∫ x

0

z
1

z((α+1)/α)+ε
dz

= C11 (ε̄)
α−1
α

−ε sup
z ∈ [0,ε̄]

|l1(z) − l2(z)|

(22)

for all l ≤ ε̄. Taking the supremum over l ∈ [0, ε̄], we get

sup
z ∈ [0,ε̄]

|l1(z) − l2(z)| ≤ C11 (ε̄)
α−1
α

−ε sup
z∈[0,ε̄]

|l1(z) − l2(z)| .

Picking ε̄ so small that C11 (ε̄)
α−1
α

−ε < 1 immediately yields that l1 = l2 on [0, ε̄] and

hence, since the right-hand side of (6) is Lipschitz continuous for z l 6= 0, we have l1 = l2

for all z by a standard uniqueness result for ODEs.

The fact that the same result holds for the original equation (4) follows by the

same arguments as above.

It remains to prove the last claim, namely the existence of equilibrium for suffi-

ciently large vb − vs. By Proposition 4.3, it suffices to show that

V ′
s (z) =

1

z (1− z)
− V ′

b (z) > 0 (23)

for all z ∈ (0, 1) provided that vb − vs is sufficiently large.

It follows from the proof of Lemma 4.1 that

G−1
L

(
(1− z)

1
(vb−vs)

)
≤ Vb(z) ≤ G−1

H

(
(1− z)

1
(vb−vs)

)
.

Thus, as vb − vs ↑ +∞, Vb(z) converges to −∞ uniformly on compact subsets of [0, 1).

By assumption,

lim
V→+∞

1

hHb (V )
=

1

α
, lim

V→+∞

1

hLb (V )
=

1

α + 1
.

Thus, as z ↑ 1,

V ′
b (z) ∼

1

α (vb − vs)

1

1− z
<

1

z(1− z)
.

Fixing a sufficiently small ε > 0, we will show below that there exists a threshold W

such that (23) holds for all vb − vs > W and all z such that Vb(z) ≤ −ε−1. Since,

by the assumptions made, 1/hHb (V ) and 1/hLb (V ) are uniformly bounded from above for

V ≥ −ε−1, it will immediately follow from (12) that (23) holds for all z with Vb(z) ≥ −ε−1

as soon as vb − vs is sufficiently large.
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Thus, it remains to prove (23) when Vb(z) ≤ −ε−1 . We pick an ε so small that we

can replace the ODE (4) by (6) when proving (23). That is, once we prove the claim for

the “approximate” solution g̃(z), the actual claim will follow from (7).

Let

g̃(z) =
ζ

(− log ζ)γ
f(z)

def
= ε f(z) , ε =

ζ

(− log ζ)γ
.

Then, (4) is equivalent to the ODE

f ′(z) =

(
log(1/ζ)

log(1/ζ) + log(1/f(z))

)γ (
z

1− z
+ ε

1
α+1 f(z)

1
α+1

)
. (24)

As vb − vs → +∞, we get that ζ, ε→ 0. Let

f0(z)
def
=

∫ z

0

x

1− x
dx = − log(1− z) − z .

Using bounds analogous to that preceding (16), it is easy to see that

lim
vb−vs→+∞

f(z) = f0(z) , lim
vb−vs→+∞

f ′(z) = f ′
0(z),

and that the convergence is uniform on compact subsets of (0, 1). Fixing a small ε1 > 0,

we have, for z > ε1,

lim
vb−vs→∞

V ′
b (z) = lim

vb−vs→∞

g̃′(z)

(α + 1)g̃(z)

= lim
vb−vs→∞

f ′(z)

(α + 1)f(z)

=
f ′
0(z)

(α + 1)f0(z)

=
z

(α + 1) (1− z) (− log(1− z)− z)
.

We then have
d2

dz2
(− log(1− z)) =

1

(1− z)2
≥ 1.

Therefore, by Taylor’s formula,

− log(1− z)− z ≥
1

2
z2 .

Hence,
z

(α + 1) (1− z) (− log(1− z)− z)
≤

2

α+ 1

1

z(1− z)
.

Therefore (23) holds for large vb − vs because α > 1. This argument does not work as

z → 0 because f(0) = f0(0) = 0. So, we need to find a way to get uniform upper bounds
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for f ′(z)/f(z) when z is small. By the comparison argument used above, and picking ε1

sufficiently small, since our goal is to prove inequality (23), we can replace 1− z by 1 in

(24).

In this part of the proof, it will be more convenient to deal with g̃ instead of f. By

the above, we may replace g̃ by the function g1 solving

g′1(z) =
ζ

(− log(g1))γ

(
z + g

1
α+1

1

)
.

Let

d(z) =

∫ z

0

(
log

(
1

x

))γ
dx ,

D(z) = d−1(z), and k(z) = D(g1(z)). Then, we can rewrite the ODE for g1 as

k′(z) = ζ
(
z + (D(k(z)))1/(α+1)

)
, k(0) = 0.

Define L(z) via ∫ L(z)

0

(D(x))−1/(α+1) dx = z,

and let

φ(z) = L(ζ z) +
1

2
ζ z2 ≥ L(ζz).

Then, by the monotonicity of D(z),

φ′(z) = ζ L′(ζz) + ζ z = ζ
(
z + (D(L(ζz)))1/(α+1)

)
≤ ζ (z + (D(φ(ζz)))1/(α+1)).

By a comparison theorem for ODEs (for example, Hartman (1982), Theorem 4.1, p.

26),2 we have

k(z) ≥ φ(z) ⇔ g1(z) = D(k(z)) ≥ D(φ(z)) . (25)

Therefore, since the functions x(− log x)γ and xα/(α+1) (− log x)γ are monotone increasing

for small x, we have

(1 + α) V ′
b (z) =

g′(z)

g(z)

≤ (1 + ε)
g′1(z)

(α + 1) g1(z)

=
(1 + ε)ζ z

g1 (− log g1)γ
+

(1 + ε)ζ

g
α/(α+1)
1 (− log g1)γ

≤
(1 + ε)ζ z

D(φ(z)) (− logD(φ(z)))γ
+

(1 + ε)ζ

D(φ(z))α/(α+1) (− logD(φ(z)))γ
.

(26)

2Even though the right-hand side of the ODE in question is not Lipschitz continuous, the proof of
this comparison theorem easily extends to our case because of the uniqueness of the solution, due to
(22).
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Thus, it suffices to show that

ζ z2

D(φ(z)) (− logD(φ(z)))γ
+

ζ z

D(φ(z))α/(α+1) (− logD(φ(z)))γ
< (1− ε)(1 + α)

for some ε > 0, and for all sufficiently small z and ζ. Now, a direct calculation similar

to that for the functions A(z) and C(z) implies that

d(z) ∼ z (− log z)γ

and therefore that

D(z) ∼ z (− log z)−γ .

Thus, it suffices to show that

ζ z2

φ(z) (− log φ)−γ (− log(φ(z) (− log φ)−γ))γ

+
ζ z

(φ(z) (− logφ)−γ)α/(α+1) (− log(φ(z) (− logφ)−γ))γ

< (1− ε)(1 + α).

(27)

Leaving the leading asymptotic term, we need to show that

ζ z2

φ(z)
+

ζ z

(φ(z))α/(α+1) (− log(φ(z)))γ/(α+1)
< (1− ε)(1 + α) .

We have ∫ z

0

(D(x))−1/(α+1)dx ∼
α + 1

α
zα/(α+1) (− log z)γ/(α+1).

Therefore

L(z) ∼

(
α

α + 1
z

)(α+1)/α

(− log z)−γ/α .

Hence, we can replace φ(z) by

φ̃(z)
def
=

(
α

α + 1
ζz

)(α+1)/α

(− log(ζz))−γ/α +
1

2
ζ z2 .

Let

x =
ζ z2

(ζz)(α+1)/α (− log(ζz))−γ/α
.

Then,

ζ z2

φ̃(z)
+

ζ z

(φ̃(z))α/(α+1) (− log(φ̃(z)))γ/(α+1)

=
1

((
α
α+1

)α+1
α + 0.5x

)α/(α+1)

(
− log(ζz)

− log φ̃

)γ/(α+1)

+
x

(
α
α+1

)α+1
α + 0.5x

.
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We have

log(φ̃) = log(ζ z) + log

((
α

α+ 1

)(α+1)/α

(ζz)1/α (− log(ζz))−γ/α + 0.5 z

)

≤ log(ζz)

for small ζ, z. Furthermore, for any ε > 0 there exists a ε > 0 such that

(
α

α + 1

)(α+1)/α

(ζz)1/α (− log(ζz))−γ/α ≥ (ζz)1/(α−ε)

for all ζz ≤ ε. Hence,
α− ε

α− ε+ 1
≤

− log(ζz)

− log φ̃
≤ 1

for all sufficiently small ζ, z. Consequently, to prove (26) it suffices to show that

sup
x>0

χ(x) < 1 + α,

where

χ(x) =
1

((
α
α+1

)α+1
α + 0.5x

)α/(α+1)
Aα +

x
(

α
α+1

)α+1
α + 0.5x

,

with

Aα = max

{(
α

α + 1

)γ/(α+1)

, 1

}
.

Let

K =

(
α

α + 1

)α+1
α

.

Then,

χ′(x) = −
0.5Aα α

α+ 1

1

(K + 0.5x)(2α+1)/(α+1)
+

K

(K + 0.5x)2
.

Thus, χ′(x∗) = 0 if and only if

K + 0.5x∗ =

(
K

0.5Aα α
α+1

)α+1

,

which means that

x∗ = 2

((
2

Aα

)α+1

− 1

) (
α

α + 1

)α+1
α

.
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Then,

χ(x∗)

=
1

((
α
α+1

)α+1
α + 0.5x∗

)α/(α+1)
Aα +

x∗
(

α
α+1

)α+1
α + 0.5x∗

=
1

((2/Aα)α+1 (α/(α+ 1))(α+1)/α)
α/(α+1)

Aα +
2
((

2
Aα

)α+1
− 1
) (

α
α+1

)α+1
α

(2/Aα)α+1 (α/(α+ 1))(α+1)/α

=

(
Aα
2

)α
α + 1

α
Aα + 2− 2

(
Aα
2

)α+1

= 2 +
Aα+1
α

2α α
.

(28)

There are three candidates for x that achieve a maximum of χ, namely x = 0, x = +∞,

and x = x∗, which is positive if and only if Aα < 2.

If γ ≥ 0, then Aα = 1, so x = 0 and x = +∞ satisfy the required inequality as

soon as α > 1, whereas χ(x∗) < α+ 1 if and only if α > α∗, where

α∗ = 1 +
1

α∗ 2α∗

.

A calculation shows that α∗ ∈ (1.30, 1.31).

If γ < 0, then

χ(0) =
(α + 1)Aα

α
, χ(+∞) = 2,

and this gives the condition Aα < α. If Aα > 2, that is, if

−γ > (α + 1)
log 2

log((α + 1)/α)
,

then we are done. Otherwise, we need the property

2 +
Aα+1
α

2α α
< α + 1 ⇔ −γ <

log ((α2 − α) 2α)

log((α + 1)/α)
.

E The Behavior of the Double Auction Equilibrium

Let

ζit =
(α + 1)

citG
(29)

and

εit =
ζit

(| log ζit|/(α+ 1))γit
. (30)

Clearly, both ζit and εit are small when G is large.
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Proposition E.1 Let St = Si,j,t, Bt = Bi,j,t and εt = εit. We have, as G→ ∞,

St(θ) ∼ S

(
θ +

1

α + 1
log εt

)
,

where S(θ) is the inverse of the function in z defined by

log
z − vb
vH − z

−
1

α+ 1
log

(
log

1

vH − z
− (z − vb)

)
.

Similarly,

Bt(θ) ∼ B

(
θ −

1

α + 1
log εt

)

where B(z) is the inverse of the function in z defined by

1

α + 1
log

(
log

1

vH − z
− (z − vb)

)
.

Corollary E.2 For any buyer-and-seller class pair (i, j), Si,j,t(θ) is monotone decreasing

in t and in any meeting probability λi, whereas Bi,j,t(θ) is monotone increasing in t and

any λi.

Proof. Without loss of generality, we assume for simplicity that R = 1. (This merely

adds a constant to the inverse of the ask function, by Proposition 4.3.) We fix a time

period t ≥ 0 and omit the time index everywhere and write Vb = Vbt , Vs = Vst for the

inverses of the bid and ask functions. We also let γ = γt , c = ct.

Let

ζ = ζt =
(α+ 1)γ+1

cG
.

As in the proof of Proposition D.1, we define

g(z) = e(α+1)Vb(z) =
ζ

(− log ζ)γ
f(z)

def
= ε f(z) .

Then, as we have shown in the proof of Proposition D.1, we may assume that, for large

G,

f ′(z) =

(
log(1/ζ)

log(1/ζ) + log(1/f(z))

)γ (
z − vb
vH − z

+ ε
1

α+1 f(z)
1

α+1

)
, f(vb) = 0. (31)

See (24). Furthermore, as G→ ∞, we have ζ, ε→ 0 ,

lim
G→∞

f(z) = f0(z),
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where

f0(z) = (vH − vb) log
vH − vb
vH − z

− (z − vb),

and the convergence is uniform on compact subsets of [vb, v
H).

From this point, for simplicity we take the case γ = 0. The general case follows by

similar but lengthier arguments. Hence, we assume that f solves

f ′(z) =
z − vb
vH − z

+ ε1/α+1 f 1/(α+1). (32)

Since the solution f(z) to (32) is uniformly bounded on compact subsets of [vb, v
H), by

integrating (32) we find that

0 ≤ f(z) − f0(z) = O(ε
1

α+1 (z − vb)),

uniformly on compact subsets of [vb, v
H) . Furthermore, f0(z) ≤ C1 (z− vb)

2, uniformly

on compact subsets of [vb, v
H) . Substituting these bounds into (32), we get

f(z) − f0(z) ≤ C2 ε
1

α+1

∫ z

vb

(ε1/α+1 (z − vb) + (z − vb)
2)1/(α+1) dz

≤ C3 ε
1

α+1 (z − vb) (ε
1/(α+1)2 (z − vb)

1/(α+1) + (z − vb)
2/(α+1)).

Let now

l(z) = f(z)α/(α+1) −
ε1/α+1α

α + 1
(z − vb) .

Then,

l′(z) =
α

α + 1
f ′(z) f−1/(α+1) −

ε1/α+1α

α + 1

=
α

α + 1

z − vb(
ε1/α+1α
α+1

(z − vb) + l(z)
)1/α

≤
α

α + 1

z − vb

(l(z))1/α
.

(33)

Integrating this inequality, we get

l(z) ≤
1

2
(z − vb)

2,

and therefore

f(z) ≤ C4 ((z − vb)
2 + ε1/α (z − vb)

(α+1)/α) . (34)

Consequently,

eVb(z) = ε
1

α+1

(
f0(z) + o(ε

1
α+1 (z − vb))

)1/(α+1)

(35)
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uniformly on compact subsets of [vb, v
H) . Therefore,

lim
ε→0

(
Vb(z) −

1

α + 1
log ε

)
=

1

α + 1
log f0(z),

uniformly on compact subsets of (vb, v
H).

Now, since Vb → −∞ uniformly on compact subsets of [vb, v
H),

Vs(z) = log
z − vb
vH − z

− Vb(z)

converges to +∞, uniformly on compact subsets of (vb, v
H) . Since S(−∞) = vb, standard

arguments imply that S(θ) converges to vb uniformly on compact subsets of [−∞,+∞)

(with −∞ included). Furthermore,

lim
ε→0

(
Vs(z) +

1

α+ 1
log ε

)
= log

z − vb
vH − z

−
1

α + 1
log f0(z)

def
= M(z),

uniformly on compact subsets of (vb, v
H). Let S(z) = M−1(z). We claim that

lim
ε→0

S

(
θ −

1

α + 1
log ε

)
= S(θ) , (36)

uniformly on compact subsets of R. Indeed, S
(
θ − 1

α+1
log ε

)
is the unique solution to

the equation in y given by

θ = Vs(y) +
1

α + 1
log ε .

Since the right-hand side converges uniformly to the strictly monotone function M( · ),

this unique solution also converges uniformly to S(θ). Furthermore, the equality

vb + ∆b P (Vs(z) + Vb(z)) = z ⇔ vb + ∆b P (θ + Vb(S(θ))) = S(θ)

implies that

Vb

(
S

(
θ −

1

α+ 1
log ε

))
= log

(
S − vb
vH − S

)
− θ +

1

α + 1
log ε

and therefore

Vb

(
S

(
θ −

1

α + 1
log ε

))
−

1

α + 1
log ε → log

(
S(θ)− vb
vH − S(θ)

)
− θ.

We have

M(z) = log




z − vb

(vH − z)
(
(vH − vb) log

(
vH−vb
vH−z

)
− (z − vb)

)1/(α+1)


 .
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Now, for z ∼ vb,

log

(
vH − vb
vH − z

)
= − log

(
1 −

z − vb
vH − vb

)
∼

z − vb
vH − vb

+
1

2

(
z − vb
vH − vb

)2

, (37)

and therefore

M(z) ∼ (1 + α)−1 log(2(vH − vb)) +
α− 1

α + 1
log

(
z − vb
vH − vb

)
(38)

as z → vb. Consequently, as θ → −∞, we have

S(θ) ∼ vb + K e
α+1
α−1

θ

for some constant K = K(α).

F The Behavior of Some Important Integrals

For simplicity, many results in this section will be established under technical conditions

on α. The general case can be handled similarly, but is significantly more messy. As

above, we fix a pair (i, j) = (b, s) and use St and Bt to denote the corresponding double

auction equilibrium. Recall that ψHst is the cross-sectional density of the information type

of sellers at time t.

As previously, we consider the case of large G and use the notation A ∼ B to

denote that A/B → 1 when G→ ∞.

Lemma F.1 Let
α + 1

α− 1
> α .

Then
∫

R

(vb − Sτ (y))ψ
H
sτ(y) dy ∼ csτ ε

α
α+1

∣∣∣∣
log ε

1 + α

∣∣∣∣
γsτ ∫

R

(vb − S(y)) e−αy dy

and ∫

R

(vb − Sτ (y))ψ
L
sτ(y) dy = o(ε

α
α+1 )

as G→ ∞.

Proof. In the following, we handle the cases of ψLsτ and ψ
H
sτ simultaneously by using the

notation “ψH,Lsτ .” Changing variables, we get
∫

R

(vb − Sτ (y))ψ
H,L
sτ (y) dy

=

∫

R

ψH,Lsτ

(
y −

1

α+ 1
log ε

) (
vb − Sτ

(
y −

1

α + 1
log ε

))
dy .

(39)
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Furthermore, by Lemma G.6,

lim
ε→0

c−1
sτ ε

−{α,α+1}/(α+1)

∣∣∣∣
log ε

1 + α

∣∣∣∣
−γsτ

ψH,Lsτ

(
y −

1

α + 1
log ε

)
= e−{α,α+1} y.

By (36),

vb − Sτ

(
y −

1

α + 1
log ε

)
→ vb − S(y) .

In order to conclude that

lim
ε→0

ε−α/(α+1)

∫

R

ψHsτ

(
y −

1

α + 1
log ε

) (
vb − Sτ

(
y −

1

α + 1
log ε

))
dy

= csτ

∫

R

e−αy (vb − S(y)) dy,

(40)

and that
∫

R

ψLsτ

(
y −

1

α + 1
log ε

) (
vb − Sτ

(
y −

1

α + 1
log ε

))
dy = o(εα/(α+1)),

we will show that the integrands

I(y) = ε−α/(α+1) ψHsτ

(
y −

1

α + 1
log ε

) (
vb − Sτ

(
y −

1

α+ 1
log ε

))

and

ε−ǫε−α/(α+1) ψLsτ

(
y −

1

α + 1
log ε

) (
vb − Sτ

(
y −

1

α+ 1
log ε

))

have an integrable majorant for some ǫ > 0. Then, (40) will follow from the Lebesgue

dominated convergence theorem.

We decompose the integral in question into three parts, as

∫ 1
1+α

log ε

−∞

I1(y) dy +

∫ A

1

1+αL
log ε

I2(y) dy +

∫ +∞

A

I3(y) dy,

and prove the required limit behavior for each integral separately. To this end, we will

need to establish sharp bounds for S(θ) and Vb(θ).

Lemma F.2 Let Ω ⊂ R
2
+ be a bounded open set and L(θ, ε) ∈ Cb(Ω) be a bounded,

continuous function. Then we have

S

(
θ −

1

α+ 1
log ε

)
≤ vb + C1 L(θ, ε) (41)
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for all (ε, θ) ∈ Ω if and only if

1

α + 1
log f(vb + L(θ, ε)) − log(L(θ, ε)) ≤ C2 − θ . (42)

If (41) holds, we have

Vb

(
S

(
θ −

1

α+ 1
log ε

))
≤

log ε

1 + α
+ C3 + logL(θ, ε) − θ. (43)

Proof. Applying Vs to both sides of (41) and using the fact that Vs is strictly increasing,

we see that the desired inequality is equivalent to

θ −
1

α + 1
log ε ≤ Vs(vb + C1L) .

Now,

Vs(z) +
1

α + 1
log ε = log

z − vb
vH − z

− Vb(z) +
1

α + 1
log ε = log

z − vb
vH − z

−
1

α+ 1
log f(z) .

The claim follows because we are in the regime when vH − z is uniformly bounded away

from zero.

Furthermore,

−
log ε

1 + α
+ Vb(S) = log

(
S − vb
vH − S

)
− θ − logR . (44)

If θ is bounded from above, then S is uniformly bounded away from vH , and hence

log

(
S − vb
vH − S

)
− θ ≤ C4 + log(S − vb) − θ.

The claim follows.

Lemma F.3 Suppose that ε > 0 is sufficiently small. Fix an A > 0. Then, for

θ ∈

(
1

α + 1
log ε, A

)
(45)

we have

S

(
θ −

1

α + 1
log ε

)
≤ vb + C5 e

α+1
α−1

θ , (46)

and for

θ <
1

α+ 1
log ε, (47)

we have that

S

(
θ −

1

α+ 1
log ε

)
≤ vb + C6 ε

1
(α+1)(α−1) e

α
α−1

θ . (48)
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Proof. By Lemma F.2, inequality (48) is equivalent to

1

α + 1
log f(vb + C6 ε

1
(α+1)(α−1) e

α
α−1

θ) − log(C6 ε
1

(α+1)(α−1) e
α
α−1

θ) ≤ −θ + C7 . (49)

Under the condition (47),

max
{
(z − vb)

2 , ε1/α (z − vb)
(α+1)/α

}
= ε1/α (z − vb)

(α+1)/α (50)

for

z = C8 ε
1

(α+1)(α−1) e
α
α−1

θ .

Hence, by (34),

f(z) ≤ C9 ε
1/α (z − vb)

(α+1)/α .

Consequently,

1

α + 1
log f(vb + C6 ε

1
(α+1)(α−1) e

α
α−1

θ) − log
(
C6 ε

1
(α+1)(α−1) e

α
α−1

θ
)

≤ C10 +
1

(α + 1)α
log ε +

1

α

(
α

α− 1
θ +

1

(α + 1)(α− 1)
log ε

)

−

(
α

α− 1
θ +

1

(α+ 1)(α− 1)
log ε

)

= −θ + C10 ,

(51)

and (48) follows.

Similarly, when θ satisfies (45), a direct calculation shows that

max
{
(z − vb)

2 , ε1/α (z − vb)
(α+1)/α

}
= (z − vb)

2 (52)

for

z = vb + C5 e
α+1
α−1

θ .

Since Therefore, by (34),

1

α+ 1
log f(vb + C5 e

α+1
α−1

θ) − log(C5 e
α+1
α−1

θ )

≤ C11 +
2

α− 1
θ −

α + 1

α− 1
θ = −θ + C11,

(53)

and (46) follows.

As above, we recall that ψHsτ is the cross-sectional density of the information type

of sellers at time τ . As above, we handle the cases of ψLsτ and ψHsτ simultaneously by

using the notation “ψH,Lsτ .”
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Lemma F.4 If
α + 1

α− 1
> α,

then

∫ 1
α+1

log ε

−∞

ψH,Lsτ

(
θ −

1

α+ 1
log ε

) (
vb − S

(
θ −

1

α+ 1
log ε

))
dθ = o(εα/(α+1)) .

Proof. By (47), since ψH,Lsτ is bounded, we get

∫ 1
α+1

log ε

−∞

ψH,Lsτ

(
θ −

1

α + 1
log ε

) (
vb − S

(
θ −

1

α + 1
log ε

))
dθ

≤ C12

∫ 1
α+1

log ε

−∞

ε
1

(α+1)(α−1) e
α
α−1

θ dθ

= ε
1

(α+1)(α−1)
α− 1

α
ε

1
(α+1)(α−1)

+ α
(α+1)(α−1)

= o(εα/(α+1)) .

(54)

Lemma F.5 If
α + 1

α− 1
> α,

then

lim
ε→0

ε−
α
α+1

∫ A

1
α+1

log ε

ψHsτ

(
θ −

1

α + 1
log ε

) (
vb − S

(
θ −

1

α + 1
log ε

))
dθ

= csτ

∫ A

−∞

(vb − S(θ)) e−αθ dθ

(55)

and

∫ A

1
α+1

log ε

ψLsτ

(
θ −

1

α + 1
log ε

) (
vb − S

(
θ −

1

α + 1
log ε

))
dθ = o(εα/(α+1)).

Proof. By assumption, as x→ ∞,

ψHsτ (x) ∼ csτ e
−αx.

The claim follows from (36) and (45), which provides an integrable majorant.

The same argument implies the following result.
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Lemma F.6 We have

lim
ε→0

ε−
α
α+1

∫ +∞

A

ψHsτ

(
θ −

1

α + 1
log ε

) (
vb − S

(
θ −

1

α + 1
log ε

))
dθ

= csτ

∫ +∞

A

(vb − S(θ)) e−α θ dθ

(56)

and
∫ +∞

A

ψLsτ

(
θ −

1

α + 1
log ε

) (
vb − S

(
θ −

1

α + 1
log ε

))
dθ = o(εα/(α+1)) .

We define, for K ∈ {H,L},

GK
η,q0,τ−1

(x) =

∫ +∞

x

(ηK ∗ qK0,τ−1)(y) dy

FK
η,q0,τ−1

(x) = 1 − GK
η,q0,τ−1

(x),

(57)

where q0,τ = qi,0,τ is the density of increment to information type that an agent of class

i will get during the time interval [0, τ ] from trading with counterparties of class j. That

is,

qi,0,0 = (1− λi) δ0 + λi ψj 0.

and

qi,0,τ+1 = (1− λi) qi,0,τ + λi
∑

j

κij qi,0,τ ∗ ψj τ+1.

Furthermore, everywhere in the sequel we assume that the density η of the type of an

acquired signal packet satisfies ηH ∼ Exp+∞(cη, γη,−α) for some cη, γη > 0. This is

without loss of generality by Condition 2 and Lemma 4.5 on p. 29, which together imply

that any number of acquired signal packets satisfies this condition. That is, a convolution

of densities satisfying the specified tail condition also satisfies the same condition. The

same argument also implies that

qHi,0,τ ∼ Exp+∞(ci,0,τ , γi,0,τ ,−α)

for some ci,0,τ , γi,0,τ > 0 and

ηH ∗ qHi,0,τ ∼ Exp+∞(Ci,η,0,τ , γi,0,τ + γη + 1,−α)

for some Ci,η,0,τ > 0.
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Lemma F.7 Suppose that
(α + 1)2

α− 1
> 2α+ 1 .

Then,
∫

R

ψHsτ (y) (v
H − Sτ (y))F

H
η,q0,τ−1

(Vbτ (Sτ (y))) dy ∼ R−(α+1) csτ
cs,0,τ−1

α + 1
Cs,η,0,τ−1

× ε
2α+1
α+1

∣∣∣∣
log ε

1 + α

∣∣∣∣
γsτ+γs,0,τ−1+γη+1 ∫

R

(vH − S(y))

(
S(y)− vb
vH − S(y)

)α+1

e−y(2α+1) dy

(58)

and
∫

R

ψLsτ (y) (Sτ(y)− vb)F
L
η,q0,τ−1

(Vbτ (Sτ (y))) dy ∼ R−α csτ
cs,0,τ−1

α
Cs,η,0,τ−1

× ε
2α+1
α+1

∣∣∣∣
log ε

1 + α

∣∣∣∣
γsτ+γs,0,τ−1+γη+1 ∫

R

(S(y)− vb)

(
S(y)− vb
vH − S(y)

)α
e−y(2α+1) dy .

(59)

as G→ ∞.

Proof. As x → −∞, we have

FH,L
η,q0,τ−1

(x) ∼
cs,0,τ−1Cs,η,0,τ
{α + 1, α}

ex {α+1,α} |x|γs,0,τ−1+γη+1 .

The claim follows by the arguments used in the proof of Lemma F.1. Special care is

needed only because (vH − S)−1 blows up as θ ↑ +∞.

By (44),

FH
η,q0,τ−1

(
Vb

(
S

(
θ −

1

α + 1
log ε

)))

≤ C13 ε

(
S − vb
vH − S

e−θ
)α+1 ∣∣∣∣log

(
S − vb
vH − S

e−θε
1

α+1

)∣∣∣∣
γs,0,τ−1+γη+1

.

(60)

Thus, to get an integrable majorant in a neighborhood of +∞, it would suffice to have

a bound

vH − S ≥ C14 e
−βθ

with some β > 0 such that βα < 2α+ 1, because this would guarantee that
(
S − vb
vH − S

e−θ
)α ∣∣∣∣log

(
S − vb
vH − S

e−θε
1

α+1

)∣∣∣∣
γs,0,τ−1+γη+1

e−αθ ≤ C̃14e
−ε̄θ

for some ε̄ > 0. By the argument used in the proof of Lemma F.2, it suffices to show

that for sufficiently large θ,

1

α + 1
log f(vH − C14 e

−βθ) ≤ C15 + (β − 1) θ .
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Now, it follows from (32) that

f ′(z) ≤ f(z)1/(α+1) +
vH − vb
vH − z

.

Since, for sufficiently small ε, f(z) is uniformly bounded away from zero on compact

subsets of (vb, v
H ], we get

d

dz
(f(z)α/(α+1)) ≤ C16 (1 + (vH − z)−1),

for some K > 0 when z is close to vH . Integrating this inequality, we get

f(z)α/(α+1) ≤ C17 (1 − log(vH − z)).

Consequently,
1

α+ 1
log f(vH − C14 e

−βθ) ≤ C18 log θ

if θ is sufficiently large. Hence, the required inequality holds for any β > 1 with a

sufficiently large C14, and the claim follows.

Lemma F.8 Let
α+ 1

α− 1
> α .

Then
∫

R

(Sτ (y)− vb) × (ηH ∗ qHt,τ−1)(y − θ) dy

∼
cb,t,τ−1

α + 1
Cb,η,0,τ−1

∣∣∣∣
log ε

1 + α

∣∣∣∣
γb,t,τ−1+γη+1

ε
α
α+1

∫

R

(S(y)− vb) e
−α(y−θ) dy

(61)

and

∫

R

(Sτ (y)− vb) × (ηL ∗ qLt,τ−1)(y − θ) dy = o

(∣∣∣∣
log ε

1 + α

∣∣∣∣
γb,t,τ−1+γη+1

ε
α
α+1

)
. (62)

as G→ ∞.

Lemma F.9 Let
(α + 1)α

α− 1
> α .
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Then we have, as G→ ∞,
∫

R

(Sτ (y)− vs)F
L
bτ (Vbτ (Sτ (y))) (η

L ∗ qLt,τ )(y − θ)dy ∼ cb,t,τ−1R
−αCb,η,0,τ−1e

(α+1)θ

×

∣∣∣∣
log ε

1 + α

∣∣∣∣
γb,t,τ−1+γη+1

ε
α
α+1

α + 1

α

∫

R

e−(2α+1)y

(
S(y)− vb
vH − S(y)

)α
dy

(63)

and ∫

R

(vH − Sτ (y))F
H
bτ (Vbτ (Sτ (y))) (η

H ∗ hHt,τ )(y − θ)dy

= o

(∣∣∣∣
log ε

1 + α

∣∣∣∣
γb,t,τ−1+γη+1

ε
α
α+1

)
.

(64)

G Proofs for Case of Initial Information Acquisition

For any given agent i, the expected utility Ui,t,τ from trading during the time interval

[t, τ ] is

Ui,t,τ (θ) =

τ∑

r=t

ui,t,r(θ) ,

where ui,t,r is the expected utility from trading at time r conditional on the agent’s

information at time t, evaluated at the information type outcome θ.

We denote further by ui,t,r(θ; η) the expected utility from trading at time r con-

ditional on the agent’s information at time t after the agent has made the decision to

acquire a signal packet with type density ηH,L, before the type of the acquired signal

is observed. With this notation, ui,t,r(θ) = ui,t,r(θ; δ0). The following lemma provides

expressions for ui,t,r(θ; η). These expressions follows directly from the definition of the

double-auction trading mechanism.

Lemma G.1 For a given buyer with posterior information type θ at time 0,

ub,0,τ(θ; η) = P (θ)λ

∫

R

(vH − Sτ (y))G
H
η,q0,τ−1

(Vbτ (Sτ (y))− θ)ψHsτ (y) dy

+ (1− P (θ))λ

∫

R

(vb − Sτ (y))G
L
η,q0,τ−1

(Vbτ (Sτ (y))− θ)ψLsτ (y) dy,

(65)

whereas a seller’s utility is

us,0,τ(θ; η) = P (θ) λ

∫

R

(Sτ (y)− vH)GH
bτ(Vbτ (Sτ (y))) (η

H ∗ qH0,τ−1)(y − θ) dy

+ (1− P (θ)) λ

∫

R

(Sτ (y)− vs)G
L
bτ (Vbτ (Sτ (y))) (η

L ∗ qL0,τ−1)(y − θ) dy.

(66)

Here, by convention, we set qKt,t−1 = δ0.
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The next result provides approximate expressions for the gains from information

acquisition when G is sufficiently large. Recall that the asymptotic behaviour for large

G in the double auction between a class i of buyers and a class j of seller is determined

by

ζit =
(α+ 1)

citG
.

Lemma G.2 Let b be a buyer of class i. Denote by s the set of seller classes with which

buyers of class i trade and let

γsτ ≡ max
j∈s

γjτ .

Further, let

sm = {j ∈ s : γjτ = γsτ} .

Let also γτ ≡ γbτ . Then

ub,0,τ(θ; η)− ub,0,τ(θ) ∼
e−αθR−α

1 +Reθ
Igainb λ

∫

R

(vH − S(y))

(
S(y)− vb
vH − S(y)

)α+1

e−y(2α+1) dy,

(67)

as G→ ∞, where

Igainb =
∑

j∈sm

cjτ
1

α(α + 1)

(
ζτ

(| log ζτ |/(α+ 1))γτ

) 2α+1
α+1

∣∣∣∣
log ζτ
1 + α

∣∣∣∣
γjτ

cs,0,τ−1

∣∣∣∣
log ζτ
1 + α

∣∣∣∣
γb,0,τ−1

×

(
Cb,η,0,τ (N̄b, N̄s)

∣∣∣∣
log ζτ
1 + α

∣∣∣∣
γη+1

− 1

)

=
∑

j∈sm

cjτ
1

α(α + 1)
ζ

2α+1
α+1
τ cs,0,τ−1

∣∣∣∣
log ζτ
1 + α

∣∣∣∣
γb,0,τ−1−

α
α+1

γτ+(γjτ−γτ )

×

(
Cb,η,0,τ (N̄b, N̄s)

∣∣∣∣
log ζτ
1 + α

∣∣∣∣
γη+1

− 1

)
.

(68)

Lemma G.3 Let s be a seller of class i. Denote by b the set buyer classes with which

seller of class i trade and let

γτ ≡ max
j∈b

γjτ .

Further, let

bm = {j ∈ b : γjτ = γτ} .
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Then

us,0,τ(θ; η)− us,0,τ(θ) ∼
e(α+1)θR−α

1 +Reθ
Igains ×Gs

as G→ ∞, where

Gs = λ

∫

R

(
(S(y)− vb) −

α + 1

α
e−(α+1)y

(
S(y)− vb
vH − S(y)

)α)
e−αy dy

and

Igains =
∑

j∈bm

ζ
α
α+1

jτ

(
Cb,η,0,τ (N̄b, N̄s)

∣∣∣∣
log ζjτ
1 + α

∣∣∣∣
γη+1

− 1

)
cb,0,τ−1

∣∣∣∣
log ζjτ
1 + α

∣∣∣∣
γs,0,τ−1−

α
α+1

γτ

.

Lemmas G.2 and G.3 follow directly from Lemmas F.1-F.9 above. The following

result is then an immediate consequence.

Corollary G.4 For buyers and sellers, the utility gain from acquiring information is

convex in the number of signal packets acquired. Consequently, any optimal pure strategy

is either to acquire the maximum number n̄ of signal packets, or to acquire none.

The next lemma is a direct consequence of Lemma 4.5.

Lemma G.5 Suppose that λij ≡ λiκij 6= 0 for all i, j.3 Let N̄s be the maximal number

of signal packets for sellers, and N̄b the maximal number of signals for buyers. Then,

for any class i,

γi1 = N̄i + 1i∈sN̄b + 1i∈bN̄s,

and thus, for all t ≥ 2,

γit = 2t−1(N̄b + N̄s) − 1 + N̄i − 1i∈sN̄s − 1i∈bN̄b,

where we write i ∈ b if class i is a buyer class, and similarly for the sellers’ classes.

Furthermore,

γi,0,τ−1 = γit − N̄i .

Proof of Theorem 5.2. It follows from Lemmas G.2-G.3 that it suffices to show

that the exponents for | log ζ | are monotone increasing in N if T is sufficiently large. For

buyers, we have

γb,0,τ−1 −
2α + 1

α + 1
γτ + γjτ = −Nb −

α

α + 1
γbτ + γjτ

3The case when some of the matching probabilities are zero can be studied by a limiting procedure.
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whereas, for sellers, we need to show that

γs,0,τ−1 −
α

α + 1
γτ

is monotone increasing in the number of acquired signals. This follows directly from

Lemma G.5.

We will now study examples illustrating our general model. We will first treat the

case of one class of sellers, and then consider the case of two classes of sellers.

G.1 One Class of Sellers

In order to calculate the equilibria, we will first need to determine the dependence of the

cross-sectional type distributions on the model parameters. Suppose that buyers and

sellers acquire Nb and Ns signal packets respectively. Then, let N̄i = Nmin + Ni be the

total number of signals packets that class i possesses. The maximum feasible number of

signal packets is Nmax = Nmin + n̄. Using Lemma 4.5, we immediately get the following

two technical lemmas.

Lemma G.6 Suppose that at time 0 buyers and seller acquire N̄b and N̄s signals respec-

tively. Then, cbt = cst = ct and γbt = γst = γt so that ψst , ψbt ∼ Exp−∞(ct, γt, α + 1)

for all t ≥ 1, where γ1 = N̄b + N̄s − 1. It follows that γt = 2γt−1 + 1 for t ≥ 2,

c1 = λ cs0cb0
(N̄s − 1)! (N̄b − 1)!

(N̄s + N̄b − 1)!

and

ct+1 = λ c2t
(γt!)

2

γt+1!
.

In particular,

γt = 2t−1(N̄b + N̄s) − 1

and

ct = DN̄b,N̄s(t) c
2t−1(N̄s+N̄b)
0 λ2

t−1,

for a model-independent combinatorial function DN̄b,N̄s(t).

Lemma G.7 For i = b or i = s, we have qHi,0,τ ∼ Exp−∞(ci,0,τ , γi,0,τ , α + 1), where

γi,0,τ = (2τ − 1) (N̄b + N̄s) − 1 + N̄j

and

ci,0,τ = Di,N̄b,N̄s(0, τ, c0) λ
2τ+1−1,

for model-independent combinatorial functions DN̄b,N̄s(t, τ) and Di,N̄b,N̄s(0, τ) .
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Proof of Lemma C.3. By the Perron-Frobenius Theorem (see Meyer (2000),

chapter 8, page 668), we have

(ΛsΛb)
t−1 ∼ rt−1

s psq
T
s

where ps and qs are right and left Perron eigenvectors of ΛsΛb respectively, and rs is the

corresponding Perron eigenvalue. Similarly,

(ΛbΛs)
t−1 ∼ rt−1

b pbq
T
b

where pb and qb are the right and left Perron eigenvectors of ΛbΛs respectively, and rb is

the corresponding Perron eigenvalue. Now, applying Λb to the identity ΛsΛbps = rsps, we

get that Λbps is a positive right eigenvector of ΛbΛs corresponding to a positive eigenvalue

rs. Uniqueness part of the Perron-Frobenius Theorem (see Meyer (2000), chapter 8, page

667) implies that rs = rb. To prove the last statement, we note that, by the Collatz-

Wielandt formula (see Meyer (2000), chapter 8, page 667),

rs = max
x

min
i

(ΛsΛbx)i
xi

= min
i

(ΛsΛbps)i
psi

If we increase one of the elements of Λs or Λb, all coordinates of ΛsΛbps become strictly

larger since ps > 0, and hence the Collatz-Wielandt formula implies that rs also strictly

increases.

Proof of Proposition 5.5. The claim of monotonicity in Nmin and n̄ follows

directly from Lemmas F.1-F.9 and the proof of Theorem 5.2. Furthermore, for large t,

csi,t/c
α/(α+1)
bj ,t

is monotone increasing in λsk,bl if and only if so does the principal eigenvalue

rs, and hence the claim follows from Lemma C.3.

This completes the proof of the claim for seller and buyer classes from s and b.

For a seller class i 6∈ s, we have ci,t =
∑

j λi,bjc
b
j,t−1 by Lemma C.2, and the claim

follows. A similar argument applies for a buyer of class i 6∈ b, with the only exception

that λi,sj appear in the denominator leading to within-class strategic substitutability of

matching probabilities. The latter however is offset by the factor λi entering the expected

gains from trade.

We will also need the following auxiliary lemma, whose proof is straightforward.

Lemma G.8 For i ∈ {b, s}, let Gaini(N̄s, N̄b) denote the utility gain from acquiring the

maximum number n̄ = Nmax − Nmin of signal packets, for a market in which all other

31



buyers and sellers have N̄b and N̄s signal packets, respectively. Let

π1 ≡ Gains(Nmax, Nmin), π2 ≡ Gains(Nmin, Nmin),

π3 ≡ Gainb(Nmax, Nmax), π4 ≡ Gain(Nmax, Nmin).
(69)

Then:

• (Nmax, Nmin) is an equilibrium if and only if π ∈ [π4, π1].

• (Nmax, Nmax) is an equilibrium if and only if π ≤ π3.

• (Nmin, Nmin) is an equilibrium if and only if π ≥ π2.

Lemma G.9 Let T̃ ≡ log2(α + 1) + 1. Then, the following are true:

• If T = 0 then π1 = π2 > π4 > π3. Thus, an equilibrium exists if and only if

π 6∈ (π3, π4).

• If 0 < T < T̃ then π1 > π2 > π4 > π3, and an equilibrium exists if and only if

π 6∈ (π3, π4).

• If t > T̃ then π1 > π2 > π3 > π4, and an equilibrium always exists.

• For all i, πi is increasing in Nmin and in n̄.

Proof. For small values of ε, the constants π1, π2, π3, and π4 satisfy

πk ∼ Ai(0, N̄s, N̄b)Zi(0, N̄s, N̄b),

for corresponding pairs of N̄b, N̄s. Here,

Ai(0, N̄s, N̄b) = (Nmax −Nmin)
−1

(
Cj,ηNmax ,0,T

∣∣∣∣
log ζ

1 + α

∣∣∣∣
Nmax

− Cj,ηNmin
,0,T

∣∣∣∣
log ζ

1 + α

∣∣∣∣
Nmin

)
,

(70)

where j = s when i = b, and where j = b when i = s. Furthermore,

Zb(0, N̄s, N̄b) ∼ λ
R−α

1 +R
Db(0, c0, N̄b, N̄s, α)λ

2T−1

(
1

λ2T−1G

) 2α+1
α+1

× λ2
T−1

∣∣log(G)
∣∣(2T−1 − 1) (N̄b+N̄s) − 1+ N̄s−

α
α+1

(2T−1(N̄b+N̄s)−1)

=
R−α

1 +R
Db(0, c0, N̄b, N̄s, α) λ

2T−(α+1)+2α+1
α+1 (G)−

2α+1
α+1

× | logG|
2T−1

α+1
(N̄b+N̄s)−N̄b−

1
α+1 ,

(71)
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for some function Db(0, c0, N̄b, N̄s, α). Similarly,

Zs(0, N̄s, N̄b) ∼
R−α

1 +R
Ds(0, c0, N̄b, N̄s, α) λ

2T−(α+1)+2α+1
α+1 (G)−

α
α+1

× | logG|
2T−1

α+1
(N̄b+N̄s)−N̄b−

1
α+1 ,

(72)

for some function Ds(c0, N̄b, N̄s, α). For T = 0, there is only one trading round and

therefore

Zs(0, N̄s, N̄b) =
R−α

1 +R
Db(c0, N̄b, N̄s, α) λ (G)

− α
α+1 | log(G)|−(N̄b−1)α/(α+1)

and

Zb(0, N̄s, N̄b) =
R−α

1 +R
Ds(c0, N̄b, N̄s, α)λ(G)

− 2α+1
α+1 | logG|−(N̄b−1)α/(α+1)+(N̄s−N̄b).

When G is sufficiently large, Zs > Zb and the impact of Di and Ci,η,0,τ (N̄b, N̄s) is small

and does not affect the monotonicity results. The claim follows by direct calculation.

G.2 Two Classes of Sellers

As above, we denote by N̄i = Nmin+Ni the total number of signal packets held by agents

of class i. We have the following results.

Let N̄s = max{N̄1, N̄2} and let m ∈ {1, 2} be the corresponding seller class that

acquired more information and −m be the other seller class. Then,

λ =

{
0.5λm , N̄1 6= N̄2

0.5(λ1 + λ2) , N̄1 = N̄2 .

Lemma G.10 We have ψl,t ∼ Exp−∞(clt, γlt, α + 1) for l ∈ {s1, s2, b} for all t ≥ 1,

where γsk,1 = N̄k + N̄b − 1 and γb1 = N̄s + N̄b − 1, and where, for t ≥ 2,

γsk,t = γsk,t−1 + γb,t−1 + 1 (73)

γb,t = γb,t−1 + γsm,t−1 + 1 (74)

and where further

cb1 = λ cs0cb0
(N̄s − 1)! (N̄b − 1)!

(N̄s + N̄b − 1)!
, csk,1 = λk csk,0cb0

(N̄k − 1)! (N̄b − 1)!

(N̄k + N̄b − 1)!
,

cb,t+1 = cbt
γbt! γsm,t!

γb,t+1!

{
λ csm,t, N̄1 6= N̄2

0.5 (λ1 cs1,t + λ2 cs2,t) , N̄1 = N̄2,
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and

csk,t+1 = cbt
γbt! γsm,t!

γb,t+1!
λk csk,t.

Consequently,

γbt = γsm,t = 2t−1(N̄b + N̄s) − 1

and, for t ≥ 2,

γs−m,t = 2t−1(N̄b + N̄s) − 1 + N̄−m − N̄s.

Thus, for N̄1 6= N̄2,

cbt = DN̄b,N̄s(t) c
2t−1(N̄s+N̄b)
0 (0.5λm)

2t−1 , csk,t = DN̄b,N̄1,N̄2
(t) λtk (0.5λm)

2t−t−1,

for some combinatorial functions DN̄b,N̄s(t), Dk,N̄b,N̄1,N̄2
(t) .

However, when N̄1 = N̄2, we get

cb,t = db,N̄b,N̄s(t) (λ
t
1 + λt2)

t−1∏

r=1

(λr1 + λr2)
2t−r−1

and

csk,t = ds,N̄b,N̄s(t) λ
t
k

t−1∏

r=1

(λr1 + λr2)
2t−r−1

,

for some combinatorial functions db,N̄b,N̄s(t) and ds,N̄b,N̄s(t).

Now, we need to calculate γt,τ .

Lemma G.11 We have hHl,t,τ ∼ Exp−∞(cl,t,τ , γt,τ , α+ 1), where

csk,t,t = λk cbt, γt,t = γbt,

and

cb,t,t =

{
0.5λm csm,t , N̄1 6= N̄2

0.5(λ1cs1,t + λ2 cs2,t) , N̄1 = N̄2 .

Then we define inductively

csk,t,τ+1 = λk csk,t,τ cb,τ+1
γsk,t,τ ! γb,τ+1!

γs,0,τ+1!
, γs,0,τ+1 = γs,0,τ + γb,τ+1 + 1

and

cb,t,τ+1 = cb,t,τ
γb,t,τ ! γsm,τ+1!

γb,t,τ+1!

{
0.5λmcsm,τ+1 , N̄1 6= N̄2

0.5 (λ1cs1,τ+1 + λ2 cs2,τ+1) , N̄1 = N̄2 ,
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and

γb,t,τ+1 = γb,t,τ + γsm,τ+1 + 1.

In particular, for t > 0,

γl,t,τ = (2τ − 2t−1) (N̄b + N̄s) − 1 , l ∈ {s1, s2, b},

For t = 0,

γs,0,τ = (2τ − 1) (N̄b + N̄s) − 1 + N̄b , γb,0,τ = (2τ − 1) (N̄b + N̄s) − 1 + N̄s .

If N̄1 6= N̄2 then

cb,t,τ = Db,N̄b,N̄s(t, τ, c0) λ
2τ+1−2t

m , csm,t,τ = Ds,N̄b,N̄s(t, τ, c0) λ
2τ+1−2t

m ,

and

cs−m,t,τ =

(
λ−m
λm

)τ−t+1

csm,t,τ

for all t ≥ 0, for some combinatorial functions DN̄b,N̄s(t, τ) and Dl,N̄b,N̄s(0, τ) .

When N̄1 = N̄2,

csk,t,τ = ds,N̄b,N̄s(t, τ)λ
τ−t+1
k

(
t−1∏

r=1

(λr1 + λr2)
2τ−r−2t−r−1

)
τ∏

r=t

(λr1 + λr2)
2τ−r

and

cb,t,τ = db,N̄b,N̄s(t, τ)
λτ+1
1 + λτ+1

2

λt1 + λt2

(
t−1∏

r=1

(λr1 + λr2)
2τ−r−2t−r−1

)
τ∏

r=t

(λr1 + λr2)
2τ−r

for all t ≥ 0, for some combinatorial functions dk,N̄b,N̄s(t, τ) and db,N̄b,N̄s(t, τ).

Proposition G.12 Suppose that T > T̃ . Let λ1 ≤ λ2. In equilibrium, we always have

N̄b ≤ N̄1 ≤ N̄2. Furthermore, there exist constants π1 > π2 > π3 > π4 > π5 > π6 such

that the following are true:

1. If π > π1 then the unique equilibrium is (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmin).

2. If π1 > π > π2 then there are two equilibria:

• (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmin)

• (N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax).
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3. If π2 > π > π3 then there are three equilibria:

• (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmin)

• (N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax)

• (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmax).

4. If π3 > π > π4 then there are two equilibria:

• (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmin)

• (N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax).

5. If π4 > π > π5 then there is a unique equilibrium

(N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax).

6. If π5 > π > π6 there are two equilibria:

• (N̄b, N̄1, N̄2) = (Nmax, Nmax, Nmax)

• (N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax).

7. If π6 > π then there is a unique equilibrium

(N̄b, N̄1, N̄2) = (Nmax, Nmax, Nmax).

Proof. Denote by Gaini(N̄b, N̄1, N̄2) the gains from acquiring the maximal number of

signals for an agent of class i, conditional on the numbers of signals packets acquired by

all other agents. As in Lemma G.8, we define

π1 ≡ Gain1(Nmin, Nmax, Nmax), π2 ≡ Gain2(Nmin, Nmin, Nmax)

π3 ≡ Gain1(Nmin, Nmin, Nmax), π4 ≡ Gain2(Nmin, Nmin, Nmin)

π5 ≡ Gainb(Nmax, Nmax, Nmax), π6 ≡ Gainb(Nmin, Nmax, Nmax) .

(75)

Then, it suffices to prove that πi are monotone decreasing in i. As in the proof of Lemma

G.9, we have

πi ∼ Ai Zi,

and it remains to study the asymptotic behavior of Zi. We have

Zb(0, N̄b, N̄1, N̄2) = Zs1
b (0, N̄b, N̄1, N̄2) + Zs2

b (0, N̄b, N̄1, N̄2),
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where

Zsk
b (0, N̄b, N̄1, N̄2) ∼ 0.5λk

R−α

1 +R
Db(0, c0, N̄b, N̄s, α) cbT

(
1

cbT G

) 2α+1
α+1

× cb,0,τ−1 | logG|
γb,0,T−1−

α
α+1

γT

(76)

for some function Db(0, c0, N̄b, N̄s, α). Similarly,

Zsk(0, N̄b, N̄1, N̄2) ∼
R−α

1 +R
Ds(0, c0, N̄b, N̄s, α) λk csk,0,T−1 (cbT G)

− α
α+1

× | logG|γs,0,T−1−
α
α+1

γT .

(77)

We first study equilibria with N̄1 = Nmin < N̄2 = Nmax. Since, for both seller

classes, the surpluses from acquiring information are of comparable magnitude and are

much larger than those of the buyers, we ought to have N̄b = Nmin . This will be an

equilibrium if

π > (Zs1
b (0, Nmin, Nmin, Nmax) + Zs2

b (0, Nmin, Nmin, Nmax))Ab,

but this automatically follows from

π3 ∼ AZs1(0, Nmin, Nmin, Nmax) < π < AZs2(0, Nmin, Nmin, Nmax) ∼ π2.

Since Zs1/Zs2 = (λ1/λ2)
τ+1, this is only possible if λ1 < λ2. Furthermore,

Zsk(0, Nmin, Nmin, Nmax) ∼
R−α

1 +R
D̃s λk

(
λk
λ2

)T
λ

1
α+1

(2T−1)

2 G
− α
α+1

× | logG|(2
T−1 − 1) (Nmin+Nmax) − 1+Nmin−

α
α+1

(2T−1(Nmin+Nmax)− 1).
(78)

Now, N̄1 = N̄2 = Nmax, N̄b = Nmin forms an equilibrium if and only if

π > π6 ∼ (Zs1
b (0, Nmin, Nmax, Nmax) + Zs2

b (0, Nmin, Nmax, Nmax))Ab

and

π < π1 ∼ Zs1(0, Nmin, Nmax, Nmax)

∼
R−α

1 +R
D̃s λ1

λT1
(λT1 + λT2 )

α/(α+1)

T−1∏

r=1

(λr1 + λr2)
1

α+1
2T−r

×G
− α
α+1 | logG|(2

T−1 − 1) (Nmin+Nmax) − 1+Nmin−
α
α+1

(2T−1(Nmin+Nmax)− 1).

(79)
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Next, N̄b = N̄1 = N̄2 = Nmin is an equilibrium if and only if

π > π4 ∼ Zs2(0, Nmin, Nmin, Nmin)

∼
R−α

1 +R
D̃s λ2

λT2
(λT1 + λT2 )

α/(α+1)

×

T−1∏

r=1

(λr1 + λr2)
1

α+1
2T−r

G
− α
α+1 | logG|(2

T−1 − 1) (2Nmin) − 1+Nmin−
α
α+1

(2T−1(2Nmin)− 1) .

(80)

Finally, N̄b = N̄1 = N̄2 = Nmax is an equilibrium if and only if

π < π5 ∼ (Zs1
b (0, Nmax, Nmax, Nmax) + Zs2

b (0, Nmax, Nmax, Nmax))Ab . (81)

The fact that πi decreases with i follows directly from their asymptotic expressions.

Lemma G.13 There exists a unique solution T̂ > max{2, T̃} to the equation (α+1)T̂ =

2T̂ − 1, and a unique solution T̄ to the equation (2α+ 1)T̄ = 2T̄ − 1. Furthermore,

∏T−1
r=0 (λr1 + λr2)

2T−1−r

(λT1 + λT2 )
α

• is monotone decreasing in λ2 for all λ2 ≥ λ1 if T ≤ T̂ .

• is monotone increasing in λ2 for all λ2 ≥ λ1 if T ≥ T̄ .

Proof. The fact that T̂ exists and is unique follows directly from the convexity of the

function 2T . To prove that T̃ < T̂ , we need to show that (α+1)T̃ > 2T̃ −1. Substituting

T̃ = log2(α + 1) + 1, we get

2T̃ −1− (α+1)T̃ = 2(α+1)−1− (α+1)(log2(α+1)+1) = α− (α+1) log2(α+1) < 0,

because α + 1 > 2 implies that log2(α + 1) > 1.

Let now x = λ2/λ1 ≥ 1. Then, by homogeneity, it suffices to show that

∏T−1
r=0 (1 + xr)2

T−1−r

(1 + xT )α

is monotone decreasing in x. Differentiating, we see that we need to show that

T−1∑

r=1

2T−1−rr
xr

1 + xr
≤ α T

xT

1 + xT
.
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Since x ≥ 1, we have
xr

1 + xr
≤

xT

1 + xT
.

Therefore, using the simple identity

T−1∑

r=1

2T−1−rr = 2T − 1− T,

we get
T−1∑

r=1

2T−1−rr
xr

1 + xr
≤ (2T − 1− T )

xT

1 + xT
≤ αT

xT

1 + xT

for all T ≤ T̂ . Similarly, since

xr

1 + xr
≥

1

2
≥

1

2

xT

1 + xT
,

we get that

T−1∑

r=1

2T−1−rr
xr

1 + xr
≥ (2T − 1− T )

1

2

xT

1 + xT
≥ α T

xT

1 + xT

for all T ≥ T̄ .

The next proposition gives the partial-equilibrium impact on the information gath-

ering incentives of class-1 sellers of increasing the contact probability λ2 of the more active

sellers.

Proposition G.14 Suppose Condition 2 holds and λ1 ≤ λ2. Fixing the numbers N1,

N2, and Nb of signal packets gathered by all agents, consider the utility u1n − u1N1 of

a particular class-1 seller for gathering n signal packets. There exist integers T̄ and T̂ ,

larger than the time T̃ of Proposition 5.6 such that, for any n > N1, the utility gain

u1n − u1N1 of acquiring additional signal packets is decreasing in λ2 for 0 < T < T̂ and

is increasing in λ2 for T > T̄ .

Proofs of Propositions G.14 and 5.7. Monotonicity of the gains Gain1 follows

from Lemma G.13 and the expressions for this gain, provided in the proof of Proposition

G.12. Proposition 5.7 follows from Lemma G.13 if we set K = π1.
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H Two-Class Case

This appendix focuses more closely on information acquisition externalities by specializ-

ing to the case in which all investors have the same contact probability λ. In this case,

there are only two classes of investors, buyers b and sellers s. For a small time horizon T,

the lack of complementarity suggested by Proposition 5.7 implies that symmetric equi-

libria may fail to exist. For larger T, symmetric equilibria always exist and are generally

non-unique.

Definition H.1 An asymmetric rational expectations equilibrium is: for each class i ∈

{b, s}, the masses pin, n = 0, . . . , n̄, where pin is the mass of the sub-group of group i that

acquires exactly n packets; for each time t and seller-buyer pair (i, j), a pair (Sijt, Bijt) of

bid and ask functions; and for each class i and time t, a cross-sectional type distribution

ψit such that:

(1) The cross-sectional type distribution ψit is initially ψi0 =
∑n̄

n=0 pin ψ
∗(Nmin+n)

and

satisfies the evolution equation (6).

(2) The bid and ask functions (Sijt, Bijt) form the equilibrium uniquely defined by The-

orem 4.7.

(3) Each n ∈ {0, . . . , n̄} with pin > 0 solves maxn∈{0,...,n} uin, for each class i.

It turns out that, in all asymmetric equilibria, agents in each sub-group either do

not acquire information at all or acquire the maximal number n̄ of signal packets. We

will denote the corresponding strategy (n̄, pi), meaning that a group of mass pi of agents

of class i acquires the maximal number n̄ of packets and the other sub-group (of mass

1− pi) does not acquire any information.

Proposition H.2 There exist thresholds π > π̂ > π such that the following are true.

1. If T < T̃ then:

• A symmetric equilibrium exists if and only if π 6∈ (π, π̂).

• An asymmetric equilibrium exists if and only if π ≥ π.

2. If T > T̃ , then:

• A symmetric equilibrium always exists.

40



• Asymmetric equilibria exist if and only if π ≤ π.

Furthermore, there is always at most one equilibrium in which different sub-groups of

sellers acquire different amounts of information, and at most one equilibrium in which

different sub-groups of buyers acquire different amounts of information.

In order to determine how the equilibrium mass of those agents who acquire in-

formation depends on the model parameters, we need to study the behavior of the gain

from acquiring information. The next proposition studies externalities from information

acquisition by other agents on the information acquisition incentives of any given agent

in an out-of-equilibrium setting.

Proposition H.3 For all i, the gain

Gaini = max
n>0

{(uin − ui0)/n}

from information acquisition is increasing in Nmin, n̄, and λ. Fix an i and suppose that

only a subgroup of mass pi of class-i agents acquire information. Let us also fix the

information acquisition policy of the other class.

1. If T > T̃ , then Gaini/pi is monotone increasing in pi.

2. If T < T̃ , then Gaini/pi is monotone decreasing in pi.

Proof of Proposition H.3. Let π ≡ π1 > π2 ≡ π. Suppose that a mass p of buyers

acquire n̄ packets and the rest (mass 1 − p) do acquire no packets. For our asymptotic

formulae, this is equivalent to simply multiplying c0 by p1/Nmax for the initial density

of the buyers’ type distribution. Furthermore, the same recursive calculation as above

implies that ci,τ is proportional to p2
τ−1

for τ > 0 whereas ci,0,τ is proportional to p2
τ−1.

By the same argument as above, sellers always acquire more information and therefore

we ought to have that N̄s = Nmax. The equilibrium condition is just the indifference

condition for a buyer,

pπ = Gainb,

because then a seller will always acquire information since the gain from doing so is always

higher for him. Substituting the asymptotic expressions for the gains of information

acquisition, we get the asymptotic relation

pπ ∼ pmin{1,2T−1+1} pmax{2T−1−1,0} p−
2α+1
α+1

min{1,2T−1} π3.
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For T < T̃ , this gives a unique equilibrium value of p for any π ≥ π3. For T > T̃ , this

gives a unique value of p for all π ≤ π3.

Similarly, for the case when different groups of sellers acquire different amounts of

information, the equilibrium condition is

pπ ∼ pmax{2T−1,1} p−
α
α+1

min{1,2T−1} π1

For T < T̃ , this gives a unique equilibrium value for p for any π ≥ π1. For T > T̃ , this

gives a unique value for p for all π ≤ π1.

The fact that there are no equilibria in which both buyers and sellers acquire

information asymmetrically follows from the expressions for the asymptotic size of the

gains of information acquisition.

The intuition behind Proposition H.3 is similar to that behind Proposition G.14.

An increase in the mass p gives rise to both a learning effect and a pricing effect. The

learning effect dominates the pricing effect if and only if there are sufficiently many

trading rounds, that is, when T > T̃ .

Now, the equilibrium indifference condition, determining the mass pi is given by

π = p−1
i Gaini(pi, λ, Nmin, n̄). (82)

Proposition H.3 immediately yields the following result.

Proposition H.4 The following are true:4

• If T > T̃ then equilibrium masses pb and ps are decreasing in λ,Nmin, n̄;

• If T < T̃ then equilibrium masses pb and ps are increasing in λ,Nmin, n̄.

We note that a stark difference between the monotonicity results of Propositions

G.14 and H.3. By Proposition H.3, in the two-class model, gains from information acqui-

sition are always increasing in the “market liquidity” parameter λ. By contrast, Propo-

sition G.14 shows that, with more than two classes, this is not true anymore. Gains

may decrease with liquidity. The effect of this monotonicity of gains differs, however,

between symmetric and asymmetric equilibria. In symmetric equilibiria, the effect goes

in the intuitive direction: Since gains increase with λ, so does the equilibrium amount

4Recall that, by Proposition H.2, equilibrium masses pb and ps are always unique (if they exist).
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of information acquisition. By contrast, equation (82) shows that, for asymmetric equi-

libria, the effect goes in the opposite direction: Since the gains increase in both λ and

the mass p of agents that acquire information (when T > T̃ ), this mass must go down in

equilibrium in order to make the agents indifferent between acquiring and not acquiring

information.

From this result, we can also consider the effect of “education policies” such as the

following.

• Educating agents before they enter the market by increasing the number Nmin of

endowed signal packets.

• Increasing the number n of signal packets that can be acquired.

Proposition H.4 implies that, in a dynamic model with sufficiently many trading

rounds, both policies improve market efficiency. By contrast, a static model that does

not account for the effects of information percolation would lead to the opposite policy

implications.

I Endogenous Investment in Matching Technology

In this section, we take initial information endowments as given and instead focus on

endogenous investment in matching technologies. In particular, the initial type densities

are characterized by a fixed vector N = (N1, . . . , NM) of initially acquired signal packets.

Before the initial signals are revealed to each agent, agents in class i individually choose

an amount χij ∈ K ≡ {χ, χ} to invest in a technology for meeting investors of class j,

for some minimum investment χ > 0 and maximum investment χ > χ. We examine the

case of symmetric choices within classes, so that agents of class i commonly choose the

investment χij. Given these choices, in each period the probability with which an agent of

class imeets some agent in class j is fij(χij, χji), for a given function fij : K×K → (0, 1).

By the exact law of large numbers, this technology satisfies

mifij(χij , χji) = mjfji(χji, χij).

We always make the non-satiation assumption that

∑

j 6=i

fij(χ, χ) < 1.
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Given the M × (M − 1) matching-technology investments χ = (χij), the cross-

sectional type density ψit of the class-i agents satisfies the evolution equation

ψi,t+1 =

(
1−

∑

j 6=i

fij(χij , χji)

)
ψi,t +

∑

j 6=i

fij(χij, χji)ψi,t ∗ ψj,t. (83)

Similarly, given χ, a particular agent of class i who makes the technology choice c ∈

KM−1 has a Markov type process whose probability density ψc,χt at time t satisfies the

Kolmogorov forward equation

ψc,χt+1 =

(
1−

∑

j 6=i

fij(cj, χji)

)
ψc,χt +

∑

j 6=i

fij(cj , χji)ψ
c,χ
t ∗ ψj,t. (84)

We will be applying the following technical assumption.

Condition 3 . For any integer T > 1 and any pair (i, j) of agent classes, the function

c 7→ (fij(χ, c))
T − (fij(χ, c))

T is nonnegative and monotone increasing in c.

This assumption guarantees that the increase in matching probabilities associated

with investing in a more effective matching technology is increasing in the investments in

matching technology by other agents. The complementarity property holds, for example,

for the constant-returns-to-scale technology of Duffie, Malamud and Manso (2009), by

which fij(χij , χji) = kijχijχji for some constant kij. The idea is natural: the greater the

efforts of other agents at being matched, the more easily are they found by improving

one’s own search technology.

Definition I.1 A (symmetric) rational expectations equilibrium consists of matching

technology investments χ = (χij); for each time t and each seller-buyer pair (i, j), a pair

(Sijt, Bijt) of bid and ask functions; and for each class i and time t, a cross-sectional

type density ψit such that:

1. The cross-sectional type density ψit satisfies the evolution equation (83).

2. The bid and ask functions (Sijt, Bijt) are the equilibrium bidding strategies uniquely

defined by Theorem 4.7.
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3. The matching-technology investments χi = (χi1, . . . , χiM) of class i maximize, for

any agent of class i, the expected total trading gains net of matching-technology

costs. That is, χi solves

sup
c∈KM−1

Ui(c, χ),

where

Ui(c, χ) = E

(
T∑

t=1

∑

j

fij(cj , χji) vijt(Θ
c,χ
t ;Bijt, Sijt)

)
− (χi1 + · · ·+ χiM), (85)

where the agent’s type process Θc,χ
t has probability density ψc,χt satisfying (84) and

the expected gain vijt associated with a given sort of trading encounter is as de-

fined by (9) or (11), depending on whether class-i agents are sellers or buyers,

respectively.

We say that search is a strategic complement if, for any agent class i and any

matching technology investments χ = (χij), the utility gain Ui(c
′, χ)−Ui(c, χ) associated

with increasing the matching technology investments from c to c′ ≥ c is increasing in χ−i,

the matching-technology investments of classes j 6= i. The main result of this section is

the following theorem.

Theorem I.2 Suppose Conditions 2 and 3 hold. Let T̄ and ḡ be as in Proposition 5.5.

Then, for any proportional gain from trade G > g and market duration T > T̄ , search is

a strategic complement.

The intuition for this result is analogous to that of Proposition 5.5. If other agents

are assumed to have increased their ability to find counterparties, and thereby collect

more information from trading encounters, then under the stated conditions a given

agent is encouraged to do the same in order to mitigate adverse selection in trade with

better informed counterparties.

This complementarity can be responsible for the existence or non-existence of equi-

libria, depending on the duration T of markets, just as in the previous section. The Tarski

(1955) fixed point theorem implies the following analogue of Corollary 5.3.

Corollary I.3 Suppose Conditions 2 and 3 hold. For any proportional gain from trade

G > g and market duration T > T̄ , there exists a symmetric equilibrium. Furthermore,

the set of equilibria investments in matching technology is a lattice with respect to the

natural partial order on KM×(M−1).
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Just as with the discussion following Corollary 5.3, a maximal and a minimal

element of the set of equilibria can be selected by the same standard iteration procedure.

We also have the following comparative-statics variant of Proposition 5.5.

Proposition I.4 Under Conditions 2 and 3, there exist some g and T̄ such that for any

proportional gain from trade G > g and market duration T > T̄ , equilibrium investment

in matching technology is increasing in the initial vector N of acquired signal packets.

The intuition behind this result is analogous to that behind Theorem 5.2. If traders

are initially better informed and T is large, then the learning effect dominates, giving

agents an incentive to invest more in search technologies.

This result also illustrates the role of cross-class externalities. Even if agents in

class j do not trade with those in class i, an increase in the initial information endowment

of class i increases the search incentives of class j. This is a “pure” learning externality in

that, if class i is better informed, this information will eventually percolate to the trading

counterparties of class j. This encourages class j to have a better search technology.5

We also consider the incentive effects for the formation of “trading networks.”

(Because our model is based on a continuum agents, the network effect is with respect to

agent classes, not individual agents.) With respect to information gathering incentives,

agents prefer to trade with better informed agents. This incentive can even overcome

the associated direct impact of adverse selection.

Condition 4 (Symmetry). Classes are symmetric in the sense that they have equal

masses mi = mj and fij does not depend on (i, j).

Theorem I.5 Suppose that class-i agents are initially better informed than those of class

j, that is, Ni > Nj. Under Conditions 2, 3, and 4, there exists some g and some T̄ such

that for any proportional gain from trade G > g and market duration T > T̄ , in any

equilibrium:

1. There is more investment in matching with class i than with class j. That is,

χki ≥ χkj for all k.

2. Class-i agents invest more in matching technology than do class-j agents. That is,

χi ≥ χj.

5As before, this is based on the assumption that there is an ordered path of classes connecting class
i with class j.
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The incentive effects associated with this result naturally support the existence

of “hub-spoke trading networks,” with better informed agents situated in the “center,”

and with other agents trading more with central agents by virtue of establishing trading

relationships, meaning investment in the associated matching technologies. As a result,

one expects a positive correlation between the frequency of trade of a class of agents

and its information quality. While this effect accounts for learning opportunities, pricing

effects, and adverse selection, we do not capture some other important effects, such as

those associated with size variation in trades and risk aversion.

Finally, we note that if the market duration is moderate, meaning that T ∈ (T̃ , T̄ ),

the learning effect may not be strong enough to create the complementarity effects that

we have described. Indeed, there are counterexamples for the 3-class model of the pre-

vious section.

J Proofs: Endogenous Matching Technology

Proof of Theorem I.2. To prove the theorem, we need to show that, for any k 6= i, the

utility gain for an agent of class i from searching more for agents of class k is monotone

increasing in the search efforts of all other agents. This utility gain is given by

T∑

t=0

∑

j 6=i,k

fij(χij, χji)

∫

R

0.5(πHi,j,t(θ)h
H
i,t+1(χ

k,+
i , θ) + πLi,j,t(θ)h

L
i,t+1(χ

+,k
i , θ)) dθ

+

T∑

t=0

fik(χ, χki)

∫

R

0.5(πHi,k,t(θ)h
H
i,t+1(χ

k,+
i , θ) + πLi,j,t(θ)h

L
i,t+1(χ

k,+
i , θ)) dθ

−
T∑

t=0

∑

j 6=i,k

fij(χij , χji)

∫

R

0.5(πHi,j,t(θ)h
H
i,t+1(χ

k,−
i , θ) + πLi,j,t(θ)h

L
i,t+1(χ

k,−
i , θ)) dθ

−

T∑

t=0

fik(χ, χki)

∫

R

0.5(πHi,k,t(θ)h
H
i,t+1(χ

k,−
i , θ) + πLi,j,t(θ)h

L
i,t+1(χ

k,−
i θ)) dθ,

(86)

where χk,±i coincides with χi, but with χik replaced by χ and χ, respectively. Lemmas

G.2-G.3 imply that the leading asymptotic term of this gains from search can be written

as
T∑

t=0

(fik(χ, χ))
t − (fik(χ, χ))

t)Kijt,

for some nonnegative coefficients Kijt that do not depend on χik. Furthermore, a slight

modification of the proof of Proposition 5.5 implies that these coefficients Kijt are mono-
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tone increasing in the matching-technology investments of other classes whenever T is

sufficiently large. The claim follows.

Proof of Proposition I.4. The proof follows directly from the arguments in the

proof of Theorem I.2 because the coefficients Kijt are monotone in the initial amount of

information.

Proof of Theorem I.5. It follows from Lemmas G.2-G.3 that the expected profit

from trading with better informed classes is always larger when T is sufficiently large,

and that these profits are larger for initially better informed agents. The claim follows.

K Dynamic Information Acquisition

For settings in which side investment in information gathering can be done dynamically,

based on learning over time, we are able to get analytical results only with a sufficiently

low cost of information acquisition, corresponding to a per-packet cost of signals of

π4 > π, the case considered in the previous appendix.

In this case, we can show that there is a “threshold equilibrium,” characterized

by thresholds X it < X it, such that agents of type i acquire additional information only

when their log-likelihood is in the interval (X it, Xit).

The timing of the game is as follows. At the beginning of each period t, an agent

may acquire information . Trading then takes place after an agent meets a counterparty

with probability λ. Without loss of generality, when they acquire information, they

choose between Nmin and Nmax packets. Otherwise, there will be multiple thresholds

for each intermediate level number of signals. This is feasible to model, but much more

complicated.

We let ψi,t denote the cross-sectional density of types after information acquisition,

and before trading takes place, and let χi,t denote the cross-sectional density of types

after the auctions take place. Thus,

ψi,t+1 = (χi,t I(Xi,t+1,Xi,t+1)
) ∗ ηNmax + (χi,t IR\(Xi,t+1,Xi,t+1)

) ∗ ηNmin

is the density that determines the bid and ask functions, and

χi,t+1 = (1− λ)ψi,t+1 + λψKb,t+1 ∗ ψs,0+1

is the cross-sectional density of types after the auctions took place.
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We now denote by Qi,t,τ (θ, x) the cross-sectional type density at time τ right before

the auctions take place of an agent of class i conditional on his type being θ at time

t after the information has been acquired. Then, conditional on his type being θ at

time t before information has been acquired, depending on whether the agent acquires

Ni ∈ {Nmax, Nmin} signals, his type density at time τ is

RNi
i,t,τ (θ, x) =

∫

R

ηNi(z − θ)Qi,t,τ(z, x) dz .

Furthermore, Qi,t,τ (z, x) satisfies the recursion

Qi,t,τ+1(θ, x) =
(
qi,t,τ (θ, ·)I[Xi,τ+1 , Xi,τ+1]

)
∗ ηNmax +

(
qi,t,τ (θ, ·)I[Xi,τ+1 ,Xi,τ+1]

)
∗ ηNmin

where

qi,t,τ (θ, ·) = λQi,t,τ (θ, ·) ∗ ψj,τ + (1− λ)Qi,t,τ .

We will also need the following additional technical condition.

Condition 3. Suppose there exist K, ǫ > 0 such that

|ψ
H
(−x)e(α+1)x − c0|+ |ψ

H
(x)eαx − c0| ≤ K e−ǫ x (87)

for all x > 0.

Theorem K.1 There exist A, g > 0 such that, for all G > g and all π < e−AG, there

exists a threshold equilibrium.

We let MH,L
it note the mass of agents of class i who acquire information at time t,

indicating with a superscript the corresponding outcome of Y , H or L.

Theorem K.2 There exists a critical time t∗ such that the following hold in any thresh-

old equilibrium under the conditions of Theorem K.1.

• Sellers:

– For both H and L, the mass MH,L
st is monotone decreasing with t, and increas-

ing in G
−1
, T, Nmax.

– MH,L
st is monotone increasing in λ for t < t∗ and is monotone decreasing in

λ for t ≥ t∗.
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• Buyers:

– The mass MH,L
bt is monotone decreasing in t and is increasing in T,Nmax.

– MH
bt is monotone increasing in G

−1
.

– MH
bt is monotone increasing in λ for t < t∗ and is monotone decreasing in λ

for t ≥ t∗.

– ML
bt is monotone decreasing in G

−1
.

L Proofs: Dynamic Information Acquisition

In this section we study asymptotic equilibrium behavior when G and π−1 become large.

Furthermore, we will assume that π−1 is significantly larger than G, so that π−1/G
A
is

large for a sufficiently large A > 0. Throughout the proof, we will constantly use the

notation X >> Y if, asymptotically, X − Y → +∞.

L.1 Exponential Tails

Note that, by Lemma 4.5,

χHi0(x) = (1− λ)ψKi,0 + λψHb,0 ∗ ψ
H
s,0 ∼ c0 e

−αx |x|2Nmax−1 = c0 e
−αx |x|γ0 .

Furthermore, as we show below, in any equilibrium we always have

Xbt << Xb,t+1 << Xst << Xs,t+1 (88)

and

Xb,t+1 << Xbt << Xs,t+1 << Xst. (89)

Lemma L.1 Suppose that x→ +∞ and X it → +∞ in such a way that

Xb,t+1 << Xbt << Xs,t+1 << Xst

for all t and such that, for any fixed i, t, the difference x−X i,t either stays bounded or

converges to +∞ or converges to −∞. Then,

ψit(x) ∼ Cψ
it e

−(α+IL)x xγ
ψ
t

and

χit(x) ∼ Cχ
it e

−(α+IL)x xγ
χ
t ,
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where

γψt = Nmax + γχt−1

and

γχt = 2γψt + 1 .

The powers mψ
t , m

χ
t with which λ enters Cψ,χ

it satisfy

mχ
t = 2mψ

t + 1 , mψ
t = mχ

t−1 .

Furthermore, there exists a constant K1 such that

|ψit(x)| ≤ K1 e
−(α+IL)x xγ

ψ
t

and

|χit(x)| ≤ K1 e
−(α+IL)x xγ

χ
t .

In addition, there exists a δit > 0 such that

|ψit(x)e
αx x−γ

ψ
t − Cψ

it | < K1e
−δitx

for all x > A.

Proof. The proof is by induction. Recall that

ηN = ψ
∗N

Fix a sufficiently large A > 0. Then,

χi,t+1 =

∫

R

ψbt(x− y)ψst(y) dy =

∫ x

−∞

ψbt(x− y)ψst(y) dy

+

∫ +∞

x

ψbt(x− y)ψst(y) dy

=

∫ +∞

0

ψbt(y)ψst(x− y)dy +

∫ 0

−∞

ψbt(y)ψst(x− y) dy

=

∫ A

0

ψbt(y)ψst(x− y)dy +

∫ +∞

A

ψbt(y)ψst(x− y) dy

+

∫ 0

−∞

ψbt(y)ψst(x− y) dy

≡ I1 + I2 + I3 .
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Pick an A so large that ψbt can be replaced by its asymptotic from the induction hy-

pothesis. Note that we can only take the “relevant” asymptotic coming from the values

of y satisfying y < Xb,T because the tail behavior coming from “further away” regimes

are asymptotically negligible. Then,

I2 =

∫ +∞

A

ψbt(y)ψst(x− y) dy

∼

∫ +∞

A

C e−(α+IL)y yγ
ψ
t ψst(x− y) dy

= C e−(α+IL)x xγ
ψ
t

∫ x−A

−∞

e(α+IL)y |1− y/x|γ
ψ
t ψst(y) dy . (90)

Now, applying l’Hôpital’s rule and using the induction hypothesis, we get that

∫ x−A
−∞

e(α+IL)y ψst(y) dy

(γψt + 1)−1xγ
ψ
t +1

∼ Cst.

Thus, we have proved the required asymptotic for the term I2.

To bound the term I1, we again use the induction hypothesis and get

∫ A

0

ψbt(y)ψst(x− y) dy ≤ K1

∫ A

0

ψbt(y)e
−(α+IL)(x−y) |x− y|γ

ψ
t dy ∼ e−(α+IL)x|x|γ

ψ
t C̃2,

for some constant C̃2, so the term I1 is asymptotically negligible relative to I2.

Finally, for the term I3, we have

∫ +∞

x

ψbt(x− y)ψst(y) dy =

∫ 0

−∞

ψbt(y)ψst(x− y) dy . (91)

Now, picking a sufficiently large A > 0 and using the same argument as above, we can

replace the integral by
∫ 0

−A
and then use the induction hypothesis to replace ψst(x− y)

by Cste
−(α+IL)(x−y)|x− y|γ

ψ
t . Therefore,

∫ 0

−∞

ψbt(y)ψst(x− y) dy ∼

∫ 0

−∞

ψbt(y)Cste
−(α+IL)(x−y) |x− y|γ

ψ
t dy

∼ Cste
−(α+IL)x xγ

ψ
t

∫ 0

−∞

ψbt(y)e
(α+IL)y dy ,

(92)
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which is negligible relative to I2. Thus, we have completed the proof of the induction

step for χit. It remains to prove it for ψit. We have

ψit(x) =

∫ Xit

Xit

χi,t−1(y)ηNmax(x− y) dy +

∫ Xit

−∞

χi,t−1(y)ηNmin
(x− y) dy

+

∫ +∞

Xit

χHi,t−1(y)η
H
Nmin

(x− y) dy

=

∫ Xit

−∞

χi,t−1(y)ηNmax(x− y) dy −

∫ Xit

−∞

χi,t−1(y)η
H
Nmax

(x− y) dy

+

∫ Xi1

−∞

χHi0(y)ηNmin
(x− y) dy +

∫ +∞

Xi1

χi0(y)ηNmin
(x− y) dy .

(93)

Since X i1 → −∞, the induction hypothesis implies that

∫ Xit

−∞

χi,t−1(y)ηN(x− y) dy ∼

∫ Xit

−∞

Ci,t−1e
(α+IH )y|y|γ

χ
i,t−1 cN0 e

−(α+IL)(x−y) |x− y|N−1 dy

= Ci,t−1 c
N
0 e

−(α+IL)x xN−1

∫ 0

−∞

e(2α+1)(y+X it)|y +Xit|
γχi,t−1 |1− (y +X it)/x|

N−1 dy

= o
(
e−(α+IL)x xN−1 e(2α+1)X it |X it|

γχi,t−1

)
.

(94)

The same argument as above (the induction step for χit) implies that
∫

R

χi,t−1(y)ηN(x− y) dy ∼ C e−(α+IL)x xγ
χ
i,t−1+N .

Now, we will have to consider two different cases. If x − Xit → +∞, we can replace

ηHN (x− y) in the integral below by cN0 |x− y|N−1 e−α(x−y) and get

∫ Xi1

−∞

χi,t−1(y)ηN(x− y) dy

∼ cN0 e
−(α+IL)x |x|N−1

∫ Xi1

−∞

χi,t−1(y) e
(α+IL)y |1− y/x|N−1 dy

(95)

Using l’Hopital’s rule and the induction hypothesis, we get

∫ Xit

−∞

χi,t−1(y) e
(α+IL)y dy ∼ C (X it)

γχi,t−1+1.

It remains to consider the case when x−X it stays bounded from above. In this case,

∫ Xit

−∞

χi,t−1(y)ηN(x− y) dy =

∫ +∞

x−Xit

χi,t−1(x− z)ηN (z) dy . (96)
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Now, the same argument as in (94) implies that
∫ x−Xi1

−∞
χi0(x− z)ηHN (z) dy is asymptot-

ically negligible relative to
∫ +∞

x−Xi1
χi0(x − z)ηHN (z) dy because x − Xi1 is bounded from

above. Therefore,

∫ +∞

x−Xit

χi,t−1(x− z)ηN (z) dy ∼

∫ +∞

−∞

χHi0(x− z)ηHN (z) dy ∼ C e−αx xγ
χ
i,t−1+N .

The induction step follows now from (93). The proof of the upper bounds for the densities

is analogous.

The arguments in the proof of Lemma L.1 also imply the following result.

Lemma L.2 Under the hypothesis of Lemma L.1, we have that, when θ → +∞ so that

θ − x→ +∞,
qi,t,τ (θ, x) ∼ Cq

i,t,τ e
(α+IH )(x−θ) |x− θ|γ

q
t,τ

Qi,t,τ (θ, x) ∼ CQ
i,t,τ e

(α+IH )(x−θ) |x− θ|γ
Q
t,τ

RNi
i,t,τ (θ, x) ∼ CR,Ni

i,t,τ e(α+IH )(x−θ) |x− θ|γ
Q
t,τ+Ni ,

(97)

where
γqt,τ = γQt,τ + γψτ + 1

γQt,τ = γqt,τ−1 +Nmax .
(98)

Lemmas L.1 and L.2 immediately yield the next result.

Lemma L.3 We have:

γψt = (2t+1 − 1)Nmax − 1

γχt = (2t+2 − 2)Nmax − 1

γqt,τ = (2τ+2 − 2t+1 − 1)Nmax − 1

γQt,τ = (2τ+1 − 2t+1)Nmax − 1 .

(99)

Furthermore, the powers mt,τ of λ with which λ enters the corresponding coefficients ct

and Ct,τ are given by:

mψ
t = 2t−1 − 1

mχ
t = 2t − 1

mq
t,τ = 2τ+1 − 2t

mQ
t,τ = 2τ − 2t .

(100)
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L.2 Gains from Information Acquisition

For any given agent i, the expected utility Ui,t,τ from trading during the time interval

from t to τ immediately before information is acquired can be represented as

Ui,t,τ (θ) =
τ∑

r= t

ui,t,τ(θ) .

Suppose that, at time t, an agent of type i with posterior θ makes a decision to acquire

information with type density η. Then, the agent knows that his type at time τ, at

the moment when the next auction takes place, his posterior will be distributed as

δθ ∗ η ∗ gKi,t,τ−1.

We will use the following notation:

GK,R,N
t,τ (θ, x) =

∫ +∞

x

RK,N
t,τ (θ, y) dy , FK,R,N

t,τ (θ, x) = 1 − GK,R,N
t,τ (θ, x),

for K ∈ {H,L}.

The following analog of Lemma G.1 holds.

Proposition L.4 For a given buyer with posterior θ at time t, before the time-t auction

takes place,

ub,t,τ (N, θ) = P (θ)λ

∫

R

(vH − Sτ (y))G
H,R,N
t,τ (θ, Vbτ (Sτ (y)))ψ

H
sτ(y) dy

+ (1− P (θ))λ

∫

R

(vb − Sτ (y))G
L,R,N
t,τ (θ, Vbτ (Sτ (y)))ψ

L
sτ(y) dy,

(101)

whereas for a seller,

us,t,τ(N, θ) = P (θ) λ

∫

R

(Sτ (y)− vH)GH
bτ (Vbτ (Sτ (y)))R

H,N
t,τ (θ, y) dy

+ (1− P (θ)) λ

∫

R

(Sτ (y)− vs)G
L
bτ (Vbτ (Sτ (y)))R

L,N
t,τ (θ, y) dy.

(102)

Thus, the gain from acquiring additional information is given by

∑

τ>t

(ui,t,τ(Nmax, θ) − ui,t,τ (Nmin, θ)) .

The following lemma provides asymptotic behavior of these gains for extreme type values.

Lemma L.5 We have
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• For a buyer:

– As θ → +∞,

ub,t,τ (Nmax, θ)− ub,t,τ (Nmin, θ) ∼ CR,Nmax

b,t,τ e−(α+1)θ|θ|γ
Q
t,τ+Nmax

×

∫

R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)α+1

e−(α+1)y ψHsτ (y) dy.
(103)

– As θ → −∞,

ub,t,τ (Nmax, θ)− ub,t,τ(Nmin, θ) ∼ CR,Nmax

b,t,τ Re(α+1)θ|θ|γ
Q
t,τ+Nmax

×

∫

R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)−α

eαy ψHsτ (y) dy.
(104)

• For a seller, as θ → −∞,6

us,0,τ(Nmax, θ)− us,0,τ(Nmin, θ) ∼ CR,Nmax

s,0,τ Re(α+1)θ|θ|γ
Q
t,τ+Nmax

×

∫

R

((
(Sτ (y)− vb) + (vH − Sτ (y))F

H
bτ (Vbτ (Sτ (y)))

)
ey

+
(
(Sτ (y)− vb) + (vs − Sτ (y))F

L
bτ(Vbτ (Sτ (y)))

))
e−(α+1)y dy.

(105)

Furthermore, the derivatives of ui,t,τ (Nmax, θ) − ui,t,τ(Nmin, θ) with respect to θ have the

same asymptotic behavior, but with all constants on the right-hand sides multiplied by

α + 1 when θ → −∞ and by −(α + 1) when θ → +∞.

Proof. Throughout the proof, we will often interchange limit and integration without

showing the formal justification, which is based the same arguments as in the case of

initial information acquisition considered above. However, the calculations are lengthy

and omitted for the reader’s convenience.

We have
∫

R

(vH − Sτ (y))G
H,R,N
t,τ (θ, Vbτ (Sτ (y)))ψ

H
sτ(y) dy = (vH − vb)

+

∫

R

(vb − Sτ (y))ψ
H
sτ(y) dy −

∫

R

(vH − Sτ (y))F
H,R,N
t,τ (θ, Vbτ (Sτ (y)))ψ

H
sτ(y) dy

(106)

6The case θ → +∞ will be considered separately below.
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and
∫

R

(vb − Sτ (y))G
L,R,N
t,τ (θ, Vbτ (Sτ (y)))ψ

L
sτ(y) dy

=

∫

R

(vb − Sτ (y))ψ
L
sτ(y) dy −

∫

R

(vb − Sτ (y))F
L,R,N
t,τ (θ, Vbτ (Sτ (y)))ψ

L
sτ(y) dy.

(107)

By Lemma L.2, for a fixed x, we have

FR,N
t,τ (θ, Vbτ (Sτ (y))) ∼ CF,R,N

b,t,τ e(α+IH )(Vbτ (Sτ (y))−θ) |θ|γ
Q
t,τ+N ,

and the first claim follows from the identity

Vbτ (Sτ (y)) = log
Sτ (y)− vb
vH − Sτ (y)

− y.

The case of the limit θ → −∞ is completely analogous.

It remains to consider the case of a seller. The term corresponding to state H gives
∫

R

(Sτ (y)− vH)GH
bτ (Vbτ (Sτ (y)))R

L,N
t,τ (θ, y) dy

= (vb − vH) +

∫

R

(
(Sτ (y)− vb) + (vH − Sτ (y))F

H
bτ (Vbτ (Sτ (y)))

)
RL,N
t,τ (θ, y) dy.

(108)

In the limit as θ → −∞,
∫

R

(
(Sτ (y)− vb) + (vH − Sτ (y))F

H
bτ (Vbτ (Sτ (y)))

)
RL,N
t,τ (θ, y) dy

∼ CR,N
s,0,τe

αθ |θ|γ
Q
t,τ+N

∫

R

(
(Sτ (y)− vb) + (vH − Sτ (y))F

H
bτ (Vbτ (Sτ (y)))

)
e−αy dy.

(109)

The term corresponding to state L gives
∫

R

(Sτ (y)− vs)G
L
bτ (Vbτ (Sτ (y)))R

L,N
t,τ (θ, y) dy

= (vb − vs) +

∫

R

(
(Sτ (y)− vb) + (vs − Sτ (y))F

L
bτ(Vbτ (Sτ (y)))

)
RL,N
t,τ (θ, y) dy.

(110)

In the limit as θ → −∞,
∫

R

(
(Sτ (y)− vb) + (vs − Sτ (y))F

L
bτ(Vbτ (Sτ (y)))

)
RL,N
t,τ (θ, y) dy

∼ CR,N
s,0,τe

(α+1)θ |θ|γ
Q
t,τ+N

∫

R

(
(Sτ (y)− vb) + (vs − Sτ (y))F

L
bτ(Vbτ (Sτ (y)))

)
e−(α+1)y dy.

(111)
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This completes the proof.

The claim concerning the derivatives with respect to θ is proved analogously.

The arguments of the proof of Lemmas F.1-F.9 imply the following result.

Lemma L.6 Let
(α + 1)2

α− 1
> α .

Then

∫

R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)α+1

e−(α+1)y ψHsτ (y) dy

∼ csτ ε
2α+1
α+1

∣∣∣∣
log ε

α + 1

∣∣∣∣
γτ ∫

R

(vH − S(y))

(
S(y)− vb
vH − S(y)

)α+1

e−(2α+1)y dy.

(112)

Similarly, we have the following result.

Lemma L.7 Let
α+ 1

α− 1
> α .

Then

∫

R

((
(Sτ (y)− vb) + (vH − Sτ (y))F

H
bτ (Vbτ (Sτ (y)))

)
ey

+
(
(Sτ (y)− vb) + (vs − Sτ (y))F

L
bτ(Vbτ (Sτ (y)))

))
e−(α+1)y dy

∼ ε
α
α+1

∫

R

(
(S(y)− vb)e

−αy −
α + 1

α
e−(2α+1)y

(
S(y)− vb
vH − S(y)

)α)
dy.

(113)

In order to prove the next asymptotic result, we will need the following auxiliary

lemma.

Lemma L.8 Let f(z) solve

f ′(z) =

(
log(1/ζ)

log(1/ζ) + log(1/f(z))

)γ (
z + ε

1
α+1 f(z)

1
α+1

)
, (114)

with f(0) = 0. Then, rε(y) = f(ε
1

α−1y)ε−2/(α−1) converges to the function r(y) that is

the unique solution to

r′(y) = y + (r(y))1/(α+1) , r(0) = 0 .
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Proof. We have

r′ε(y) = ε−
1

α−1 f ′(ε
1

α−1y)

= ε−
1

α−1

(
log(1/ζ)

log(1/ζ) + log(1/f(ε
1

α−1y))

)γ (
ε

1
α−1y + ε

1
α+1 f(ε

1
α−1y)

1
α+1

)

=

(
log(1/ζ)

log(1/ζ) + log(ε−2/(α−1)/rε(y))

)γ (
y + (rε(y))

1
α+1

)
.

(115)

The right-hand side of this equation converges to y + (rε(y))
1/(α+1). The fact that rε(y)

converges to r(y) follows from the uniqueness part of the proof of Proposition D.1 and

standard continuity arguments.

Lemma L.9 We have

∫

R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)−α

eαy ψHsτ (y) dy

∼ ε−α/(α−1)

∫ ∞

0

y−α−1 φsτ
(
y−1 r(y)1/(α+1)

)
dy,

(116)

where

φsτ (y) = y−αψHsτ (− log y) .

Proof. For simplicity, we make the normalization vH = 1, vb = 0.

We make the change of variable Sτ (y) = z, y = Vsτ (z) , dy = V ′
sτ(z) dz . Using

the identity Vsτ (z) = log z
1−z

− Vbτ (z), we get

V ′
sτ (z) =

1

z(1− z)
− Vbτ (z) .

We will also use the notation g(z) = e(α+1)Vbτ (z) from the proof of Proposition D.1.

Then, we have

∫

R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)−α

eαy ψHsτ (y) dy

=

∫ 1

0

(1− z)

(
1− z

z

)α
eαVsτ (z) ψHsτ (Vsτ (z)) V

′
sτ(z) dz

=

∫ 1

0

(1− z) e−αVbτ (z) ψHsτ

(
log

z

1− z
− Vbτ (z)

) (
1

z(1 − z)
− V ′

bτ (z)

)
dz

=

∫ 1

0

(1− z) g(z)−
α
α+1 ψHsτ

(
log

z

1− z
−

log g(z)

α+ 1

)(
1

z(1− z)
−

g′(z)

(α + 1)g(z)

)
dz.

(117)
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As we have shown in the proof of Proposition D.1, g(z)/ε converges to a limit f0(z)

when ε → 0. A direct calculation based on the dominated convergence theorem and the

bounds for f(z) established in the proof of Proposition D.1 imply that the limit

lim
ε→0

ε
α
α+1

∫ 1

r

(1− z) g(z)−
α
α+1 ψHsτ

(
log

z

1− z
−

log g(z)

α + 1

)(
1

z(1 − z)
−

g′(z)

(α + 1)g(z)

)
dz

exists and is finite for any r > 0. By contrast, as we will show below,

ε
α
α+1

∫ r

0

(1− z) g(z)−
α
α+1 ψHsτ

(
log

z

1− z
−

log g(z)

α + 1

)(
1

z(1 − z)
−

g′(z)

(α + 1)g(z)

)
dz

blows up to +∞ as ε → 0. Therefore, the part
∫ 1

r
of the integral is asymptotically

negligible and we will in the sequel only consider the integral
∫ r
0
with a sufficiently small

r > 0. Then, it follows from the proof of Proposition D.1 that we may assume that

g(z) = εf(z) where f(z) solves the ODE (114). For the same reason, we may replace

1− z by 1. It also follows from the proof of Proposition D.1 that

K2D(q(z)) ≤ g(z) ≤ K1D(q(z)) (118)

for some K1 > K2 > 0, where

D(x) = x (− log x)−γ,

with γ = γτ , and

q(z) = ζ1+1/αC z(α+1)/α (− log(ζz))−γ/α +
1

2
ζ z2

for some constant C > 0.

Denote

φ(e−x) = eαx ψHsτ (x) .

We have ψHsτ (x) ∼ csτe
−αx|x|γτ when x → +∞ and ψHsτ (x) ∼ csτe

(α+1)x|x|γτ when

x→ −∞. Therefore,

φ(y) = y−α ψHsτ (− log y) ∼ csτy
−α e−α(− log y)| log y|γτ = csτ | log y|

γτ

when y → 0 and, similarly,

φ(y) ∼ csτy
−2α−1| log y|γτ

as y → +∞.
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With this notation, we have

∫ r

0

(1− z) g(z)−
α
α+1 ψHsτ

(
log z −

log g(z)

α+ 1

)(
1

z(1− z)
−

g′(z)

(α + 1)g(z)

)
dz

=

∫ r

0

z−α φ
(
z−1 g1/(α+1)

) ( 1

z(1 − z)
−

g′(z)

(α + 1)g(z)

)
dz .

(119)

By (118), for some K3 > 0,

g′(z)

g(z)
≤ K3

ζ1/αCz1/α (− log(ζz))−γ/α
(
α+1
α

+ γ
α
(− log(ζz))−1

)
+ z

ζ1/αC z(α+1)/α (− log(ζz))−γ/α + 1
2
z2

× (− log q(z))−γ (1 + γ (− log q(z))−1).

(120)

Since we are in the regime when both z and ζ are small, 1 + γ (− log q(z))−1 ∼ 1, so

we can ignore this factor when we determine the asymptotic behavior. Furthermore, for

the same reason,

α + 1

α
≤ z

ζ1/αCz1/α (− log(ζz))−γ/α
(
α+1
α

+ γ
α
(− log(ζz))−1

)
+ z

ζ1/αC z(α+1)/α (− log(ζz))−γ/α + 1
2
z2

≤ 2

for small ζ, z. Therefore, since for small ζ, z (− log q(z))−γ is sufficiently small, we have

1

z
−

g′(z)

g(z)
∼

1

z
(121)

for small z, ζ.

Making the transformation z = ζ1/(α−1) (− log ζ)−γ/(α−1)y, standard dominated

convergence arguments together with Lemma L.8 imply that
∫ r

0

z−α−1 φ
(
z−1 g1/(α+1)

)
dz

=

(
ζ

(− log ζ)γ

)−α/(α−1) ∫ r( ζ
(− log ζ)γ )

−1/(α−1)

0

y−α−1 φ
(
y−1 (rε(y))

1/(α+1)
)
dy

∼

(
ζ

(− log ζ)γ

)−α/(α−1) ∫ ∞

0

y−α−1 φ
(
y−1 r(y)1/(α+1)

)
dy,

(122)

completing the proof.

Lemma L.10 We have

Vbτ (z) ≈
1

Gα
log

1

1− z
+ K(ε)

as z ↑ 1, for some constant K(ε).

61



Proof. As above, we will everywhere use the normalization vH = 1, vb = 0. For brevity,

let hH,L = hH,Lbτ . We have

V ′
bτ (z) = (G)−1

(
z

1− z

1

hH(Vbτ (z))
+

1

hL(Vbτ (z))

)
,

and therefore

Vbτ (z) = Vbτ (z0) + (G)−1

∫ z

z0

(
y

1− y

1

hH(Vbτ (y))
+

1

hL(Vbτ (y))

)
dy

for any z0 ∈ (0, 1) . A direct application of l’Hopital’s rule implies that

1

hH(x)
=

GH(x)

ψH(x)
→ α−1

as x→ +∞. Using the identity

GH(x)

ψH(x)
− α−1 = eαx

∫ +∞

x
e−αy((y/x)γeαyy−γψH(y)− eαxx−γψH(x)) dy

eαxx−γ ψH(x)
,

it is possible to show that this will converge to zero at least as fast as x−γ . Indeed,

condition (87) implies that we can replace eαyy−γψH(y) by its limit value cτ as the

difference will be asymptotically negligible. Thus, it remains to consider

eαx
∫ +∞

x

e−αy((y/x)γ − 1) dy =

∫ ∞

0

e−αy((1 + y/x)γ − 1) dy ≤ x−γ
∫ ∞

0

e−αyyγ dy.

Therefore, we can write

Vbτ (z) = Vbτ (z0) + (G)−1

∫ z

z0

(
y

1− y

1

hH(Vbτ (y))
+

1

hL(Vbτ (y))

)
dy

= Vbτ (z0) +
1

Gα
(−z − log(1− z)− (−z0 − log(1− z0)))

+
1

G

∫ z

z0

(
y

1− y

(
1

hH(Vbτ (y))
−

1

α

)
+

1

hL(Vbτ (y))

)
dy.

(123)

Consequently, when z ↑ 1,

Vbτ (z) ∼
1

Gα
log

1

1− z
+ K(ε),

where

K(ε) = Vbτ (z0) +
1

Gα
(−1 + z0 + log(1− z0))

+
1

G

∫ 1

z0

(
y

1− y

(
1

hH(Vbτ (y))
−

1

α

)
+

1

hL(Vbτ (y))

)
dy,

(124)

and the claim follows.
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Lemma L.11 When G becomes large, K(ε) converges to

K = A−

∫ A

−∞

α−1 hH(x) dx +

∫ +∞

A

(1− hH(x)/α) dx .

Proof. Based on the change of variables

Vbτ (y) = x , dy = B′
τ (x) dx = G

(
Bτ (x)

1− Bτ (x)

1

hH(x)
+

1

hL(x)

)−1

,

we have
1

G

∫ 1

z0

(
y

1− y

(
1

hH(Vbτ (y))
−

1

α

)
+

1

hL(Vbτ (y))

)
dy

=

∫ +∞

Vbτ (z0)

Bτ (x)
1−Bτ (x)

(
1

hH (x)
− 1

α

)
+ 1

hL(x)

Bτ (x)
1−Bτ (x)

1
hH (x)

+ 1
hL(x)

dx.

(125)

When G→ ∞, Bτ (x) → vH = 1. Hence the leading asymptotic of the integrand is given

by 1− hH(x)/α. Therefore, for any A > 0,

∫ +∞

Vbτ (z0)

Bτ (x)
1−Bτ (x)

(
1

hH (x)
− 1

α

)
+ 1

hL(x)

Bτ (x)
1−Bτ (x)

1
hH(x)

+ 1
hL(x)

dx

≈

∫ +∞

Vbτ (z0)

(1− hH(x)/α) dx

= A− Vbτ (z0) −

∫ A

Vbτ (z0)

α−1 hH(x) dx +

∫ +∞

A

(1− hH(x)/α) dx

≈ A− Vbτ (z0) −

∫ A

−∞

α−1 hH(x) dx +

∫ +∞

A

(1− hH(x)/α) dx,

(126)

and the claim follows.

Lemma L.12 When θ → +∞ and G→ ∞ in such a way that θ− log ε/(α+1) → +∞,

we have

us,0,τ(Nmax, θ)− us,0,τ(Nmin, θ) ∼ e
−(α+1) θ

Gα−1 |θ|γτ Z

and
∂

∂θ
(us,0,τ(Nmax, θ)− us,0,τ(Nmin, θ)) ∼ −

α + 1

Gα− 1
e
−(α+1) θ

Gα−1 |θ|γτ Z

for some constant Z > 0.
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Proof. When y → ∞ we have Sτ (y) → 1. Thus,

y = Vsτ (Sτ (y)) = log
Sτ (y)

1− Sτ (y)
− Vbτ (Sτ (y))

∼

(
1−

1

Gα

)
log

1

1− Sτ (y)
− K(ε) .

(127)

Therefore,

1 − Sτ (y + θ) ∼ e−(y+θ+K(ε))/(1− 1
Gα
)

when θ → ∞ and

Vbτ (Sτ (y + θ)) ∼
y + θ +K(ε)

1− (Gα)−1
− (y + θ).

Hence

GH
bτ (Vbτ (Sτ (y + θ))) ∼

cτ
α

|θ|γτ e
−α y+θ+GαK

Gα−1 .

Therefore, in the high state, we get

∫

R

(Sτ (y + θ)− 1)GH
bτ (Vbτ (Sτ (y + θ)))RH,N

t,τ (θ, y + θ) dy

∼ −
cτ
α

|θ|γτ
∫

R

e−(y+θ+K(ε))/(1− 1
Gα
) e

−α y+θ+GαK
Gα−1 RH,N

t,τ (θ, y + θ) dy

= −|θ|γτ e
−(α+1) Gα

Gα−1
K(ε)

e
−θ

(
α(G+1)

αG−1

)
cτ
α

∫

R

e
−(α+1) y

Gα−1 e−y RH,N
t,τ (θ, y + θ) dy.

(128)

In the low state, using Sτ (y + θ)− vs ∼ G, we get

∫

R

(Sτ (y + θ)− vs)G
L
bτ (Vbτ (Sτ (y + θ)))RL,N

t,τ (θ, y + θ) dy

∼ G |θ|γτ
cτ

α+ 1

∫

R

e
−(α+1) y+θ+GαK

Gα−1 RL,N
t,τ (θ, y + θ) dy

∼ Ge
−(α+1) θ+GαK

Gα−1 |θ|γτ
cτ

α + 1

∫

R

e
−(α+1) y

Gα−1RL,N
t,τ (θ, y + θ) dy.

(129)

Thus, in the limit as G→ 0, the gain in the low state from acquiring information satisfies

e
−(α+1) θ+GαK

Gα−1 |θ|γτ
Gcτ
α + 1

∫

R

e
−(α+1) y

Gα−1 (RL,Nmax
t,τ (θ, y + θ)−RL,Nmin

t,τ (θ, y + θ)) dy

∼
1

α
e−(α+1)K e

−(α+1) θ
Gα−1 |θ|γτ cτ

∫

R

(−y)(ηLNmax
− ηLNmin

) ∗ hLt,τ (y) dy,

(130)

whereas the loss in the H state is asymptotically negligible because the additional factor

G is missing.

The following lemma completes the proof of Theorem K.1.
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Lemma L.13 There exist g, A > 0 such that a threshold equilibrium exists whenever

G > g and π < e−AG. In any such equilibrium, conditions (88) and (89) hold as π−1, G→

∞.

Proof. Fix a threshold acquisition policy {Xit, Xit}i=b,s,t≥1 of all the agents in the

market. It follows from the above (Lemmas L.1, L.3, L.5 and L.12) that there exist

constants a, g, B > 0 such that the gains from information acquisition are monotone

decreasing in |θ| when |θ| > B, G > g and

min{min
i,t

|X it|,min
i,t

|Xit|} > aG .

Therefore, the optimal acquisition policy for any agent is also of threshold type, given

by {X̃it, X̃it}, whenever π is sufficiently small. It follows from the proofs of Lemmas L.5

and L.12 that, in fact, there exists an A > 0 such that π < e−AG is sufficient for this.

Clearly, choosing A > 0 sufficiently big, we can achieve that

min{min
i,t

|X̃ it|,min
i,t

|X̃it|} > aG .

Making the change of variables θ → Reθ/(1 + Reθ) , we immediately get that the

mapping from {Xit, Xit}i=b,s,t≥1 to {X̃it, X̃it}i=b,s,t≥1 maps bounded convex set into it-

self. Therefore, existence of a threshold equilibrium follows by the Brower fixed point

Theorem. The fact that any equilibrium satisfies (88) and (89) follows by a careful

examination of alternative cases, is very lengthy and is therefore omitted.

We can now calculate approximations for the optimal acquisition thresholds. Though

we cannot prove that an equilibrium is unique, the next result implies that the equilib-

rium is asymptotically unique, in the sense that the asymptotic behavior of the equilib-

rium thresholds is the same for any equilibrium.

Lemma L.14 For any equilibrium, in the limit when G→ ∞ and π → 0 in such a way

that π < e−AG, the optimal information acquisition thresholds satisfy

1.

(α + 1)Xbt ≈ Kb,t,τ +

(
mQ
t,T −

α

α+ 1
mψ
T

)
log λ+ log(π−1)−

2α + 1

α + 1
logG

+ (γQt,T +Nmax) log(log(π
−1G

− 2α+1
α+1 ))−

α

α + 1
γψT log logG.

(131)
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2.

− (α + 1)Xbt ≈ Kb,t,τ + logR + (log(π−1) + (γQt,T +Nmax) log(log(π
−1)))

+
α

α− 1
logG +

(
γQt,T +Nmax +

α

α− 1
γψT

)
log logG.

(132)

3.
(α + 1)Xst ≈ (Gα− 1)

(
log(π−1) +Ks,0,T + γT log

(
Gα− 1

α + 1
(log(π−1) +Ks,0,T )

))
.

(133)

4.

− (α + 1)Xst ≈ Ks,0,τ +

(
mQ
t,T −

α

α + 1
mψ
T

)
log λ + log(π−1)

−
α

α + 1
logG + (γQt,T +Nmax) log(log(π

−1G
− α
α+1 ))

−
α

α + 1
γψT log logG,

(134)

where γψT = (2T+1 − 1)Nmax − 1 and γQt,T = (2T+1 − 2t+1)Nmax − 1 .

Proof. The proof follows directly from Lemma L.5 and Lemmas L.6-L.12.

Proof of Theorem K.2. This theorem follows from substituting the asymptotic

expressions of Lemma L.14 into the asymptotic formulae of Lemma L.1 for the tail

behaviour of the densities of type distributions.
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