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A.1 Value Estimation

For each good, Swoopo publishes a visible "worth up to" price, which is essentially the

manufacturer�s recommended price for the item. This price is one potential measure of

value, but it appears to be only useful as an upper bound. In the most extreme example,

Swoopo has held nearly 4,000 auctions involving 154 types of "luxury" watches with "worth

up to" prices of more than $700. However, the vast majority of these watches sell on Internet

sites at heavy discounts from the "worth up to" price (20-40%). It is di¢ cult, therefore,

to justify the use of this amount as a measure of value if the auctioneer or participant can

simply order the item from a reputable company at a far cheaper cost. That said, it is

also unreasonable to search all producers for the lowest possible cost and use the result as

a measure of value, as these producers could be disreputable or costly for either party to

locate.

In order to strike a balance between these extremes, I estimate the value of items by

using the average price found at Amazon.com and Amazon.de for the exact same item and

using the "worth up to" price if Amazon does not sell the item. I refer to this new value

estimate as the adjusted value of the good.55 As prices might have changed signi�cantly over

time, I only use Amazon prices for auctions later than December 2007 and scale the value in

proportion to any observable changes in the "worth up to" price over time. Amazon sells

only 20% of the unique consumer goods sold on Swoopo, but this accounts for 60% of all

auctions involving consumer goods (goods that are sold in Amazon are likely to occur more

in repeated auctions). For the goods that are sold at Amazon, the adjusted value is 79%

of the "worth up to" price without shipping costs and 75% when shipping costs are added

to each price (Amazon often has free shipping, while Swoopo charges for shipping). As the

adjusted value is equal to the "worth up to" price for the 40% of the auctions for consumer

goods that are not sold on Amazon, it still presumably overestimates the true value.56

To test the validity of the measure of value, note that the equilibrium analysis (and

55This is a somewhat similar idea to that in Ariely and Simonson (2003), who document that 98.8 percent
of eBay prices for CDs, books, and movies are higher than the lowest online price found with a 10 minute
search. My search is much more simplistic (and perhaps, realistic). I only search on Amazon and only
place the exact title of the Swoopo object in Amazon�s search engine for a result.

56The main results of the paper are unchanged when run only on the subset of goods sold at Amazon.
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general intuition) suggest that the winning bid of an auction should be positively correlated

with the value of the object for auction. Therefore, a more accurate measure of value

should show a higher correlation with the distribution of winning bids for the good. The

correlation between the winning bids and the "worth up to" price is 0.522 (with a 95%
con�dence interval of (0.516,0.527)) for auctions with a $0.15 increment for the items I

found on Amazon.57 The correlation between the winning bids and the adjusted value is

0.694 (with a 95% con�dence interval of (0.690,0.698)) for these auctions. A Fisher test

of correlation equality con�rms that the adjusted value is signi�cantly more correlated with

the winning bid (p-value<.0001), suggesting that it is a more accurate measure of value.

A.2 Modeling Sunk Costs

In this section, I demonstrate that the qualitative features of Eyster(2002)�s model of a

naive sunk cost fallacy in a WOA hold for penny auctions. The reader is referred to that

paper for technical details of the utility function. Applying Eyster�s model and terminology,

agents in the modi�ed model desire "consistency" in their decisions and pay a psychological

cost, which I call "regret," if they spend money on bids and do not win the auction, weighted

by the parameter � 2 [0;1) in the utility function. As a result, agents receive less utility

from exiting the auction as they pay for more bids, even though these costs are sunk. Note

that this modi�cation alone will cause agents to underbid as they will require a premium (in

the form of a higher probability of winning) to continue at any stage to o¤set their (correctly

predicted) future psychological losses from the sunk costs. Therefore, I follow Eyster in

assuming that agents consider the e¤ect of their current decisions on their future utility, but

they naively believe that their weight on future regret will be �(1 � �) with � 2 [0; 1].58 I

also follow Eyster�s assumption of two players for exposition purposes.

In the interest of simplicity, I deviate from the Eyster�s multiple period model in one

substantial way. Rather than assuming that an agent feels regret for all decisions in the

game, I assume that an agent simply feels regret from his initial decision (to play or not

play in the game). To elucidate this di¤erence, consider an agent who leaves the game after

bidding 10 times, with bids costing 1 unit. In Eyster�s model, the agent experiences regret

from each past decision to stay in the auction for a total of 55� units (he would have saved

10 units had he exited instead of placing the �rst bid, 9 units if he had exited instead of

57Note that I cannot compare aggregate data across auctions with di¤erent bid increments for these
coorelations, as the distribution of �nal bids of auctions for the same item will be di¤erent. The results are
robust to using the (less common) bid increments of $0.00 and $0.01.

58A note on terminology: I choose to use � instead of � (Eyster�s parameter of naivety) to avoid confusion
with the value of the object v:
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placing the second bid, 8 units...). In my model, the agent simply experiences 10� units

of regret as he would have saved 10 units from not playing the game. As one could just

rescale � to account for this di¤erence, the substantial di¤erence between the models lies in

the growth of regret as the game continues. In Eyster�s model, regret grows "triangularly"

over time, from 1 to 3 to 6 to 10, etc. In my model, regret grows linearly over time, from 1

to 2 to 3 to 4, etc. I do not believe that there is a good reason to choose either model over

the other in this application, so I proceed with the linear model in the interest of simplicity.

Speci�cally, consider an agent who has placed b bids up until time period t. The total

utility of the agent from never bidding again becomes:

�bc� �bc (7)

That is, the agent experiences the monetary loss (�bc) of the bids as well as regret (��bc)
from deciding to play the game in the �rst place. Similarly, if an agent bids in period t,

does not win in the next period, and never bids again, he will receive utility of:

�(b+ 1)c� �(b+ 1)c (8)

However, due to naivety, he (mistakenly) perceives that his feeling of regret will be lower

than it really is:

�(b+ 1)c� (1� �)�(b+ 1)c (9)

The case in which an agent bids and wins the auction in the next period is slightly more

complicated. The level of regret depends on the situation. If the net value of the item is

weakly higher than the total cost the agent, the agent does not regret his decision to enter

the auction. In this case, he simply receives the utility of:

v � tk � (b+ 1)c (10)

Notice that bc (the monetary bid cost up to period t) occurs in equations 7, 9, and 10,

which is consistent with bc as a sunk cost. However, the regret term only occurs if the

person exits the auction, which is consistent with the notion of the sunk cost fallacy. If the

person is naive, he believes that the weight on the regret will be lower in the future than

today.
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Alternatively, if the net value of the auction is higher than the total cost to the agent,

the agent does regret his decision to enter the auction. In this case, he receives utility:

v � tk � (b+ 1)c� �(b+ 1)c

Note that, in this situation, the regret term appears in the utility term in all situations,

so the agent fully recognizes the sunk cost (as before, if the agent is naive, he perceives this

term to be v � tk � (b+ 1)c� (1� �)�(b+ 1)c ).

In order for this modi�cation to a¤ect equilibrium behavior, agents must be able to

condition their strategies on the number of bids each player has made (because this now

a¤ects agents�payo¤s). Following the general path of Eyster�s solution (in which naive

players correctly perceive other�s true strategies, although they misperceive their own) yields

the following outcome of the preferred equilibrium and the hazard rate, which is summarized

in Proposition 5

Proposition 5 Consider when k = 0: There is an equilibrium of the modi�ed game in

which:

eh(t) =
8<:

c+c��c��( t
2
+1)

v+(1��)c�( t
2
+1)

for t � 2(v+c)
c

c+c��c��( t
2
+1)

v
for t > 2(v+c)

c

9=;
The e¤ect of the regret over spending �xed costs is slightly complicated. At the beginning

of the auction, agents with regret are less likely to bid than agents without regret because they

have no current mistakes to regret and they realize (to the extent that they are sophisticated)

that they will have to pay regret costs in the future if they bet and lose. As the auction

proceeds, this di¤erence diminishes as agents amass larger sunk costs through bidding. At

some point, if agents are naive, the game continues with higher probability than with normal

agents because agents (incorrectly) believe that their amassed �xed costs will be lessened if

they bid and then drop out in the following period. If agents are particularly naive, they

can reach a point in which no one drops out, with bidders staying in the game only because

they (incorrectly) believe that bidding and dropping out tomorrow will reduce the regret

from their large �xed costs.

Figure 1 displays the equilibrium hazard rates for � = :3, c =e.50, for an increment

of e.00 as � rises. Note that the curves with higher levels of naivety display the same

qualitative features as those in the empirical data.
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Figure 1: Equilibrium Hazard Rates in the Standard Model (dashed) vs. Equilibrium Hazard
Rates for a model with a naive sunk cost fallacy. p=.3 and the di¤erent lines represent
di¤erent levels of naivety.

A.3 Robustness of the model

A.3.1 mod(y-k,c)6= 0

The results in the analytic section relied heavily on the assumption that mod(v-k,c)= 0:

If this assumption does not hold, there is no equilibrium in which the game continues past

period 1. However, as the following proposition shows, strategies that lead to the hazard

rates in Proposition 2 form an � equilibrium with � very small and limiting to 0 as the size

of time periods shrinks to 0:

Proposition 6 If mod(v � c; k) 6= 0; there is no equilibrium in which the game continues

past period 1. De�ne F � = max(tjt < v�c
k
� 1): There is an �-perfect equilibrium which

yields the same (discrete) hazard rates as those in Proposition 2 with � = 1
n
(1� c

v�F �k )(v �

(F �+1)k� c)[
F ��1Y
t=1

(1� c
v�tk )]: There is an contemporaneous �

c-perfect equilibrium (Mailath

(2003)) which yields the same (discrete) hazard rates as those in Proposition 2 with �c =
1
n�1(1�

c
v�F �k )(v� (F

�+1)k� c): There is a contemporaneous �c-perfect equilibrium which

yields the same hazard and survival rates as those in Proposition 4 with �c ! 0 as �t! 0:
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To give an idea of the magnitude of the mistake of playing this equilibrium in auc-

tions in my dataset, consider an stylized auction constructed to make � as high as possible,

with v =e9:95; c =e:50; k =e:10; and n = 20: In this case, � = e:0000000000224 and

�c =e:00060: That is, even in the most extreme case and using the stronger concept of con-

temporaneous �c-perfect equilibrium, players lose extremely little by following the proposed

strategies. This is because their only point of pro�table deviation is at the end of the game,

where their equilibrium strategy is to bet with low probability, there is a small chance that

their bet be accepted, and the cost of the bet being accepted is small (and, ex ante, there is

an extremely small chance of ever reaching this point of the game).

A.3.2 Independent Values

In the model in the main paper, I assume that players have a common value for the

item. The equilibrium is complicated if players have values vi is drawn independently from

some distribution G of �nite support before the game begins or vi(t) is drawn independently

from G at each time t: In these equilibria, players�behavior is dependant largely on the

exact form of G; with very few clear results about bidding in each individual period (which

is con�rmed by numerical simulation). However, if players have independent values which

tend to a common value, the distribution of hazard rates approaches the bidding hazard

rates in the following way:

Proposition 7 Consider if (1) vi is drawn independently from G before the game begins or

(2) vi(t) is drawn independently from G at each time t: For any distribution G; there is

a unique set of hazard rates fehG(1);ehG(2); :::ehG(t)g that occur in equilibrium. Let the the

support of Gi be [v � �i; v + �i]. For any sequence of distributions fG1; G2; :::g in which
�i ! 0 and the game continues past period 1 in equilibrium; ehG(t) ! eh(t) from Proposition

2 for t > 0. For any sequence of distributions G with � ! v and �t ! 0, there exist

a sequence of corresponding contemporaneous �c-perfect equilibria with hazard and survival

rates equal to those in Proposition 4 in which �c ! 0.

A.3.3 Leader can bid

Throughout the paper, I assume that the leader cannot bid in an auction. This assump-

tion has no e¤ect on the preferred equilibrium below, as the leader not bid in equilibrium

even when given the option. However, the assumption does dramatically simplify the exact

form of other potential equilibria, as shown below.
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Figure 2: Change in non-bidding equilibria when the leader is allowed to bid.

Consider a modi�ed game in which the leader can bid. Now, a (Markov) strategy for

player i at period t is the probability of betting both if a non-leader (xi;NL�t ) and, for t > 0,

when a leader (xi;L�t ) (there is no leader in period 0).

Proposition 8 In the modi�ed game, Proposition 2 still holds.

The equilibria in the situation in which non-leaders bid becomes signi�cantly more com-

plicated and �nding a closed form solution becomes extremely di¢ cult. For example,

consider the equilibrium in which no player bids at period F . The (numerically) solved

equilibrium hazard rates are shown for v = 10; c = :5; k = :1 and n = 3 in Figure 2 Notice

the obvious irregularities in the equilibrium hazard rates in the modi�ed game. This occurs

because the ability of a leader to bid in period t distorts the incentives of non-leaders in

previous periods. To see this, consider the situation in which eh(t + 1) = 1 and eh(t) = 0.

When leaders cannot bid, there is no bene�t from a non-leader bidding in period t� 1 as he
will not win the object in period t (because the game will continue with certainty) or period

t + 1 (because he cannot bid in period t and therefore will never be a leader at t + 1), at

which point the game will end. However, when leaders can bid, non-leaders in period t� 1
can potentially bene�t from bidding. Although there is still no chance that the non-leader

in period t�1 will win the object in period t by bidding, she will be able to bid (as a leader)
in period t, leading to the possibility that she will win the object in period t + 1: There-

fore, non-leaders will potentially bid in this situation in equilibrium not to win the object

in the following period, but simply to keep the game going for a (potential) win in the future.
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Figure 3: Numerical Analysis of the hazard rate of auctions for di¤erent values (solid lines)
when the multiple bids are accepted at each time period vs. the predicted hazard rate (dotted
red line) when only one bid is accepted.

A.3.4 Allowing Multiple Bids to Be Accepted

Allowing multiple bids to be accepted signi�cantly complicates the model, especially in a

declining-value auction. Consider a player facing other players that are using strictly mixed

strategies. If the player bids in period t, there is a probability that anywhere from 0 to

n � 2 other non-leading players will place bids, leading the game to immediately move to
anywhere from period t + 1 to period t + n: In each of these periods, the net value of the

object is di¤erent, as is the probability that no player will bid in that period and the auction

will be won (which is dependant on the equilibrium strategies in each of the periods).

It is possible to solve the model numerically, leading to a few qualitative statements about

the hazard rates. Figure 3 shows the equilibrium hazard rates (with k = :1; c = :5; n = 10)

given small changes in the value of the good (v = 10; 10:25; 10:5; 10:75), as well as the

analytical hazard rates from Proposition 2. These graphs demonstrate three main qualitative

statements about the relationship between the equilibria in the modi�ed model and the

original model:

1. The hazard rates of the modi�ed model are more unstable locally (from period-to-

period) than those from Proposition 2, especially in later periods. As n increases, this
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instability decreases (I do not present graphs for lack of space).

2. The hazard rates of the modi�ed model closely match those from Proposition 2 when

smoothed locally.

3. The hazard rates of the modi�ed model are more stable globally to small changes in

parameters in the model. Recall that the hazard rates in Proposition 2 were taken

from an equilibrium when mod(y � c; k) = 0: When mod(y � c; k) 6= 0; the hazard

rates oscillated radically (although they were smooth in an "-equilibrium with very

small "). The modi�ed model is much more globally robust to these changes.

A.3.5 Timer

In the model in the paper, unlike that in the real world implementation of the model,

there is no timer within each period. Consider a game in which, in each discrete period t;

players can choose to place a bid at one sub-time � 2 [0; T ] or not bid for that period. As in
the original game, if no players bid, the game ends. If any players bid, one bid is randomly

chosen from the set of bids placed at the smallest � of all bids (the �rst bids in a period).

Now, a player�s (Markov) strategy set is a function for each period �it(�) : [0; T ] ! [0; 1];

with
Z T

0

�it(�)d� equaling the probability of bidding at some point in that period.

Proposition 9 For any equilibrium of the modi�ed game, there exists an equilibrium of the

original game in which the distribution of the payo¤s of each of the players is the same.

This proposition demonstrates that, while the timer adds complexity to the player�s

strategy sets, it does not change any of the payo¤-relevant outcomes.

A.4 Proofs

The results for hazard rates hold for non-Markovian strategies (in which players condition

on the leader history) with leader history Ht replacing (t; lt) and some notational changes.

Please email the author for the proofs.

Proposition 1

Proof: Assume that an equilibrium exists in which eh(t�; l�t ) < 1 for some history (t�; l�t )
where t� > v�c

k
� 1: Then, there must be some player i 6= l�t with pit > 0. Given some (t; lt);

de�ne the probability that player i has a bid accepted at (t; lt) as ai(t; lt) 2 [0; 1] and the
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probability that the game ends at (t; lt) as q(t; lt) 2 [0; 1]. Note that as pit > 0; it must be
that ai(t�; l�t ) > 0. Player i

0s continuation payo¤ in the proper subgame starting at (t�; l�t ) is

then: E[
X1

t=t�
ai(t; lt)(�c+qt+1(t+1; i)(v�(t+1)k))] < E[

X1

t=t�
ai(t; lt)(�c+qt+1(t; i)(v�

(v�c
k
+ 1)k))] < E[

X1

t=t�
ai(t; lt)(�c+ qt+1(t+ 1; i)(c� k)) < 0: But, player i could deviate

to setting pit = 0 and receive a payo¤ of 0. Therefore, this can not be an equilibrium.

Proposition 2

Proof: Note that the hazard function associated with the strategies matches those in the
Proposition: for t = 0, eh(t; lt) = 0; for 0 < t � F; eh(t; lt) = (1 � (1 � n�1

p
c

v�tk ))
n�1 = c

v�tk ;

for t > F; eh(t; lt) = 1:
Claim: this set of strategies is a Markov Perfect Equilibrium.

First, consider if k = 0. Note that the game is stationary and strategies above are

symmetric. De�ne the continuation payo¤ for every player of entering a period as the

leader as �L and a non-leader as �NL: Following the strategies in the Proposition, de�ne

the probability of bidding for each non-leading player as p = (1 � n�1
p

c
v
) 2 (0; 1) and the

probability of having the bid accepted given a bid as q 2 (0; 1). Then, �L = eh(t; i)(v)+(1�eh(t; i))�NL which, as eh(t; i) = c
v
for all (t; lt); must equal cv (v)+ (1�

c
v
)�NL = c+(1� c

v
)�NL

: Similarly, �NL = p(q(�c + �L) + (1 � q)�NL) + (1 � p)�NL: The only solution to these
equations is �NL = 0 and �L = c: Then, the continuation payo¤ from bidding as a non-leader

in any period must be q(�c + �L) + (1 � q)�NL = 0 and the continuation payo¤ from not

bidding must be �NL = 0: Therefore, no player strictly prefers to deviate from the strategies

above and we have a subgame perfect equilibrium.

Second, consider if k > 0: Note that the game is non-stationary. I will show that, for

any (t; lt); the following statement (referred to as statement 1) is true: there is no strictly

pro�table deviation from the listed strategies at (t; lt) and the continuation payo¤ from

entering (t; lt) as a non-leader is 0. For the subgames starting at (t; lt) with t > F; refer to

the proof of Proposition 1 for a proof of the statement. For the subgames starting at (t; lt)

with t � F; the proof continues using (backward) induction with the statement already

proved for any (t; lt) with t > F . At (t; lt); non-leader player i will receive an expected

continuation payo¤ of 0 from not betting (she will receive 0 at (t; lt) and will enter some

(t+1; lt+1) as a non-leader, which has a continuation payo¤ of 0 by induction). By betting,

there is some positive probability her bid is accepted. If this is the case, she receives �c at
(t; lt), and will enter (t + 1; i) as the leader. The probability that she wins the auction at

(t+1; i) is eh(t+1; i) = c
v�(t+1)k , in which case she will receive v� (t+1)k. The probability

that she loses the auction at (t + 1; i) is 1 � c
v�tk , in which case she will enter (t + 2; lt+2)
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as a non-leader, which must have a continuation payo¤ of 0 by induction. This leads to

a total continuation payo¤ from her bid being accepted of �c + c
v�(t+1)k (v � (t + 1)k) = 0:

Alternatively, if the bid is not accepted, she enters (t+1; lt+1) as a non-leader and receives a

continuation payo¤ of 0 by induction. Therefore, the continuation payo¤ from betting must

be 0. Therefore, statement 1 is true for all periods and this is a Markov Perfect Equilibrium.

Proposition 3

Proof: First, consider if k > 0:

Consider statement (1).

I will show that, for each period t; (A) for any (t; lt) that is reached in equilibrium, eh(t; lt)
must match those in Proposition 2 if t > 1 and (B) the continuation payo¤ from any player

i 6= lt�1 entering any (t� 1; lt�1) that is reached in equilibrium, �i(t� 1; lt�1); must be zero.
By Proposition 1, the statement (A) is true for all (t; lt) where t > v�c

k
� 1 = F . Now,

consider statement (B). As eh(t; lt) = 1 for every period t > F; it must be that pi = 0 for each
player i 6= lt for every period t > F: Then, it must be that �i(t; lt) = 0 if t > F for all players
i 6= lt as no player bids for any t > F: Finally, consider �i(F; lF ) for any player i 6= lF : There
are three possible outcomes for player i 6= lF at (F; lF ); all of which lead to a continuation
payo¤ of 0. First, the game ends. Second, another player enters period F +1 as the leader,

where player i�s continuation payo¤ is �i(F + 1; lF+1) where i 6= lF+1; which must be 0 by
the above proof. Third, player i enters period F + 1 as the leader, in which case her payo¤

must be �c+ eh(F + 1; i)(v � Fk) + (1� eh(F + 1; i))�i(F + 2; lF+2) = �c+ v � (v�ck )k = 0
as eh(t; lt) = 1 for any (t; lt) if t > F by Proposition 1. Therefore, �i(F; lF ) = 0 for i 6= lF
and statement (B) is proven if t > F:

For 1 < t � F; the proof continues using (backward) induction with the statement already
proved for all periods t with t > F . First consider statement (A). Taking the other players�

strategies as �xed, de�ne the probability of each player i 2 f1; 2; ::ng being chosen as the
leader in t+ 1 at (t; lt) as q

j=B
i (t; lt) if player j bids and q

j=NB
i (t; lt) if player j does not bid.

Note that qi=Bi (t; lt) must be strictly positive. For part (1) of the statement, consider some

(t�; l�t ) which is reached in equilibrium in which eh(t�; l�t ) 6= c
v�tk . Consider any (t

� � 1; l�t�1)
that proceeds (t�; l�t ) and any (t

� � 2; l�t�2) that proceeds (t� � 1; l�t�1): Note that l�t 6= l�t�1
and l�t�1 6= l�t�2: The expected di¤erence in continuation payo¤ from player l�t in period t� 1
for history (t� � 1; l�t�1) from bidding and not bidding is:

q
l�t=B
l�t

(t��1; l�t�1)(�c+eh(t�; l�t )(v�tk))+(1�ql�t=Bl�t
(t��1; l�t�1))

X
j 6=l�t

q
l�t=B
j (t��1; l�t�1)�

�l�t (t; j) �
X

j 6=l�t
q
l�t=NB
j (t� � 1; l�t�1) � �l�t (t; j). By induction, �l�t (t; j) = 0 for any j 6= l

�
t .

Therefore, the above equation simpli�es to ql
�
t=B
l�t

(t� � 1; l�t�1)(�c+ eh(t�; l�t )(v � tk)): Now,
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consider the situation in which eh(t�; l�t ) < c
v�tk : In this case, the di¤erence in continuation

payo¤ is negative, and therefore player l�t must strictly prefer to not bid at any (t
� � 1; l�t�1)

that proceeds (t�; l�t ): But then (t
�; l�t ) will not be reached in equilibrium and we have a

contradiction. Next, consider the situation in which eh(t�; l�t ) > c
v�tk : In this case, the

di¤erence in continuation payo¤ is positive, and therefore player l�t must strictly prefer to

bid in period t� 1 at any (t� � 1; l�t�1) that proceeds (t�; l�t ). This implies that eh(t�; l�t ) = 0
in equilibrium. However, now consider l�t�1 in period t� 2 in any (t�� 2; l�t�2) that proceeds
(t� � 1; l�t�1). Claim: in each potential state of the world at (t� � 2; l�t�2) (the other players�
bids and the auctioneer�s choice of leader are unknown), player l�t�1 weakly prefers to not bid

and, in at least one state of the world, l�t�1 strictly prefers to not bid. First, consider the

states of the world in which no other player is bidding. Here, a bid from player l�t�1 leads to an

expected continuation payo¤of�c+eh(t��1; l�t�1)(v�(t�1)k)+(1�eh(t��1; l�t�1))�l�t�1(t; lt) =
�c as eh(t� � 1; l�t�1) = 0 in equilibrium and �l�t�1(t; lt) = 0 by induction. The expected

continuation payo¤ from not bidding in these states of the world is 0; as the game ends.

Therefore, in these states, player l�t�1 strictly prefers to not bid. Second, consider the states

of world in which another player bids and player l�t�1�s bid will be accepted. Here, the

expected continuation payo¤ from bidding is �c (as above) and the expected continuation
payo¤ from not bidding is �l�t�1(t � 1; lt�1) for some lt�1 6= l�t�1: �l�t�1(t � 1; lt�1) much
be weakly greater than 0, as a player could guarantee an expected payo¤ of 0 from never

bidding. Therefore, in these states, player l�t�1 strictly prefers to not bid. Note that one

state from these �rst two categories of states must occur, so player l�t�1 strictly prefers to

not bid in at least one state. Finally, consider the states of the world in which another

player bids and player l�t�1�s bid will not be accepted. Here, (t; lt�1) is constant if player l
�
t�1

bids or not, and therefore player l�t�2 weakly prefers to not bid. Therefore, in equilibrium,

player l�t�1 must not bid at any (t
� � 2; l�t�2) that proceeds any (t� � 1; l�t�1) that proceeds

any (t�; l�t ): But, then we have a contradiction as (t
�; l�t ) cannot occur in equilibrium.

Next, I will prove statement (B) for period t. Consider �i(t � 1; lt�1) for any player
i 6= lt�1 in any (t�1; lt�1) that is reached in equilibrium. There are three possible outcomes
for player i at (t�1; lt�1); all of which lead to a continuation payo¤of 0. First, the game ends.
Second, another player enters period t as the leader, in which case player i�s continuation

payo¤ is �i(t; lt) for some lt 6= i; which must be 0 by induction. Third, player i enters period t
as the leader, in which case her payo¤must be �c+eh(t; i)(v�tk)+(1�eh(t; i))�i(t+1; lt+1) =
�c + c

v�tk (v � tk) + (1 �
c

v�tk )�i(t + 1; lt+1) = 0 as
eh(t; i) = c

v�tk for period t by above and

lt+1 6= i, so �i(t+1; lt+1) = 0 by induction: Therefore, it must be that �i(t� 1; lt�1) for any
player i 6= lt�1 in any (t� 1; lt�1) that is reached in equilibrium and the statement is proved.
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Consider Statement (2):

Assume there is an equilibrium in which player i uses Markov Strategies and pi0 > 0,

pi1 > 0 for all i:

For each period t > 1; I will prove that player i must follow the strategies listed in the

Proposition 2. First, note that by Proposition 1, eh(t; lt) = 1 where t > v�c
k
� 1 = F , so

it must be that pit = 0 for each player i for every period t > F: For periods 1 < t � F;

the proof is by induction with period 2 as the initial period. Period 2: As pi0 > 0, p
i
1 > 0

for all i; it must be true that for each player i, (2; l2 = i) occurs on the equilibrium path.

Suppose that pit 6= p
j
t for some players i and j for t = 2: Then, eh(t; lt = i) =

Yn

k=1
(1�pkt )

(1�pit)
6=Yn

k=1
(1�pkt )

(1�pjt )
= eh(t; lt = j) for t = 2: But, by Statement (1) of Proposition 3, it must be thateh(t; lt = i) = c
v�2k =

eh(t; lt = j) for t = 2 so we have a contradiction. Therefore, pit = p
j
t

for all i and j and therefore pit = n�1
p
1� c

v�tk for all i when t = 2: Period t: Suppose

the statement is true for periods prior to t. Then, it must be true that for each player i,

(t; lt = i) occurs on the equilibrium path. Now, follow the rest of the proof for t = 2 for any

t � F to show that the statement holds for any period 1 < t � F: Therefore, in any Markov
Perfect Equilibrium in which play continues past period 1;strategies must match these after

period 1.

Second, consider if k = 0:

Consider Statement (1):

Assume that players use symmetric strategies: pit = p
j
t = pt: Note that this implies thateh(t; lt = i) = eh(t; lt = j) = eh(t): De�ne the continuation payo¤ for every player of entering

period t as the leader as �L(t) and a non-leader as �NL(t): Claim: �NL(t) = �L(t) � c for
any period t > 1 that appears on the equilibrium path. First, suppose that there exists

t on the equilibrium path such that �NL(t) > �L(t) � c. Using notation from the Proof

to Proposition 3, the di¤erence in the expected payo¤ from bidding and not bidding for

player i at period t � 1 is (1 � qi=Bi (t � 1))�NL(t) + qi=Bi (t � 1)(�c + �L(t)) � �NL(t) < 0:
Therefore, all non-leading bidders must strictly prefer to not bid in period t� 1: However,
this implies that t cannot be reached on the equilibrium path, a contradiction. Second,

suppose that there exists t on the equilibrium path such that �NL(t) < �L(t) � c. The

di¤erence in the expected payo¤ from bidding and not bidding for player i at period t� 1 is
(1� qi=Bi (t� 1))�NL(t) + qi=Bi (t� 1)(�c+ �L(t))� �NL(t) > 0. Therefore, all non-leading
bidders must strictly prefer to bid in period t� 1: This implies that �L(t� 1) = �NL(t) as
a leader in period t� 1 will necessarily become a non-leader in period t: It also implies that
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�NL(t � 1) � �NL(t) as a non-leader in period t � 1 could not bid and guarantee �NL(t).
Therefore, the di¤erence in the expected payo¤ from bidding and not bidding for player i at

period t� 2 i

(1� qi=Bi (t� 2))�NL(t� 1) + qi=Bi (t� 1)(�c+ �L(t� 1))� �NL(t� 1) =

(1� qi=Bi (t� 2))�NL(t� 1) + qi=Bi (t� 1)(�c+ �NL(t))� �NL(t� 1) <

(1� qi=Bi (t� 2))�NL(t) + qi=Bi (t� 1)(�c+ �NL(t))� �NL(t) =

qi=Bi (t� 1)(�c) < 0

Therefore, players in t� 2 must strictly prefer to not bid. This implies that period t is
not on the equilibrium path, a contradiction. Therefore, it must be that �NL(t) = �L(t)� c
for any period t > 1 that appears on the equilibrium path: Now, note in equilibrium

�L(t) = H(t)v + (1 � H(t))�NL(t + 1) and �NL(t) = H(t)(0) + (1 � H(t))( 1n(�c + �L(t +
1))+ n�2

n�1�NL(t+1)): Suppose t > 1 and t is on the equilibrium path. Note that t+1 must

also be on the equilibrium path: If H(t) = 1, then �L(t) = v > �NL(t) + c; a contradiction.

Therefore, it must be that �L(t) = �NL(t) + c and �L(t + 1) = �NL(t + 1) + c. Imposing

this on the equations for �NL(t) and �L(t) yields the unique solution: H(t) = c
v
: Therefore,

the Proposition is true.

Consider Statement (2):

Assume there is an equilibrium in which players uses Symmetric Markov Strategies and

p0 > 0, p1 > 0.

For each period t > 1; I will prove that players must follow the strategies listed in the

Proposition 2. The proof is by induction with period 2 as the initial period. Period 2: As

p0 > 0, p1 > 0; it must be true that period t occurs on the equilibrium path. By Statement

(1) of Proposition 3, it must be that eh(t) = c
v
and therefore pt = n�1

p
1� c

v�tk when t = 2:

Period t: Suppose the statement is true for periods prior to t. Then, it must be true that

period t occurs on the equilibrium path. Now, follow the rest of the proof for t = 2 for any t

to show that the statement holds for any period 1 < t: Therefore, in any Symmetric Markov

Perfect Equilibrium in which play continues past period 1;strategies must match these after

period 1.

Proposition 4

Proof:

(For Non-Normalized Time):Let S(t) = p: As eh(t) = c�t
v�(t)k for t � F , S(t +�t) =

(1 � c�t
v�(t+�t)k )p: Therefore, S(t) = lim

�t!0
S(t)�S(t+�t)

�t�S(t) = lim
�t!0

p( c�t
v�(t+�t)k )

�t�p = lim
�t!0

c
v�(t+�t)k =
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c
v�tk : As H(t) =

R t
0

c
v�etkdet, H(t) = c(ln(v)�ln(v�tk))

k
t if k > 0 and t � F , while H(t) = c

v
t if

k = 0: Note that H(t) =
R t
0
lim
�t!0

S(et)�S(et+�t)
�t�S(et) det = � R t

0
1
S(et)( ddetS(et))det = � lnS(t): Therefore

S(t) = e�H(t) and S(t) = (1� tk
v
)
c
k if k > 0 and t � F , while S(t) = e�( cv )t if k = 0:

Note that, as eh(F +�t) = 1; lim
�t!0

Pr(T > F ) = 0 and therefore S(F ) = 0:

(For Normalized Time): S(tv1; v1) = (1� tv1y
v1
)
c
y = (1�ty)

c
y = (1� tv2y

v2
)
c
y = S(tv2; v2)

if k > 0 and t � F: S(tv1; v1) = 0 = S(tv2; v2) if k > 0 and t > F: S(tv1; v1) =

e
�( c

v1
)tv1 = e�ct = e

�( c
v2
)tv2 = S(tv2; v2) if k = 0: S(tv1c1 ; v1; c1) = e

�( c1
v1
)t
v1
c1 = e�t = e

�( c2
v2
)t
v2
c2 =

S(tv2
c2
; v2; c2) if k = 0:

Proposition 5

Proof:

The proof follows Eyster (2002) directly. Players must be indi¤erent between bidding

and not bidding in order to sustain the equilibrium in which eh(t) 2 (0; 1): Consider an

player in even period t: As there are two players, this player must have made t
2
bids

up to this point. As noted in the text, player�s incentives change when the net value

of the item drops below the total bid costs spent on the item if the player wins, which

is when t
2
c � c = v ) t� = 2(v+c)

c
: Consider if t � t�: Given the hazard rate in the

Proposition eh�(t + 1) = c+c��c��( t+1
2
+1)

v+(1��)c�( t+1
2
+1)
, the player is indi¤erent between bidding today or

not as (� t
2
c� (1� �)� t

2
c) = eh�(t+1)(v� ( t+2

2
)c)+ (1�eh�(t+1))(�( t+2

2
)c� (1� �)�( t+2

2
)c):

The argument is similar if t > t�: Therefore, no player has a strict incentive to deviate from

choosing pti = 1� h�(t) and the equilibrium holds.

Proposition 6

Proof: Consider the strategies noted in the proof of Proposition 2 with F = F �: For

the standard �-perfect equilibrium, we consider the ex ante bene�t of deviating to the most

pro�table strategy, given that the other players continue to follow this strategy. Following

the proof of Proposition 2, it is easy to show that there is no pro�table deviation in periods

t > F � and t < F �: Therefore, the only pro�table deviation is to not bet in t = F �: This

will yield a continuation payo¤ of 0 from period F �. The ex ante continuation payo¤ from

betting is � = 1
n
(1 � c

v�F �k )(v � (F
� + 1)k � c)[

F ��1Y
t=1

(1 � c
v�tk )]: (To see this, note that

there is a
F ��1Y
t=1

(1 � c
v�tk ) change that the game reaches period F

�: In period F �; there is

a (1 � c
v�F �k ) probability that at least one player bets. As strategies are symmetric, this

means that, ex ante, a player has a 1
n
(1 � c

v�F �k ) probability of her bet being accepted in

54



this period, given that the game reaches this period. If the bet is accepted, the player will

receive (v � (F � + 1)k � c)): Therefore, the ex ante bene�t from deviating to the most

pro�table strategy is �: For the contemporaneous �c-perfect equilibrium, we consider the

bene�t of deviating to the most pro�table strategy once period F � is reached, given that the

other players continue to follow this strategy. This is �c = 1
n�1(1�

c
v�F �k )(v� (F

�+1)k� c)
(To see this, note that in period F �; there is a (1 � c

v�F �k ) probability that at least one

player bets. As strategies are symmetric, this means that, ex ante, a non-leader has a
1
n�1(1�

c
v�F �k ) probability of her bet being accepted in this period (as there are only n� 1

non-leaders). If the bet is accepted, the player will receive (v � (F � + 1)k � c)):

Proposition 7

Proof: In case 1, I will refer to vi(t) = vi. The proof is simple (backward) induction on
the statement that there is a unique hazard rate that can occur in each period in equilibrium.

By the same logic in the proof to Proposition 1, eh(t) = 1 for all t > v+�i�c
k

� 1: Consider
periods t � F � = maxftjt � v+�i�c

k
�1g where eh(t+1) is unique in equilibrium by induction.

If eh(t + 1) = 0; then eh(t) = 1 as any player with �nite vi(t) strictly prefers to not bid. Ifeh(t + 1) > 0, a player with cuto¤ type v�(t) = ceh(t+1) + (t + 1)k is indi¤erent to betting at
time t given eh(t+ 1). Therefore, eh(t) = G(max(min(v�; v + �); v � �)) and the statement is
true. Suppose Gi is such that the game continues past period 1: Claim 1: If � < k;then (1)eh(t) = 0 for t � F ) eh(t � 1) = 1 and (2) eh(t) = 1 for t � F ) eh(t � 1) = 0: Statement
(1) is true as a bidding leads to �c; a lower payo¤ than not bidding. Statement (2) is

true as if eh(t) = 1; then the payo¤ of bidding for a player with value ev at period t � 1 is
Pr[Bid Accepted](ev� tk � c): Note that Pr[Bid Accepted] > 0 if a player bids. Note that
t � F ) t � v�c

k
� 1 ) 0 � v � c � (t + 1)k ) 0 < v � � � c � tk as � < v: Therefore,

0 < Pr[Bid Accepted](ev� (t + 1)k � c) for every ev 2 [v � �; v + �] and therefore eh(t) = 0

and the claim is proved. Claim 2: If � < k;eh(t) 2 (0; 1) for every 0 < t � F: Suppose

that eh(t) = f0; 1g for some 0 < t � F: If eh(1) = 1; then game ends at period 1, leading

to a contradiction. If eh(1) = 0; then eh(0) = 1; and game ends at period 0, leading to a

contradiction. If eh(t) = 1 (alt: 0) for 0 < t � F; then eh(t�1) = 0 (alt: 1), eh(t�2) = 1 (alt:
0) by claim 1. But, then eh(1) = f0; 1g; which is leads to a contradiction as above. Claim 3:
By the same logic in the proof to Proposition 1, eh(t) = 1 for all t > v+�i�c

k
� 1: Therefore,ehG(t) = 1 for t > v�c

k
� 1 = F as �i ! 0: For 0 < t � F; note that for some i�; �i < k for

all i > i� and therefore claim 1 holds for all i > i�: If claim 1 holds, eh(t� 1) 2 (0; 1) implies
a cuto¤ value v�(t) 2 (v � �; v + �) from above, which by the de�nition of v�(t) implies thateh(t) 2 ( c

v���(t+1)k ;
c

v+��(t+1)k ); and therefore
ehGi(t)! c

v�tk for periods 0 < t � F as �i ! 0:

Therefore, ehG(t)! eh(t) from Proposition 2 for t > 0.
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Proposition 8

Proof: Set xi;NL�t = xi�t from the proof of Proposition 2 and set xi;L�t = 0 for all i and

all t. Note that, as in the proof of Proposition 2. these strategies yield the hazard rates

listed in the Proposition 2. The same proof for Proposition 2 shows that, if strategies are

followed, the continuation payo¤ from entering period t as a non-leader is 0 and there is no

pro�table deviation for a non-leader. Now, consider if there is a pro�table deviation for a

leader. For the subgames starting in periods t > F; refer to the proof of Proposition 1 for

a proof that there is no pro�table deviation for a leader in these periods. For the subgames

starting in period 0 < t � F; the proof continues using (backward) induction with the lack
of pro�table deviation already proved for all periods t > F . In period t; by not bidding,

the leading player will receive v with probability c
v�tk (with the game ending) and 0 as a

continuation probability as a non-leader in period t + 1 with probability 1 � c
v�tk ; yielding

an expected payo¤ of v ( c
v�tk ) > 0. By bidding, the game will continue to period t+1 with

certainty, with some positive probability that her bid is accepted. If her bid is accepted, she

receives �c in period t and receives v � (t + 1)k in t + 1 with probability c
v�(t+1)k and 0 as

a continuation probability as a non-leader in period t+ 2 with probability 1� c
v�tk , leading

to a continuation payo¤ of �c+ (v� (t+1)k)( c
v�tk ) = 0: If her bid is not accepted, she will

receive a continuation probability of 0 as a non-leader in period t+1: Therefore, the payo¤

from not bidding in period t is strictly higher than the payo¤ from bidding.

Proposition 9

Proof: Consider a vector of bidding probabilities x = [x1; x2; :::xn] 2 [0; 1]n = X in

some period. Let 	 : X ! �n be a function that maps xt into a vector of probabilities

of each player�s bid being accepted; which I will denote a = [a1; a2; :::an]: Claim: For any

a� 2 �n, 9 x 2 X such that 	(x) = a�:

Consider the following sequence of betting probabilities, indexed by j = f1; 2; 3:::g: Let
xi(1) = 0. De�ne a(j) = 	(x(j)) = 	([x1(j); x2(j); :::xn(j)]): De�ne eai(j) = 	([x1(j �
1); x2(j � 1); :::xi(j); :::; xn(j � 1)]) and let xi(j) be chosen such that eaii(j) = ai�: Claim:

x(j) exists, is unique, x(j � 1) � x(j) and ai(j) � a� for all j: This is a proof by induction,
starting with t = 2: As x(1) = 0; x(2) = a� by the de�nition of eai(j). Therefore, x(2)

exists, is unique, x(1) � x(2) and ai(2) � a� as @	i@xk
< 0 for k 6= i: Now, consider xi(j): Note

(1) xi(j) = 0) eaii(j) = 0, (2) xi(j) = 1) eaii(j) � 1�Pk 6=i a
k(j � 1) � 1�

P
k 6=i a

k� � ai�

where 1�
P

k 6=i a
k(j�1) � 1�

P
k 6=i a

k� follows by ai(j�1) � a�; which follows by induction
(3) eai(j) is continuous in xi(j) and @	i

@xi
> 0. Therefore, there is a unique solution xi(j)

such that eaii(j) = ai�. As ai(j � 1) � a� by induction, it must be that xi(j) � xi(j � 1)
as @	i

@xi
> 0: Finally, note that if eaii(j) = ai�;then as aii(j) � ai� as @	i

@xk
< 0 for k 6= i and
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xk(j) � xk(j � 1) for k 6= i:

Set x� = limj!1 x(j): Claim: x� exists and 	(x�) = a�: First, limj!1 x(j) must exist

as xi(j) is bounded above by 1 and weakly increasing. Next, note that
P

i x
i� must also

exist with
P

i x
i� � n: Now, suppose that 	(x�) 6= a�: Then, as 	(x(j)) = a(j) � a� for

all j; 	(x�) � a� and there must be some i such that 	i(x�) � ai� = z > 0: Choose L

such j
P

i x
i� �

P
i x

i(j)j < z
2
for all j > L: By the de�nition of xi(j + 1), it must be that

xi(j+1) � xi(j)+ z: But, as x(j+1) � x(j); then
P

i x
i(j+1) �

P
i x

i(j)+z �
P

i x
i�+ z

2
;

which is a contradiction of L: Therefore, the claim is proved.
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