CryptoMining: Energy Use and Local Impact

Matteo Benetton
Giovanni Compiani
Adair Morse

University of California, Berkeley
Motivation:
• Cryptomining uses a tremendous amount of electricity
• Potentially making electricity a scarce resource for local economies
• We wanted to know why local governments allow / lobby for cryptomining

Contributions:
• What is the impact of cryptomining on local economies? Two Arenas:
 • What governments say: Positive spillovers
 i. Taxes
 ii. Wages / Consumption
 • Unintended consequences
 iii. Pollution: Establish lower bound on fossil-fuel energy used by cryptomining globally
 iv. Energy crowding out of other industries

• In the process, we study location decision of cryptominers
SETTING

A few slides to set the stage of energy use
Setting 1: Total consumption of electricity is large

Digiconomist:
- Current use: **0.3% of world energy**
- Could power **6.3M US households**

De Vries (2018) in Joule
- ST Projection: **0.5% of world energy**
- Implication: **10.5M US households**

Bitmain IPO, Cambridge (2018)
- Manufacturer – market share: 67%
- Recent sales: 4.2 million machines
- Energy use of these machines > Digiconomist estimate

Comparison:

UN Emissions Gap Report 2018:
- Emissions from Bitcoin energy use **unwind 5-12% of carbon reduction commitments**
 (private and sub-national government)

Why so much energy use?
Setting 2: *Proof of work* to clear transactions

Why people like it?
- *Proof of Work* is the only completely democratized system now in place without a central agent (banks, government) to keep account and prevent fraud

Why does it use so much energy? Cryptominers (firms with computing power) compete to clear a block of transactions (winner takes all rewards).
 - Reward: newly minted coins
 - Winning requires solving a very complex mathematical problem
 - Result: Cryptominers engage in an **arms race** in computing power

Why can’t problem be simplified or transactions be bundled for energy efficiency?
 - Need scarcity in ultimate number of coins. System relies on a block being validated successfully only every ten minutes (on average).
 - Need automatic *Difficulty Adjustment* to keep miner marginal profit (and thus amount of mining) in line with 10 minute goal.
Setting 3: Scaling-up under proof of work is environmentally infeasible

- **1 transaction cleared by bitcoin uses the equivalent daily energy of 15 U.S. households.**

- Cannot be a system to clear “daily life” payments system
- New stablecoin digital currencies do not use proof of work validation.

<table>
<thead>
<tr>
<th></th>
<th>Transactions / day</th>
<th>Equivalent in U.S. daily household energy use if transactions occurred in bitcoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paypal</td>
<td>16.7 M</td>
<td>16.7 M transactions /day * energy use of 15 households / transaction = Energy use equivalent: 250 million US households-days</td>
</tr>
<tr>
<td>Visa</td>
<td>144 M</td>
<td>Energy use equivalent: 2.16 billion US households-days</td>
</tr>
</tbody>
</table>
Setting 4: Energy consumption did not crash with price of Bitcoin

Digiconomist.com

Estimated TWh per Year
Minimum TWh per Year

Bitcoin Price Crash
THEORETIC UNPINNING

Establishing the pollution externality problem
Pollution externality is not priced.

• Standard free-entry equation for cryptomining (Ma, Gans, Tourky, 2018):

\[Nc (x^*) = P \]

\(x^*\): electricity use by a cryptominer

\(Nc (x^*)\): expected private hashing cost for a successful mine given \(N\) miners

\(P\): the exogenously-priced reward for a successful mine

• Total private cost \(Nc (x^*)\) equals reward in equilibrium

• But if electricity use \(x\) causes pollution externality \(\varphi(x)\) social optimum requires:

\[N[c (x^*) + \varphi(x^*)] = P \]

• Social optimum involves lower \(N\) and/or lower \(x^*\): Lower energy consumption.

• Not easy to solve via tax; need global restriction on quantity.
Where we are going

\[N[c(x^*) + \varphi(x^*)] = P \]

- Government gets some of \(P \) through taxes
- Entry of new miners (\(N \)) may bring local economy spillovers
- Local governments and advocates say \(x^* \) is clean (hydropower)

We will take each of these claims to the data
DATA

China
New York State
Data from China & New York State

China:

- Hosted 70-83% of cryptomining in 2015-2018
 - For incidence, China is most important market to study
 - Yet, pollution has global consequences
 - But China pricing of electricity is provincial

New York State:

- Multiple electricity providers
- Commercial electricity prices float (“dirty float”)
 - Household and corporate contract pricing are sticky
Inland Cities in China: Statistics

<table>
<thead>
<tr>
<th>Cryptomining</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Cities</td>
<td>164</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (1,000s)</td>
<td>356</td>
</tr>
<tr>
<td>GDP (million CNY)</td>
<td>13,550</td>
</tr>
<tr>
<td>Energy (10,000 Kwh)</td>
<td>513,162</td>
</tr>
<tr>
<td>Business Taxes (million CNY)</td>
<td>214</td>
</tr>
<tr>
<td>Wages (CNY annual)</td>
<td>46,171</td>
</tr>
<tr>
<td>Value-Add Taxes (million CNY)</td>
<td>149</td>
</tr>
<tr>
<td>Fixed Asset Invest. (million CNY)</td>
<td>111,974</td>
</tr>
</tbody>
</table>

Note: All statistically different except population

- Manually gathered data from each province’s **Statistical Yearbook**
- Observation level: city-year
 - a city is the city-seat and covers surrounding rural areas
 - Statistics to left are collapsed first to city
- Drop coastal provinces (export economies)
WHAT IS THE ENERGY SOURCE USED IN CRYPTOMINING?

Contribution #1
Where are cryptomines?

For each city-seat in inner provinces in China, we conducted local news searches (focusing but not exclusively on local newspapers) in Baidu and Google to find evidence of cryptomining facilities.

A similar picture is found in: 2018, Cambridge Center for Alternative Finance, 2nd Global Cryptoasset Benchmarking Study with a punchline: “The majority [globally]... use some share of renewable energy … in their energy mix”
Energy Source

<table>
<thead>
<tr>
<th>Closest Power Plant Type:</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptomining</td>
<td>61%</td>
<td>48%</td>
</tr>
<tr>
<td>Unique Cities</td>
<td>164</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Contribution #1: Cryptomining primarily uses fossil fuels, in particular, coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>- Coal (48%) + gas (11%) account for 59% of Chinese locations
 - Anecdotes suggest that new coal-based cryptomines in Inner Mongolia are large (larger than average) (=> \text{Lower Bound})</td>
</tr>
<tr>
<td>Gas</td>
<td>- If China represented 80% of cryptomining during period:</td>
</tr>
<tr>
<td>Hydro</td>
<td>Assume rest of world has no coal crypto</td>
</tr>
<tr>
<td>Oil</td>
<td>Coal-powered cryptomining</td>
</tr>
<tr>
<td>Solar</td>
<td>Fossil fuel cryptomining</td>
</tr>
<tr>
<td>Wind</td>
<td>- 39-48% of world cryptomining has been coal-powered
 - 47%-60%, fossil-fuel powered</td>
</tr>
</tbody>
</table>

Our estimate:
HOW DO CRYPTO MINERS CHOOSE LOCATIONS?

Important results in general and also for selection
Location decision model

Motivation:

On the way to Bitmain's Ordos mine, I ask Su what he looks for when he surveys new locations. He's like Bitmain's real estate developer, scoping out places that fill the right criteria for a mine. It's not quite "location, location, location" but there is a rough checklist: climate, cost of electricity, distance to a power station, and lastly, whether or not there are opportunities to partner with the local government."

- Tech in Asia, August 22, 2017

Model:

\[\text{logit(city has miners)} = \text{splines (average temperature, electricity price, distance to closest power station)} \]
<table>
<thead>
<tr>
<th>X Spline, where X independent variable is:</th>
<th>Distance to Closest Power Plant</th>
<th>Temperature</th>
<th>Electricity Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintile 2</td>
<td>-16.39*</td>
<td>14.39***</td>
<td>-48.6</td>
</tr>
<tr>
<td></td>
<td>[9.156]</td>
<td>[5.233]</td>
<td>[47.01]</td>
</tr>
<tr>
<td>Quintile 3</td>
<td>-64.19*</td>
<td>14.73***</td>
<td>-25.47</td>
</tr>
<tr>
<td></td>
<td>[34.98]</td>
<td>[4.133]</td>
<td>[15.64]</td>
</tr>
<tr>
<td>Quintile 4</td>
<td>9.848</td>
<td>13.83***</td>
<td>-28.85*</td>
</tr>
<tr>
<td></td>
<td>[14.52]</td>
<td>[3.897]</td>
<td>[15.97]</td>
</tr>
<tr>
<td>Quintile 5</td>
<td>-13.55**</td>
<td>12.61***</td>
<td>-27.67*</td>
</tr>
<tr>
<td></td>
<td>[6.136]</td>
<td>[3.837]</td>
<td>[16.00]</td>
</tr>
<tr>
<td>Slope Quintile 1 to 2</td>
<td>0.009</td>
<td>0.195***</td>
<td>-0.0640*</td>
</tr>
<tr>
<td>Slope Quintile 2 to 3</td>
<td>5.763*</td>
<td>0.132</td>
<td>0.0426</td>
</tr>
<tr>
<td></td>
<td>[3.488]</td>
<td>[0.265]</td>
<td>[0.0831]</td>
</tr>
<tr>
<td>Slope Quintile 3 to 4</td>
<td>19.34*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[10.91]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope Quintile 4 to 5</td>
<td>-3.636</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[4.292]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope Quintile 5 to 6</td>
<td>2.562*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.403]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Also included: year, log population

Estimation sample: 2013, 2014

Observations: 276

Pseudo R-squared: 0.387

This is too hard to read. Let’s plot it instead.
Plotted from estimation predicted values (R-square 0.387) of:

\[
\text{logit(} \text{city has miners)} = \text{splines (average temperature, electricity price, distance to closest power plant)}
\]
Predicted Propensity of a City to Host CryptoMining by Temperature

Plotted from estimation predicted values (R-square 0.387) of:

$$\text{logit}(\text{city has miners}) = \text{splines (average temperature, electricity price, distance to closest power plant)}$$
Predicted Propensity of a City to Host CryptoMining by Electricity Price

Plotted from estimation predicted values (R-square 0.387) of:

\[\logit(\text{city has miners}) = \text{splines (average temperature, electricity price, distance to closest power plant)} \]
LOCAL ECONOMY IMPACTS

Results on positive motivations for hosting and unintended consequences
Local Government Motivations & Unintended Consequences

Collected news stories from local media...

What governments say:

- Anecdotes from China, Caucasus: Tax Revenues
- Anecdotes from Caucasus, Canada, U.S. and Scandinavia: Local Economy Spillovers to workers and consumers

Unintended consequences:

- Anecdotes from Montana, Australia, Texas: Re-opening coal mines or forestalling closure
- Anecdotes from Oregon, NY State: Rising energy costs for businesses because utilities have to buy electricity from other counties to provide to industry
- Anecdotes from Caucasus, Venezuela: Blackouts
Local Economy Analysis –1

\[
\text{outcome}_{\text{city},t} = \alpha \text{ post} \times M_{\text{city}} + \mu_{\text{city}} + \mu_{\text{year}} + \text{covariates}_{\text{city},t} + \varepsilon_{\text{city},t}
\]

- **\(M_{\text{city}} \)**: indicator for the city being in a cryptomining city
- **\(\text{post} \)**: 2015-2017
- **\(\text{covariates}_{\text{city},t} \)**: includes population (level and growth), GDP (level and growth), and electricity price (level and growth)

Remaining Concern: Non-parallel trends due to selection of locations
Local Economy Analysis - 2

Difference-in-Difference Specification with **Inverse Probability Weighting (IPW)**

- Levels observations on the probability of selection into treatment
- Including pre-trends based on covariate growth variables

1. Pre-period: \(\text{logit}(M_{\text{city}}) = \text{splines (average temperature, electricity price, distance to closest power plant)} + \text{covariates}_{\text{city},t} + \xi_{\text{city},t} \)

2. [IPW]: \(\text{outcome}_{\text{city},t} = \alpha \text{post} * M_{\text{city}} + \mu_{\text{city}} + \mu_{\text{year}} + \text{covariates}_{\text{city},t} + \varepsilon_{\text{city},t} \)

 weighted by normalized IPW of being treated, taking the propensity score as the balancing score (Rosenbaum and Rubin (1983))

Remaining concern: Unobservables related to trends in outcomes.

Example: cities A and B have the same observables, but A is close to a highway while B is not. If proximity to a highway affects the trend (not level) in outcomes (e.g. tax revenue growth), then highway selection may be confounding.
Local Economy Analysis - 3

Control Function (Wooldridge) Difference-in-Difference Specification with IPW

- By including $\beta \, \text{post} \ast \, \text{resid}_{\text{city}}$ in the outcome estimation, we can interpret α as only the change in outcomes in cryptomining cities related to the observables selection

1. Pre-period: $\text{logit} (\, M_{\text{city}}) = \text{splines} (\text{average temperature, electricity price, distance to closest power plant}) + \text{covariates}_{\text{city}, \, t} + \, \xi_{\text{city}, \, t}$

 Define: $\widehat{M}_{\text{city}}$, predicted probability
 $\text{resid}_{\text{city}}$, residual probability

2. [IPW]: $\text{outcome}_{\text{city}, \, t} = \alpha \, \text{post} \ast \, \widehat{M}_{\text{city}} + \beta \, \text{post} \ast \, \text{resid}_{\text{city}}$

 $+ \, \mu_{\text{city}} + \mu_{\text{year}} + \text{covariates}_{\text{city}, \, t} + \, \epsilon_{\text{city}, \, t}$

Remaining concern (unlikely but always possible in observational studies): Outcome trends experience a kink only for cryptomining cities. The IPW cannot forecast changes in trends.
Energy Use Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Dependent Variable: Log (Energy Consumption)</th>
<th>Observations</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diff-in-diff</td>
<td>OLS</td>
<td>595</td>
<td>0.954</td>
</tr>
<tr>
<td>Post * MiningCity * Clean</td>
<td>-0.148*</td>
<td>[0.0858]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity * Fossil</td>
<td>0.0964**</td>
<td>[0.0446]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Clean</td>
<td>0.0752</td>
<td>[0.122]</td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Fossil</td>
<td>0.246*</td>
<td>[0.129]</td>
<td></td>
</tr>
<tr>
<td>Control Variables</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City Fixed Effects</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.954</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy / Pollution

Take Away:
Cryptomining increases energy consumption by at least 10% in fossil fuel-powered cities, with large pollution implications.
Business Tax Results

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log (Business Tax Rev. /GDP)</td>
<td>OLS</td>
<td>IPW</td>
<td>IPW-CF</td>
</tr>
<tr>
<td>Diff-in-diff Model:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity * Clean</td>
<td>0.0566</td>
<td>0.0576</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0468]</td>
<td>[0.0427]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity * Fossil</td>
<td>0.117*</td>
<td>0.124*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0628]</td>
<td>[0.0644]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Clean</td>
<td></td>
<td>0.242**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.115]</td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Fossil</td>
<td></td>
<td>0.281**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.130]</td>
<td></td>
</tr>
<tr>
<td>Control Variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>City Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.904</td>
<td>0.891</td>
<td>0.893</td>
</tr>
</tbody>
</table>

Government Take Away:

Cryptomining increases business taxes per unit of GDP by at least 10% in ALL cryptomining cities.

Governments in clean and fossil-fuel powered cities have incentives to lure cryptomining.
Wages Results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td>Log (Wages)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff-in-diff Model:</td>
<td>OLS</td>
<td>IPW</td>
<td>IPW-CF</td>
</tr>
<tr>
<td>Post * MiningCity * Clean</td>
<td>-0.0113</td>
<td>-0.00331</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0369]</td>
<td>[0.0461]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity * Fossil</td>
<td>-0.0768**</td>
<td>-0.0608*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0335]</td>
<td>[0.0341]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Clean</td>
<td>-0.0104</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0619]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Fossil</td>
<td>-0.112**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0439]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>City Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>698</td>
<td>698</td>
<td>693</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.871</td>
<td>0.891</td>
<td>0.893</td>
</tr>
</tbody>
</table>

Household Take Away 1: Cryptomining does not benefit workers. In fact, wages decrease in fossil fuel-powered cities, probably because of low use of labor in cryptomining vis-à-vis other energy-using industries.
Household Consumption-Proxy Results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (VA Tax / GDP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff-in-diff Model:</td>
<td>OLS</td>
<td>IPW</td>
<td>IPW-CF</td>
</tr>
<tr>
<td>Post * MiningCity * Clean</td>
<td>0.0452</td>
<td>0.0341</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.119]</td>
<td>[0.139]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity * Fossil</td>
<td>-0.108</td>
<td>-0.145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.106]</td>
<td>[0.0906]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Clean</td>
<td></td>
<td></td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.359]</td>
</tr>
<tr>
<td>PostPredicted MiningCity Fossil</td>
<td></td>
<td></td>
<td>-0.127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.213]</td>
</tr>
<tr>
<td>Control Variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>City Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>301</td>
<td>301</td>
<td>301</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.761</td>
<td>0.742</td>
<td>0.751</td>
</tr>
</tbody>
</table>

Household Take Away 2:

Households do not gain in spillover benefits in consumer spending, as evidenced by value-added tax realizations.
Fixed Asset Investment Results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td>Log (Fixed Asset Investment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff-in-diff Model:</td>
<td>OLS</td>
<td>IPW</td>
<td>IPW-CF</td>
</tr>
<tr>
<td>Post * MiningCity * Clean</td>
<td>-0.0955 [0.148]</td>
<td>-0.0882 [0.186]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity * Fossil</td>
<td>-0.222 [0.0955]</td>
<td>-0.153 [0.089]</td>
<td></td>
</tr>
<tr>
<td>Post * MiningCity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Clean</td>
<td></td>
<td>-0.179 [0.285]</td>
<td></td>
</tr>
<tr>
<td>PostPredicted MiningCity Fossil</td>
<td></td>
<td>-0.241* [0.135]</td>
<td></td>
</tr>
<tr>
<td>Control Variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>City Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>704</td>
<td>704</td>
<td>699</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.897</td>
<td>0.886</td>
<td>0.887</td>
</tr>
</tbody>
</table>

Other Industry Take Away:

Investment in fossil-fuel cryptomining cites declines, consistent with blackout stories that cryptomining crowds out other industries needing energy.
Conclusion

Our objective: Shed light on the **trade-offs** involved in cryptomining

- Cryptomining **consumes huge amounts of fossil fuels worldwide**
 - One cannot advocate for both proof-of-work technology democratization and concern for the environment
- In China, **cryptomining increases business taxes**, but it also has adverse effects on wages and investments
 - Local governments have a lot to gain, but our evidence suggests this gain comes only with an expense to citizens and other industries
- The results have immediate implications for **policy**
 - Pollution externlalities are a public good
 - Political economy agency costs are strongly at play: media accounts reinforce duplicity in spoken motives and realizes consequences.