Feedback Effects and the Limits to Arbitrage*

Alex Edmans Itay Goldstein Wei Jiang
Wharton and NBER Wharton Columbia

May 1, 2011

Abstract

This paper identifies a limit to arbitrage that arises from the fact that a firm’s fundamental value is endogenous to the act of exploiting the arbitrage opportunity. Trading on private information reveals this information to managers and helps them improve their real decisions, in turn enhancing fundamental value. While this increases the profitability of a long position, it reduces the profitability of a short position – selling on negative information reveals to the manager that firm prospects are poor, causing him to cancel investment projects. Optimal abandonment increases the firm’s value and may cause the speculator to realize a loss on her initial sale. Thus, investors may strategically refrain from trading on negative information. The asymmetry of this effect may explain why bad news is incorporated more slowly into prices than good news (e.g. Hong, Lim, and Stein (2000).) Moreover, it has potentially important real consequences – if negative information is not incorporated into stock prices, negative-NPV projects may not be abandoned, leading to overinvestment.

Keywords: Limits to arbitrage, feedback effect, overinvestment

JEL Classification: G14, G34

*aedmans@wharton.upenn.edu, itayg@wharton.upenn.edu, wj2006@columbia.edu. For helpful comments, we thank Kathleen Hanley, Sam Taylor and seminar participants at the Federal Reserve Board, Wharton and the Washington University Conference on Corporate Finance. We thank Ali Aram, Chong Huang and Edmund Lee for excellent research assistance. AE gratefully acknowledges financial support from the Dorinda and Mark Winkelman Distinguished Scholar award and the Goldman Sachs Research Fellowship from the Rodney L. White Center for Financial Research.
1 Introduction

Whether financial markets are informationally efficient is one of the most hotly-contested debates in finance. Proponents of market efficiency argue that profit opportunities in the financial market will lead speculators to trade in a way that eliminates any mispricing. For example, if speculators have negative information about a stock, and this information is not reflected in the price, they will find it profitable to sell the stock. This will push down the price, causing it to reflect speculators’ information. However, a sizable literature identifies various limits to arbitrage, which may deter speculators from trading on their information. For example, De Long, Shleifer, Summers, and Waldmann (1990) and Shleifer and Vishny (1997) show that the slow convergence of price to fundamental value may render arbitrage activities too risky. This in turn dissuades trading if the speculator has short horizons, which may in turn arise from informational asymmetries with her own investors. Other explanations for limited arbitrage rely on market frictions such as short-sales constraints. All of these mechanisms treat the firm’s fundamental value as exogenous and rely on market imperfections to explain why speculators will not drive the price towards fundamental value. Thus, as financial markets develop, these limits to arbitrage may weaken.

In this paper, we identify a quite different limit to arbitrage, which does not rely on market imperfections and thus may not attenuate with the development of financial markets. Instead, our mechanism stems from the fact that the value of the asset being arbitrated is endogenous to the act of exploiting the arbitrage – it depends on speculators’ trading behavior and market prices. The argument is based on the idea that, by trading, speculators cause prices to move, which in turn reveals information to decision makers on the real side of the economy (such as managers, board members, capital providers, employees, customers, and regulators). These decision makers then take actions based on the information revealed in the price, and these actions change the underlying value of the asset. This may make the initial trading unprofitable, deterring it from occurring in the first place.

To fix ideas, consider the following example. Suppose that a firm (acquirer) announces an acquisition of another firm (target). Also assume that some speculators conducted some analysis suggesting that this acquisition will be value-destructive. Traditional theory suggests that these speculators should sell the stock of the acquirer, attempting to profit from (what they believe is) the low underlying value resulting from the upcoming acquisition. However, large-scale selling in the financial market will convey to the acquirer that speculators believe the acquisition is a bad idea. As a result, the acquirer may end up cancelling the acquisition. In turn, cancellation of a bad acquisition will boost the stock price, thus causing the speculator to suffer a loss on her initial short position. Put differently, the acquirer’s decision to cancel the acquisition means that the negative information possessed by speculators is no longer relevant, and hence they should not trade on it. Thus, the information ends up not being reflected in the price.

A simple numerical example may help illustrate the mechanism. Assume that, if the firm
does not undertake the acquisition, it is worth $10 if the state is good and $13 if the state is bad. The firm is worth less if it chooses not to acquire in the good state, since a market upswing means that a rival firm will have the resources to make the acquisition, in turn worsening the firm’s competitive position. If the firm completes the acquisition, it is worth $16 if the state is good and $8 if the state is bad. If the firm announces the acquisition, assume the stock price is $12 since the market places equal probability on each state. The speculator knows that the state (and thus the deal) is bad and the firm’s true value is $8, so the firm is overpriced. However, if she engages in a short-sale, this will drive down the stock price and lead to the manager canceling the acquisition. It is true that the market maker is fully rational and so the price she sets (which is received by the speculator) takes into account the fact that a low price will lead to cancellation. However, the speculator still makes a loss. While the market maker knows that the acquisition will be canceled, he does not know whether cancellation is efficient for the firm since he does not know the underlying state. Assume that selling reduces his posterior that the state is good from $\frac{1}{2}$ to $\frac{1}{3}$; then he will set a price of $\frac{1}{3} \times 10 + \frac{2}{3} \times 13 = 11$. However, the speculator knows not only that cancellation will take place, but also that cancellation is efficient since the state is bad. Thus, she perceives the fundamental value of the firm as 13. Short-selling will give the speculator 11 for a security that is worth 13, and cause the speculator to realize a loss. Even though the current fundamental value is 8 and so the stock is overpriced from the speculator’s perspective, she does not sell because selling will increase the fundamental value to 13.

Our mechanism is based on the presence of a feedback effect from the financial market to real economic decisions. A common perception is that managers know more about their own firms than outsiders (e.g. Myers and Majluf (1984)). While this is likely plausible for internal information about the firm in isolation, optimal managerial decisions also depend on external information (such as market demand for a firm’s products, or potential synergies with a target) about which outsiders may be more informed. Even for internal information, while the manager is likely more informed than any individual investor, the stock market aggregates information from millions of investors who may collectively know more than the manager (Hayek (1945).) A classic example of how information from the stock market shapes managerial decisions is Coca-Cola’s attempted acquisition of Quaker Oats in 2000. On November 20, 2000, the Wall Street Journal reported that Coca-Cola was in talks to acquire Quaker Oats. Shortly thereafter, Coca-Cola confirmed such discussions. The market reacted negatively, sending Coca-Cola’s shares down almost 8% on November 20th, and more than 2% on November 21st. Coca-Cola management brought the deal to its board on November 21st, and the board rejected the acquisition later that evening. The following day, Coca-Cola’s shares rebounded almost 8%. Thus, speculators who had short-sold on the initial merger announcement, based on the belief that the acquisition would destroy value, may have ended up losing money – precisely the effect modeled by this paper. In the same context, Luo (2005) provides large-sample evidence that acquisitions are more likely to be cancelled if the market reacts negatively to them, and
that the effect is more pronounced when the acquirer is more likely to have something to learn from the market. More broadly, Chen, Goldstein, and Jiang (2007) show that the sensitivity of investment to price is higher when the price contains more private information not known to managers. Edmans, Goldstein, and Jiang (2011) demonstrate that a firm’s market price affects the likelihood that it becomes a takeover target, which may arise because potential acquirers learn from the market price. Moreover, our model can apply to corporate decisions undertaken by stakeholders other than the manager, who likely have less information than the manager and may be more reliant on information held by outsiders. Examples include managerial replacement (undertaken by the board), the decision to inject more capital into the firm (undertaken by shareholders or other investors), or the decision to enter into an employment or trade relationship (undertaken by customers, suppliers or employees).

An important aspect of our theory is that it generates asymmetry between trading on negative information and trading on positive information. The feedback effect generates an equilibrium where speculators trade on positive news but do not trade on negative news. Yet, it does not give rise to the opposite equilibrium, where speculators trade on negative news only. The intuition is as follows. When speculators trade on information, they improve the efficiency of the firm’s decisions – regardless of the direction of their trade. If the speculator has positive information on a firm’s prospects, trading on it will reveal to the manager that investment is profitable. This will in turn cause the firm to invest more, thus increasing its value. If the speculator has negative information, trading on it will reveal to the manager that investment is unprofitable. This will in turn cause the firm to invest less, also increasing its value as contraction is the correct decision. When a speculator buys and takes a long position in a firm, he benefits further from increasing its value via the feedback effect. By contrast, when he sells and takes a short position, he loses from increasing the firm’s value via the feedback effect.

Even though the speculator’s trading behavior is asymmetric, it is not automatic that the impact on prices is asymmetric. The market maker is fully rational and takes into account the fact that the speculator buys on positive information and does not trade on negative information. Thus, he adjusts his pricing function accordingly. Therefore, it may seem that negative information will be impounded in prices to the same degree as positive information – even though it may not lead to a neutral rather than negative order flow, the market maker knows that a neutral order flow can stem from the speculator having negative information but choosing not to trade, and may decrease the price accordingly. By contrast, we show that the asymmetry in trading behavior does translate into asymmetry in price impact, despite the rationality of the market maker. The crux is that the market maker cannot distinguish the case of a speculator who has negative information but chooses to withhold it, from the case in which there speculator is absent (i.e. there is no information). Thus, a neutral order flow does not lead to a large stock price decrease, and so negative information has a smaller effect on prices. Indeed, Hong, Lim and Stein (2000) show empirically that bad news is incorporated in
prices more slowly than good news. They speculate that this arises because it is firm management that possesses value-relevant information, and they will publicize it more enthusiastically for favorable than unfavorable information. Our paper presents a formal model that offers an alternative explanation. Here, key information is held by a firm’s investors rather than its managers, who disseminate it not through public news releases, but by trading on it. They also choose to publicize good news more readily than bad news, but for different reasons from firm management – because of the limit to arbitrage rather than because they are evaluated according to the stock price.

The asymmetry of our effect may generate important real consequences. Since negative information is not incorporated into prices, it does not influence management decisions. Thus, while positive-NPV projects will be encouraged, some negative-NPV projects will not be canceled, leading to overinvestment overall. In contrast to standard overinvestment theories which are based on the manager’s private benefits (e.g., Jensen (1986), Stulz (1990), Zwiebel (1996)), here the manager is fully aligned with firm value and there are no agency problems. The manager wishes to maximize firm value by learning from prices, but is unable to do so since speculators refrain from revealing their information. Applied to M&A as well as organic investment, the theory may explain why M&A appears to be “excessive” and a large fraction of acquisitions destroy value (see, e.g., Andrade, Mitchell, and Stafford (2001).)

The model also offers a potential explanation for the negative long-run returns to M&A announcements. While long-run drift has been documented for many corporate events (e.g. earnings announcements and dividend changes), it is typically in the same direction as the initial event-study reaction, and so underreaction is a potential explanation. By contrast, for M&A, short-run returns are positive on average and long-run returns are negative on average (Agrawal, Jaffe and Mandelker (1992) and Rau and Vermaelen (1998)), and so the combination of the two cannot be explained by underreaction. In a world with full arbitrage, announcement-window returns would be zero on average, since good (bad) deals will lead to positive (negative) event-study returns. However, in our model, negative information about bad deals is not impounded into prices upon announcement, and so the average event-study return is positive. Instead, the poor quality of the deal only manifests over time, after the deal is completed. Thus, the model can predict a combination of positive short-run and negative long-run returns, which has hitherto been a puzzle.

As mentioned above, the primary motivation for our paper is to identify a limit to arbitrage. Different authors have emphasized different factors that lead to limits on arbitrage activities. Campbell and Kyle (1993) focus on fundamental risk, i.e., the risk that the firm’s fundamentals will change while the arbitrage strategy is being pursued. In their model, such changes are unrelated to speculators’ arbitrage activities. De Long, Shleifer, Summers, and Waldmann (1990) argue that noise-trading risk, i.e., the risk that noise trading will increase the degree of mispricing, may render arbitrage activities unprofitable. Noise trading only affects the asset’s market price and not its fundamental value, which is again exogenous to the act of arbitrage.
Shleifer and Vishny (1997) show that, even if an arbitrage strategy is sure to converge in the long-run, the possibility that mispricing may widen in the short-term may deter speculators from trading on it. Similarly, Kondor (2009) demonstrates that arbitrageurs may stay out of a trade if they believe that it may become more profitable in the future. Many authors (e.g., Pontiff (1996), Mitchell and Pulvino (2001), and Mitchell, Pulvino, and Stafford (2002)) focus on the transaction costs and holding costs that arbitrageurs have to incur while pursuing an arbitrage strategy. Others (Geczy, Musto, and Reed (2002), and Lamont and Thaler (2003)) discuss the importance of short-sales constraints. While these papers emphasize market frictions as the source of limits to arbitrage, our paper shows that limits to arbitrage arise when the market performs its utmost efficient role: guiding the allocation of real resources. Thus, limits to arbitrage based on market frictions may attenuate with the development of financial markets, the effect identified by this paper may strengthen – as investors become more sophisticated, managers will learn from them to a greater degree.

Our paper is related to the literature exploring the theoretical implications of the feedback effects from market prices to real decision making. Several papers in this literature have shown that the feedback effect can be harmful for real efficiency. Most closely related is Goldstein and Guembel (2008), who show that it provides an incentive to uninformed speculators to short sell a stock, reducing its value by having a real decision based on false information. Bond, Goldstein, and Prescott (2010), Dow, Goldstein, and Guembel (2010), and Goldstein, Ozdenoren, and Yuan (2010) also model complexities arising from the feedback effect. The point in our paper – that negatively informed speculators will strategically withhold information from the market, because they know that the release of negative information will lead managers to fix the underlying problem – is new in this literature.

This paper proceeds as follows. Section 2 presents the model that generates the limits to arbitrage. Section 3 discusses potential applications of the model, and Section 4 concludes. Appendix A contains all proofs not in the main text.

2 The Model

We consider a firm with a single share outstanding. The firm’s manager is considering whether to abandon a risky investment project which he is currently pursuing. The manager’s goal is to maximize firm value; since there are no agency problems between the manager and the firm, we will use these two terms interchangeably. The start of the game is $t = 0$. At $t = 1$, one of two possible states of nature is realized, $\theta \in \Theta = \{H, L\}$. The common prior that the state is $\theta = H$ is $p = \frac{1}{2}$; we use q to denote the posterior belief that $\theta = H$. With probability $\lambda < 1$, there is a speculator in the stock market at $t = 1$. (The assumption that $\lambda < 1$ is similar to Chakraborty and Yilmaz (2004), where the speculator is only present with uncertainty). If the speculator is present, she sees the state of nature θ with certainty and chooses to trade s. We will use the term “positively-informed speculator” to describe a speculator who observes
\(\theta = H \), and “negatively-informed speculator” to describe a speculator who observes \(\theta = L \). Always present at \(t = 1 \) is a noise trader, who trades \(z \) from the set \(\{-1, 0, 1\} \) randomly with uniform probability. There is also a competitive market maker who, as in Kyle (1985), does not observe \(\theta \), nor the individual trades \(s \) and \(z \). He does observe the total order flow \(X = s + z \), and sets the price equal to expected firm value conditional upon the order flow, i.e. \(p = E(v|X) \), where \(v \) is firm value. To avoid revealing her information, it is clear that the speculator must camouflage with the noise trader. Thus she will either sell one unit, buy one unit or not trade, i.e. \(s \in \{-1, 0, 1\} \). If she decides to trade (in either direction), she pays the trading cost \(\kappa \).

Like the market maker, the manager does not observe \(\theta \), \(s \) or \(z \) but does observe \(X \). (As is standard, e.g. Dow, Goldstein and Guembel (2010), allowing the manager to observe order flow \(X \) has the same effect as allowing him to observe the price \(p \) as there is a one-to-one correspondence between the price and the order flow.) He uses the information in \(X \) to form his posterior \(q \). Based on this posterior, at \(t = 1 \) he makes a decision \(d \in \{i, n\} \), where \(d = i \) represents continuing the investment and \(d = n \) represents no investment (also referred to as “abandonment” or “correction”).

In sum, we define the speculator’s strategy as a function \(S : \Theta \rightarrow \Delta \{-1, 0, 1\} \), the market maker’s strategy as a function \(p : Q \rightarrow \mathbb{R} \) (where \(Q = \{-2, -1, 0, 1, 2\} \)), and the firm’s strategy as a function \(D : Q \rightarrow \{i, n\} \). After the trading price is determined and the continuation decision has been taken at \(t = 1 \), the value of the firm \(v \) is realized at \(t = 2 \) and all players receive their payoffs. The speculator’s payoff is \(s(v - p) - |s|\kappa \) and the firm’s payoff is \(v = R^d \), which depends on both the state of nature \(\theta \) and the manager’s action \(d \). We make the following assumptions for firm value:

\[
\begin{align*}
R^i_H &> R^n_H \quad (1) \\
R^i_L &> R^n_L \quad (2) \\
R^i_H &> R^i_L \quad (3) \\
R^n_L &> R^n_H \quad (4) \\
R^i_H &> R^n_L. \quad (5)
\end{align*}
\]

Equations (1) and (2) mean that continuation (abandonment) is optimal in state \(H \) (\(L \)). From equations (3) and (4), if the project is continued (abandoned), firm value is higher in the high (low) state. Finally, equation (5) means that firm value is higher under the optimal decision in state \(H \) than under the optimal decision in state \(L \), i.e. the good state is truly good.

Let \(\gamma \) denote the posterior belief on state \(H \) such that the manager is indifferent between continuation and abandonment, i.e.:

\[
\gamma R^i_H + (1 - \gamma)R^L_H = \gamma R^n_H + (1 - \gamma)R^n_L.
\]

The value of \(\gamma \) represents a “cutoff” that determines the manager’s action. If and only if his
posterior belief \(q \) is greater than \(\gamma \), he will continue the project. Since firm value is higher in state \(H \) under continuation, but lower under abandonment, for state \(H \) to be a truly good state, it must be that continuation occurs most frequently, i.e. is the ex-ante optimal decision. Since \(p = \frac{1}{2} \), this entails specifying that \(\gamma < \frac{1}{2} \). Appendix B considers the opposite case of \(\gamma > \frac{1}{2} \) and demonstrates that an asymmetric limit to arbitrage continues to exist, where the speculator buys on positive information and does not trade on negative information. We use the perfect Bayesian Nash equilibrium (PBE) as the solution concept throughout.

2.1 An Equilibrium With Limits to Arbitrage

We show that an asymmetric limit to arbitrage will exist (i.e. the positively-informed speculator will buy one share, but the negatively-informed speculator will not trade) under certain parametric assumptions. We discuss the role of these assumptions in Section 2.2.

We first assume that the speculator pursues the following strategy:

\[
\begin{array}{c|ccc}
\theta & -1 & 0 & 1 \\
H & 0 & 1 - \mu_H & \mu_H \\
L & \mu_L & 1 - \mu_L & 0
\end{array}
\]

i.e. the positively-informed speculator never sells and the negatively-informed speculator never buys. (We will prove this formally later.) Using Bayes’ rule and sequential rationality gives the posterior \(q \), the manager’s decision \(d \) and the price \(p \) as follows:

Lemma 1 Assume that the positively-informed speculator never sells and the negatively-informed speculator never buys. For a given order flow \(X \), the posterior \(q \), the manager’s decision \(d \) and the price \(p \) are given by the following table:

\[
\begin{array}{c|cccc}
X & -2 & -1 & 0 & 1 & 2 \\
\hline
q & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 \\
d & n & ? & i & i & i \\
p & R_L^0 & ? & \frac{1}{2} R_H^i + \frac{1}{2} R_L^i & \frac{1}{2} R_H^i + \frac{1}{2} R_L^i & R_H^i \\
\end{array}
\]

\[
\text{where the question mark} \ ? \ \text{denotes that the outcome depends on parameter values.}
\]

Proof. The posteriors \(q \) are calculated from Bayes’ rule and given in Appendix A. The manager takes \(d = n \) if \(q < \gamma \) (where \(\gamma < \frac{1}{2} \)) and \(d = i \) otherwise. The price \(p \) is given by \(q R_H^i + (1 - q) R_L^i \).

We can use Lemma 1 to derive the optimal trading behavior of the speculator, i.e. the variables \(\mu_H \) and \(\mu_L \). We first assume that she is positively-informed. If she chooses to buy one unit:

- With probability (w.p.) \(\frac{1}{3} \), \(X = 2 \) and she is fully revealed. Thus, trading profits are zero.
• W.p. $\frac{1}{3}$, $X = 1$ and she pays $\frac{1}{2} R^i_H + \frac{1}{2 - \lambda \mu_L} R^i_L$ per share. The fundamental value of each share is R^i_H, and so her profit is $\frac{1}{2 - \lambda \mu_L} (R^i_H - R^i_L) > 0$.

• W.p. $\frac{1}{3}$, $X = 0$ and she pays $\frac{1}{2} R^i_H + \frac{1}{2} R^i_L$ for a share which is worth R^i_H, yielding a profit of $\frac{1}{2} (R^i_H - R^i_L) > 0$.

Thus, her expected gross profit is given by:

$$\frac{1}{3} \left(\frac{1}{2 - \lambda \mu_L} (R^i_H - R^i_L) + \frac{1}{2} (R^i_H - R^i_L) \right) \left(\frac{1}{2 - \lambda \mu_L} + \frac{1}{2} \right)$$

(6)

Thus, if the trading cost κ is sufficiently small (i.e. less than equation (6)), the positively-informed speculator will always buy and so $\mu_H = 1$. This strategy in turn affects the market maker and manager’s posterior upon observing $X = -1$. Since $X = -1$ is inconsistent with the speculator buying, and the speculator always buys if positively informed, the only way the state can be good is if the speculator is absent. Thus we have $q(-1) = \frac{1 - \lambda}{2 - \lambda}$: the posterior is higher the more likely the speculator is to be absent (i.e. the lower λ is). Whether this posterior is sufficiently low to drive the manager to abandon the project depends on whether $\frac{1 - \lambda}{2 - \lambda}$ is greater or less than the critical value γ. We make the following assumption:

Assumption 1 $\frac{1 - \lambda}{2 - \lambda} < \gamma$.

Assumption 1 means that, when $X = -1$, the manager is sufficiently pessimistic and chooses to abandon the project – even though there is a possibility that the negative order flow arises because the speculator is absent (rather than negatively-informed) and $\theta = H$. We make Assumption 1 for the remainder of this section and consider the opposite case of $\frac{1 - \lambda}{2 - \lambda} > \gamma$ in Section 2.2.1 later.

Then, if $X = -1$, the manager takes the corrective action and Lemma 1 specializes to Lemma 2:

Lemma 2 Assume that $\kappa < (6)$ and $\frac{1 - \lambda}{2 - \lambda} < \gamma$. For a given order flow X, the posterior q, the manager’s decision d and the price p are given by the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>0</td>
<td>$\frac{1 - \lambda}{2 - \lambda}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2 - \lambda \mu_L}$</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>n</td>
<td>n</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2 - \lambda \mu_L}$</td>
<td>i</td>
</tr>
<tr>
<td>p</td>
<td>$R^u_L \frac{1 - \lambda}{2 - \lambda} R^u_H + \frac{1}{2 - \lambda \mu_L} R^u_L$</td>
<td>$\frac{1}{2} R^i_H + \frac{1}{2} R^i_L$</td>
<td>$1 - \lambda \mu_L R^i_H + \frac{1}{2 - \lambda \mu_L} R^i_L$</td>
<td>R^i_H</td>
<td></td>
</tr>
</tbody>
</table>

We now consider the negatively-informed speculator. If she chooses to sell one unit:

• W.p. $\frac{1}{3}$, $X = -2$ and she is fully revealed, so trading profits are zero.
• W.p. $\frac{1}{3}$, $X = -1$ and she receives $\frac{1-\lambda}{2-\lambda}R^n_H + \frac{1}{2-\lambda}R^n_L$ for a share which is worth R^n_L, which yields a profit of $\frac{1-\lambda}{2-\lambda}(R^n_H - R^n_L) < 0$. This profit is negative, even though she is trading in the direction of her information. This loss constitutes the limit to arbitrage that is the central contribution of this paper.

The complexity in generating a limit to arbitrage is that the price the speculator receives from the market maker must be different from her fundamental valuation of the share, so that she loses money by trading. A difference in valuations in turn requires information asymmetry between the market maker and the speculator. It is not automatic that such an asymmetry will exist. There can never be asymmetric beliefs on whether the manager takes the corrective action – this is because the manager makes his decision based on total order flow, which the market maker also observes, and so the market maker perfectly predicts the manager’s action when setting his price. Indeed, if $X = -1$, both the speculator and the market maker know that correction will take place.

Instead, the limit to arbitrage exists because, even though both agree that abandonment will occur if $X = -1$, they disagree on the value of the firm conditional on abandonment. The speculator knows that the corrective action will be taken (since $q(-1) < \gamma$), and that correction is desirable for firm value (since she knows with certainty that $\theta = L$), and so the fundamental value of the firm is R^n_L. In contrast, the market maker knows the corrective action will be taken (since $q(-1) < \gamma$) but is not certain that correction is desirable for firm value, because she is unsure of the underlying state of nature θ. While the speculator observes θ perfectly, the market maker can only infer it from the order flow X. Order flow $X = -1$ is consistent with the speculator not being present and the noise trader selling 1 share. Hence, it is possible that $\theta = H$, in which case the manager’s corrective action is undesirable. Therefore, the market maker sets a lower price than the fundamental value perceived by the speculator, and so selling will cause the speculator to lose money.

Selling by the speculator creates a feedback effect – it reveals to the manager that $\theta = L$ and that correction is desirable. Conveying information to the manager improves his decision, changing it from continuation to optimal abandonment. Improved decision-making in turn enhances fundamental firm value, and thus reduces the profitability of taking a short position. Arbitrage is limited because the value of the asset being arbitrated is endogenous to the act of arbitrage.

• W.p. $\frac{1}{3}$, $X = 0$ and she receives $\frac{1}{2}R^i_H + \frac{1}{2}R^i_L$ for a share which is worth R^i_L, which yields a profit of $\frac{1}{2}(R^i_H - R^i_L) > 0$.

Thus, the speculator’s overall profit from selling is

$$\frac{1}{3} \left[\frac{1}{2} (R^i_H - R^i_L) + \frac{1-\lambda}{2-\lambda} (R^n_H - R^n_L)\right].$$ (7)
The first (positive) term is the profit if \(X = 0 \). It represents the “fundamental” effect which is common to all informed trading models where firm value is exogenous of the trading process – the speculator profits from buying on a positive signal. With \(X = 0 \), order flow is uninformative and so the manager takes the ex-ante optimal decision of continuation. Thus, the order flow does not create any feedback, and so firm value is unaffected. The second (negative) term is the profit if \(X = -1 \). It stems from the “feedback” effect which is unique to this paper and arises because firm value is endogenous to the act of arbitrage: selling causes the manager to take the optimal action, which causes the speculator to make a loss.

If equation (7) is less than \(\kappa \), the negatively-informed speculator never sells, and so \(\mu_L = 0 \). The concurrence of \(\mu_L = 0 \) and \(\mu_H = 1 \) is the limit to arbitrage: a positively-informed speculator always buys, but the negatively-informed speculator never sells. The reason for the asymmetry is that the feedback effect is inherently asymmetric. Trading on information (both buying on good information and selling on bad information) improves price informativeness, regardless of the direction of the trade. This greater price informativeness always improves the manager’s decision. This (weakly)\(^1\) augments the profitability of a long position, but reduces the profitability of a short position.

With \(\mu_L = 0 \), the profits from a positively-informed speculator buying (6) become:

\[
\frac{1}{3} (R^i_H - R^i_L)
\]

Therefore, a necessary condition for the trading cost to make \(\mu_H = 1 \) and \(\mu_L = 0 \) consistent with an equilibrium is:

\[
\frac{1}{3} (R^i_H - R^i_L) > \kappa > \frac{1}{3} \left[\frac{1}{2} (R^i_H - R^i_L) + \frac{1 - \lambda}{2 - \lambda} (R^n_H - R^n_L) \right]
\]

The trading cost must be sufficiently high that a negatively-informed speculator does not wish to sell, but sufficiently low that a positively-informed speculator does wish to buy. The set of possible trading costs that satisfy equation (8) is non-empty. A \(\kappa \) exists if and only if:

\[
\frac{1}{2} (R^i_H - R^i_L) > \frac{1 - \lambda}{2 - \lambda} (R^n_H - R^n_L)
\]

which always holds, because the left-hand side is positive and the right-hand side is negative. Intuitively, since the feedback effect (weakly) enhances the profitability of a long position and reduces the profitability of a short position, the profits from informed buying exceed the profits from informed selling, and so there are a continuum of trading costs in between that will satisfy equation (8). When \(\kappa \) falls in this region, Lemma 2 specializes to Lemma 3 below.

\(^1\)In the core model, continuation is ex ante optimal, and so buying on good information does not change the manager’s decision. Thus, we write that the feedback effect only weakly augments the profitability of a long position. In an alternative model in which there are different levels of investment, or continuation is ex ante suboptimal, buying on good information does change the manager’s decision and so the feedback effect strictly augments the profitability of a long position.
Lemma 3 Assume that equation (8) holds. For a given order flow X, the posterior q, the manager’s decision d and the price p are given by the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>q</th>
<th>0</th>
<th>$\frac{1-\lambda}{2-\lambda}$</th>
<th>$\frac{1}{2}$</th>
<th>d</th>
<th>p</th>
<th>$R^n_L - \frac{1-\lambda}{2-\lambda} R^n_H + \frac{1}{2-\lambda} R^n_H - R^n_L$</th>
<th>$R^n_H - R^n_L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>i</td>
<td>i</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
</tr>
<tr>
<td>-1</td>
<td>$\frac{1-\lambda}{2-\lambda}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>i</td>
<td>i</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
<td>$\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We now return to the question of whether the positively-informed speculator indeed wishes to buy. If she instead decides to sell:

- W.p. $\frac{1}{3}$, $X = 0$. She receives $\frac{1}{2} R^n_H + \frac{1}{2} R^n_L$ for a share which is worth R^n_H, so she makes a loss of $\frac{1}{2} (R^n_H - R^n_L)$.
- W.p. $\frac{1}{3}$, $X = -1$. She receives $\frac{1-\lambda}{2-\lambda} R^n_H + \frac{1}{2-\lambda} R^n_L$ for a share which is worth R^n_H, so makes a profit of $\frac{1}{2-\lambda} (R^n_H - R^n_L)$.
- W.p. $\frac{1}{3}$, $X = -2$. She receives R^n_L for a share which is worth R^n_H, so makes a profit of $(R^n_L - R^n_H)$.

Thus, the positively-informed speculator can make a profit by selling – because she can dupe the manager into taking the corrective action, knowing that the corrective action is undesirable because the state is actually good. Since she has a short position, she benefits from the manager taking the incorrect action.\(^2\) Her overall profits are given by:

\[
\frac{1}{3} (R^n_L - R^n_H) + \frac{1}{3} \left(\frac{1-\lambda}{2-\lambda} R^n_H + \frac{1}{2-\lambda} R^n_L - R^n_H \right) - \frac{1}{3} \left(\frac{1}{2} (R^n_H - R^n_L) \right) = \frac{1}{3} \left(\frac{3-\lambda}{2-\lambda} (R^n_L - R^n_H) \right) - \frac{1}{3} \left(\frac{1}{2} (R^n_H - R^n_L) \right). \tag{9}
\]

For the positively-informed speculator to choose buying over selling, her profits must be greater under the former. This requires:

\[
R^n_H - R^n_L > \left(\frac{3-\lambda}{2-\lambda} (R^n_L - R^n_H) \right) - \frac{1}{2} (R^n_H - R^n_L)
\]

\[
\frac{3}{2} (R^n_H - R^n_L) > \frac{3-\lambda}{2-\lambda} (R^n_L - R^n_H). \tag{10}
\]

The first term is the “fundamental” effect, which represents the profits from trading in the direction of one’s private information. The second term is the “feedback” effect, which arises because selling manipulates the order flow and causes the manager to take the wrong decision.

\(^2\)Goldstein and Guembel (2008) show that an uninformed speculator may have incentives to manipulate the stock price by selling, for similar reasons. In our model, the speculator is always informed.
We must verify that condition (10) is consistent with Assumption 1. For (10) to hold, we require λ to be not too high, else the market maker views the order flow as more informative, and so the speculator can gain more by manipulating the order flow. For Assumption 1, we require λ to be not too low: the order flow must be sufficiently informative that if $X = -1$, the manager changes his decision from continuation to correction (i.e. there is feedback from the order flow to the manager’s action). Recall γ is defined by:

$$\gamma R_H^i + (1 - \gamma) R_L^i = \gamma R_H^n + (1 - \gamma) R_L^n$$

$$\gamma = \frac{R_L^n - R_L^i}{R_H^n - R_H^i + R_L^n - R_L^i}.$$

We thus require

$$\frac{1 - \lambda}{2 - \lambda} < \frac{R_L^n - R_L^i}{R_H^n - R_H^i + R_L^n - R_L^i}$$

$$\lambda > \frac{R_L^n - R_L^i}{R_H^n - R_H^i}.$$

Thus, under the following condition, we can always find a λ close to 1, such that the two conditions hold simultaneously:

$$\frac{3}{2} (R_H^i - R_L^i) > 2 (R_L^n - R_H^n).$$ (11)

To see this, equation (11) guarantees that when the speculator is present and $\theta = H$, she will choose to buy, because the RHS of condition (10) is bounded above by $2(R_L^n - R_H^n)$. Then, since $\frac{R_H^i - R_L^n + R_L^i}{R_H^n - R_H^i} < 1$, we can always find a λ close to 1, such that $\lambda > \frac{R_L^n - R_L^i}{R_H^n - R_H^i}$ as required. Thus, condition (10) is consistent with Assumption 1.

Finally, we study whether the negatively-informed speculator will buy, rather than sell. If she buys:

- W.p. $\frac{1}{3}$, $X = 2$. She pays R_H^i for a share which is worth R_L^i, and so makes a loss of $(R_L^i - R_H^i)$.
- W.p. $\frac{1}{3}$, $X = 1$. She pays $\frac{1}{2} R_H^i + \frac{1}{2} R_L^i$ for a share which is worth R_L^i, and so makes a loss of $\frac{1}{2} (R_L^i - R_H^i)$.
- W.p. $\frac{1}{3}$, $X = 0$. She pays $\frac{1}{2} R_H^i + \frac{1}{2} R_L^i$ for a share which is worth R_L^i, and so makes a loss of $\frac{1}{2} (R_L^i - R_H^i)$.

In all cases, she makes a loss. It is intuitive that the negatively-informed speculator never wishes to buy. Trading in the opposite direction of one’s information causes the manager to make the wrong decision. Thus, it can only be profitable if the speculator establishes a short position. Hence, while the positively-informed speculator may have an incentive to sell, the negatively-informed speculator will never wish to buy.
We therefore have an equilibrium in which there are limits to arbitrage. The positively-informed speculator always buys, but the negatively-informed speculator never sells. This result is stated formally in Proposition 1 below:

Proposition 1 (*Asymmetric limits to arbitrage.*) Assume that Assumption 1 and equations (8) and (10) hold. There exists an equilibrium in which \(H = 1 \) and \(L = 0 \), i.e. the speculator always buys on positive information, but never trades on negative information.

The source of the limit to arbitrage is the feedback effect. Formally, we define the feedback effect as being in existence when the manager’s decision \(d \), and hence firm value, are affected by the order flow \(X \) for \(X \in \{-1, 0, 1\} \). We only consider the cases of \(X \in \{-1, 0, 1\} \) since the speculator’s information is fully revealed when \(X = -2 \) and \(X = 2 \) and her trading profits are automatically zero; thus, the manager’s decision \(d \) is irrelevant. In the above equilibrium, we have \(d = n \) for \(X = -1 \) and \(d = i \) for \(X \in \{0, 1\} \). It is the change in the manager’s decision when \(X = -1 \) that is critical for the negatively-informed speculator to make a loss when she sells. The feedback effect would disappear in three cases: if the manager did not observe order flow, if there was no managerial decision in the first place, or if there is insufficient information contained in the order flow to change the manager’s decision. All three cases lead to similar outcomes; the third case is explicitly analyzed in Section 2.2.1. That section shows that relaxing Assumption 1 leads to no feedback effect (\(d = i \) for \(X \in \{-1, 0, 1\} \)) and so the speculator never makes losses from selling on negative information.

Corollary 1 below states that there is never an equilibrium that contains feedback (i.e. the manager’s decision \(d \) depends on the order flow for \(X \in \{-1, 0, 1\} \)) in which we have the opposite result in which one speculator type always sells, and the other speculator type never buys, for any parameter values. Thus, the only possible asymmetric equilibrium with feedback involves buying and not selling, rather than the opposite. This is intuitive – trading improves the firm’s fundamental value, which reduces the profitability of a short position but enhances the profitability of a long position.

Corollary 1 Relax the assumption that Assumption 1 and equations (8) and (10) hold. For any parameter values, there does not exist an equilibrium in one speculator type always sells, the other speculator type never buys, and the manager’s decision \(d \) depends on the order flow for \(X \in \{-1, 0, 1\} \).

2.2 Discussion

This section discusses the role of our assumptions in creating the limit to arbitrage. These assumptions in turn lead to empirical predictions, since they demonstrate the conditions under which the limit to arbitrage will exist.
2.2.1 $\frac{1-\lambda}{2-\lambda} > \gamma$

We now relax Assumption 1 and consider the opposite case of $\frac{1-\lambda}{2-\lambda} > \gamma$. Recall that $\frac{1-\lambda}{2-\lambda}$ is the manager’s posterior probability of $\theta = H$ if he observes $X = -1$. With $\frac{1-\lambda}{2-\lambda} > \gamma$, the posterior is sufficiently high that the manager does not take the corrective action if $X = -1$. We now have

<table>
<thead>
<tr>
<th>X</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>$\frac{1-\lambda}{2-\lambda}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2-\lambda \mu_L}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>R_{iH}^i</td>
<td>$\frac{1-\lambda}{2-\lambda} R_{iH}^i$</td>
<td>$\frac{1-\lambda}{2-\lambda} R_{iL}^i$</td>
<td>$\frac{1}{2} R_{iH}^i + \frac{1}{2} R_{iL}^i$</td>
<td>$\frac{1-\lambda}{2-\lambda} R_{iH}^i + \frac{1-\lambda}{2-\lambda} R_{iL}^i$</td>
</tr>
</tbody>
</table>

The case of the positively-informed speculator buying is the same as in the core model. If the negatively-informed speculator sells:

- W.p. $\frac{1}{3}$, $X = -2$ and she is fully revealed, so trading profits are zero.

- W.p. $\frac{1}{3}$, $X = -1$ and she receives $\frac{1-\lambda}{2-\lambda} R_{iH}^i + \frac{1-\lambda}{2-\lambda} R_{iL}^i$ for a share which is worth R_{iL}^i, which yields a profit of $\frac{1-\lambda}{2-\lambda} (R_{iH}^i - R_{iL}^i)$. Critically, unlike under Assumption 1, the profit is positive. This is because selling does not change the manager’s decision: he is still continuing the project. Thus, there is only the “fundamental” effect of trading in the direction of one’s private information, and no confounding feedback effect.

- W.p. $\frac{1}{3}$, $X = 0$ and she receives $\frac{1}{2} R_{iH}^i + \frac{1}{2} R_{iL}^i$ for a share which is worth R_{iL}^i, which yields a profit of $\frac{1}{2} (R_{iH}^i - R_{iL}^i) > 0$.

Overall, the ex-ante profit from selling on negative information is $\frac{1}{3} \left(\frac{1-\lambda}{2-\lambda} + \frac{1}{2} \right) (R_{iH}^i - R_{iL}^i)$ which is unambiguously positive. Thus, if

$$\kappa < \frac{1}{3} \left(\frac{1-\lambda}{2-\lambda} + \frac{1}{2} \right) (R_{iH}^i - R_{iL}^i) \tag{12}$$

we have $\mu_L = 1$: the speculator does sell on negative information, and there is no limit to arbitrage because there is no feedback effect. If (12) does not hold, then the transaction costs are sufficiently high to deter informed selling. We thus have $\mu_L = 0$, and so the positively-informed speculator’s profits from buying are $\frac{1}{3} (R_{iH}^i - R_{iL}^i)$. If $\kappa > \frac{1}{3} (R_{iH}^i - R_{iL}^i)$, the speculator never trades on information in either direction. For the intermediate case for which

$$\frac{1}{3} (R_{iH}^i - R_{iL}^i) > \kappa > \frac{1}{3} \left(\frac{1-\lambda}{2-\lambda} + \frac{1}{2} \right) (R_{iH}^i - R_{iL}^i) \tag{13}$$

then the equilibrium does involve $\mu_H = 1$ and $\mu_L = 0$, an asymmetric limit to arbitrage as in the core model. However, this limit to arbitrage is not driven by feedback: for $X \in \{-1, 0, 1\}$, the manager’s decision is always $d = i$ regardless of the order flow. This is why the negatively-informed speculator makes positive profits from selling if $X = -1$, whereas in the core model she makes a loss in this case. Assumption 1 is necessary in the core model to create feedback
and trading losses, since if and only if $\frac{1-\lambda}{2-\lambda} < \gamma$, the posterior upon $X = -1$ is sufficiently low to change the manager’s decision from continuation to correction. Feedback can only exist if there is sufficient uncertainty over the optimal decision that the information revealed by the order flow is sometimes sufficiently strong to change the manager’s action.

Instead, the intuition for the asymmetric limit to arbitrage is as follows. Given that the equilibrium involves not selling on negative information, buying is highly profitable. This is because the speculator earns high profits not only if $X = 0$, but also if $X = 1$. Since the speculator does not sell on negative information, $X = 1$ is fully consistent with the speculator not selling and having negative information, and so the speculator sets a low price of $\frac{1}{2}R^i_H + \frac{1}{2}R^i_L$. This allows the speculator to make high profits by selling. Conversely, given the equilibrium involves buying on positive information, selling is not profitable. This is because the speculator only earns high profits if $X = 0$, but not if $X = -1$. Since she always buys on negative information, and $X = -1$ is inconsistent with her buying, it must be that the speculator has negative information (or is absent). Hence the market maker sets a low price, meaning the speculator earns low profits by selling if $X = -1$. Indeed, if the speculator is always present, then the profits if $X = -1$ are zero.

To highlight that the asymmetry does not arise through feedback, for the case in which $d = i$ for $X \in \{-1,0,1\}$, there is also an equilibrium in which $\mu_H = 0$ and $\mu_L = 1$. In this equilibrium, the speculator’s strategy is:

$$
\begin{array}{c|ccc}
\theta & -1 & 0 & 1 \\
\hline
H & 0 & 1 & 0 \\
L & 1 & 0 & 0 \\
\end{array}
$$

which is consistent with the following equilibrium3:

$$
\begin{array}{c|cccc}
X & -2 & -1 & 0 & 1 \\
\hline
q & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2-\lambda} \\
\hline
d & n & i & i & i \\
p & R^i_L & \frac{1}{2}R^i_H + \frac{1}{2}R^i_L & \frac{1}{2}R^i_H + \frac{1}{2}R^i_L & \frac{1}{2-\lambda}R^i_H + \frac{1-\lambda}{2-\lambda}R^i_L & R^i_H \\
\end{array}
$$

Again, there is no feedback, since $d = i$ for $X \in \{-1,0,1\}$. Simple calculations give the positively-informed speculator’s profits from buying as $\frac{1}{2} \left(\frac{1}{3} \left(1 + \frac{1-\lambda}{2-\lambda} \right) (R^i_H - R^i_L) \right)$ and the negatively-informed speculator’s profits from selling as $\frac{1}{3} (R^i_L - R^i_H)$, which is higher. The intuition is exactly analogous to the earlier case of $\mu_H = 1$ and $\mu_L = 0$: given that the equilibrium involves not trading on positive information and selling on negative information, the speculator does not wish to deviate from this. If (13) holds, then a positively-informed speculator will not buy but a negatively-informed speculator will sell. If also $\kappa > \frac{1}{3} \left(\left(R^i_L - R^i_H \right) - (R^i_H - R^i_L) \right)$, then the

3Note that $X = 2$ is off the equilibrium path so we have freedom to specify any belief. We choose $q = 1$ as this is sufficient to support the equilibrium of $\mu_H = 0$ and $\mu_L = 1$. Regardless of $q (X = 2)$, there is no feedback since we have $d = i$ for $X \in \{-1,0,1\}$.

16
positively-informed speculator will not sell either, so the equilibrium of $\mu_H = 0$ and $\mu_L = 1$ is sustainable.

In sum, the assumption of $\frac{1 - \lambda}{2 \lambda} > \gamma$ is necessary to generate a limit to arbitrage that arises through the feedback effect. This is intuitive, since it means that order flow is sufficiently informative to change the manager’s decision.

2.2.2 Speculator Is Sometimes Absent

In the core model, the speculator is only present with probability $\lambda < 1$. This is necessary for the limit to arbitrage to exist. Recall that a limit to arbitrage requires asymmetry in beliefs between the market maker and the speculator – while they inevitably both agree on what action the manager will take (for a given order flow), they must disagree on whether the action is desirable for firm value for the speculator to make a loss. In the core model, this disagreement occurs at $X = 1$: both the speculator and market maker know that correction will occur, but the speculator knows with certainty that correction is desirable and values the firm highly, whereas the market maker is not certain that correction is desirable and so sets a low price. It is necessary for $\lambda < 1$ to create this asymmetry. Observing $X = 1$ tells the market maker that the speculator cannot have bought. With $\lambda = 1$, the speculator is always present. Since she is always informed, the only way that she could not have bought is if she has negative information. Thus, the market maker knows with certainty that $\theta = L$, and has exactly the same posterior as the speculator ($q = 0$). She sets a price of R^n_L, which is exactly the speculator’s valuation and so the speculator does not make a loss. By contrast, with $\lambda < 1$, the absence of a purchasing speculator is consistent with $\theta = H$: it could be that the true state is good, and the low total order flow is because the speculator is not present. Put differently, $\lambda < 1$ creates an information asymmetry between the speculator and the market maker – the speculator knows whether she is present, but the market maker does not. This in turn creates asymmetry in beliefs – the speculator and the market maker attach different valuations to the firm, which creates the limit to arbitrage.

We would achieve the same result by instead assuming that the speculator is always present and informed, but can only trade with probability λ – for example, if with probability $1 - \lambda$ she receives a liquidity shock that prevents her from trading. Thus, for a limit to arbitrage to exist, there must be sufficient uncertainty over whether there is a speculator who can trade – either because there is uncertainty over whether she is present, or there is uncertainty over her ability to trade on her information conditional upon being present.

2.2.3 Speculator’s Initial Position is Zero

In our model, the speculator’s initial position is zero, so that trading on negative information requires her to take a short position. If the speculator maximizes absolute returns, this is a necessary assumption since, only by taking a short position will she lose by inducing the firm to take an efficient corrective action. If the speculator initially holds several shares in the firm,
she may choose to sell some of her shares on negative information – if her trade improves the manager’s decision, this will increase the value of her remaining shares.

However, if the speculator maximizes returns relative to other speculators, then our limit to arbitrage may exist even if her initial position is strictly positive. Assume that the speculator is a mutual fund who is benchmarked against the performance of other mutual funds, and that each fund holds 10 shares in the firm. If the speculator sells 6 of her shares and this causes the firm to take an optimal corrective action, this will increase the value of her remaining 4 shares. However, it will benefit her rivals even more, who still have 10 shares in the firm. Even though selling does not require the speculator to take a short position, in which she loses in absolute terms from an improvement in firm value, selling causes her to suffer losses relative to her peer group and this may deter her from trading in the first place. Thus, the limit to arbitrage identified by this paper has potentially wider applicability than those based on short-sales constraints. While short-sales constraints do not deter selling to a non-negative final position, the feedback effect can deter such selling if the speculator maximizes relative performance.

2.3 Stock Returns

Thus far, we have shown that positive news received by the speculator has a different impact on her trades (and thus total order flow) than negative news. However, it is not obvious that this will translate into a differential impact on stock prices. The market maker is fully rational and takes into account the fact that the speculator does not sell on negative information and adjusts his pricing function accordingly. For example, as shown in Lemma 2, the market maker recognizes that $X = 1$ could be consistent with a negatively-informed speculator who chooses not to trade, and so p_1 is no higher than p_0. Thus, even though bad news can lead to a neutral (or mildly positive) order flow rather than a negative order flow, the market maker knows that such an order flow can stem from a negatively-informed and non-trading speculator, and will decrease the price accordingly. Put differently, although negative information does not cause a negative order flow (on average), it can still have a negative price impact. Thus, it may seem that good and bad news should have a symmetric effect on stock prices. This section calculates the stock price impact between $t = 0$ and $t = 1$ of the speculator receiving either positive or negative information and shows that bad news possessed by the speculator has a smaller impact on prices than good news. It also calculates the long-run drift between $t = 1$ and $t = 2$ after the speculator has received and traded on her information.

Let p^{ante} denote the “ex ante” stock price at $t = 0$, before the state has been realized. With probability $\frac{1}{2}$, the state will be $\theta = L$ and there is no trade, regardless of whether the speculator is present. Thus, order flow is -1, 0 or 1 with equal probability. With probability $\frac{1}{2}$, the state will be $\theta = H$. If the speculator is absent (w.p. $(1 - \lambda)$), there is no trade and we again have $X \in \{-1, 0, 1\}$ with equal probability. If the speculator is present, $X \in \{0, 1, 2\}$ with equal probability. Letting $p(X)$ denote the stock price set by the market maker after observing order
flow X, we have:

$$p^{ante} = \frac{\lambda}{2} \left(\frac{1}{3} p(0) + \frac{1}{3} p(1) + \frac{1}{3} p(2) \right) + \left(1 - \frac{\lambda}{2} \right) \left(\frac{1}{3} p(-1) + \frac{1}{3} p(0) + \frac{1}{3} p(1) \right)$$

$$= \frac{1}{3} \left(\frac{\lambda}{2} p(2) + p(1) + p(0) + \left(1 - \frac{\lambda}{2} \right) p(-1) \right)$$

$$= \frac{1}{6} [(1 - \lambda)R^n_H + R^n_L + (2 + \lambda)R^i_H + 2R^i_L] \quad (14)$$

If the speculator is present and receives positive information, she will buy one share and so the price becomes:

$$p^\text{spec}_H = \frac{1}{3} (p(2) + p(1) + p(0)) .$$

The stock return realized when the speculator receives good information is thus given by:

$$p^\text{spec}_H - p^{ante} = \frac{1}{3} (p(2) + p(1) + p(0)) - \frac{1}{3} \left(\frac{\lambda}{2} p(2) + p(1) + p(0) + \left(1 - \frac{\lambda}{2} \right) p(-1) \right)$$

$$= \frac{1}{3} \left(1 - \frac{\lambda}{2} \right) (p(2) - p(-1))$$

$$= \frac{1}{3} \left(1 - \frac{\lambda}{2} \right) \left(R^i_H - \frac{1 - \lambda}{2 - \lambda} R^n_H - \frac{1}{2 - \lambda} R^n_L \right) > 0.$$

Similarly, if the speculator is present and receives negative information, we have:

$$p^\text{spec}_L = \frac{1}{3} (p(1) + p(0) + p(-1))$$

$$p^\text{spec}_L - p^{ante} = \frac{1}{3} (p(1) + p(0) + p(-1)) - \frac{1}{3} \left(\frac{\lambda}{2} p(2) + p(1) + p(0) + \left(1 - \frac{\lambda}{2} \right) p(-1) \right)$$

$$= \frac{1}{3} \frac{\lambda}{2} (p(-1) - p(2)) < 0.$$

Note that:

$$\text{abs} \left(p^\text{spec}_H - p^{ante} \right) - \text{abs} \left(p^\text{spec}_L - p^{ante} \right)$$

$$= \frac{1}{3} \left(1 - \frac{\lambda}{2} \right) (p(2) - p(-1)) - \frac{1}{3} \frac{\lambda}{2} (p(2) - p(-1))$$

$$= \frac{1}{3} (1 - \lambda) (p(2) - p(-1)) > 0. \quad (15)$$

i.e. the stock price increase upon positive information exceeds the stock price decrease upon negative information. Put differently, positive information is impounded into prices to a greater degree than negative information. Since good and bad news are equally likely, this means that
the expected return, conditional on the speculator being present, is positive:

\[p^{\text{spec}} - p^{\text{ante}} = \frac{1}{2} \left[\frac{1}{3} (p_2 + p_1 + p_0) + \frac{1}{3} (p_1 + p_0 + p_{-1}) \right] - p^{\text{ante}} \]

\[= \frac{1}{3} \left(\frac{1 + \lambda}{2} \right) (p_2 - p_{-1}) > 0. \]

(16)

This result is stated formally in Proposition 2 below:

Proposition 2 (Asymmetric effect of positive and negative information.) The price impact of the speculator being present and positively informed is greater in absolute terms than the price impact of the speculator being present and negatively informed. The expected return at \(t = 1 \), conditional on the speculator being present, is positive.

Proposition 2 holds even though the market maker is rational and takes into account the fact that the speculator trades asymmetrically when devising his pricing function. Thus, as proven in Appendix A, the expected return unconditional on whether the speculator is present is zero. The market is fully efficient: an uninformed speculator cannot buy the stock at \(t = 0 \) and expect a positive average return at \(t = 1 \). Instead, Proposition 2 states that the expected return, conditional on the speculator being present, is positive – i.e. good news received by the speculator has a greater impact on the price than bad news received by the speculator. The source of this result is that, even though the market maker is rational, he is unable to distinguish the case of a negatively-informed speculator from that of an absent speculator (i.e. no information), and so negative information has a smaller effect on prices. By contrast, if the speculator is always present, the market maker has no such inference problem and there is no asymmetry. This can be seen by plugging \(\lambda = 1 \) into equation (15). Just as \(\lambda < 1 \) was a necessary condition for the limit to arbitrage to exist in the first place, it is a necessary and sufficient condition for bad news to have a lower effect on stock prices than good news.

We now move from short-run returns to calculating the long-run drift of the stock price if the project is continued. At \(t = 2 \), the fundamental value of the firm \(v \) is realized. The expected fundamental value, conditional upon the speculator being present and the project being continued, is given by:

\[E[v|d = i, \text{spec}] = \frac{\Pr(H, d = i|\text{spec}) R_H^i + \Pr(L, d = i|\text{spec}) R_L^i}{\Pr(d = i|\text{spec})} = \frac{1}{2} \frac{R_H^i}{6} + \frac{1}{3} \frac{R_L^i}{6} \]

\[= \frac{3}{5} R_H^i + \frac{2}{5} R_L^i. \]
Thus, the expected long-run drift to project continuation is:

\[
E[v|d = i, spec] - p^{spec} = \frac{3}{5} R_H^i + \frac{2}{5} R_L^i - \left(\frac{1}{6} p (2) + \frac{1}{3} p (1) + \frac{1}{3} p (0) + \frac{1}{6} p (-1) \right)
\]

\[
= \frac{1}{10} R_H^i + \frac{1}{15} R_L^i - \frac{1}{6} \left(\frac{1 - \lambda}{2 - \lambda} R_H^n + \frac{1}{2 - \lambda} R_L^n \right)
\]

(17)

which has an ambiguous sign depending on parameter values. It is interesting that the long-run drift can be negative, even though it is conditional upon the speculator being present. Intuitively, it may seem that the drift should be positive, since the speculator is present and able to guide the manager’s direction, and so the decision taken is likely to be the one that maximizes \(t = 2 \) fundamental value. However, due to the limit to arbitrage, the speculator does not always reveal her information (through trading) to guide the manager. Since negative information is impounded into the \(t = 1 \) price to a lesser degree, it seeps out to a greater extent ex post, leading to negative drift. It may be that the speculator has information that the continuation decision is the incorrect one (i.e. \(\theta = L \)), but the manager still continues the project because this information is not communicated to him, and so the long-run drift is negative.

The “event” of the speculator receiving information at \(t = 1 \) can be interpreted as any corporate event that creates uncertainty over the value of the firm, about which an informed trader may possess an information advantage. An example is the announcement of an M&A transaction, in which case the model predicts positive event-study returns, yet long-run drift (conditional on deal completion) may be negative.

3 Implications

This section discusses several implications of our model. The first is that this paper identifies a limit to arbitrage which, in contrast to alternative explanations, is likely to persist over time even as markets evolve and investors become more sophisticated. One existing source of limited arbitrage is market frictions such as short-sales constraints, which will likely diminish with the development of financial markets. A second is that investors in professional money managers make their allocation decisions based on short-run measures of performance, which leads to mutual funds avoiding arbitrages that will only converge in the long run (Shleifer and Vishny (1997)). Such behavior can either be irrational over-extrapolation, or rational if they have limited information on the fund manager’s quality but instead must infer it imperfectly from short-run performance. Either way, if investor sophistication and information improve over time, this force will also diminish.

By contrast, the limit to arbitrage analyzed by this paper stems from firm value being endogenous to the act of arbitrage. This is a fundamental force that does not rely on market imperfections, investor irrationality or investor limited information, and so may continue to
persist over time. (The only market imperfection that our model requires is trading costs, which exist even in developed financial markets). All agents in the model act with full rationality: the market maker takes into account the manager’s learning when setting the price, and this in turn affects the speculator’s decision to trade; in addition, the market maker knows that the speculator is pursuing an asymmetric trading strategy. If anything, the limit to arbitrage may increase with investor sophistication, as this augments the extent to which speculators have value-relevant information which the manager attempts to learn by observing the price.

The second main category of applications stems from the fact that the limit to arbitrage is asymmetric. While the speculator buys on good information, he does not sell on bad information. Even though the market maker takes this into account, Proposition 2 shows that negative information will enter into prices more slowly, as found empirically by Hong, Lim and Stein (2000). While Hong, Lim and Stein’s results are consistent with the Hong and Stein (1999) model that news travels more slowly in small firms with low analyst coverage, Hong and Stein do not predict an asymmetry between good and bad news. Hong, Lim and Stein speculate that the asymmetry arises because key information is held by the firm’s managers, and they disseminate favorable information more enthusiastically than unfavorable information because they are evaluated according to the stock price. Our theoretical model offers a potential alternative explanation. Key information is held by a firm’s investors, who disseminate information not through public news releases, but by trading on it. Their reluctance to disseminate bad news is not because they are evaluated according to the stock price, but due to the limit to arbitrage created by the feedback effect.

Moreover, the feedback effect means that the lack of negative information in prices will have further consequences on real decisions. In particular, if speculators choose not to trade on negative information, then such negative information does not become incorporated into stock prices and fails to influence the manager’s behavior. Thus, some negative-NPV projects will not be optimally abandoned, leading to overinvestment – even though there is an agent who knows with certainty that the investment is undesirable, it still takes place. Critically, overinvestment does not occur because the manager is pursuing private benefits, as in the standard theories of Jensen (1986), Stulz (1990) and Zwiebel (1996). In contrast, the manager is fully aligned with firm value and there are no agency problems. The manager wishes to maximize firm value by learning from prices, but is unable to do so since speculators refrain from impounding their information into prices. Note that overinvestment occurs even though the manager is fully aware that the speculator does not trade on negative information and takes this into account.

The above overinvestment result can apply to M&A as well as organic expansion. Luo (2005) shows that managers sometimes use the market reaction to announced M&A deals to guide whether they should cancel the acquisition. While he finds that some transactions are canceled in equilibrium, our model suggests that there are other negative-NPV deals that should optimally be canceled but are not because speculators do not impound their negative views into prices. This may explain why a large proportion of M&A deals destroy value (see, e.g., Andrade,

The theory also has potential implications for the short- and long-run returns to M&A announcements. As shown in Proposition 2, even if good and bad deals are equally likely, the expected returns to an M&A announcement will be strictly positive because even if speculators know that a deal is value-destructive, they may not trade on this information. Moreover, equation (17) shows that the long-run drift, conditional on the deal being completed, can be negative. Some speculators may have negative information on the deal at the time of announcement, but choose not to impound it into prices due to the limit to arbitrage. Thus, the value-destructiveness of the transaction only manifests itself upon completion. This combination of positive event-study returns and negative long-run returns has been documented empirically by Agrawal, Jaffe and Mandelker (1992) and Rau and Vermaelen (1998). For the vast majority of corporate events, the long-run drift is in the same direction as the initial announcement return (see Barberis and Thaler (2003) for a survey) and this is interpreted as resulting from underreaction. However, underreaction cannot explain why the short-run returns to M&A are in a different direction to the long-run outcomes. Our framework offers a potential explanation.

Our theory also suggests why investor outflows from mutual funds upon poor performance are less pronounced than fund inflows upon good performance, as found by Lynch and Musto (2003). Their explanation is that poor performance will lead to the fund family taking corrective actions, such as replacing the fund manager, removing the incentive to withdraw from a poorly-performing fund. In that paper, investors’ fund flows have no direct effect on the fund family’s decision to undertake a corrective action, which is instead purely based on the fund performance. Our model (applied to a mutual fund setting) suggests that the fund family will learn from investor flows in order to guide their correction decision, assuming that investors have private information on fund manager ability, over and above the publicly observable poor performance measure. Therefore, investors who are evaluated according to relative performance may choose not to withdraw, since doing so will directly affect the family’s decision. It is thus most applicable to mutual fund investors with detailed information on management quality, such as funds-of-funds or large institutional investors. In addition to having detailed information, such investors are also likely evaluated according to relative performance.\footnote{Mutual funds always trade at net asset value (NAV) regardless of the manager in charge. Thus, we require a redemption cost for the limit to arbitrage to exist (similar to the transaction cost in this model), otherwise an investor could withdraw from the fund at NAV, and immediately re-inject the funds at NAV if the manager is replaced. For closed-end funds, which need not trade at NAV, no redemption cost is needed.}

4 Conclusion

This paper has modeled a limit to arbitrage that stems from the fact that firm value is endogenous to the act of exploiting the arbitrage. We showed that investors may refrain from trading on negative information even in the absence of short-sale constraints, risk aversion or short horizons. Instead, the speculator strategically withholds negative information to avoid it
improving the manager’s investment decisions and causing her to realize a loss on her short position. The model can potentially explain why negative information is incorporated into prices more slowly than positive information, why managers may overinvest even in the absence of agency problems, and the concurrence of positive short-term returns to M&A with negative long-term returns.
References

A Proofs

Proof of Lemma 1

Given the speculator’s strategy, any \(X \in Q \) is on the path of play. So from Bayes’ rule, we have

\[
q(X) = \Pr(H|X) = \frac{\Pr(X|H)}{\Pr(X|H) + \Pr(X|L)}.
\]

We thus have:

\[
q(-2) = \frac{0}{0 + \mu_L} = 0;
\]

\[
q(-1) = \frac{1 - \mu_H}{1 - \mu_H} = 1 - \frac{\lambda}{2 - \lambda};
\]

\[
q(0) = \frac{\lambda \mu_H(1/3) + \lambda(1 - \mu_H)(1/3) + (1 - \lambda)(1/3)}{\lambda \mu_H(1/3) + \lambda(1 - \mu_H)(1/3) + (1 - \lambda)(1/3)} = \frac{1}{2};
\]

\[
q(1) = \frac{\lambda \mu_H(1/3) + \lambda(1 - \mu_H)(1/3) + (1 - \lambda)(1/3)}{\lambda \mu_H(1/3) + \lambda(1 - \mu_H)(1/3) + (1 - \lambda)(1/3)} = \frac{1}{2 - \lambda \mu_L};
\]

\[
q(2) = \frac{\lambda \mu_H(1/3) + (1 - \lambda)(1/3)}{\lambda \mu_H(1/3) + (1 - \lambda)(1/3)} = 1.
\]

Then, sequential rationality implies the table in Lemma 1.

Proof of Corollary 1

We will actually prove a slightly stronger result than the corollary – that there is no equilibrium in which one speculator type always sells, and the other speculator type buys with probability less than 1 (and otherwise does not trade). There are thus two possible equilibria to consider: one in which the speculator sells if \(\theta = L \) and does not always buy if \(\theta = H \), and one in which the speculator sells if \(\theta = H \) and does not trade if \(\theta = L \).

We consider the first case first, which involves \(\mu_L = 1 \) and \(\mu_H < 1 \). Thus, from Lemma 1, we have \(d(X = 1) = d(X = 0) = i \). Thus, for a feedback equilibrium, we require \(d(X = -1) = n \), and so Lemma 1 becomes:

27
To show that the speculator does not sell with greater frequency than she buys, it is sufficient to show that the profits from buying if $\theta = H$ exceed the profits from selling if $\theta = L$. To do so, we will compare analogous cases.

If a positively-informed speculator buys and $X = 2$, she is fully revealed and her profits are zero. Similarly, if a negatively-informed speculator sells and $X = 2$, she is fully revealed and her profits are zero.

If a positively-informed speculator buys and $X = 0$, she makes a profit of $\frac{1}{2} (R_H^i - R_L^i)$. Similarly, if a negatively-informed speculator sells and $X = 0$, she makes a profit of $\frac{1}{2} (R_H^i - R_L^i)$.

Thus far, the profits for the analogous cases are identical. However, they differ in the case in which the noise trader does not trade. If a positively-informed speculator buys and $X = 1$, she makes a profit of $\frac{1}{2} (R_H^i - R_L^i)$. If the negatively-informed speculator sells and $X = -1$, she makes a loss of $\frac{1}{2} (R_H^i - R_L^i)$. The reason for this difference is the feedback effect. When a positively-informed trader buys, she makes the standard profit (the “fundamental” effect) because she trades on her information and firm value is unchanged. When a negatively-informed speculator sells, she changes the manager’s action from continuation to abandonment, and thus improves firm value. This causes her to realize a loss on her short position.

In sum, due to the feedback effect, a positively-informed speculator makes a profit if she buys and the noise trader does not trade, and a negatively-informed speculator makes a loss if she sells and the noise trader does not trade. Since the profits are identical in the other analogous cases, overall the profit from a positively-informed speculator buying exceeds the profit from a negatively-informed speculator selling. Thus, there cannot be an equilibrium in which $\mu_L = 1$ and $\mu_H < 1$. Thus, we cannot have $\mu_L = 1$ and $\mu_H = 0$. The only way in which losses can be avoided for the case of $s = X = -1$ is if $d (X = -1) = i$, so that the manager’s decision is unchanged. However, this equilibrium does not involve feedback since it yields $d = i$ for $X \in \{-1, 0, 1\}$.

The second case is when the speculator sells on positive information and does not buy on negative information, i.e. her strategy profile is given by:

<table>
<thead>
<tr>
<th>θ</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>μ_H</td>
<td>$1 - \mu_H$</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>$1 - \mu_L$</td>
<td>μ_L</td>
</tr>
</tbody>
</table>

The second case is when the speculator sells on positive information and does not buy on negative information, i.e. her strategy profile is given by:
where $\mu_H = 1$ and $\mu_L = 0$. We have:

<table>
<thead>
<tr>
<th>X</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>1</td>
<td>2</td>
<td>$\frac{1}{\lambda}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2\lambda}$</td>
</tr>
<tr>
<td>d</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>$?\ n$</td>
<td>R^n_L</td>
</tr>
<tr>
<td>p</td>
<td>R^n_H</td>
<td>$\frac{1}{2-\lambda}$</td>
<td>R^n_H</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Since only a positively-informed speculator sells in equilibrium, selling conveys to the manager that the state is good and leads the manager to invest. The positively-informed speculator knows that the state is good and so values the firm at R^n_H. If $X = -2$, the speculator breaks even but if $X \in \{-1,0\}$, the market maker does not know that the state is good and so pays a price below R^n_H. Thus, the speculator makes a loss, and so this is not an equilibrium.

Proof that the Unconditional Expected Return is Zero

If $\theta = H$ is realized, the expected price becomes:

$$p_H = (1 - \lambda) \left[\frac{1}{3}p_{-1} + \frac{1}{3}p_0 + \frac{1}{3}p_1 \right] + \lambda \left(\frac{1}{3}p_0 + \frac{1}{3}p_1 + \frac{1}{3}p_2 \right)$$

and so the short-run return to good news is

$$p_H - p^{ante} = \frac{\lambda}{6} \left[p(X = 2) - p(X = -1) \right] > 0.$$

If $\theta = L$ is realized, the expected price becomes:

$$p(\theta = L) = \frac{1}{3} (p_0 + p_1 + p_2)$$

$$= \frac{1}{3} \left(\frac{1 - \lambda}{2 - \lambda} R^n_H + \frac{1}{2 - \lambda} R^n_L \right) + \frac{1}{3} (R^n_H + R^n_L).$$

and so the short-run return to bad news is

$$p(\theta = L) - p^{ante} = \frac{\lambda}{6} \left[\left(\frac{1 - \lambda}{2 - \lambda} R^n_H + \frac{1}{2 - \lambda} R^n_L \right) - R^n_H \right]$$

$$= \frac{\lambda}{6} [p(X = -1) - p(X = 2)] < 0.$$

Note that $p(\theta = H) - p^{ante} = - (p(\theta = L) - p^{ante})$: the negative effect of bad news equals the positive effect of good news. Thus, the unconditional expected return is zero, consistent with market efficiency.
B The Case $\gamma > \frac{1}{2}$

We now consider the case of $\gamma > \frac{1}{2}$. Now, correction is the ex ante optimal decision. Since, under correction, firm value is now higher under state L, and correction occurs more frequently with $\gamma > \frac{1}{2}$, seeing that $\theta = L$ is effectively good news for the firm. Thus, we now refer to a speculator who observes $\theta = L$ as positively-informed, and one who observes $\theta = H$ as negatively-informed. We first assume that the speculator pursues the following strategy:

\[
\begin{array}{c|ccc}
\theta & -1 & 0 & 1 \\
\hline
H & \mu_H & 1 - \mu_H & 0 \\
L & 0 & 1 - \mu_L & \mu_L \\
\end{array}
\]

i.e. the positively-informed speculator never sells and the negatively-informed speculator never buys. (We will prove this formally later.) Using Bayes’ rule yields:

\[
q(2) = \frac{0}{0 + \mu_L} = 0;
\]

\[
q(1) = \frac{(1 - \mu_H)\lambda(1/3) + (1 - \lambda)(1/3)}{(1 - \mu_H)\lambda(1/3) + (1 - \lambda)(1/3) + \lambda(1/3) + (1 - \lambda)(1/3)} = \frac{1 - \lambda\mu_H}{2 - \lambda\mu_H};
\]

\[
q(0) = \frac{\lambda\mu_H(1/3) + \lambda(1 - \mu_H)(1/3) + (1 - \lambda)(1/3)}{\lambda\mu_H(1/3) + \lambda(1 - \mu_H)(1/3) + (1 - \lambda)(1/3) + \lambda(1 - \mu_L)(1/3) + (1 - \lambda)(1/3)} = \frac{1}{2};
\]

\[
q(-1) = \frac{\lambda\mu_H(1/3) + \lambda(1 - \mu_H)(1/3) + (1 - \lambda)(1/3)}{\lambda\mu_H(1/3) + \lambda(1 - \mu_H)(1/3) + (1 - \lambda)(1/3) + \lambda(1 - \mu_L)(1/3) + (1 - \lambda)(1/3)} = \frac{1}{2 - \lambda\mu_L};
\]

\[
q(-2) = \frac{\lambda\mu_H(1/3)}{\lambda\mu_H(1/3)} = 1.
\]

Thus, sequential rationality implies the following table:

\[
\begin{array}{c|cccc}
X & -2 & -1 & 0 & 1 \\
\hline
q & 1 & \frac{1}{2 - \lambda\mu_L} & \frac{1}{2} & \frac{1 - \lambda\mu_H}{2 - \lambda\mu_H} & 0 \\
d & i & ? & n & n & n \\
p & R_H^i & ? & \frac{1}{2} R_H^i + \frac{1}{2} R_L^i & \frac{1 - \lambda\mu_H}{2 - \lambda\mu_H} R_H^i + \frac{1}{2 - \lambda\mu_H} R_L^i & R_L^i \\
\end{array}
\]

We first consider the positively-informed speculator who observes $\theta = L$. If she chooses to
buy one unit:

- W.p. $\frac{1}{3}$, $X = 2$ and she is fully revealed, so trading profits are zero.
- W.p. $\frac{1}{3}$, $X = 1$ and she pays $\frac{1}{2} - \frac{\lambda}{2 - \lambda} R_H^n + \frac{1}{2 - \lambda} R_L^n$ for a share which is worth R_H^n, which yields a profit of $\frac{1}{2 - \lambda} (R_L^n - R_H^n) > 0$.
- W.p. $\frac{1}{3}$, $X = 0$ and she pays $\frac{1}{2} R_H^n + \frac{1}{2} R_L^n$ for a share which is worth R_L^n, which yields a profit of $\frac{1}{2} (R_L^n - R_H^n) > 0$.

Therefore, a positively-informed speculator will choose to buy and receives an ex-ante profit of $\frac{1}{3} \left[\frac{1}{2} \lambda (R_L^n - R_H^n) + \frac{1}{2} (R_H^n - R_L^n) \right]$ (gross of trading costs).

We assume that $\lambda > \gamma$, so that observing $X = -1$ causes the manager’s decision to chance, i.e. there is a feedback effect. The table becomes:

<table>
<thead>
<tr>
<th>X</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>1</td>
<td>$\frac{1}{2 - \lambda}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1 - \lambda}{2 - \lambda}$</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>i</td>
<td>i</td>
<td>$\frac{1}{2 - \lambda}$</td>
<td>$\frac{1 - \lambda}{2 - \lambda}$</td>
<td>0</td>
</tr>
<tr>
<td>p</td>
<td>R_H^n</td>
<td>$\frac{1}{2 - \lambda} R_H^n + \frac{1}{2 - \lambda} R_L^n$</td>
<td>$\frac{1}{2} R_H^n + \frac{1}{2} R_L^n$</td>
<td>$\frac{1 - \lambda}{2 - \lambda} R_H^n + \frac{1}{2 - \lambda} R_L^n$</td>
<td></td>
</tr>
</tbody>
</table>

We now consider the negatively-informed speculator who observes $\theta = H$. If she sells,

- W.p. $\frac{1}{3}$, $X = -2$ and she is fully revealed, so trading profits are zero.
- W.p. $\frac{1}{3}$, $X = -1$ and she receives $\frac{1}{2 - \lambda} R_H^i + \frac{1 - \lambda}{2 - \lambda} R_L^i$ for a share which is worth R_H^i, which yields a profit of $\frac{1}{3} \frac{1 - \lambda}{2 - \lambda} (R_L^i - R_H^i) < 0$.
- W.p. $\frac{1}{3}$, $X = 0$ and she receives $\frac{1}{2} R_H^i + \frac{1}{2} R_L^i$ for a share which is worth R_L^i, which yields a profit of $\frac{1}{3} \frac{1}{2} (R_L^i - R_H^i) > 0$.

Note that the case of $X = -1$ represents a limit to arbitrage similar to the core model. By selling, the negatively-informed speculator changes the decision towards continuation. Continuation is indeed optimal since $\theta = H$, and so the act of arbitrage improves the firm’s decision and reduces the profitability of a short position. Thus, the speculator makes a loss. Overall, her ex-ante profit is $\frac{1}{3} \frac{1 - \lambda}{2 - \lambda} (R_L^i - R_H^i) + \frac{1}{3} \frac{1}{2} (R_L^i - R_H^i)$.

Therefore, if the trading cost κ satisfies the following conditions:

$$\frac{1}{3} \frac{1}{2 - \lambda} (R_H^n - R_L^n) + \frac{1}{2} (R_L^n - R_H^n)) > \kappa > \frac{1}{3} \frac{1 - \lambda}{2 - \lambda} (R_L^i - R_H^i) + \frac{1}{3} \frac{1}{2} (R_L^i - R_H^i),$$

then $\mu_H = 0$ and $\mu_L = 1$. Since $R_L^i < R_H^i$, there always exists a set of trading costs κ that
satisfies the above inequalities. The table becomes

<table>
<thead>
<tr>
<th>X</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>1</td>
<td>$\frac{1}{2-\lambda}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>i</td>
<td>i</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>p</td>
<td>R^n_H</td>
<td>$\frac{1}{2-\lambda}R^n_H + \frac{1-\lambda}{2-\lambda}R^n_L$</td>
<td>$\frac{1}{2}R^n_H + \frac{1}{2}R^n_L$</td>
<td>$\frac{1}{2}R^n_H + \frac{1}{2}R^n_L$</td>
<td>R^n_L</td>
</tr>
</tbody>
</table>

We now wish to verify that the positively-informed speculator indeed does not wish to sell, and the negatively-informed speculator indeed does not wish to buy. If the negatively-informed speculator buys, then

- W.p. $\frac{1}{3}$, $X = 2$ and she receives a profit of $R^n_H - R^n_L$.
- W.p. $\frac{1}{3}$, $X = 1$ and she receives a profit of $\frac{1}{2}(R^n_H - R^n_L)$.
- W.p. $\frac{1}{3}$, $X = 0$ and she receives a profit of $\frac{1}{2}(R^n_H - R^n_L)$.

Since $R^n_H < R^n_L$, the overall profit is negative, as in the core model. If the positively-informed speculator sells, then

- W.p. $\frac{1}{3}$, $X = -2$ and she receives a profit of $R^n_H - R^n_L > 0$.
- W.p. $\frac{1}{3}$, $X = -1$ and she receives a profit of $\frac{1}{2}(R^n_H - R^n_L) > 0$.
- W.p. $\frac{1}{3}$, $X = 0$ and she receives a profit of $\frac{1}{2}(R^n_H - R^n_L) < 0$.

The profit is positive if $X < 0$. As in the core model, by selling on good information, the speculator can dupe the manager into taking the incorrect decision – in this case, continuation even though $\theta = L$. This increases the profitability of a short position. Her overall profit from selling is $\frac{1}{3}(\frac{3-\lambda}{2}R^n_H - R^n_L) + \frac{1}{2}(R^n_H - R^n_L)]$. For her to prefer buying over selling, we must have:

$$\frac{1}{3} \frac{3-\lambda}{2} (R^n_H - R^n_L) + \frac{1}{2} (R^n_H - R^n_L)] > \frac{1}{3} \frac{3-\lambda}{2} (R^n_H - R^n_L) + \frac{1}{2} (R^n_H - R^n_L)]$$

$$\frac{1}{2} (R^n_H - R^n_L) > \frac{3-\lambda}{2} (R^n_H - R^n_L).$$

If this is satisfied, we indeed have $\mu_H = 0$ and $\mu_L = 1$, i.e. the negatively-informed speculator does not trade while the positively-informed speculator sells.

As in the core model, the limit to arbitrage requires that $X = -1$ alters the manager’s prior sufficiently that his action changes (in this case, from correction to continuation) – i.e. there is feedback from the speculator’s trade to the manager’s action. Hence, $\frac{1}{2-\lambda} > \gamma$ is a necessary condition. With $\frac{1}{2-\lambda} < \gamma$ we would have $d(X = -1) = 1$ and the manager would still abandon the project even if $X = -1$, so there would be no feedback.