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Abstract

We study how overreaction and underreaction to signals depend on their informa-
tiveness. While a large literature has studied belief updating in response to highly
informative signals, people in important real-world settings are often faced with a steady
stream of weak signals. We use a tightly controlled experiment and new empirical evi-
dence from betting and financial markets to demonstrate that updating behavior differs
meaningfully by signal strength: across domains, our consistent and robust finding is
overreaction to weak signals and underreaction to strong signals. Both sets of results
align well with a simple theory of cognitive imprecision about signal informativeness.
Our framework and findings can help harmonize apparently contradictory results from
the experimental and empirical literatures.
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1 Introduction

People face a constant stream of new information about future events. For example, people
might read a new poll about a politician’s favorability, have a brief conversation with their
boss at work, or see news about daily stock-market movements. Much of this information is
only weakly informative about the relevant future events — whether the politician will be
reelected, whether the person will be promoted, or whether they will have enough money
for retirement. How do people update their beliefs in response to these types of weakly
informative signals? While there is a large literature studying belief updating, it primarily
focuses on people’s reactions to information that is relatively strong, with the common
finding that people tend to underinfer from such information. We use new experimental and
empirical evidence to show that, while people do underinfer from strong pieces of information,
they overinfer from weak pieces of information — behavior that is consistent with a simple
theory of cognitive imprecision. Consistent overinference from weak signals leads individuals
to overvalue low-quality news, and to form beliefs that are overly extreme and excessively
volatile.

We start with the observation that weak-signal settings are understudied in the exper-
imental literature. The online appendix of Benjamin’s (2019) survey of the literature, for
example, lists over 500 experimental treatment blocks across 21 papers that study inference
from symmetric binary signals about a binary state. In none of these papers do subjects see
signals that have a diagnosticity — the likelihood of seeing an “high” signal conditional on the
“high” state — lower than 3/5. Belief updating in these settings often features underreaction
to new information relative to the Bayesian benchmark, particularly when signals are very
strong, and much of the past literature has settled on underinference as the dominant form
of probabilistic reasoning. For example, Benjamin’s (2019) “Stylized Fact 1” states that
“Underinference is by far the dominant direction of bias.” Given the limited space of signals
studied, however, the experimental literature has had little to say about the reaction to
signals with lower diagnosticity.

Identifying updating errors outside of the laboratory is more challenging because both
people’s beliefs and the correct Bayesian beliefs are often unobservable. One prominent
strand of such work uses asset prices as proxies for beliefs or expectations.1 For individual
stocks, there is robust evidence of predictable post-earnings announcement drift — in which
a firm’s stock price tends to continue drifting in the same direction as the initial change
after an earnings announcement — which appears consistent with initial underreaction to the

1Another line of work uses beliefs as elicited in surveys, often regarding macroeconomic outcomes; see
Angeletos, Huo, and Sastry (2021) for a survey. Our focus for now is on asset-price data, as financial markets
provide useful high-frequency proxies for beliefs over multiple horizons and signal-strength environments.
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announcement. But this finding seems to conflict with the large literature on excess volatility
in overall stock-market valuations, which instead appears consistent with overreaction. While
there are many candidate explanations seeking to reconcile these findings, we focus specifically
on the role of signal informativeness. Pieces of news like company earnings announcements
are relatively informative (Vuolteenaho 2002), while much of the information that drives
daily market price changes (and volatility) is only weakly informative.

Our core goal, then, is to study how reaction to information varies when signals are
weak versus strong. To do so, we both create (in the lab) and find (in asset-price data)
environments in which signal strengths vary systematically and updating behavior can be
measured consistently.

This is relatively straightforward in an experimental setting, where we have full control of
the data-generating process (DGP): in the main treatment of our pre-registered experiment,
we study a simple updating environment and vary the signal strength more comprehensively
than has been done in past work. In particular, in the simplest treatment block, we expose
500 people to 16 different signal strengths in a version of a commonly used “bookbag-and-
poker-chips” experimental design (e.g. Phillips and Edwards 1966) in which people receive
one binary signal about a binary state.

The main result of our experiment is that, while people underinfer from strong signals,
they overinfer from weak signals. In the simple treatment block, subjects have a prior
of π0 = 1/2 about a binary state and receive a binary signal with diagnosticity p > 1/2
that would move a Bayesian to a posterior of π1 = p that the more likely state will occur.
Consistent with nearly all existing evidence, for strong signals for which p ≥ 2/3, we find
robust evidence for underinference: subjects form posteriors π̂1 that are significantly below p.
For p ∈ [3/5, 2/3], we do not find clear evidence for over- or underinference: the difference
between π̂1 and p is small.2 However, for p ∈ (1/2, 3/5), we find clear and robust evidence
for overinference: π̂1 is statistically significantly greater than p, and the effect is convex in p.
For very weak signals, subjects act as if signals are twice as strong as they truly are.

The shape of the belief response function maps closely to the predictions of a theory
of cognitive imprecision that we extend, adapting ideas from psychophysics into economic
decisionmaking (Fechner 1860; Khaw, Z. Li, and Woodford 2021).3 Specifically, we use a

2As discussed in Benjamin (2019), evidence in this range is mixed, though often favoring underinference
(e.g., Phillips and Edwards 1966 and Edwards 1968). However, there is evidence from recent work, such as
Ambuehl and S. Li (2018) and others with asymmetric signals, that finds overinference for p = 3/5.

3Fechner’s theory was originally used to explain stimuli such as the weight of an object and brightness
of a light; it has been more recently used in economics to explain misperceptions of numbers, probabilities,
and risk and ambiguity (Kaufman et al. 1949; Khaw, Z. Li, and Woodford 2021; Enke and Graeber 2023;
Frydman and Jin 2020). We add to this literature by using psychophysics to study informational signal
strengths. In subsequent work, Ba, Bohren, and Imas (2022) use a related model that includes an added step
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meta-Bayesian model in which people are cognitively imprecise about the signal strength S
(similar to models in Petzschner, Glasauer, and Stephan (2015) and Woodford (2020)). As
a consequence, people’s average perception of signal strength — Ŝ = k · Sβ for β ∈ (0, 1) —
is biased towards “intermediate” strengths.4 This leads them to perceive weak signals as
stronger than they are and strong signals as weaker than they are. In our data, we estimate
that β = 0.76 and k = 0.88, and that there is a switching point of p = 0.64 at which people
switch from overinference to underinference. Given this estimate, it is unsurprising that the
plethora of experiments which use signals of precision greater than 0.64 find underinference.

While our simple model’s predictions might plausibly arise from a range of potential
psychological microfoundations, we do find further evidence in line with our framework when
exploring heterogeneity in treatment effects. Consistent with cognitive naivete affecting
misinference, subjects with lower scores on a cognitive reflection test (a modified version of
the classic test in Frederick 2005) both infer more from weak signals and infer less from strong
signals. Relatedly, naivete within the experiment is related to more severe biases; using a
within-subject test, we find that subjects who have had more experience in the experiment
misinfer less in both directions. Finally, consistent with imprecision being an explanatory
factor, we find that subjects with higher variance in how they perceive signals misinfer more
in both directions. These heterogeneities suggest that cognitive imprecision affects both
the overinference and underinference biases in belief updating, expanding upon the work by
Woodford (2020) and Enke and Graeber (2023) in different decision problems.

If people systematically overinfer from weak signals and underinfer from strong signals,
they may overvalue low-quality news and undervalue high-quality news, patterns that are
borne out in our data. In an additional treatment of the experiment, subjects are asked
to purchase up to three signals of varying strengths. Compared to a payoff-maximizing
benchmark, subjects purchase too many weak signals and too few strong signals.5 These
effects can be explained by misinference from both signal strength and signal quantity. To
test the latter, we run an additional treatment that varies the number of signals subjects
receive, finding consistent evidence that subjects underreact to the quantity of signals (as
previously documented by Griffin and Tversky 1992; Benjamin, Rabin, and Raymond 2016;
and Benjamin, Moore, and Rabin 2018). Combining these factors, people particularly
overvalue observing individual weak signals and undervalue observing multiple strong signals.

We use other experimental treatments to explore mechanisms behind these findings. We

in which individuals first reduce the complexity of the decision environment.
4Stevens (1946) first popularized the power function for misperceptions of physical stimuli, and Khaw,

Z. Li, and Woodford (2021) use it for misperceptions of values and lotteries.
5These results are qualitatively consistent with those of Ambuehl and S. Li (2018), but with more precise

evidence for over-purchasing due to our emphasis on weak signals.
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show that our main results are driven by distorting signal processing, not by distorting
probabilities (unlike, for instance, Kahneman and Tversky 1979; Tversky and Kahneman 1992;
and Enke and Graeber 2023). We are able to distinguish between signal processing distortions
and probability distortions by considering how subjects infer from asymmetric signals. A
signal that happens to have a likelihood of close to 0.5 does not systematically affect inference,
suggesting that it is the signal that is misperceived as opposed to its associated probability.6

Additionally, we show that, when faced with signals of an uncertain strength, results suggest
that people act as if they misperceive possible realizations of the signal.

While our experiment allows us to cleanly identify over- and underinference, there are
reasons to think that the behavior we observe may not carry over to real-world situations.
First, rewards for accuracy in an experiment are relatively small, so one might think that
people will work to correct their biases in higher-stakes environments (e.g. Levitt and List
2007). Second, the setting of the experiment is abstract and unfamiliar to subjects, so they
may rely more on heuristics; in real-world settings with more sophisticated people, perhaps
familiarity and experience will drive beliefs towards true probabilities (e.g. List 2003).

In light of these concerns, we next turn to evidence from more realistic high-stakes settings
by studying the movement of market-implied probability distributions in betting and financial
markets.7 A key challenge with testing any theory of updating in real-world observational
data is that we no longer have direct knowledge of the true DGP or signal strength. To
overcome this challenge, we develop a new empirical method based on theoretical results
from Augenblick and Rabin (2021) and Augenblick and Lazarus (2022). The core intuition of
these papers is that, when a Bayesian is changing their beliefs over time about some event,
they must be learning something and therefore (on average) must reduce their uncertainty
correspondingly. This intuition can be formalized by defining movement as the sum of the
squared deviations of changes in beliefs over time, and uncertainty reduction as the drop in
perceived variance in the outcome.8 While movement and uncertainty reduction may differ
for a given signal realization, they must be equal in expectation across signal realizations,
regardless of the DGP. This insight allows for a DGP-agnostic test of Bayesian updating
in observational data. And crucially for our analysis, these statistics are intuitively and
theoretically related to over- and underreaction: overreaction will lead to positive excess

6We also consider other confounds that arise because of the particular design of the experiment (such as a
general bias toward high or low numbers), but do not find evidence that these confounds drive results.

7One cost of this analysis is that we must use equilibrium prices (which reflect the marginal investor’s
beliefs and risk preferences) rather than individual beliefs. But we find that the behavior of market-implied
beliefs aligns well with our theory, so these results serve as a useful external check on our experimental results.

8For example, assume that a Bayesian’s subjective prior that some outcome will take place is π0 = 0.25.
Then it must be the case that E[(π1 − 0.25)2] (expected movement, where the expectation is taken over
possible date-1 signals) is equal to 0.25 × 0.75 − E[π1(1 − π1)] (uncertainty reduction).
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movement (movement greater than uncertainty reduction) on average, while underreaction
will lead to too little movement relative to the reduction in uncertainty.

While this allows for an intuitive test of over- vs. underreaction with an unknown DGP,
to test our theory, we also need to distinguish situations in which signals are weak versus
strong. Given that the signal strength is also unobservable, we must instead turn to an
ex-ante known (and observable) separating variable that is related to signal strength. Our
innovation here is to focus on time to resolution as our separating variable. Intuitively,
when a person is predicting the value of the S&P 500 in three months, information today
should generally not lead to much belief movement; meanwhile, information today is highly
informative for the value of the S&P tomorrow, and we should accordingly observe more
movement of short-horizon beliefs in response to information.9

Our theory then intuitively suggests that there should be overreaction (and too much
movement) at long forecast horizons, and underreaction (and too little movement) at short
horizons. We first confirm, by simulating simple DGPs matching our empirical setting, that
this pattern exists for an agent who misperceives according to our theory, and that this
pattern differs from that under Bayesian updating or constant under- or overreaction. We
then turn to the data. We first study sports-betting data, making use of over 5 million
transactions from a large sports prediction market for five major sports (corresponding to
more than 20,000 sporting events). We then study S&P 500 index option markets, using
option-implied beliefs regarding the future value of the S&P from over 4 million daily option
prices (corresponding to 5,500 trading dates and 955 option expiration dates).10

We start by plotting the average movement and uncertainty reduction over time for the
sports and financial data. Both uncertainty reduction and movement are generally increasing
as the event continues and resolution approaches. However, movement is generally higher than
uncertainty reduction at the beginning of the event and lower at the end of the event. For
example, in the options data, there is very little daily uncertainty reduction until a few weeks
before the contract expires, but beliefs consistently move back and forth, generating positive
movement. In other words, news today appears to hold relatively little information about
the value of the S&P in multiple months, but the market acts as if has more diagnosticity.
However, within two weeks of a contract’s resolution, the relationship reverses: movement is
either less than or equal to uncertainty reduction. That is, as signals become stronger, the

9The relationship between the time horizon and Bayesian belief movement of course depends on the exact
DGP. We show that the predicted positive relationship holds very strongly in simulations of game-like DGPs,
and more importantly, it clearly holds in our empirical settings.

10The option-implied probability distribution is also referred to as the risk-neutral distribution. It coincides
with the marginal trader’s subjective distribution only in the case that the trader is risk-neutral; otherwise it
incorporates risk aversion. We discuss how we deal with this complication in detail in Section 5.
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market begins to underreact. On net, total movement averaged over an entire option contract
is too high, matching the finding of excess movement in Augenblick and Lazarus (2022). But
this overall average masks meaningful heterogeneity as one varies the signal strength, with
markets misperceiving in the manner predicted by our theory. The same broad pattern holds
in the sports-betting data we consider.

To statistically test this relationship, we regress average movement on average uncertainty
reduction in a given time window (where time is measured as distance to resolution). While
a Bayesian should have a constant of 0 and slope of 1 in such a regression, we show that the
constant is significantly positive and the slope is significantly less than one.11 The positive
constant indicates that when signals are likely to be weak (uncertainty reduction is low),
there is too much belief movement. The less than one-for-one slope indicates that as signals
become stronger (uncertainty reduction increases), there is a point at which the relationship
flips, and there is too little belief movement.

Given that we cannot observe true signal strength, we must rely on our indirect measure
(time to resolution) to test the relationship between signal strength and over- vs. underreaction
in real-world high-stakes settings. The strength of our experimental setting, meanwhile, is
that these variables are fully observable, but the experiment is lower-stakes and less realistic.
The two settings thus provide complementary evidence for our theory, whose predictions
align well with both sets of data.

Our main experimental results relate to numerous papers on the topic of belief updating,
including several papers that present evidence for other forms of over- and underreaction
to information. Classically, Griffin and Tversky (1992) show that subjects underreact to
the credence of a signal relative to its strength, and Massey and Wu (2005) show that
subjects overreact to what a signal says relative to the environment that produces it. More
recently, Gonçalves, Libgober, and Willis (2022) find underreaction to strong signals but
even further underreaction to the retraction of those signals, while Kieren, Müller-Dethard,
and Weber (2022) find overreaction to disconfirming signals, and Bhuller and Sigstad (2021)
find overreaction to the retraction of certain types of information that may be classified as
weak. This paper also relates to the use of cognitive imprecision in inference problems, such
as in Enke and Graeber (2023) and Toma and Bell (2022), that finds relationships between
underreaction to strong pieces of evidence and cognitive imprecision. There is evidence that
other forms of decision problems may induce overreaction, as shown by Fan, Liang, and Peng
(2021) and Afrouzi et al. (2021), so we focus on this particular decision problem.

More recently, Ba, Bohren, and Imas (2022) run an experiment that confirms many of the
11We discuss a variety of econometric issues such as attenuation bias, and show that the richness of the

data allows us to tightly bound the effect of such bias.
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patterns that we originally documented in our experiment: they also vary signal diagnosticity
and find overreaction to weak signals and underreaction to strong signals. Using theory and
other treatments, they extend our findings to argue that individuals reduce the complexity
of information structures before misinterpreting these structures in ways consistent with
cognitive imprecision. By contrast, they do not analyze non-experimental data, whereas we
provide additional empirical evidence from sports-betting and financial markets. We see
these papers as highly complementary.

Our results are thus further related to a large literature on asset prices and beliefs, as
surveyed recently in Barberis (2018). Bernard and J. K. Thomas (1989) provide an early
discussion of the possible link between post-earnings drift and underreaction, while De Bondt
and Thaler (1985) do so for the connection between excess volatility and overreaction.12

Kwon and Tang (2022) aim to reconcile these findings through the lens of the extremeness (or
fat-tailedness) of the true distribution of outcomes. We focus instead on the informativeness
of signals about a given outcome, which is conceptually different from the extremeness of the
outcome distribution.

The paper proceeds as follows. Section 2 introduces the theoretical framework; Section 3
details the experimental design; Section 4 presents the experimental results; Section 5 analyzes
the market data; and Section 6 discusses our results and concludes. The Appendix contains
additional results and empirical details, and screenshots of the pages in the experiment are
provided in the Supplementary Appendix.

2 Theory

2.1 Setup and Intuition

We consider individuals who may misinterpret information they receive. In the environment
we study, people begin with a prior at time 0, then receive a signal s about a binary state
θ ∈ {0, 1}, and form a posterior at time 1. An individual has a prior π0 ≡ P (θ = 1). The signal
either sends a low message or a high message (sL or sH), with P (θ = 1|sH) > P (θ = 1|sL).
After seeing signal s, the individual forms a posterior belief π1(s) ≡ P (θ = 1|s), which we
typically shorten to π1. Defining the logit function logit(π) ≡ log

(
π

1−π

)
, a Bayesian would

form a posterior such that logit(π1) = logit(π0) + log
(

P (s|θ=1)
P (s|θ=0)

)
(using the setup developed

in Grether 1980). We consider a misperceiving person who may over- or underinfer from
information and instead forms a posterior of logit(π̂1) = logit(π0) + w log

(
P (s|θ=1)
P (s|θ=0)

)
.

12More recent work includes Giglio and Kelly (2018) and Bordalo et al. (2022), while d’Arienzo (2020) and
Wang (2021) consider under- and overreaction along the Treasury yield curve.
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Misperception of Signal Strength

The strength of a signal is defined by its log odds ratio: S ≡
∣∣∣log

(
P (s|θ=1)
P (s|θ=0)

)∣∣∣ ∈ [0, ∞). We
study how w depends on s through S. We posit that when people receive a signal of strength S,
they systematically distort their perception of its strength when using it to form posterior π̂1.
Following Petzschner, Glasauer, and Stephan (2015), and Woodford (2020), individuals in
our model misperceive S via a form of cognitive imprecision. First, as described by the classic
Weber-Fechner law, they interpret changes in S in relative terms instead of in absolute terms
(Fechner 1860). Second, they are uncertain as to what the true signal strength is.

Specifically, we follow Woodford (2020) in assuming that a misperceiving person represents
signal strengths S with a value r, which is drawn from a normal distribution with imprecision
parameter η: r ∼ N (log S, η2).13 They have a “cognitive prior” about how strong signals
tend to be, and this belief is distributed log-normally: log S ∼ N (µ0, σ2). They update using
Bayes’ rule when observing a signal; given r, their perceived posterior expectation of S is

Ŝ(r) = E[S|r] = exp
[(

η2

σ2 + η2

)
log S̄ +

(
σ2

σ2 + η2

)
r

]
,

where S̄ ≡ exp(µ0 + σ2/2) is the prior mean over signal strengths.
Therefore, their perception Ŝ of the true signal strength S is distributed log-normally with

mean equal to

E[Ŝ] = k · Sβ, (1)

where k ≡ exp(β2η2/2) · S̄1−β and β ≡ σ2/(σ2 + η2) ∈ (0, 1).
Our main object of interest is the average level of over- and underinference for different

values of S, so we assume for now that each person perceives S to be exactly the expectation
given by (1); that is, when they see a signal of strength S, they always perceive it to be of
strength k · Sβ. This simplification makes the functional form a version of the classical one
from Stevens (1946), and it makes the analysis more tractable without affecting the main
results qualitatively.14

The misperception implied by Equation (1) can be described as the individual misweighting
signals: by treating signal S as having strength k · Sβ = k · S−(1−β) · S, they are effectively
weighting a signal with strength S by a factor of k · S−(1−β). There is a switching point
S∗ ≡ k

1
1−β for which this weight is below 1 (leading to overreaction) if S < S∗, and above 1

13The Weber-Fechner law says that r has a mean of log S, and cognitive imprecision says that individuals
face uncertainty about their perception of S.

14This strips away within-person variation in signal representations r for a given S. But heterogeneity
across people is not ruled out, and we explore such heterogeneity in our experimental data below.
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(leading to underreaction) if S > S∗.

Updating Given Symmetric Signals

We now focus on symmetric signal structures, which we use in the experiment, in which
each signal has the same precision p ≡ P (sH |θ = 1) = P (sL|θ = 0) > 1/2, and therefore the
strength of each signal is S = |logit(p)|. When the prior is π0 = 1/2 (as in our experiment),
then the Bayesian posterior equals the signal precision π1 = p. This leads to simplified
formulas, which allows for a set of simple two-dimensional graphs that represent the core
relationships in the model (we will reproduce these same graphs using experimental data in
the next section).

While the Bayesian perceives signals as having the correct strength S, the misperceiving
person instead treats each signal as having a mean strength of

Ŝ = k · (logit(p))−(1−β). (2)

The top panel of Figure 1 plots the relationship between perceived and true strength (given
the parameters k and β we estimate from the experiment). For comparison, we also plot the
relationship for a Bayesian (for which they are equal) and a person who exhibits constant
conservativism (for which perceived strength is always lower than reality).15 The misperceiving
person in our model overreacts to weak signals, but underreacts to strong signals.

When a Bayesian observes a symmetric signal, they will update to either p or 1 − p.
Instead, the misperceiving person will update to either p̂ or 1 − p̂ at the mean perceived
signal strength, where

p̂ = exp(k · (logit(p))β)
1 + exp(k · (logit(p))β) . (3)

That is, p̂ can be seen as the perceived precision of the signal. The middle panel of Figure 1
plots the mapping between the perceived and true precision, which is another way of capturing
the core error. The misperceiving person believes that signals with little precision are more
precise than reality, and signals with high precision are less precise. Note that, as signals
become arbitrarily informative or uninformative, their weighting function becomes arbitrarily
small or large, but their posteriors converge to the Bayesian’s.

Following the discussion above, a final interpretation is that the individual is misweighting
15Note that constant conservatism, which corresponds to β = 1 (and k < 1), is not achievable with this

functional form, since β = 1 implies η = 0, but η = 0 implies k = 1.
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signals. Defining ŵ(p) as the weighting function given precision p yields

ŵ(p) ≡ k · (logit(p))−(1−β). (4)

The bottom panel of Figure 1 plots the weighting function relative to the precision p, again
given our experimental parameters. The misperceiving person places too much weight on
weak signals and too little weight on strong signals. This is the core prediction from our
theoretical framework. While mechanisms other than cognitive uncertainty might generate
qualitatively similar patterns, the particular power form of our predicted weighting function
aligns closely with our experimental data, as discussed further below.

2.2 General Model Predictions

Figure 1 shows some properties of the weighting function — in particular, how the agent
switches from overinference to underinference as signal strength increases — for one particular
parameter set. Proposition 1 shows that this is in fact a general property.

Proposition 1 (Misweighting Information)
The weighting function ŵ(p) from Equation (4) and the precision p̂ from Equation (3) have
the following properties:

1. ŵ(p) is decreasing in p.

2. There exists a switching point p∗ ≡ k
1

1−β

1+k
1

1−β
such that:

• If the Bayesian perceives the precision to be p < p∗, p̂ > p and ŵ(p) > 1.
• If the Bayesian perceives the precision to be p > p∗, p̂ < p and ŵ(p) < 1.

The model also makes predictions about which types of individuals and situations will lead
to greater overinference from weak signals and underinference from strong signals. Individuals
with greater cognitive imprecision, as measured by η2, act in a way that is further from
Bayesian updating for both strong and weak signals. In particular, there is a value

S† = exp
(

σ2(σ2 − η2)
2(η2 + σ2)

)
and p† = exp(S†)

1 + exp(S†) ,

at which ∂ŵ(p)
∂η

> 0 iff p < p†. That is, cognitively precise people will behave similar to a
Bayesian, while cognitively imprecise people will both overweight sufficiently weak signals
and underweight sufficiently strong signals.

The misperceiving person’s instrumental value for a signal tracks signal perceptions.
Suppose that after receiving the signal, the person is asked to take an action a, and they
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Figure 1: Theoretical Predictions of Over- and Underinference by Signal Strength

Notes: These figures provide three representations of the core deviation in our model. Blue lines correspond to Bayesian

updating (correct perception of signal strength S), short dashed lines to underinference (with perceived signal strength

0.8 · S), long dashed lines to overinference (perceived signal strength 1.2 · S) and black lines to the misperception in our

model (perceived signal strength k · Sβ with k = 0.882 and β = 0.760). The top panel plots signal strength perception

as a function of signal strength on a log-log scale. The middle panel plots the perceived precision as a function of the

true precision. The bottom panel plots the weight put on signals as a function of the true precision. All figures show that

misperceiving individuals overweight weak signals and underweight strong signals.
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receive utility 1 − (1 − a)2 if θ = 1 and 1 − a2 if θ = 0. In this setup, a person maximizes
expected utility by taking the action corresponding to their belief. Given this choice, a person
with belief p̂ will expect to earn utility p̂(1 − (1 − p̂)2) + (1 − p̂)(1 − p̂2) = 1 − p̂(1 − p̂). An
individual who is aware that they will perceive a signal using Equation (3) will therefore
instrumentally value a signal that moves beliefs from 1/2 to p̂ at 1/4 − p̂(1 − p̂). When
individuals start with a prior of 1/2, this means that overinference will lead to excess demand
for information and underinference will lead to too little demand, and there will be a switching
point at p∗.

3 Experiment Design

This section overviews the design and the sample, then outlines the timing and treatment
blocks, and lastly discusses further details of each treatment block. For full details on the
experimental design, Supplementary Appendix C contains screenshots of each type of page.

3.1 Overview and Data

Subjects were told that a computer has randomly selected one of two decks of cards — a
Green deck or a Purple deck — and both decks are equally likely ex ante. Each deck has
Diamond cards and Spade cards: the Green deck has D1 Diamonds and N − D1 Spades,
and the Purple deck has D2 Diamonds and N − D2 Spades. While subjects see the numbers
themselves, we will discuss results in terms of shares: Green has share p1 Diamonds and
1 − p1 Spades, and Purple has share p2 Diamonds and 1 − p2 Spades.

On most questions, subjects draw one (or multiple) cards from the selected deck, observe
their suit, and are asked to predict the percent chance of the Green deck and Purple deck
after observing the cards drawn. These probabilities are restricted to be between 0 and 100
percent and the sum of the percent chances is required to equal 100. One signal corresponds
to a draw of one card. On other questions, they are asked to purchase cards prior to seeing
their realization. This design is adapted from Green, Halbert, and Robinson (1965).

The experiment used monetary incentives to elicit subjects’ true beliefs, as incentives have
been shown to improve decision-making in these settings (e.g. Grether 1992). We implement
a version of the binarized scoring rule (Hossain and Okui 2013) that is easier for subjects to
comprehend: paired-uniform scoring (Vespa and Wilson 2017).16 Subjects’ answers determine
the probability that they win a high bonus as opposed to a low bonus.17

16In general, binarized scoring rules are better able to account for risk aversion and hedging (Azrieli,
Chambers, and Healy 2018).

17Specifically, five subjects were randomly chosen to win bonuses. If they won the high bonus, they received
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The experiment was conducted in March 2021. Subjects were recruited on the online
platform Prolific (prolific.co). Prolific was designed by social scientists in order to attain
more representative samples online; it has been shown to perform well relative to other
subject pools (Gupta, Rigotti, and Wilson 2021). 552 subjects completed the experiment. Of
these, 500 subjects (91 percent) passed the attention check. As preregistered, analyses are
restricted to these 500 subjects.

3.2 Timing

Subjects saw the following five treatment blocks: (1) one symmetric signal, (2) one asymmetric
signal, (3) three symmetric signals, (4) demand for information, (5) uncertain signals. Details
of each are in the subsequent subsections. The ordering of when subjects saw each treatment
block was as follows:

Rounds Treatment Block Frequency Observations

1–12 One symmetric signal 67 percent 4,036

1–12 One asymmetric signal 33 percent 1,964

13 Attention check 100 percent 500

14–18 Three symmetric signals 100 percent 2,500

19–23 Demand for information 100 percent 2,500

24–25 One uncertain signal 100 percent 1,000

Excluding the attention check, there are 8,000 observations. The 4,036 symmetric signals
include 3,964 informative and 72 completely uninformative signals. Except when noted,
analyses are restricted to the 7,928 informative-signal observations.

Questions within each treatment block were randomized for each subject. The ordering
of treatment blocks (besides “one symmetric” and “one asymmetric”) were fixed for ease of
subject comprehension.18 The fixed order makes cross-treatment comparisons more difficult
than within-treatment comparisons.

$100; if they won the low bonus, they received $10. All subjects received a $3 show-up fee and the average
bonus earnings for the selected subjects was $82.

18For instance, subjects do not see the “demand for information” treatment until they have played rounds
in which they inferred from one signal and from multiple signals. Uncertain signals come after demand
because they do not reflect the signals that subjects would purchase.
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3.3 Treatment Blocks

One Symmetric Signal

This is the case where p ≡ p1 = 1 − p2. The Bayesian posterior π1 is equal to p or 1 − p.
There were 32 possible values of p within the range [0.047, 0.495] or [0.505, 0.953]. These

values correspond to 16 possible signal strengths (S = |logit p|) in the range S ∈ [0.02, 3.00].19

On each question, we randomized whether the Green deck or Purple deck had more Diamonds
or Spades, which suit was chosen, and whether the deck consisted of 1665 cards or 337 cards.
To further ensure that answers are sensible, some subjects also received an uninformative
signal in which they draw a Diamond or Spade when p is exactly 1/2.20

One Asymmetric Signal

This is the case where p1 ̸= 1 − p2. The Bayesian posterior π1 is p1
p1+p2

given a Diamond and
1−p1

(1−p1)+(1−p2) given a Spade.
One of the probabilities was fixed at 0.505 or 0.495 and the other probability was randomly

chosen from {0.18, 0.35, 0.65, 0.82}. We randomized which of p1 or p2 corresponds to the
near-0.5 probability, which deck had more Diamonds, which suit was chosen, and whether
the deck consisted of 1665 or 337 cards.

Three Symmetric Signals

In this treatment block, subjects saw three simultaneous symmetric signals, each of strength
S, but possibly in different directions. For a given p, subjects randomly saw (3 Diamonds, 0
Spades), (2 Diamonds, 1 Spade), (1 Diamond, 2 Spades), or (0 Diamonds, 3 Spades) with
equal probability.

There were 14 possible values of p ∈ [0.047, 0.495] ∪ [0.505, 0.953], which corresponded to
14 possible signal strengths. These values were chosen so there would be overlap between the
posteriors for five (3,0) signals and five (2,1) signals for a Bayesian, allowing for a sharper
comparison. Suit distribution and the card drawn were randomly varied as above; the deck
size was fixed for this treatment block at 1665.

19More specifically, we chose whole numbers of cards such that signal strengths would be closest to the
following values: {0.02, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00}.

20Subjects indeed treat this signal as uninformative; 96 percent of subjects give a posterior of exactly 50
percent.
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Demand for Information

In this treatment block, subjects were given the distribution of cards, but not given a draw
of a card. Signals were (known to be) symmetric, so the expected signal strength was p

regardless of the signal itself. We fix p < 0.75. Unlike before, subjects were asked to choose
how many cards they would like to purchase, with costs being a convex function of the
number of cards. In particular, they were given the option to:

• Draw 0 cards for a cost of $0;

• Draw 1 card for a cost of $0.50;

• Draw 2 cards for a cost of $1.50; or

• Draw 3 cards for a cost of $3.

These numbers were chosen such that purchasing 0 cards is optimal for all p ∈ [0.5, 0.57],
purchasing 1 card is optimal for p ∈ [0.57, 0.62], purchasing 2 cards is optimal for p ∈
[0.62, 0.67], and purchasing 3 cards is optimal for p ∈ [0.67, 0.75].

We set five possible values of p ∈ {0.512, 0.525, 0.550, 0.622, 0.731} such that optimal level
for purchasing ranges from 0 to 3. Suit distribution and the card drawn were randomly varied
as above and the deck size was fixed at 1665.

Uncertain Signals

In this treatment block, subjects saw a signal with precision p that was equal to either pL

or pH , with equal probability. Subjects randomly saw one of the following pairs of values:
{(pL = 0.495, pH = 0.817), (pL = 0.505, pH = 0.807), (pL = 0.495, pH = 0.193), (pL = 0.505,
pH = 0.183)}. Note that a Bayesian would have the same perceived signal strength in each
of these cases.

Suit distribution and the card drawn were randomly varied as above, and the deck size
was fixed at 1665.

4 Experiment Results

This section discusses the results for each treatment block. The first subsection presents the
main results from inference from one symmetric signal and explores heterogeneity. Next,
results about inference from multiple signals and demand for information are presented. After
exploring potential mechanisms, and how the other treatment blocks help disentangle them,
we discuss robustness exercises to probe the strength of the main results.
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4.1 Main Results

First, we consider how subjects infer from one symmetric signal. Figure 2 presents our
main experimental results graphically, comparing our estimates for each condition (black
circles) with Bayesian updating (blue lines) and our model’s fitted predictions (dashed lines).
Consistent with the theory, subjects systematically overinfer from weak signals and underinfer
from strong signals, and the data clearly reject models in which weight is not a function of
the Bayesian posterior. The top panel shows that overinference is close to linear in signal
strength using a log-log plot, which suggests that the power-law model is a good fit. The
middle panel shows that beliefs are increasing but concave in signal precision. The bottom
panel provides more evidence that the effect of signal precision on weight is nonlinear. Besides
the qualitative explanatory power, the power function from the model in Section 2 predicts
the levels of overinference and underinference well.

We estimate p∗ and β using nonlinear least squares over signal types s:

Weights = (logit p∗)−(1−β) · |logit ps|−(1−β). (5)

The estimated value for p∗ is 0.64 (s.e. 0.01) and for β is 0.76 (s.e. 0.03). The value of β

is statistically significantly less than one (p-value < 0.001). These values correspond to an
estimate of k of 0.88 (s.e. 0.02). All standard errors are clustered at the subject level.

4.2 Heterogeneity

Average effects mask significant heterogeneities across subjects. Appendix Figure A3 plots
the raw cumulative distribution and probability density functions at the individual level. This
figure shows that while the majority of subjects overweight weak signals and underweight
strong signals, some people are much more susceptible to these misperceptions than others.21

In particular, the types of heterogeneity in treatment effects observed suggest that
cognitive sophistication and imprecision are important contributing factors. The three-item
cognitive reflection test (CRT) from Frederick (2005) provides our barometer for cognitive
sophistication.22 The top panel of Figure 3 plots patterns of over- and underinference by
CRT score and signal strength. Subjects who score higher on the CRT infer less from weak
signals (p < 0.6) and more from strong signals (p > 0.7). Moving from a CRT score of 0/3
to 3/3 is associated with a decrease of 0.52 for the weight placed on weak signals (s.e. 0.18,

21This figure also indicates that the choice of winsorization for Figure 2, specified in our pre-analysis plan,
is not driving its findings.

22We modify the text and answers for the items in the test in case subjects have previously seen the classic
version of the CRT. See Supplementary Appendix C for the exact questions.
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Figure 2: Over- and Underinference of Symmetric Signals by Signal Strength

Notes: The top panel plots signal strength perception as a function of true signal strength on a log-log scale. The middle

panel plots the signal strength average answer subjects give as a function of the Bayesian posterior. The bottom panel plots

the average weight subjects put on signals relative to a Bayesian. Blue lines indicate Bayesian behavior. The dashed line

fits the data with a power weighting function using nonlinear least squares. All panels show that subjects overweight weak

signals and underweight strong signals. Observations are winsorized, for each signal strength, at the 5% level. Error bars

indicate 95% confidence intervals, clustered at the subject level.
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p-value = 0.004). Meanwhile, this change is associated with an increase of 0.15 weight on
strong signals (s.e. 0.043, p-value < 0.001).23

Subjects may become more cognitively precise as they learn how to interpret more signals,
so we next consider how subjects behave over the course of this part of the experiment.
Results suggest that there is evidence for learning over the course of the experiment, and
the middle panel of Figure 3 plots over/underinference over the course of the twelve rounds.
An increase in one round of the experiment is associated with a decrease of 0.074 weight on
weak signals (s.e. 0.018, p-value < 0.001) and an increase of 0.008 weight on strong signals
(s.e. 0.004, p-value = 0.039).24 Appendix Figure A4 shows similar patterns when comparing
subjects who have a higher self-reported level of news consumption; the effects are largely
driven by differences in overinference of weak signals.

Finally, one direct proxy for cognitive precision is the variance in subjects’ answers; over
the course of the experiment, subjects who have weights that have higher variance are likely
to be less cognitively precise, leading them to be less sensitive to the true strength of the
signals. The bottom panel of Figure 3 ranks subjects by the variance in their weights in the
experiment and plots over/underinference by this ranking. Moving from the 75th percentile
in variance to the 25th percentile in variance is associated with a decrease of 0.93 weight
on weak signals (s.e. 0.11, p-value < 0.001) and an increase of 0.17 weight on strong signals
(s.e. 0.03, p-value < 0.001).25 Note that variance is endogenous to subjects’ signal weight
levels, so some of this effect may be mechanical. Both the CRT and news heterogeneity
analyses were preregistered, while the variance and round tests were conducted ex post.

We summarize the main and heterogeneous treatment effects in Table 1. The first column
effectively restates the main results in Section 4.1. There is a statistically significant negative
relationship between signal strength and overinference weight, and the regression model
predicts overinference when S < 0.308/(1.420 − 1) = 0.700, which corresponds to a switching
point of p = 0.668. Column (2)-(5) describe the heterogeneity results. The interaction
between signal strength and CRT score is positive, indicating that the higher the subject’s
CRT score, the more they infer as signal strength increases. Similarly, the interaction between
signal strength and round number is positive, between signal strength and standard deviation
of guesses is negative, and between signal strength and self-reported news consumption is
positive. All effects are statistically significant at the 1-percent level.

While Table 1 uses a linear specification, the model suggests that a nonlinear specification
may be more appropriate. As such, we show in Appendix Table A1 that results are similar if

23These regressions include controls for exogenous variation in treatments: the experimental round (1–12),
signal strength, and deck size.

24This regression includes controls for signal strength and deck size.
25These regressions include the same controls for exogenous variation in treatments as in footnote 23.
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Figure 3: Heterogeneity in Inference from Weak Signals and Strong Signals

Notes: In all three panels, the y-axis is weight subjects put on signals. Weak signals have precision between 0.5 and

0.6; strong signals have precision between 0.7 and 1. The top panel plots weight by CRT score. The middle panel plots

weight by round in the experiment. The bottom panel plots weight by how much variance the subject has in their answers.

Subjects are ranked by variance in weight and split into quartiles; Quart 1 has the least variance. Blue lines indicate

Bayesian updating. This figure shows that higher CRT scores, more experience, and lower variance are associated with less

weight on weak signals and more weight on strong signals. Error bars indicate 95% confidence intervals.
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Table 1: Effect of Signal Strength on Over- and Underinference

(1) (2) (3) (4) (5)
Main Effects By CRT Score By Round By SD By News

Signal Strength -0.308 -0.481 -0.578 0.149 -0.519
(0.031) (0.064) (0.072) (0.031) (0.093)

Strength x CRT Score 0.102
(0.028)

Strength x Round Number 0.042
(0.009)

Strength x SD of Guesses -0.430
(0.038)

Strength x News Cons 0.334
(0.129)

Constant 1.420 1.421 1.416 1.398 1.420
(0.030) (0.030) (0.030) (0.021) (0.030)

Subject FE Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes

Observations 3964 3964 3964 3964 3964
R2 0.23 0.23 0.24 0.29 0.23

Notes: OLS, with standard errors (in parentheses) clustered at subject level. Dependent variable is the weight put on the

signal compared to a Bayesian (as defined in Equation (2).) Weights greater than 1 correspond to overinference; weights less

than 1 correspond to underinference. Column (1) shows that subjects overinfer from weak signals (since the constant is

greater than 1) and that overinference declines for stronger signals. Columns (2)-(5) show heterogeneity across CRT score,

round number, standard deviation of over/underweighting, and news consumption, respectively. CRT score ranges from 0 to

3. Round number ranges from 1 to 12. News consumption ranges from 0 to 1.

we estimate a power-law model using nonlinear least squares. The estimate for sensitivity β

is again significantly below 1, and the heterogeneity-related interaction effects are similar.
While the power-law model provides a better fit for the main effect, the specification chosen
does not affect the interpretation of any of the results.

4.3 Multiple Signals

When subjects receive multiple signals, they weight the signals less than if they receive one
signal, as is consistent with past literature (as discussed in Benjamin 2019 and Benjamin,
Rabin, and Raymond 2016). Appendix Figure A1 shows that subjects put less weight on
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Figure 4: Number of Signals Purchased

Notes: This figure plots the number of signals purchased as a function of signal precision. The blue lines correspond

to the payoff-maximizing number of signals purchased. This figure shows that subjects over-purchase weak signals and

under-purchase strong signals. Error bars indicate 95% confidence intervals.

multiple signals than on one signal, holding the Bayesian posterior fixed. This comparison
holds both when signals are all in the same direction and when they are mixed.26

These results extend the findings of Griffin and Tversky (1992) by showing that people
misperceive both the strength and the quantity of signals. When misperceptions about
quantity play a larger role than misperceptions about signal strength, there is a downward
shift of the curves when people receive multiple signals.

4.4 Demand for Information

Patterns of overinference and underinference also lead to demand for information that is
too high or too low relative to the optimum. Figure 4 plots the average number of signals
purchased as a function of each signal strength, comparing subject behavior to the optimal
choice if subjects were Bayesian and only valued signals for their instrumental value.

As can be seen in the figure, subjects systematically over-purchase weak signals and
under-purchase strong signals. The cost of a signal that leads a Bayesian to form a posterior

26It is worth noting that subjects always see the “one signal” treatment block before the “three signals”
block. As such, an alternative explanation for these results is that subjects decrease inference over the course
of the experiment.
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of less than 0.57 outweighs its benefit; however, the majority of subjects purchase at least
one signal when p = 0.55 and p = 0.525. Additionally, 81 percent of subjects purchase fewer
than the optimal level of three signals when p = 0.73.

There are other reasons for purchasing signals that are orthogonal to inference. For
instance, subjects may be curious to learn the card draw itself, leading them to demand
information for its own sake (as in Golman et al. 2021), raising the curve. Subjects’ answers are
constrained to be between 0 and 3, so they may prefer to select interior answers, flattening the
curve.27 These effects do not fully explain the results but may contribute to the extremeness.
For instance, more subjects purchase zero or one signals when p = 0.73 than purchase two or
three, which cannot be fully explained by curiosity or interior guesses. There is also suggestive
evidence that differences in signal purchasing is partly explained by differences in inference
at the individual level: subjects who purchase more signals on average have posteriors that
move 0.49 pp further (s.e. 0.32 pp, p = 0.124) on all other questions.

4.5 Mechanisms

Overreaction and underreaction could be driven by misperceptions of signal strength or driven
by misperceptions of probabilities that happen to be close to 1/2.28 For instance, if p1 = 0.505
and p2 = 0.495, overinference may be due to misperceptions of weak signals or due to the
fact that p1 is only slightly greater than 1 − p1. To disentangle these hypotheses, we compare
behavior in the treatment asymmetric signals when p1 = 0.505 and p2 = pH to behavior when
p1 = 0.495 and p2 = pH , where pH ≫ 0.5.

We find that misperceptions of signal strength explains these findings better. Subjects do
not systematically infer differently when p1 = 0.505 and p1 = 0.495. When p1 = 0.505, the
average β is 0.54 (s.e. 0.05). When p1 = 0.495, the average β is 0.60 (s.e. 0.05). The difference
is not statistically significant (-0.06, s.e. 0.07, p-value = 0.404) and the point estimate is in
the opposite direction of that of the alternative model.

Next, we consider how people respond to signals of uncertain strength. Misperceiving
people may apply their weighting function and signal combination in one of two ways. They
might either first combine the signals and then weight the combined signal, or they may first
weight the signals separately and then combine the weighted components.

Consider a signal that either leads a Bayesian to a posterior of pL ≷ 1/2 or pH >

max{pL, 1 − pL} > 1/2, each with probability 1/2. Denoting by p̂ the agent’s posterior, the
27A preference for stating interior answers would cause the average inference to move closer to 0.5 and in

particular would not lead to overinference from weak signals.
28Results may also be due to misperceiving the difference between priors and posteriors, which would

produce similar results to signal misperceptions.
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“combined signals” model predicts logit(p̃) = K · (logit[(pL + pH)/2)]β. The “separate signals”
model predicts logit(p̃) = 1/2 ·

[
k ∗ (logit(pL/2))β + K ∗ (logit(pH/2))β

]
when pL > 1/2 and

logit(p̃) = 1/2·
[
−k ∗ (logit((1 − pL)/2))β + k ∗ (logit(pH/2))β

]
when pL < 1/2. These models

make noticeably different predictions when pL is close to 1/2. The combined signals model
predicts smooth behavior and a higher p̃, while the separate signals model predicts a kink at
pL = 1/2 and a lower p̃.

In the experiment, subjects receive (pL = 0.505, pH = 0.807) or (pL = 0.495, pH = 0.817).
The Bayesian model predicts posteriors of 0.656. Using the estimated parameters as before
(β = 0.760 and k = 0.882), the combined signals model predicts near-Bayesian posteriors
of 0.653 in each case. Meanwhile, the separate signals model predicts underinference and
asymmetry, with a posterior of 0.636 when the signals are both larger than 0.5 and 0.628
when they are in opposite directions.

Empirically, the separate signals model fits the data best. The fit is better for both
levels and differences. Subjects’ posteriors are 0.620 (s.e. 0.057) when the signal directions
are aligned and 0.609 (s.e. 0.054) when they are misaligned. In fact, subjects underinfer
slightly more than the separate signals model predicts (see Liang 2021 for one possible
explanation). Underinference is suggestively more severe when the directions are misaligned
(p-value = 0.106) and the point estimate for this difference is similar to that of the theoretical
prediction. The difference in behavior from combined and separate signals also indicates that
subjects’ behavior is inconsistent with Cripps’s (2018) framework of divisible updating.

4.6 Robustness

This section considers three alternative hypotheses for these results that are unrelated to
over- or underinference.

First, it is possible that subjects dislike stating “50 percent” even when signals are very
uninformative. There is no systematic evidence for this. Among the 72 subjects who see a
completely uninformative signal (where the decks each have 832 Diamonds and 832 Spades),
69 of them (96 percent) give an answer of exactly 50 percent.

Second, it is possible that subjects are systematically more inclined to prefer Green over
Purple, or attend more to Diamonds over Spades, or vice versa. If this were the case, then
subjects may overinfer in one direction and underinfer in the opposite direction by a different
amount, leading to average misinference. However, there is no evidence of color asymmetry;
subjects’ average estimate of P(Green) is 0.503 (s.e. 0.002).29 There is also no evidence for

29On the screen, subjects always are asked for P(Green) before P(Purple), so this also indicates little
question-location asymmetry.
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suit asymmetry; on average, subjects’ signal weight is 1.156 (s.e. 0.031) when they see a
Diamond and 1.134 (s.e. 0.035) when they see a Spade.

Third, it is possible that something about the particular number of cards in the deck
leads subjects to misperceive signal strength. For instance, they may have a left-digit bias
(M. Thomas and Morwitz 2005). Recall that for the one-signal questions, the deck size was
randomly either 1,665 or 337. The deck size leads to a statistically significant shift in the
estimated switching point p∗ but not in the sensitivity β: p∗ for the larger deck is 0.68 (s.e.
0.02) and β is 0.75 (s.e. 0.03); p∗ for the smaller deck is 0.61 (s.e. 0.01) and β is 0.77 (s.e.
0.04). With each deck size, β is statistically significantly less than 1 (p-values < 0.001).30

It is possible that these factors have modest quantitative effects on the main estimates,
but they cannot entirely explain the results.

5 Evidence from Finance and Sports Betting

While the experimental setting is tightly controlled, its abstract features naturally raise
questions of external validity. To test the implications of our theory in more realistic high-
stakes settings, we therefore now consider evidence from a set of sports betting markets and
financial markets. Departing from the experimental environment comes at a cost, as we
no longer have direct knowledge of the true DGP or the informativeness of specific signals
to which prices are responding. But we choose a set of markets to analyze so as to obtain
close proxies for signal informativeness under minimal assumptions: we consider the prices
of binary bets (with payouts of either $0 or $1) with known terminal horizon, for which we
can construct proxies for signal informativeness under the null of Bayesian updating. By
considering price movements across informativeness regimes, we test whether the patterns
of overinference vs. underinference documented in the experiment apply in this real-world
financial-market setting. We first describe our setting and estimation strategy in more detail,
before turning to our empirical results.

5.1 Conceptual Setup

To set the stage for our empirical analysis, we first describe the conceptual framework that we
then take to the data. This section builds closely on Augenblick and Rabin (2021) (AR 2021)
and Augenblick and Lazarus (2022) (AL 2022) to generalize Section 2 to handle multiple
periods with arbitrary signals. Time is indexed by t = 0, 1, 2, . . . , T . As before, there is a

30One explanation for the shift in p∗ is that subjects put some weight on the differences between numbers
of cards, and don’t only focus on the ratios. Such a story is possible but beyond the scope of this paper.
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binary state θ ∈ {0, 1}. Each period, a person observes a signal st drawn from arbitrary
distribution DGP (st | θ, Ht−1), where Ht ≡ {s1, s2, ...} is the history of signal realizations.
The person’s belief in state 1 at time t given the DGP and history Ht is denoted by πt(Ht)
(or πt for short). The belief stream π refers to the collection of the person’s beliefs over time.

While we cannot directly test for overinference vs. underinference without knowledge of
the DGP, keeping track of the following two objects will allow for well-motivated indirect
tests. First, define the movement of a belief stream from period t1 to t2 > t1 as the sum of
squared changes of beliefs over these periods:

mt1,t2(π) ≡
∑t2−1

τ=t1
(πτ+1 − πτ )2.

Then, defining the uncertainty of belief at period t as ut(π) ≡ (1−πt)πt, we define uncertainty
reduction from period t1 to period t2 > t1 as:

rt1,t2(π) ≡
∑t2−1

τ=t1
(uτ (π) − uτ+1(π)) = ut1(π) − ut2(π).

For each variable, we define the concomitant random variable in capital letters (e.g., Mt1,t2).
Under the null model of Bayesian updating, beliefs satisfy πt(Ht) = E[θ | Ht] for all Ht,

where E is the expectation under the true (physical) measure. We denote Et[·] = E[ · | Ht].

The Equality of Movement and Uncertainty Reduction

As in AR (2021), the martingale property of beliefs under the null implies that, regardless
of the DGP, expected Bayesian belief movement from any period t1 to period t2 must equal
expected uncertainty reduction:

Proposition 2 (Movement and Uncertainty Reduction)
Assume πt(Ht) = Et[θ]. For any DGP and for any periods t1 and t2, Et1 [Mt1,t2 ] = Et2 [Rt1,t2 ].

This result formalizes the “correct” amount of belief volatility (or movement) under
rationality, without the need to know the true unobservable DGP. One can then follow AR
(2021) to use this result as the basis for a statistical test for Bayesian updating: given a
set of belief streams, one can calculate the difference between movement and uncertainty
reduction (which they call “excess movement”) and then apply a means test to see if the
average difference is statistically different from zero. If so, one can reject — with a certain
confidence level — that the beliefs arose from Bayesian updating. This result thus provides a
testable link between belief movement, uncertainty reduction, and signal informativeness:
when we observe a Bayesian person’s beliefs moving, this must (on average) mean that she is
receiving informative signals and reducing her uncertainty accordingly.
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We emphasize two crucial features of this test: (1) it is valid regardless of the DGP, and
(2) it can be applied to arbitrary belief substreams (from period t1 to t2), as Proposition 2
applies ex ante in all cases. Thus, given some ex ante known and observable sorting variable
related to signal strength, we can test whether excess movement is related to signal strength.
We will use time to resolution (T − t) as our separating variable, and we discuss its relation to
signal strength — and the relation of excess movement to over- and underinference — below.

Underreaction and Overreaction

There is a natural connection between excess movement and overreaction: people who
overreact are intuitively moving around “too much” relative to the informativeness of signals.
AR (2021) formalize this connection. In particular, Proposition 6 of that paper demonstrates
that in a two-period environment, a person with a correct prior who overinfers from signals
will exhibit a positive excess movement statistic, while a person who underinfers will exhibit
a negative statistic. Proposition 7 then demonstrates that the same relationship holds over
many periods in a simple symmetric binary-signal environment (even though the person no
longer necessarily has the correct beliefs in later periods). With other DGPs, however, it
is challenging to obtain general analytic results. Consequently, we turn to simulations to
confirm the intuition that the same intuitive relationships hold under our updating model in
environments that more closely map to our empirical setting.

5.2 Simulated Belief Streams

We use simulations to understand basic patterns in movement and uncertainty reduction for a
person who updates using our model in Section 2 when forming beliefs about the outcome of
a sporting event or the future level of the stock market. These settings feature similar signals
(points scored, daily returns) received in each period, with the aggregate of that information
determining the final state. To transparently model such situations, we consider a simple
DGP in which there are two “teams” representing the two states, exactly one team scores in
each of T periods, each team has equal probability of scoring in each period, and the final
state is which team has the highest score after the final period. For example, if a team is
leading by one score with 2 periods left, they have a 75% chance of being the final winner
because they win if they score in one of the final 2 periods.31

31There is one complication in this simple setup. In the first period, beliefs always start at 50%. However,
regardless of the updating rule, movement and uncertainty reduction are always equal when beliefs start at
50%. Similarly, in the final period, the state has either been determined (in which case both movement
and uncertainty reduction are equal) or beliefs are again 50%. Therefore, given that any updating rule will
produce zero excess movement for these periods, we drop the first and last period.
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Figure 5: Simulated Movement and Uncertainty Reduction Over Time For Different Models

Notes: This figure shows the average movement (black line) and uncertainty reduction (red line) statistics over time for

four different models, averaged over 1 million simulations of the game-like DGP discussed in the text with T = 27. The

updating models are (1) Bayesian updating (the signal strength is correctly perceived as S), (2) conservatism (the perceived

signal strength is 0.8 · S), (3) overreaction (the perceived signal strength is 1.2 · S), and (4) our model (the perceived signal

strength is k · Sβ with k = 0.882 and β = 0.760). For Bayesian updating, these statistics are always equal. For conservatism,

movement is always less than uncertainty reduction, and the opposite is true for overreaction. For the misperceiving person

in our model, movement is greater than uncertainty reduction in early time periods (where signals are generally weak) and

lower in later time periods (where signals are generally strong).

The top-left panel of Figure 5 shows the expected movement and uncertainty reduction
statistics over time for a Bayesian (calculated from one million simulations of this DGP).
First, as predicted by Proposition 2, the statistics are equal at each period. Next, note that
both statistics are rising as the resolution of the game approaches. The initial periods always
contain very little information, while the later periods sometimes contain no information
(because one team has an insurmountable lead) and sometimes contain a large quantity of
information (because the scores are very close). Overall, though, signal strength rises over
time, and average movement and uncertainty reduction increase accordingly. As we show
shortly, this pattern will also hold in all of our empirical settings.
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What do the statistics look like for misperceiving people? Following intuition and the
theoretical results from simpler DGPs, overreaction (top-right panel) leads to positive excess
movement in every period, while the opposite is true for underreaction (bottom-left panel).
The bottom-right panel displays the results for our model, with parameters estimated from
our experiment as in Section 4.1 (β = 0.760, k = 0.882). In the early periods, average
signal strength is low, leading to overreaction, which in turn generates excess movement. In
later periods, the amount of information revealed is higher, leading to underreaction. Belief
movement increases, but not in line with the increase in uncertainty reduction. There is
therefore a switching period at which average movement crosses below uncertainty reduction.
This pattern is consistent with our model, but it does not occur under Bayesian updating or
when there is universal overreaction or underreaction.

5.3 Sports Betting Data

Data Description

We start with data on sports betting. Our data comes from Betfair, which operates a large
prediction market in which individuals are matched on an exchange to make opposing financial
bets about the outcome of a sporting event. As in a standard centralized financial exchange,
one can observe time-stamped transaction prices — determined by supply and demand — for
a contract in which one party pays another a set amount given a particular realized outcome
of the game. These are the same data as used in AR (2021), and we use the same sample
(2006–2014) and data filters (discussed further below) as in that paper.32

Given our focus in this section on equilibrium bet-price data, we follow the literature that
interprets these prices as “market beliefs.”33 An excess movement test based on Proposition 2,
therefore, can be viewed in this setting as a test of the joint null that market prices may
be interpreted as beliefs and that these beliefs are Bayesian. But while this might affect
the interpretation of full-sample excess movement tests, it poses less of a problem for our
purposes. We are fixing the environment (i.e., the particular betting market in question) and
comparing excess movement as one varies the signal strength (proxied by time to maturity)
within this environment. If we assume that the mapping from individual to market beliefs

32See AR (2021) or Brown and Yang (2019) for a more detailed introduction to the Betfair sports data.
33The interpretation of betting-market prices as averages of heterogeneous individual beliefs has been

studied in a range of work. Gjerstad (2005) and Wolfers and Zitzewitz (2006) show the validity of such an
interpretation when traders have log utility and do not trade for speculative purposes (cf. Manski 2006).
Ottaviani and Sørensen (2015) consider beliefs’ and prices’ reaction to information; in their setting, prices in
fact generally underreact to information (in contrast to the bulk of our evidence) due to the logic of market
clearing. Martin and Papadimitriou 2022 show the obverse in a setting with speculative trading. In standard
Bayesian settings with complete markets, meanwhile, such an interpretation is straightforward (see AL 2022).
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does not change systematically within a stream as one moves closer to maturity, our findings
are at minimum directionally informative about both individual and market-level reactions
to information across signal-strength regimes.

We focus on markets for five major sports (soccer, American football, baseball, basketball,
and hockey), and we restrict attention to contracts over the final winner of the game (and
omit more exotic contracts, such as which team will be winning at the midpoint and the
number of goals scored).34 We use observations only when the game is being played. To
remove extremely high-frequency noise, we follow AR (2021) and keep at most one observation
per minute, and also drop observations with less than 1% of average volume. Finally, we
attempt to have similar timing in events by dropping (less common) events in a category for
which the timing of the game is different (such as WNBA games, in which the game time is
shorter than the NBA).

Graphs of Movement and Uncertainty Reduction

Figure 6 shows average movement and uncertainty reduction (as well as confidence intervals)
across time for each sport. Observations occur in continuous time and therefore must be
aggregated in some way. Our data contain clock-time (“1:31pm”) rather than game-time
(“4:50 through the third quarter”) observations; we therefore consider average movement
and uncertainty reduction for observations within 24 time chunks, each of which corresponds
to 1/24 the length of an average game.35 As in the simulations, average movement and
uncertainty reduction are generally increasing over time (with the exception of mid-period
breaks). Early in games for each sport, movement is greater than uncertainty reduction, and
for each sport there is a time at which movement drops below uncertainty reduction. For
four of the five sports, movement then continues to be lower than uncertainty reduction after
this time (for hockey, movement stays lower than uncertainty until the final period). The
market accordingly appears to overreact to the less-informative signals at the beginning of a
game, and underreact to the more-informative signals at the end of a game.

Statistical Tests

Are the patterns in the figures statistically meaningful? To answer this question, we require a
test to determine if there is overreaction (captured by expected movement being greater than

34If there are multiple contracts — e.g., one paying off if team A wins, another if team B wins — we use
the contract for which the starting beliefs are closest to 0.5.

35For example, as the average basketball game lasts around 132 minutes, basketball games are broken into
24 chunks of 5.5 minutes. The final chunk then includes all observations that occur after 132 minutes. Results
are similar if we use different numbers of chunks. Separately, in constructing confidence intervals, we assume
observations are uncorrelated across contracts.
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Figure 6: Movement and Uncertainty Reduction Over Time for Different Sports

Notes: This figure shows the average movement (black line) and uncertainty reduction (red line) statistics over time for

five different sports (as well as 95% confidence intervals). In each case, movement is greater than uncertainty reduction in

early time periods and then drops below in later time periods.

uncertainty reduction) when signals are weak (captured by low uncertainty reduction), and
underreaction when signals are strong. We therefore regress average movement in each period
on average uncertainty reduction in each period. Under the null hypothesis of Bayesian
updating, the constant will be equal to 0 and the slope coefficient equal to 1, as average
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Table 2: Regressions of Movement on Uncertainty Reduction

Dep Var: Sports Finance

Movement Soccer Basketball Baseball Hockey Football Raw Risk-Adj.

Uncert. Red. 0.918 0.806 0.889 0.945 0.912 0.680 0.733
(0.005) (0.008) (0.013) (0.013) (0.027) (0.040) (0.041)

Constant 0.0009 0.0018 0.0026 0.0018 0.0015 0.0065 0.0060
(0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0003) (0.0003)

R2 0.977 0.985 0.995 0.976 0.995 0.944 0.941
Time Chunks 24 24 24 24 24 24 24
Events 6,584 5,176 3,927 4,123 1,390 955 955
Observations 4,589,289 867,567 166,346 109,751 86,193 58,864 58,864
p-val.: β1 = 1 <0.001 <0.001 <0.001 <0.001 0.007 <0.001 <0.001
p-val.: β0 = 0 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes: This table presents the results from OLS regressions (with bootstrapped standard errors in parentheses) of

average movement in a time period on average uncertainty reduction for five sports and the options data.

movement should be equal to average uncertainty reduction in every period. However, for
a misperceiving person who updates according to our model, average movement will be
higher than average uncertainty reduction when reduction is low, but lower than uncertainty
reduction when reduction is high, such that the constant will be positive and the slope
coefficient will be less than one.

The results for these regressions are shown in the first five columns of Table 2. Given
that the regressions use calculated averages, we bootstrap standard errors by resampling
events with replacement and recalculating averages 10,000 times (OLS standard errors are
very similar). For each sport, the slope and constant coefficients are highly statistically
significantly different from the Bayesian benchmark in the direction predicted by the theory:
we consistently observe evidence for overinference from weak signals (when average uncertainty
reduction is low) and underinference from strong signals (when reduction is high).

To understand the magnitude of the estimates, note that beliefs moving 3 percentage
points up and then 3 points down would produce movement of 0.0018 (close to the average
constant coefficient) and no uncertainty reduction. Given this average constant, the average
slope coefficient then implies that movement will cross uncertainty reduction when both are
around 0.014, which corresponds to one belief movement of around 12 percentage points.

Note that we are regressing the average movement in a time chunk on the average
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uncertainty reduction. We do this because, for a Bayesian, the expected movement at any
time Et[Mt,t+1] must equal the expected uncertainty reduction Et[Rt,t+1]. However, any
individual belief change does not yield movement and reduction equal to these expectations,
but rather equal to these expectations plus a mean-zero error term. Therefore, if we simply
regressed all the (unaveraged) movement statistics on the (unaveraged) uncertainty reduction
statistics, there would be significant attenuation bias due to error in the independent variable.
By taking the average over thousands of belief changes at a given time horizon, we are able
to estimate the expectation at that time plus a tiny error term, effectively eliminating this
bias. In our case, the estimated variance of the error term at each period is more than
100,000 times smaller than the estimated variance of the independent variable, such that
the attenuation bias is negligible.36 Note that the R2 values in all cases are very close to 1:
variation in movement can be explained almost entirely by variation in uncertainty reduction,
but only when the coefficient is less than one.

5.4 Index Options Data

Data Description

The sports betting data provide a useful lab for studying beliefs in an incentivized setting,
but they come naturally with some limitations: trading budgets are capped,37 and payoffs
are unrelated to macroeconomically relevant outcomes. So we now consider market-implied
beliefs data from a large-scale financial market of first-order importance: options on the
S&P 500 index, which are effectively bets on the value of the market index as of some fixed
future expiration date.38 As in AL (2022), we obtain data from OptionMetrics on S&P index
option prices with all available strike prices and expiration dates traded on the Chicago
Board Options Exchange (CBOE). The sample of trading dates is 1996–2018. We use daily
(end-of-day) data, and we implement the same data filters as described in AL (2022); see
Appendix B.1 for further details.

36By averaging the movement and uncertainty reduction statistics over time chunks, we face the subjective
question of how many chunks to use. The main results do not change significantly when using a different
number of chunks. For example, the estimated slope coefficients for the five sports change to (0.839, 0.797,
0.903, 0.987, 0.912) when using 12 chunks (see Appendix Table A2) and to (0.847, 0.849, 0.883, 0.925, 0.920)
when using 36 chunks (see Appendix Table A3). The p-values for all sports remain very highly significant,
except for hockey with 12 chunks (p-value = 0.27) and football with 36 chunks (p-value = 0.05).

37As of late 2022, for example, Betfair imposes payout limits ranging from £50,000 to £250,000 for
single-game bets on American sports.

38Denoting the market index price by Vt, a call option with strike price K and expiration date T has a
date-T payoff of max(VT − K, 0). (Conversely, a put option has payoff max(K − VT , 0).)
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Converting Option Prices to Market-Implied Beliefs

On any given trading date t, there are prices for a wide range of S&P options with the same
expiration date T . The options differ only in their strike prices K (for a call option, the
minimum S&P index value at which the option will obtain a positive payoff at expiration).
The set of option prices for a given (t, T ) pair can thus be translated, using standard methods
following Breeden and Litzenberger (1978), into a market-implied (or risk-neutral) probability
distribution over the future S&P price on the option expiration date.39

Unlike in the case of sports betting data, index options have payoffs that are tied (by
construction) to the value of aggregate wealth. Option prices therefore reflect risk aversion
in addition to subjective probability assessments about the future index value. This is the
main complication in using option-implied probability distributions: they do not, in general,
correspond to any notion of aggregate subjective beliefs. (They are equivalent to subjective
beliefs only in the case of risk neutrality over the index value, which motivates referring
to them as risk-neutral beliefs.) For example, suppose that there are two possible date-T
macroeconomic states that are perceived by investors as equally likely. If investors value a
marginal dollar in the “bad” state (when the market is low) more than in the “good” state
(when the market is high), they will be willing to pay more for the option that pays off in
that state. If these risk preferences are not taken into account, one will (falsely) conclude
that investors believe that the bad state is more likely.

Addressing this issue is the main theoretical task taken up in AL (2022). That paper shows
that under certain assumptions, one can place a bound on excess movement in risk-neutral
(RN) beliefs under the null that underlying subjective beliefs are rational. The bound is tight
in the space of possible DGPs — that is, one can construct a DGP under which it holds
exactly — but it is not necessarily tight under the true real-world DGP.40 We therefore provide
two sets of results in the current analysis, (1) using the raw RN beliefs, and alternatively
(2) translating these beliefs to a set of physical (subjective) beliefs under an assumption on risk
aversion. For (2), we consider multiple possible assumptions in translating from risk-neutral
to physical beliefs, detailed in Appendix B.2. While the hundreds of possible assumptions and
parameterizations matter in determining the physical belief estimated for a given risk-neutral
belief, their effect on our movement and uncertainty-reduction statistics is so small as to be
nearly indetectable.41 We therefore report results here under our main translation, which

39This mapping requires only the minimal assumption that there are no arbitrage opportunities in option
markets. Intuitively, as options allow for bets over the future index price, their prices allow us to back out a
probability distribution over this future price.

40While the bound is sufficient for the full-stream tests considered in that paper, it might not be here: we
wish to understand how “true” excess movement evolves with signal informativeness within a stream.

41This is intuitive, as risk aversion is unlikely to be changing meaningfully from day to day. In addition,
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assumes a representative investor with power utility over the terminal index value. For
robustness, we present estimates under a wide range of alternative parameterizations in
Appendix Figure A9, finding that these choices have little effect on our results.

To implement our measurement of RN beliefs, we follow AL (2022) and partition the state
space of possible date-T index values into discrete ranges. To maintain the same set of states
across expiration dates T , we set the states to correspond to ranges for the log return on the
S&P 500 from the first observable option trading date to the expiration date. There are 9
potential terminal return states θj, with θ1 realized if the log return in excess of the risk-free
rate is less than −0.2 (roughly -20%); θ2 if the log excess return is in the range (−0.2, −0.15];
θ3 if (−0.15, −0.1]; and so on, so that each state (aside from the extreme states θ1 and θ9,
which we discard in our analysis) corresponds to a five-percentage-point range for the S&P’s
excess return. The RN belief distribution is then the option-price-implied conditional (date-t)
probability distribution over each of these 9 states. We measure this distribution for each
trading date t until option expiration, at which point we assign probability 1 to the observed
realized return state for the S&P 500. We again aggregate the data into 24 time chunks by
trading days to expiration, and we average movement and uncertainty reduction statistics
using beliefs over all states θj for j = 2, . . . , 8.42

Graphs of Movement and Uncertainty Reduction

Figure 7 shows average movement and uncertainty reduction over time in the options data,
analogous to Figure 6. The left panel shows the average movement and uncertainty reduction
statistics for the raw risk-neutral beliefs, and the right panel shows the statistics for physical
beliefs obtained under the main risk adjustment procedure. Time is in trading days, with
date 0 normalized to roughly 100 trading days from expiration (there are longer-horizon
options for which the same results hold, but we choose to cut off the graph at 100 days for
readability). In both cases, movement is consistently above uncertainty reduction relatively
far from expiration, when signals are only very weakly informative and uncertainty reduction
is statistically indistinguishable from zero. Uncertainty reduction increases dramatically closer
to expiration (when market movements are more informative regarding the true index value
at the expiration date); while option-implied belief movement increases alongside uncertainty
reduction, it appears to do so less than one for one, with uncertainty reduction crossing
above movement roughly 10 days from expiration. The patterns observed in this high-stakes

the main point of interest for this analysis is that the basic patterns found in the experimental data and in
the sports betting data are also observed in the finance data, regardless of the RN beliefs correction used.

42See AR (2021, Prop. 3) for formal justification of this many-state belief aggregation. We use only the
interior states j = 2, . . . , 8, as in AL (2022), because the mapping from risk-neutral to physical beliefs is likely
to be unstable for the extreme states θ1 and θ9 as they contain beliefs over a wide range of possible returns.
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Figure 7: Movement and Uncertainty Reduction Over Time for Finance Data

Notes: This figure shows the average movement (black line) and uncertainty reduction (red line) statistics over time for the

beliefs implied by option data (with 95% confidence intervals). The left-hand panel uses the implied unadjusted (risk-neutral)

beliefs. The right-hand panel uses a risk adjustment described in the text. Movement is greater than uncertainty at the

start of the contract. At the later stages, movement is lower than uncertainty reduction.

financial market are similar to those in the sports betting data for many sports plotted
in Figure 6. They are also strikingly similar to the simulated results from our theoretical
framework plotted in the bottom-right panel of Figure 5. Recall that these simulations are
parameterized using the estimates from our experimental data, so the theory accordingly
helps unify the evidence obtained in both the lab and real-world data.

Statistical Tests

We conclude this analysis by conducting the same formal tests as in the previous case,
regressing average movement on average uncertainty reduction in each time chunk. The
results are shown in the final two columns of Table 2. For both the raw and risk-adjusted
data, the estimated slope and constant are again highly statistically significantly different
from the Bayesian benchmark in the direction predicted by our theory. The positive constant
again indicates overreaction when signal informativeness (uncertainty reduction) is low, as
movement is significantly positive in these cases; meanwhile, the slope being less than one
(and numerically nearly identical to the estimated slope in the sports betting data) indicates
underreaction for high enough levels of signal informativeness. The market therefore appears
to misperceive in the way predicted for individuals modeled in Section 2. More broadly, the
consistent results from the lab and from observational data indicate that there seems to be a
unifying explanation for underreaction and overreaction that applies across settings.
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6 Discussion and Conclusion

We provide evidence that people overinfer from weak signals and underinfer from strong
signals. We demonstrate this phenomenon in a tightly controlled experiment and using a
new empirical method applied to betting and financial markets. In each setting, beliefs
appear to move in the correct direction and shift more when signals are stronger. But
perceptions of signal strengths appear consistently anchored toward some moderate level; in
other words, people act as if they are partially neglecting information about the strength of
the signal by not fully adjusting their perception of signal strength from some default level.
In the experiment, the neglected information is direct numerical information about the signal
strength. In the empirical settings, the neglected information is time to resolution, which is
an important determinant of signal strength.

Partial neglect of this type is well captured by a model of cognitive imprecision. In the
model, a person takes a weighted average of a prior expectation of signal strength (modeled
as a primitive) and a cognitive meta-signal about that strength (which takes new information
into account, with some noise). Intuitively, when people see a signal that would seem to imply
a movement from 50% to 51%, it seems “too small” given their expectation, and they shade
upwards, and vice versa for a signal that implies a movement from 50% to 90%. People thus
do not fully adjust their perceptions of signal strength from their prior, which can explain
the patterns of partial neglect of information we see in the data.

We therefore see the model as providing a parsimonious structure that is able to organize
our core experimental and empirical findings. In addition to generating the main patterns
of over- and underinference in both sets of data, the model can also explain the shape of
the overinference function and patterns of heterogeneity we observe in the experimental
data. That said, we see our main contribution as empirical, providing consistent evidence
across domains about what drives misinference. There remain interesting open questions on
how people form cognitive defaults in novel settings, and what structure the noise in signal
processing takes, that might be fruitfully addressed in future work.

Regarding the core empirical contribution, the experimental and observational settings
provide complementary evidence. The experimental setting allows us to have complete control
of the DGP and conduct more nuanced tests, but it is — as with most experiments — artificial
and low-stakes. As such, we turn to observational data to show that our findings persist in
high-stakes and real-world decision-making environments, recognizing that these naturalistic
settings lead to other issues given the complexity and opacity of the underlying DGP.43 The

43To take one example, given the nonlinear nature of the updating rule, the way that signals are aggregated
will affect the quantitative predictions. For instance, defining a signal as reflecting all the information revealed
in one minute versus three minutes can change the predicted level of overinference. In other words, people
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basic takeaway, though — that updating behavior differs robustly by signal strength, with
overinference from weak signals and underinference from strong signals — applies robustly
across domains, and helps unify seemingly contradictory results in past literature.

seem not to be behaving in a way consistent with divisible updating (Cripps 2018), a prediction verified in
the experiment.
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Appendix

A Additional Results

Table A1: Nonlinear Effect of Signal Strength on Over/Underinference

(1) (2) (3) (4) (5)
Main Effects By CRT Score By Round By SD By News

Switching point p∗ 0.644 0.624 0.628 0.702 0.628
(0.011) (0.013) (0.013) (0.014) (0.015)

Sensitivity β 0.761 0.741 0.745 0.803 0.745
(0.028) (0.034) (0.035) (0.028) (0.036)

β1 x CRT Score 0.024
(0.007)

β1 x Round Number 0.005
(0.002)

β1 x SD of Guesses -0.198
(0.044)

β1 x News Cons 0.054
(0.027)

Observations 3964 3964 3964 3964 3964
R2 0.38 0.38 0.38 0.38 0.38

Notes: Nonlinear least squares, with standard errors (in parentheses) clustered at subject level. Dependent

variable is the weight put on the signal compared to a Bayesian (as defined in Equation (2).) The function

estimated is logit(p∗)1−β

logit(π1)1−β for (1) and logit(p∗)1−β−β1·Interaction

logit(π1)1−β−β1·Interaction for each interaction from (2)-(5). p∗ is the value

of π1 for which subjects switch from overinference to underinference. β < 1 means that subjects are insufficiently

sensitive to signal strength. Columns (2)-(5) show heterogeneity of β across CRT score, round number, standard

deviation of over/underweighting, and news consumption, respectively. CRT score ranges from 0 to 3. Round

number ranges from 1 to 12. News consumption ranges from 0 to 1.
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Figure A1: Over- and Underinference by Number and Type of Signals

Notes: This figure plots the average weight subjects put on signals relative to a Bayesian (indicated by the blue line), split

by signal distribution. Grey circles correspond to one signal of strength S (as in Figure 2); purple squares correspond to two

signals of strength S in one direction and one signal of strength S in the opposing direction; green diamonds correspond to

three signals of strength S/3 in the same the direction. This figure shows that subjects put less weight on three signals as

compared to the weight they put on one signal. Error bars indicate 95% confidence intervals.
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Figure A2: Over- and Underinference of Symmetric Signals by Signal Strength: Alternative
Approach

Notes: This figure plots the average answer subjects give as a function of the Bayesian posterior. It differs from Figure 2 by

first transforming subjects’ answers to be signal strengths, then averaging them, and then transforming back into precision

estimates (as opposed to just averaging). The blue line indicates Bayesian behavior. The figure shows that subjects

overweight weak signals and underweight strong signals. Error bars indicate 95% confidence intervals, clustered at the

subject level.
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Figure A3: Heterogeneity in Inference at the Individual Level

Notes: This figure shows how much weight put on weak and strong signals at the individual level, where weight is defined

relative to a Bayesian as in the main text. The top panel shows the CDF of individuals’ weights on strong and weak signals.

The vertical line at 1 represents Bayesian updating. The bottom panel shows the PDF of the log of individuals’ weights

on strong and weak signals. The vertical line at 0 represents Bayesian updating. Subjects with nonpositive weight are

separated out. Weak signals have precision p < 0.6 and strong signals have precision p > 0.7. Observations are winsorized,

for each signal strength, at the 5% level.
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Figure A4: Heterogeneity in Inference from by News Consumption

Notes: The y-axis is weight subjects put on signals. Weak signals have precision between 0.5 and 0.6; strong signals

have precision between 0.7 and 1. This figure plots weight by self-reported news consumption. Individuals who consume

news “Never,” “Rarely,” or “Occasionally” are categorized as “Not Frequently.” Individuals who consume news “Somewhat

Frequently,” “Frequently,” or “Very Frequently” are categorized as “Frequently.” This figure shows that news consumption

is associated with less weight on weak signals and similar weight on strong signals. Error bars indicate 95% confidence

intervals.
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Figure A5: Movement and Uncertainty Reduction Over Time for Different Sports: 12 Time
Chunks

Notes: This figure replicates Figure 6 with 36 time chunks.
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Figure A6: Movement and Uncertainty Reduction Over Time for Finance Data: 12 Time
Chunks

Notes: This figure replicates Figure 7 with 12 time chunks.
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Table A2: Regressions of Movement on Uncertainty Reduction: 12 Time Chunks

Dep Var: Sports Finance

Movement Soccer Basketball Baseball Hockey Football Raw Risk-Adj.

Uncert. Red. 0.839 0.797 0.903 0.987 0.912 0.796 0.861
(0.006) (0.007) (0.012) (0.012) (0.027) (0.054) (0.063)

Constant 0.0014 0.0018 0.0024 0.0013 0.0015 0.0060 0.0054
(0.0003) (0.0003) (0.0004) (0.0009) (0.0002) (0.0005) (0.0005)

R2 0.984 0.991 0.996 0.990 0.997 0.945 0.941
Time Chunks 12 12 12 12 12 12 12
Events 6,584 5,176 3,927 4,123 1,390 955 955
Observations 4,589,289 867,567 166,346 109,751 86,193 58,864 58,864
p-val.: β1 = 1 <0.001 <0.001 <0.001 0.274 0.002 0.004 0.025
p-val.: β0 = 0 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes: This table replicates Table 2 with 12 time chunks.
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Figure A7: Movement and Uncertainty Reduction Over Time for Different Sports: 36 Time
Chunks

Notes: This figure replicates Figure 6 with 36 time chunks.
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Figure A8: Movement and Uncertainty Reduction Over Time for Finance Data: 36 Time
Chunks

Notes: This figure replicates Figure 7 with 36 time chunks.
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Table A3: Regressions of Movement on Uncertainty Reduction: 36 Time Chunks

Dep Var: Sports Finance

Movement Soccer Basketball Baseball Hockey Football Raw Risk-Adj.

Uncert. Red. 0.847 0.849 0.883 0.925 0.920 0.705 0.751
(0.003) (0.008) (0.015) (0.013) (0.026) (0.035) (0.040)

Constant 0.0014 0.0016 0.0027 0.0020 0.0015 0.0063 0.0058
(0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0003) (0.0003)

R2 0.955 0.974 0.993 0.975 0.982 0.932 0.928
Time Chunks 36 36 36 36 36 36 36
Events 6,584 5,176 3,927 4,123 1,390 955 955
Observations 4,589,289 867,567 166,346 109,751 86,193 58,864 58,864
p-val.: β1 = 1 <0.001 <0.001 <0.001 <0.001 0.054 <0.001 <0.001
p-val.: β0 = 0 <0.001 <0.001 <0.001 <0.001 0.051 <0.001 <0.001

Notes: This table replicates Table 2 with 36 time chunks.
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Figure A9: Movement and Uncertainty Reduction for Options: Alternative Adjustments

Notes: This figure shows the smoothed average movement (black lines) and uncertainty reduction (red lines) statistics

over time for the beliefs implied by option data (with 95% confidence intervals). Each line represents a different method

to calculate risk-adjusted beliefs. While the different methods do lead to different inferred beliefs, the broad pattern of

movement and uncertainty curves is very similar across the methods.
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B Implementation Details for Finance Data

This Appendix describes our use of option-price data, as introduced in Section 5.4, in greater
detail. First, we describe briefly how we translate from option prices to risk-neutral beliefs,
and then we detail how we translate from risk-neutral to physical beliefs under different
parameterizations for risk aversion.

B.1 Option Filters and the Risk-Neutral Distribution

Starting from the OptionMetrics data, we collect the same auxiliary data and take the same
steps as described in full in Online Appendix C.5 of AL (2022) to measure the risk-neutral
distribution for each date in our sample. First, we apply standard filters to the raw option-
price data. We drop any options with bid or ask price of zero (or less than zero), with
uncomputable Black–Scholes implied volatility or with implied volatility of greater than 100
percent, with more than one year to maturity, or (for call options) with mid prices greater
than the price of the underlying; we drop any option cross-section (i.e., the full set of prices
for the pair (t, T )) with no trading volume on date t, with fewer than three listed prices across
different strikes, or for which there are fewer than three strikes for which both call and put
prices are available (as is necessary to calculate the forward price and risk-free rate, which
we calculate by applying the put-call parity relationship). We then measure the risk-neutral
distribution following Malz (2014): we translate the option mid-price quotes into implied
volatilities; fit a clamped cubic spline to the implied volatility curve (with respect to the
strike price) for each (t, T ) pair; transform these fitted implied volatilities back to prices; and
then apply the usual Breeden and Litzenberger (1978) result to translate from prices to a
risk-neutral distribution. Again see AL (2022) for full details.

B.2 Translating from Risk-Neutral to Physical Beliefs

We now describe the translation from risk-neutral to physical beliefs in greater detail. Assume
there exists a representative investor (“the market”) with time-separable utility over the
market index value.44 Assume, as above, that the state space (the set of possible terminal
index values VT ) is discrete, with states indexed by j (VT = θj for j = 1, 2, . . . , J), and denote
terminal utility by U(VT ). The physical belief regarding the likelihood of state j is πt,j, and

44These illustrative assumptions aid in the interpretation of our risk-aversion assumptions, but they are
stronger than needed in general; see AL (2022) for a discussion.
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the risk-neutral belief is π∗
t,j. The two are related as follows:45

π∗
t,j = U ′(θj)πt,j∑

k U ′(θk)πt,k

. (B1)

Our main translation assumes that U ′(VT ) = V −γ
T , corresponding to the assumption of power

utility over the terminal index return, with constant relative risk aversion coefficient of γ.
We then follow Bliss and Panigirtzoglou (2004) in estimating γ as the value under which
the physical beliefs over the S&P 500 value at the one-month horizon are well calibrated
(i.e., unbiased); see Bliss and Panigirtzoglou (2004) for details on the maximum likelihood
estimation procedure.

We then consider hundreds of generalizations of this basic framework. First, we reparam-
eterize (B1) in terms of the ratio of marginal utilities (or SDF realizations) across adjacent
index states ϕj, by substituting U ′(θj) = ϕjU

′(θj−1). We then make a range of assumptions
on the function ϕj . We assume that ϕj varies by state j, either linearly or quadratically in VT ,
and we estimate ϕj by maximum likelihood for each state; we assume that ϕj varies over time
(either linearly or quadratically) or by horizon to expiration (as in Lazarus 2022); and then we
consider interactions in which ϕj varies both by bin j and over time. In all cases (as can be
seen in Figure A9, the right panel of which contains one line for each parameterization), the
movement and uncertainty reduction statistics are close to unchanged. (This is in contrast
to the physical probabilities, which do change depending on the parameterization; it is their
evolution over time that is unchanged.)

45This is a multi-state generalization of eq. (5) of AL (2022), or see eq. (7) of Bliss and Panigirtzoglou
(2004).
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Supplementary Appendix

C Experiment Study Materials

55



56



57



58



59



60



61



62



63



64



65



66


	1 Introduction
	2 Theory
	2.1 Setup and Intuition
	2.2 General Model Predictions

	3 Experiment Design
	3.1 Overview and Data
	3.2 Timing
	3.3 Treatment Blocks

	4 Experiment Results
	4.1 Main Results
	4.2 Heterogeneity
	4.3 Multiple Signals
	4.4 Demand for Information
	4.5 Mechanisms
	4.6 Robustness

	5 Evidence from Finance and Sports Betting
	5.1 Conceptual Setup
	5.2 Simulated Belief Streams
	5.3 Sports Betting Data
	5.4 Index Options Data

	6 Discussion and Conclusion
	A Additional Results
	B Implementation Details for Finance Data
	B.1 Option Filters and the Risk-Neutral Distribution
	B.2 Translating from Risk-Neutral to Physical Beliefs

	C Experiment Study Materials

