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We introduce a simple model of the “percolation” of information of common interest through

a large market, as agents encounter each other over time and reveal information to each other,

some of which they may have received earlier from other agents. We are particularly interested

in the evolution over time of the cross-sectional distribution in the population of the posterior

probability assignments of the various agents. We provide a market example based on privately

held auctions, and obtain a relatively explicit solution for the cross-sectional distribution of

posterior beliefs at each time.

Our results contribute to the literature on information transmission in markets. Hayek (1945)

argues that markets allow information that is dispersed in a population to be revealed through

prices. Grossman’s (1981) notion of a rational-expectations equilibrium formalizes this idea in

a setting with price-taking agents. Milgrom (1981), Pesendorfer and Swinkels (1997), and Reny

and Perry (2006) provide strategic foundations for the rational expectations equilibrium concept

in centralized markets. A number of important markets, however, are decentralized. These

include over-the-counter markets and private-auction markets. Wolinsky (1990) and Blouin and

Serrano (2002) study information transmission in decentralized markets.2 In contrast to these

two papers, equilibrium behavior in our market example leads to full revelation of information

1We happily acknowledge conversations with Manuel Amador, Frank Kelly, Jeremy Stein, and Pierre-Olivier

Weill, and research assistance from Sergey Lobanov.
2Rubinstein and Wolinsky (1985) and Gale (1986a, 1986b) study decentralized markets without asymmetric

information. Satterthwaite and Shneyerov (2003) study decentralized markets with private-value asymmetric

information. Amador and Weill (2006) study a more abstract setting regarding transmission of common and

private information.
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through trading. We also explicitly characterize the percolation of this information through the

market.

Our paper is also related to the literature on social learning. For example, our objectives are

similar to those of Banerjee and Fudenberg (2004), who provide a brief survey of the literature.

Like us, Banerjee and Fudenberg (2004) exploit the law of large numbers for random matching

among a large population, provide a dynamic rule for updating, and show conditions for con-

vergence. Our model allows a relatively explicit solution for the cross-sectional distribution of

posterior beliefs at each time.

1 The Basic Model

A probability space (Ω,F , P) and a “continuum” (a non-atomic finite measure space (G,G, γ))

of agents are fixed. A random variable X of potential concern to all agents has two possible

outcomes, H (“high”) and L (“low”), with respective probabilities ν and 1 − ν.

Each agent is initially endowed with a sequence of signals that may be informative about X.

The signals {s1, . . . , sn} observed by any particular agent are, conditional on X, independent

and identically distributed with outcomes 0 and 1 (Bernoulli trials). The number n ≥ 0 of

signals may vary across agents. Without loss of generality, we suppose that P(si = 1 |H) ≥

P(si = 1 |L). For any pair of agents, the sequences of signals that they observe are independent.

By Bayes’ rule, given a sequence S = {s1, . . . , sn} of signals, the posterior probability that

X has a high outcome is

P(X = H |S) =

[

1 +
1 − ν

ν

(

1

2

)θ
]−1

, (1)

where the “type” θ of this set of signals is

θ =
n

∑

i=1

si log1/2

P(si = 1 |L)

P(si = 1 |H)
+ (1 − si) log1/2

1 − P(si = 1 |L)

1 − P(si = 1 |H)
. (2)

The higher the type θ of the set of signals, the higher the posterior probability that X is high.
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Proposition 1 Let S = {s1, . . . , sn} and R = {r1, . . . , rm} be independent sets of signals, with

associated types θ and φ. Then θ + φ is a sufficient statistic for the posterior distribution of X

given S, R, and θ + φ.

This follows from Bayes’ rule, by which

P(X = H |S, R, θ + φ) =

[

1 +
1 − ν

ν

(

1

2

)θ+φ
]−1

= P(X = H | θ + φ).

We will provide examples of random interaction models in which, by a particular point in

time, each of the agents has met a finite number of other agents, once each, in some particular

sequence. In such a setting, for a given agent α, let A1 denote the set of agents that α directly

encountered, let A2 be the set of agents that those agents had directly encountered before

encountering α, and so on, and let A = ∪k≥1Ak. Let SA denote the union of the signals of agent

α and those of the agents in A, and let θA denote the type of the signal set SA.

Suppose that when two agents meet, they communicate to each other their posterior prob-

ability, given all information to the point of that encounter, of the event that X is high. For

example, we later provide a setting in which revelation occurs through the observation of the

bids submitted in an auction.

Now, as a step of an inductive calculation of posterior beliefs of all agents, suppose that the

posterior distribution of X held by a particular agent with extended encounter set A is that

of type θA. This is certainly the case before any encounters. From (1), θA can be calculated

from the posterior distribution of X, and is thus in the information set of the agent, and could

be communicated to another agent. Suppose that two agents with disjoint extended encounter

sets A and B meet, and communicate to each other θA and θB. By the previous proposition, for

each of the two agents, θA + θB is a sufficient statistic for the posterior distribution of X held

by that agent, given that agent’s previously held information and the information conveyed at

that meeting by the other agent. This justifies, by induction, the following result.
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Proposition 2 If an agent with extended encounter set A meets an agent with a disjoint ex-

tended encounter set B, and they communicate to each other their posterior probabilities of the

event that X is high, then both will hold the posterior probability of this event given the signals

SA ∪ SB.

Given this result, it makes sense to extend the definition of “type” by saying that an agent

with extended encounter set A has type θA, which leads to the following equivalent form of the

last proposition.

Proposition 3 If an agent of pre-posterior type θ meets an agent with pre-posterior type φ,

and they communicate to each other their types, then both have posterior type θ + φ.

2 Population Information Dynamics

Any particular agent is matched to other agents at each of a sequence of Poisson arrival times

with a mean arrival rate (intensity) λ, which is common across agents. At each meeting time,

the matched agent is randomly selected from the population of agents (that is, the matched

agent is chosen with the uniform distribution, which we can take to be the agent-space measure

γ.) We assume that, for almost every pair of agents, this matching procedure is independent.3

At each point in time, for any particular agent, we will (almost surely) be in the setting of

the previous proposition, in which all prior encounters by that agent are with agents whose

extended encounter sets were disjoint with that of the given agent.

We let g(x, t) denote the cross-sectional density of posterior type x in the population at

time t (supposing that the posterior type distribution indeed has a density). The initial density

g( · , 0) of types is that induced by some particular initial allocation of signals. Assuming that

g(x, t) is differentiable with respect to t, and relying formally on the law of large numbers,

3A rigorous mathematical foundation for the discrete-time analogue of this random matching model is pro-

vided by Duffie and Sun (2005a), and the associated exact law of large numbers for the matching results is

provided by Duffie and Sun (2005b).
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letting subscripts denote partial derivatives as usual, we have (almost everywhere)

gt(x, t) = −λg(x, t) +

∫ +∞

−∞

λg(y, t)g(x− y, t) dy, (3)

with the first term representing the rate of emigration from type x associated with meeting and

leaving that type, and the second term representing the rate of immigration into type x due to

type-y agents meeting, at mean rate λ, agents of type x− y, converting the type-y agent to one

of type x. (One could easily make the mistake of multiplying the second term by 2 to reflect

that both agents in the pairing become type x, but the sum is over all agents meeting someone,

and integration of the right-hand side of (3) with respect to x confirms the consistency of (3)

with conservation of total population mass.)

In order to compute the cross-sectional density of types at each time, we let ĝ( · , t) denote

the Fourier transform of g( · , t). By linearity of the transform and integrability, for each z in R,

ĝt(z, t) = −λĝ(z, t) + λĝ2(z, t), (4)

using the fact that the transform of a convolution g ∗ h is the product ĝĥ of the transforms.

Proceeding formally and ignoring the potential role of singularities, we can let G(z, t) =

ĝ(z, t)−1, and by the chain rule obtain

Gt(z, t) = λG(z, t) − λ, (5)

with the usual solution

G(z, t) = eλt(G(z, 0) − 1) + 1, (6)

and, again only formally,

ĝ(z, t) =
ĝ(z, 0)

eλt(1 − ĝ(z, 0)) + ĝ(z, 0)
. (7)

While technical conditions on the initial type distribution might be needed to justify this calcu-

lation, we have confirmed the result in special cases by explicit calculation and by Monte Carlo

simulation.
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A particular agent who is assigned an initial type that is randomly drawn with density

π( · , 0) at time zero has a posterior type at time t that is a Markov process with a probability

density π( · , t) at time t that evolves according to

πt(x, t) = −λπ(x, t) +

∫ +∞

−∞

λπ(y, t)g(x− y, t) dy. (8)

The probability density π( · , t) of the agent’s type at time t therefore has the explicit transform

π̂(t) given by

π̂(z, t) = π̂(z, 0)e−λ
R

t

0
(1−ĝ(z,s)) ds.

3 A Market Example

In order to provide a specific example in which agents have an incentive to completely reveal

their information to the agents that they encounter, we study a private-auction setting in

which, at each meeting, agents learn the types of the other agents encountered at that meeting

by observation of bids submitted in an auction conducted at that meeting. This information is

not revealed to agents that do not participate in the auction.

At a given time T > 0, it is revealed whether X is high or low. Before that time, uninformed

agents that wish to hedge the risk associated with X arrive at the market at a total rate of 2λ

per unit of time. (For example, there may be a continuum of uninformed hedgers that arrive

independently, at total rate of 2λ.) Whenever an uninformed agent arrives at the market, he

contacts two informed agents that are randomly chosen from the continuum of agents. In light

of our extension in the next section to encounters of more than two informed agents each, we

could consider an auction in which the uninformed agent contacts multiple agents.

The uninformed agent conducts a second-price auction with the two chosen informed agents.

The lower bidder sells the uninformed agent a forward financial contract that pays 1 at time

T if X is high and 0 otherwise. In return, the contract specifies payment of the winning (low)

bid to the informed agent at time T . The informed agents, who are assumed to be risk-neutral,

tender bids that are then revealed to the two bidders (only). After purchasing the contract, the
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uninformed agent leaves the market. For concreteness, informed agents maximize the expected

discounted sum of auction sales net of contract payoffs, with a constant discount factor.

These second-price common-value auctions are known as “wallet games,” and are discussed

by Klemperer (1998). In the unique symmetric Nash equilibrium of each auction, each agent’s

bid is the posterior probability that X is high. From the one-to-one mapping between an agent’s

type and the agent’s posterior probability distribution of X, informed agents learn each others’

types from their bids.4 The dynamics of information transmission are therefore as described in

Section 2.

Informed agents earn positive expected payoffs by participating in this market, while unin-

formed agents earn negative expected profits. This is consistent with the hedging motive for

trade of the uninformed agents.

For a numerical example, we let λ = 1, so that one unit of time is the mean time inter-

contact time for agents, and we let ν = 1/2. We assume that each agent initially observes a

signal s such that P (s = 1|H) + P (s = 1|L) = 1 and P (s = 1|H) is drawn from a uniform

distribution over the interval [1/2, 1]. It is easy to show that, on the event {X = H} of a high

outcome, this initial allocation of signals induces an initial cross-sectional density f(p) = 2p for

the prior likelihood p of a high state, for p ∈ [0, 1]. From a simple change of variables using (1),

the initial cross-sectional density of types on the event {X = H} of a high outcome is

g(θ, 0) =
21+2θ log 2

(1 + 2θ)3
.

We then use the explicit solution (7) for the transform ĝ( · , t) of the density of posterior types

to characterize the dynamics of information transmission. The evolution of the cross-sectional

densities of type and the associated posterior probability are illustrated in Figures 1 and 2,

respectively. Figure 3 shows that the evolution of the mean of the cross-sectional distribution of

4Because we have a continuum of agents, when two agents meet they know that in the future they will almost

surely not meet someone that has directly or indirectly met the other agent. Therefore, agents are not strategic

about the information they reveal in a meeting. In a market with a small number of agents, this would obviously

be a concern.
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posterior probability of a high state, and the evolution of the cross-sectional standard deviation

of this posterior probability.

4 New Private Information

Suppose that, independently across agents as above, each agent receives, at Poisson mean arrival

rate ρ, a new private set of signals whose type outcome y has a probability density h(y). Then

(3) is extended to

gt(x, t) = −(λ + ρ)g(x, t) +

∫ +∞

−∞

λg(y, t)g(x− y, t) dy + ρ

∫ +∞

−∞

h(y)g(x− y, t) dy. (9)

In this case, (4) is extended to ĝt(z, t) = −(λ + ρ)ĝ(z, t) + λĝ2(z, t) + ρĝ(z, t)ĥ(z). As for the

dynamics of the transform, we can further collect terms in ĝ(z, t) to obtain

ĝt(z, t) = −γ(z)ĝ(z, t) + λĝ2(z, t), (10)

where γ(z) = λ + ρ(1 − ĥ(z)), and extend (7) to obtain

ĝ(z, t) =
ĝ(z, 0)

eγ(z)t(1 − ĝ(z, 0)) + ĝ(z, 0)
. (11)

5 Multi-Agent Information Exchanges

Suppose that, at Poisson arrival intensity λ, three agents are drawn at random and share their

information. Then (3) is extended to

gt(x, t) = −λg(x, t) + λ

∫ +∞

−∞

∫ +∞

−∞

g(x − y − u, t)g(u, t)g(y, t) dy du. (12)

Letting w = y + u, this can be expressed as

gt(x, t) = −λg(x, t) + λ

∫ +∞

−∞

g(x − w, t)

∫ +∞

−∞

g(w − y, t)g(y, t) dy dw. (13)

Letting r(w, t) =
∫ +∞

−∞
g(w − y, t)g(y, t) dy, we have

gt(x, t) = −λg(x, t) + λ

∫ +∞

−∞

g(x − w, t)r(w, t) dw. (14)
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Now, because r̂(z, t) = ĝ2(z, t), we see that (4) is extended to

ĝt(z, t) = −λĝ(z, t) + λĝ3(z, t). (15)

Similarly, if n agents are drawn at random to exchange information at each encounter, then (4)

is extended to

ĝt(z, t) = −λĝ(z, t) + λĝn(z, t). (16)

In order to solve for ĝ(z, t) given ĝ(z, 0), we let H(z, t) = ĝ(z, t)1−n. Formally at least, we have

Ht(z, t) = (n − 1)λH(z, t) − (n − 1)λ, (17)

with the usual solution H(z, t) = e(n−1)λt(H(z, 0) − 1) + 1, and

ĝ(z, t) = H(z, t)
1

1−n . (18)

If private information is also learned over time, as in the previous section, then (16) is

extended to

ĝt(z, t) = −(λ + ρ)ĝ(z, t) + λĝn(z, t) + ρĝ(z, t)ĥ(z). (19)

In this case, we have (18), where H(z, t) = e(n−1)γ(z)t(H(z, 0) − 1) + 1.

6 Conclusion

We introduce a simple model of the “percolation” of information through a large market. Our

model allows a relatively explicit solution for the cross-sectional distribution of posterior beliefs

at each time t. We applied our model to study information transmission in a decentralized

market and, in contrast to previous models, obtained full revelation of information through

trading.
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Figure 2: On the event {X = H}, the evolution of the cross-sectional population density of posterior probability

of the event {X = H}.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean
Stde

Time

P
ro

b
a
b
il
it
y

Figure 3: On the event {X = H}, the evolution of the cross-sectional mean and standard deviation of the

posterior probability of the event {X = H}.
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