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Agenda

Motivation: 

• Cryptomining uses a tremendous amount of electricity

• Potentially making electricity a scarce resource for local economies

• We wanted to know why local governments allow / lobby for cryptomining

Contributions: 

• What is the impact of cryptomining on local economies? Two Arenas:

• What governments say: Positive spillovers

i. Taxes

ii. Wages / Consumption

• Unintended consequences

iii. Pollution: Establish lower bound on fossil-fuel energy used by cryptomining globally

iv. Energy crowding out of other industries

• In the process, we study location decision of cryptominers



SETTING
A few slides to set the stage of energy use



Setting 1: Total consumption of electricity is large

Digiconomist: 

• Current use: 0.3% of world energy

• Could power 6.3M US households

De Vries (2018) in Joule

• ST Projection: 0.5% of world energy

• Implication: 10.5M US households

Bitmain IPO , Cambridge (2018)

• Manufacturer – market share: 67% 

• Recent sales: 4.2 million machines

• Energy use of these machines > 

Digiconomist estimate

Comparison:

UN Emissions Gap Report 2018:

• Emissions from Bitcoin energy 

use unwind 5-12% of carbon 

reduction commitments 

(private and sub-national 

government)

Why so much energy use?



Setting 2: Proof of work to clear transactions

Why people like it?

• Proof of Work is the only completely democratized system now in place without a central 

agent (banks, government) to keep account and prevent fraud

Why does it use so much energy? Cryptominers (firms with computing power) compete to 

clear a block of transactions (winner takes all rewards).

• Reward: newly minted coins

• Winning requires solving a very complex mathematical problem

• Result: Cryptominers engage in an arms race in computing power

Why can’t problem be simplified or transactions be bundled for energy efficiency? 

• Need scarcity in ultimate number of coins. System relies on a block being validated 

successfully only every ten minutes (on average).

• Need automatic Difficulty Adjustment to keep miner marginal profit (and thus amount of 

mining) in line with 10 minute goal. 



Transactions / 

day

Equivalent in U.S. daily household energy use if 

transactions occurred in bitcoin 

Paypal 16.7 M

16.7 M transactions /day * energy use of 15 households / 

transaction = 

Energy use equivalent: 250 million US households-days

Visa 144 M Energy use equivalent: 2.16  billion US households-days

• 1 transaction cleared by bitcoin uses the equivalent daily energy 

of 15 U.S. households. 

• Cannot be a system to clear “daily life” payments system

• New stablecoin digital currencies do not use proof of work validation.

Setting 3: Scaling-up under proof of work is environmentally 
infeasible 



Setting 4: Energy consumption did not crash with price of Bitcoin
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THEORETIC UNPINNING
Establishing the pollution externality problem



Pollution externality is not priced.

• Standard free-entry equation for cryptomining (Ma, Gans, Tourky, 2018):

𝑁𝑐 𝑥 ∗ = 𝑃

𝑥 ∗: electricity use by a cryptominer

𝑁𝑐 𝑥 ∗ : expected private hashing cost for a successful mine given 𝑁 miners

𝑃: the exogenously-priced reward for a successful mine

• Total private cost 𝑁𝑐 𝑥 ∗ equals reward in equilibrium

• But if electricity use 𝑥 causes pollution externality φ 𝑥 social optimum requires:

𝑁[𝑐 𝑥 ∗ + φ(𝑥 ∗)] = 𝑃

• Social optimum involves lower N and/or lower 𝑥 ∗ : Lower energy consumption.

• Not easy to solve via tax; need global restriction on quantity.



Where we are going

𝑁[𝑐 𝑥 ∗ +φ(𝑥 ∗)] = 𝑃

• Government gets some of 𝑃 through taxes

• Entry of new miners (𝑁) may bring local economy spillovers

• Local governments and advocates say 𝑥∗ is clean (hydropower)

We will take each of these claims to the data



DATA
China

New York State



Data from China & New York State

China: 

• Hosted 70-83% of cryptomining in 2015-2018

• For incidence, China is most important market to study

• Yet, pollution has global consequences

• But China pricing of electricity is provincial

New York State:

• Multiple electricity providers

• Commercial electricity prices float (“dirty float”)

• Household and corporate contract pricing are sticky



Inland Cities in China: Statistics

• Manually gathered data 

from each province’s 

Statistical Yearbook 

• Observation level: city-

year 

• a city is the city-seat and 

covers surrounding rural 

areas

• Statistics to left are 

collapsed first to city

• Drop coastal provinces 

(export economies)

Mean Statistics

Cryptomining No Yes

Unique Cities 164 54

Population (1,000s) 356 376

GDP (million CNY) 13,550 18,770

Energy (10,000 Kwh) 513,162 956,075

Business Taxes (million CNY) 214 282

Wages (CNY annual) 46,171 51,337

Value-Add Taxes (million CNY) 149 239

Fixed Asset Invest. (million CNY) 111,974 154,877

Note: All statistically different except population



WHAT IS THE ENERGY SOURCE USED IN

CRYPTOMINING?

Contribution #1



Where are cryptomines?

For each city-seat in 

inner provinces in China, 

we conducted local news 

searches (focusing but 

not exclusively on local 

newspapers) in Baidu 

and Google to find 

evidence of cryptomining 

facilities

A similar picture is found in: 2018, Cambridge Center for Alternative Finance, 2nd Global 

Cryptoasset Benchmarking Study with a punchline: 

“The majority [globally]... use some share of renewable energy …  in their energy mix”



Energy Source

Closest Power Plant Type:

Cryptomining No Yes

Unique Cities 164 54

Coal 61% 48%

Gas 8% 11%

Hydro 20% 28%

Oil 1% 0%

Solar 2% 0%

Wind 9% 13%

Contribution #1: Cryptomining primarily uses 

fossil fuels, in particular, coal

• Coal (48%) + gas (11%) account for 59% of Chinese locations

• Anecdotes suggest that new coal-based cryptomines in Inner 

Mongolia are large (larger than average) => Lower Bound

• If China represented 80% of cryptomining during period:

Our estimate: 

• 39-48% of world cryptomining has been coal-powered

• 47%-60%, fossil-fuel powered

Assume rest of world 

has no coal crypto

Assume rest of world 

has proportionate

Coal-powered 

cryptomining
39% 48%

Fossil fuel

cryptomining
47% 59%



HOW DO CRYPTOMINERS CHOOSE LOCATIONS?

Important results in general and also for selection



Location decision model

Motivation:

On the way to Bitmain's Ordos mine, I ask Su what he looks for when he

surveys new locations. He's like Bitmain's real estate developer, scoping out

places that fill the right criteria for a mine. It's not quite “location, location,

location" but there is a rough checklist: climate, cost of electricity, distance to a

power station, and lastly, whether or not there are opportunities to partner

with the local government."

- Tech in Asia, August 22, 2017

Model: 𝑙𝑜𝑔𝑖𝑡 𝑐𝑖𝑡𝑦 ℎ𝑎𝑠 𝑚𝑖𝑛𝑒𝑟𝑠 = 𝑠𝑝𝑙𝑖𝑛𝑒𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑜𝑤𝑒𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛)



Logit (City has CryptoMining)
X Spline, where X independent

variable is: Distance to Closest Power Plant Temperature Electricity Price

Quintile 2 -16.39* 14.39*** -48.6

[9.156] [5.233] [47.01]

Quintile 3 -64.19* 14.73*** -25.47

[34.98] [4.133] [15.64]

Quintile 4 9.848 13.83*** -28.85*

[14.52] [3.897] [15.97]

Quintile 5 -13.55** 12.61*** -27.67*

[6.136] [3.837] [16.00]

Slope Quintile 1 to 2 -0.022 2.195*** -0.0640*

[0.703] [0.631] [0.0375]

Slope Quintile 2 to 3 5.763* 0.132 0.0426

[3.488] [0.265] [0.0831]

Slope Quintile 3 to 4 19.34*

[10.91] Also included: year, log population

Slope Quintile 4 to 5 -3.636 Estimation sample: 2013, 2014

[4.292]

Slope Quintile 5 to 6 2.562* Observations 276

[1.403] Pseudo R-squared 0.387

Location Decision Results

This is too hard to read. Let’s plot it instead



Plotted from estimation 

predicted values (R-square 

0.387) of:

𝑙𝑜𝑔𝑖𝑡 𝑐𝑖𝑡𝑦 ℎ𝑎𝑠 𝑚𝑖𝑛𝑒𝑟𝑠
= 𝑠𝑝𝑙𝑖𝑛𝑒𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝑝𝑟𝑖𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡
𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡)

Predicted Propensity 

of a City to Host 

CrytoMining by 

Distance to Power 

Plant



Predicted Propensity 

of a City to Host 

CrytoMining by 

Temperature

Plotted from estimation 

predicted values (R-square 

0.387) of:

𝑙𝑜𝑔𝑖𝑡 𝑐𝑖𝑡𝑦 ℎ𝑎𝑠 𝑚𝑖𝑛𝑒𝑟𝑠
= 𝑠𝑝𝑙𝑖𝑛𝑒𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝑝𝑟𝑖𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡
𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡)



Predicted Propensity 

of a City to Host 

CrytoMining by 

Electricity Price

Plotted from estimation 

predicted values (R-square 

0.387) of:

𝑙𝑜𝑔𝑖𝑡 𝑐𝑖𝑡𝑦 ℎ𝑎𝑠 𝑚𝑖𝑛𝑒𝑟𝑠
= 𝑠𝑝𝑙𝑖𝑛𝑒𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝑝𝑟𝑖𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡
𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡)



LOCAL ECONOMY IMPACTS

Results on positive motivations for hosting and unintended 

consequences



Local Government Motivations & Unintended Consequences

Collected news stories from local media…

What governments say:

• Anecdotes from China, Caucasus: Tax Revenues

• Anecdotes from Caucasus, Canada, U.S. and Scandinavia: Local Economy Spillovers to 

workers and consumers

Unintended consequences:

• Anecdotes from Montana, Australia, Texas: Re-opening coal mines or forestalling closure

• Anecdotes from Oregon, NY State: Rising energy costs for businesses because utilities 

have to buy electricity from other counties to provide to industry 

• Anecdotes from Caucasus, Venezuela: Blackouts 



Local Economy Analysis –1

Difference-in-Difference Baseline Specification (2012-2017)

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑐𝑖𝑡𝑦,𝑡 = 𝛼 𝑝𝑜𝑠𝑡 ∗ 𝑀𝑐𝑖𝑡𝑦 + 𝜇𝑐𝑖𝑡𝑦 + 𝜇𝑦𝑒𝑎𝑟 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝑐𝑖𝑡𝑦,𝑡 + 𝜀𝑐𝑖𝑡𝑦,𝑡

𝑀𝑐𝑖𝑡𝑦 : indicator for the city being in a cryptomining city

post : 2015-2017

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝑐𝑖𝑡𝑦,𝑡: includes population (level and growth), GDP (level and 

growth), and electricity price (level and growth)

Remaining Concern: Non-parallel trends due to selection of locations



Local Economy Analysis - 2

Difference-in-Difference Specification with Inverse Probability Weighting (IPW) 

• Levels observations on the probability of selection into treatment

• Including pre-trends based on covariate growth variables

1. Pre-period: 𝑙𝑜𝑔𝑖𝑡( 𝑀𝑐𝑖𝑡𝑦) = 𝑠𝑝𝑙𝑖𝑛𝑒𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜

𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡) +covariates 𝑐𝑖𝑡𝑦, 𝑡+ ξ 𝑐𝑖𝑡𝑦, 𝑡

2. [IPW]:   𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑐𝑖𝑡𝑦,𝑡 = 𝛼 𝑝𝑜𝑠𝑡 ∗ 𝑀𝑐𝑖𝑡𝑦 + 𝜇𝑐𝑖𝑡𝑦 + 𝜇𝑦𝑒𝑎𝑟 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝑐𝑖𝑡𝑦,𝑡 + 𝜀𝑐𝑖𝑡𝑦,𝑡

weighted by normalized IPW of being treated, taking the propensity score as the 
balancing score (Rosenbaum and Rubin (1983))

Remaining concern: Unobservables related to trends in outcomes. 

Example: cities A and B have the same observables, but A is close to a highway while B is 

not. If proximity to a highway affects the trend (not level) in outcomes (e.g. tax revenue 

growth), then highway selection may be confounding.



Local Economy Analysis - 3
Control Function (Wooldridge) Difference-in-Difference Specification with IPW

• By including 𝛽 𝑝𝑜𝑠𝑡 ∗ 𝑟𝑒𝑠𝑖𝑑𝑐𝑖𝑡𝑦 in the outcome estimation, we can interpret 𝛼 as only 
the change in outcomes in cryptomining cities related to the observables selection

1. Pre-period: 𝑙𝑜𝑔𝑖𝑡 ( 𝑀𝑐𝑖𝑡𝑦) = 𝑠𝑝𝑙𝑖𝑛𝑒𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜
𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡) +covariates 𝑐𝑖𝑡𝑦, 𝑡+ ξ 𝑐𝑖𝑡𝑦, 𝑡

Define:  𝑀𝑐𝑖𝑡𝑦,  predicted probability

𝑟𝑒𝑠𝑖𝑑𝑐𝑖𝑡𝑦, residual probability

2. [IPW]:   𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑐𝑖𝑡𝑦,𝑡 = 𝛼 𝑝𝑜𝑠𝑡 ∗  𝑀𝑐𝑖𝑡𝑦 + 𝛽 𝑝𝑜𝑠𝑡 ∗ 𝑟𝑒𝑠𝑖𝑑𝑐𝑖𝑡𝑦
+ 𝜇𝑐𝑖𝑡𝑦 + 𝜇𝑦𝑒𝑎𝑟 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝑐𝑖𝑡𝑦,𝑡+ 𝜀𝑐𝑖𝑡𝑦,𝑡

Remaining concern (unlikely but always possible in observational studies): Outcome 
trends experience a kink only for cryptomining cities. The IPW cannot forecast changes 
in trends.



(1) (2) (3)

Dependent Variable: Log (Energy Consumption)

Diff-in-diff Model: OLS IPW IPW-CF

Post * MiningCity * Clean -0.148* -0.0977

[0.0858] [0.0730]

Post * MiningCity * Fossil 0.0964** 0.106**

[0.0446] [0.0484]

Post * MiningCity

Post*Predicted MiningCity* Clean 0.0752

[0.122]

Post*Predicted MiningCity* Fossil 0.246*

[0.129]

Control Variables Y Y Y

City Fixed Effects Y Y Y

Year Fixed Effects Y Y Y

Observations 595 595 590

R-squared 0.954 0.947 0.948

Energy / Pollution

Take Away:

Cryptomining 

increases

energy 

consumption by at 

least 10% in fossil 

fuel-powered 

cities, with large 

pollution 

implications.

Energy Use Results



(1) (2) (3)

Dependent Variable: Log (Business Tax Rev. /GDP)

Diff-in-diff Model: OLS IPW IPW-CF

Post * MiningCity * Clean 0.0566 0.0576

[0.0468] [0.0427]

Post * MiningCity * Fossil 0.117* 0.124*

[0.0628] [0.0644]

Post * MiningCity

Post*Predicted MiningCity* Clean 0.242**

[0.115]

Post*Predicted MiningCity* Fossil 0.281**

[0.130]

Control Variables Y Y Y

City Fixed Effects Y Y Y

Year Fixed Effects Y Y Y

Observations 255 255 255

R-squared 0.904 0.891 0.893

Government

Take Away:

Cryptomining 

increases

business taxes per 

unit of GDP by at 

least 10% in ALL 

cryptomining cities. 

Governments in 

clean and fossil-fuel 

powered cities have 

incentives to lure 

cryptomining.

Business Tax Results



(1) (2) (3)

Depedent Variable: Log (Wages)

Diff-in-diff Model: OLS IPW IPW-CF

Post * MiningCity * Clean -0.0113 -0.00331

[0.0369] [0.0461]

Post * MiningCity * Fossil -0.0768** -0.0608*

[0.0335] [0.0341]

Post * MiningCity

Post*Predicted MiningCity* Clean -0.0104

[0.0619]

Post*Predicted MiningCity* Fossil -0.112**

[0.0439]

Control Variables Y Y Y

City Fixed Effects Y Y Y

Year Fixed Effects Y Y Y

Observations 698 698 693

R-squared 0.871 0.891 0.893

Household

Take Away 1:

Cryptomining does 

not benefit 

workers. In fact, 

wages decrease in 

fossil fuel-powered 

cities, probably 

because of low use 

of labor in 

cryptomining vis-

à-vis other energy-

using industries

Wages Results



(1) (2) (3)

Dependent Variable: Log (VA Tax / GDP)

Diff-in-diff Model: OLS IPW IPW-CF

Post * MiningCity * Clean 0.0452 0.0341

[0.119] [0.139]

Post * MiningCity * Fossil -0.108 -0.145

[0.106] [0.0906]

Post * MiningCity

Post*Predicted MiningCity* Clean 0.375

[0.359]

Post*Predicted MiningCity* Fossil -0.127

[0.213]

Control Variables Y Y Y

City Fixed Effects Y Y Y

Year Fixed Effects Y Y Y

Observations 301 301 301

R-squared 0.761 0.742 0.751

Household

Take Away 2:

Households do not 

gain in spillover 

benefits in 

consumer 

spending, as 

evidenced by 

value-added tax 

realizations

Household Consumption-Proxy Results



(1) (2) (3)

Dependent Variable: Log (Fixed Asset Investment)

Diff-in-diff Model: OLS IPW IPW-CF

Post * MiningCity * Clean -0.0955 -0.0882

[0.148] [0.186]

Post * MiningCity * Fossil -0.222** -0.153*

[0.0955] [0.0889]

Post * MiningCity

Post*Predicted MiningCity* Clean -0.179

[0.285]

Post*Predicted MiningCity* Fossil -0.241*

[0.135]

Control Variables Y Y Y

City Fixed Effects Y Y Y

Year Fixed Effects Y Y Y

Observations 704 704 699

R-squared 0.897 0.886 0.887

Other Industry

Take Away:

Investment in 

fossil-fuel 

cryptomining

cites declines, 

consistent with 

blackout stories 

that cryptomining

crowds out other 

industries 

needing energy.

Fixed Asset Investment Results



Conclusion

Our objective: Shed light on the trade-offs involved in cryptomining

• Cryptomining consumes huge amounts of fossil fuels worldwide

• One cannot advocate for both proof-of-work technology democratization and 

concern for the environment

• In China, cryptoming increases business taxes, but it also has adverse effects on 

wages and investments

• Local governments have a lot to gain, but our evidence suggests this gain comes 

only with an expense to citizens and other industries

• The results have immediate implications for policy

• Pollution externlaities are a public good

• Political economy agency costs are strongly at play: media accounts reinforce 

duplicity in spoken motives and realizes consequences.


