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Abstract

Group testing increases efficiency by pooling patient specimens, such that an entire group can be cleared

with one negative test. Optimal grouping strategy is well studied for one-off testing scenarios, in populations

with no correlations in risk and reasonably well-known prevalence rates. We discuss how the strategy changes

in a pandemic environment with repeated testing, rapid local infection transmission, and highly uncertain

risk. First, repeated testing mechanically lowers prevalence at the time of the next test by removing positives

from the population. This effect alone means that increasing frequency by x times only increases expected

tests by around
√
x. However, this calculation omits a further benefit of frequent testing: removing infections

from the population lowers intra-group transmission, which lowers prevalence and generates further efficiency.

For this reason, increasing frequency can paradoxically reduce total testing cost. Second, we show that

group size and efficiency increases with intra-group risk correlation, which is expected given spread within

natural groupings (e.g., in workplaces, classrooms, etc). Third, because optimal groupings depend on disease

prevalence and correlation, we show that better risk predictions from machine learning tools can drive large

efficiency gains. We conclude that frequent group testing, aided by machine learning, is a promising and

inexpensive surveillance strategy.

∗Authors in alphabetical order. We are grateful to Katrina Abuabara, Sylvia Barmack, Kate Kolstad, Maya Petersen, Annika

Todd, Johannes Spinnewijn, and Nicholas Swanson for helpful comments. All opinions and errors are our own.
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1 Introduction

The current costs and supply constraints of testing make frequent, mass testing for SARS-CoV-2 infeasible. The

old idea of group testing (Dorfman (1943)) has been proposed as a solution to this problem (Lakdawalla et al.

(2020); Shental et al. (2020)): to increase testing efficiency, samples are combined and tested together, potentially

clearing many people with one negative test. Given the complicated tradeoff between the benefits of increasing

group size versus the cost of follow-up testing for a positive result, a large literature has emerged on optimal

strategies (Dorfman (1943); Sobel and Groll (1959); Hwang (1975); Du et al. (2000); Saraniti (2006); Feng et al.

(2010); Li et al. (2014); Aprahamian et al. (2018, 2019); Lipnowski and Ravid (2020)). This literature focuses on

one-time testing of a set of samples with known and independent infection risk, which matches common use-cases

such as screening donated blood for infectious disease (Cahoon-Young et al. (1989); Behets et al. (1990); Quinn

et al. (2000); Dodd et al. (2002); Gaydos (2005); Hourfar et al. (2007)). These environmental assumptions are

violated when dealing with a novel pandemic with rapid spread. In this case, people may need to be tested

multiple times, testing groups are formed from populations with correlated infection risk, and risk levels at any

time are very uncertain. This paper notes how these different factors change the optimal testing strategy and

open up ways to dramatically increase testing efficiency. We conclude that data-driven, frequent group testing –

even daily – in workplaces and communities is a cost-effective way to contain infection spread.

We start with the well-known observation that group testing is more efficient when the population prevalence

is lower, because the likelihood of a negative group test is increased. We then show how increased testing

frequency mechanically lowers prevalence and therefore increases efficiency. For example, given reasonable levels

of independent risk, testing twice as often cuts the prevalence at the time of testing by (about) half, which lowers

the expected number of tests at each testing round to about 70% of the original number. The savings are akin

to a “quantity discount” of 30% in the cost of testing. Therefore, rather than requiring two times the numbers

of tests, doubling frequency only increases costs by a factor of 1.4. More generally, we demonstrate that testing

more frequently requires fewer tests than might be naively expected: increasing frequency by x times only uses

about
√
x as many tests, implying a quantity discount of (1− 1=

p
x)%.

The benefits to frequency are even greater when there is intra-group spread, as would be expected in a pan-

demic. In this case, testing more frequently has an additional benefit: by quickly removing infected individuals,

infection spread is contained. This further lowers prevalence, and provides yet another driver of efficiency. We

show that in this case – somewhat paradoxically – the quantity discount is so great that more frequent testing

can actually reduce the total number of tests. Given that current testing for SARS-CoV-2 is done relatively

infrequently, we therefore believe the optimal frequency is likely much higher.1

1As we show, these results do not rely on complex optimization of group size or sophisticated cross-pooling or multi-stage group
testing. Furthermore, the results are qualitatively similar when using a range of reasonable group sizes.
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Next, we show that grouping samples from people who are likely to spread the infection to each other {

such as those that work or live in close proximity { increases the bene�ts of group testing. Intuitively, increased

correlation of infection in a group with a �xed risk lowers the likelihood of a positive group test result, which

increases e�ciency. Consequently, we conclude that groups should be formed from people who are likely to infect

each other, such as those in a work or living space. This has a key logistical advantage: it implies that simple

collection strategies { such as collecting sequential samples by walking down the hallway of a nursing home { can

encode physical proximity and therefore capture correlations without sophisticated modeling.

Finally, we note that, while there is a substantial literature noting that prevalence levels should be used to

drive groupings (Hwang (1975); Bilder et al. (2010); Bilder and Tebbs (2012); Black et al. (2012); McMahan et

al. (2012); Tebbs et al. (2013); Black et al. (2015); Aprahamian et al. (2019)), risk prediction methods are often

coarse. This is appropriate in situations with stable risk rates, no correlation, and large amounts of previous

outcome data, but less so in a quickly-changing pandemic with highly uncertain and correlated risk, such as

SARS-CoV-2. We show this by quantifying the large e�ciency losses from choosing groups based on incomplete

or incorrect risk and correlation information. We then discuss how machine learning tools can produce highly

accurate estimates of these parameters using observable data such as location, demographics, age, job type, living

situation, along with past infection data.

To present transparent results, we consider a very stylized environment with a number of simpli�cations.

While removing these constraints further complicates the problem and raises a number of important logistical

questions, we do not believe that their inclusion changes our main insights. To pick one important example,

we model a test with perfect sensitivity and speci�city, but there is a natural concern that the sample dilution

inherent in group testing leads to a loss of test sensitivity. However, the sensitivity loss of group testing given

reasonable group sizes has been shown to be negligible in other domains (Shipitsyna et al. (2007); McMahan et

al. (2012)) and more recently shown to be similarly low for SARS-CoV-2 in group sizes of 32 and 48 (Hogan et al.

(2020); Yelin et al. (2020). Furthermore, even if there is a loss of sensitivity on a single test, this is counteracted by

the large increase in overall sensitivity coming from running a larger number of tests given increased frequency.2

Finally, if speci�city is a concern, the past literature (Litvak et al. (1994); Aprahamian et al. (2019)) has clear

methods to to optimize in the case of imperfect tests. There are multiple other issues, from grouping costs to

regulatory barriers, but we believe the e�ciency gains from frequent group testing are so high that addressing

these issues is likely worth the cost.

The paper proceeds as follows: Section 2 reviews a main �nding in the group testing literature that e�ciency

2For example, if group testing leads the sensitivity to drop from 99% to 90% on a single test, sampling x times as frequently
will increase overall sensitivity to 1 � (0:10)x . Even with extremely correlation { suppose the false negative rate for a group given
a previous false negative for that group is 50% { group testing 4-5 times as frequently will recover the same false positive rate as
individual testing.
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rises as prevalence falls; Section 3 discusses the relationship between testing frequency and e�ciency; Section 4

demonstrates how correlated infection leads to larger group sizes and greater e�ciency; Section 5 discusses the

usefulness of machine learning to estimate risk and correlation; and Section 6 concludes.

2 Group Testing: Bene�ts rise as prevalence falls

2.1 Background on Group Testing

To understand the basic bene�ts of group testing, consider a simple example: 100 people, each with an indepen-

dent likelihood of being positive of 1% and a test that (perfectly) determines if a sample is positive. To test each

person individually { the conventional approach { requires 100 tests. Suppose instead that the individuals' sam-

ples are combined into �ve equally-sized groups of 20. Each of these combines samples are then tested with one

test. If any one of the 20 individuals in a combined sample is positive then everyone in that group is individually

tested, requiring 20 more tests (21 in total). The probability that this occurs is 1 � (1 � :01)20 � 18%. However,

if no one in the group is positive { which occurs with probability � 82% { no more testing is required. Because

the majority of tests require no testing in the second case, the expected number of tests for this simple grouping

method is only around 23, a signi�cant improvement over the 100 tests required in the non-grouped method.

The approach is well studied with a large literature focused on improving the e�ciency of group testing. These

include using optimal group size (e.g. in this example the optimal group size of 10 would lower the expected

number of tests to around 20), placing people into multiple groups (Phatarfod and Sudbury (1994)), and allowing

for multiple stages of group testing (Sterrett (1957); Sobel and Groll (1959); Litvak et al. (1994); Kim et al. (2007);

Aprahamian et al. (2018)). There are also methods to deal with complications, such as incorporating continuous

outcomes (Wang et al. (2018)). Any of these modi�cations can be incorporated in our group testing strategy.

For clarity of exposition, we present results for simple two-stage "Dorfman" testing { in which every person

in a positive group is tested individually { to demonstrate that our conclusions are not driven by highly complex

groupings and to make our calculations transparent.3 As an example of this transparency, while the optimal

group size and associated e�ciency formulas under Dorfman testing are complicated, low-order Taylor-Series

approximations are very simple and accurate at the low prevalences needed for group testing.4;5 Speci�cally,

3 In general, we advocate for these more sophisticated strategies when feasible as they further increase e�ciency.
4The formula for the optimal group size (disregarding rounding) is g� = 2�W 0 ( � 1=2

p
� 1=Ln (1 � p ) )=Ln (1 � p) where W0 (x) maps x to the

principal solution for w in x = wew . The expected number of tests is (1 � e2�W 0 ( � 1=2
p

� 1=Ln (1 � p ) ) + Ln (1 � p)=2�W 0 ( � 1=2
p

� 1=Ln (1 � p ) ) ) � n
5For the prevalence rates we discuss in the paper, such as .1%, 1%, or 2%, the approximation of optimal group size is within 0.3%,

0.1%, 0.01%, of the true optimal, respectively, and the approximation of the number of tests is within 3.1%, 2.3%, and 0.7% of the
true number.
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given a prevalence ofp, the approximate optimal group size is

g� �
1
2

+
1

p
p

(1)

and the resultant approximate expected number of tests given a population ofn people is

E [tests� ] � 2 �
p

p � n: (2)

2.2 Prevalence and Group Testing

For all of these di�erent incarnations of group testing, the bene�ts of group testing rise as the prevalence rate falls

in the population. Lower prevalence reduces the chance of a positive group test, thereby reducing the likelihood

the entire pool must be retested individually. This is clear in Equation 2 as expected tests 2�
p

p � n drop with

prevalence. For example, if the prevalence drops from .1% to .01%, the optimal group size rises and the number

of tests falls from around 20 to 6.3. There is still a large gain if the group size is �xed: expected tests drop from

23 to around 6.9 using a �xed group size of 20. Similarly, if the prevalence rises from .1% to 1%, the expected

number of tests using the optimal group size rises to around 59 (or 93 given a �xed group size of 20).

The full relationship is shown in Figure 1, which plots the expected number of tests in a population ofn people

given di�erent group sizes and visually highlights the results based on (i) individual testing { which always leads

to n tests, (ii) using groups of 20, and (iii) using optimal grouping given two stages. For simplicity, we construct

these �gures by assuming thatn is large to remove rounding issues that arise from breaking n people into groups

sizes that are not divisible by n.6 There are large gains from group testing at any prevalence level, though they

are appreciably larger at low prevalence rates.

3 Increasing Test Frequency

3.1 Interaction Between Frequent Testing and Group Testing

Our �rst insight is the important complementarity between group testing and testing frequency. Intuitively, the

bene�ts of group testing rise as prevalence falls and frequent testing keeps the prevalence at each testing period

low. Continuing with our example, suppose that 100 people have a 1% independent chance of being positive over

the course a given time period. As discussed above, one could either sample everyone (requiring 100 tests), use

group testing with a group size of 20 (requiring� 23 expected tests), or use group testing with an optimal group

size (requiring � 20 expected tests).

6We note that this �gure replicates many similar �gures already in the literature going back to Dorfman (1943).
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Figure 1: E�ciency of group testing rises with prevalence

Notes: This �gure plots the expected number of tests (y-axis) from group testing given a population of n people
as the population infection prevalence rate (x-axis) changes. The black 
at line shows the number of tests from
individual testing (equivalent to a group size of 1), which always requiresn tests regardless of prevalence. The
results from using a group size of 20 is orange, while the blue line represents the number of tests given the optimal
group size for a given prevalence. Finally, the green text notes that bene�t from group testing is the distance
between the black individual-testing line and those from group testing. For example, as noted in the text, using
a group size of 20 for a prevalence of 1% leads to:23 � n tests rather than n tests, while the optimal group size
(10) leads to :20� n tests.

Suppose instead that people are tested ten times as frequently. Testing individually at this frequency requires

ten times the number of tests, for 1000 total tests. It is therefore natural think that group testing also requires

ten times the number of tests, for more than 200 total tests. However, this estimation ignores the fact that testing

ten times as frequently reduces the probability of infection at the point of each test (conditional on not being

positive at previous test) from 1% to only around .1%. This drop in prevalence reduces the number of expected

tests { given groups of 20 { to 6.9 at each of the ten testing points, such that the total number is only 69. That

is, testing people 10 times as frequently only requires slightly more than three times the number of tests. Or,

put in a di�erent way, there is a quantity discount of around 65% by increasing frequency. The same conclusion

holds using optimal group sizes: the one-time group test would require 20 expected tests, while testing ten times

as frequently requires 6.3 tests at each testing point for a total of 63. The savings relative to the 1000 tests using

individual testing are dramatic, with only approximately 6% of the total tests required.
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