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Pooled testing increases efficiency by grouping individual samples
and testing the combined sample, such that many individuals can
be cleared with one negative test. This short paper demonstrates
that pooled testing is particularly advantageous in the setting of pan-
demics, given repeated testing, rapid spread, and uncertain risk. Re-
peated testing mechanically lowers the infection probability at the
time of the next test by removing positives from the population. This
effect alone means that increasing frequency by x times only in-
creases expected tests by around

√
x. However, this calculation

omits a further benefit of frequent testing: removing infections from
the population lowers intra-group transmission, which lowers infec-
tion probability and generates further efficiency. For this reason,
increasing testing frequency can paradoxically reduce total testing
cost. Our calculations are based on the assumption that infection
rates are known, but predicting these rates is challenging in a fast-
moving pandemic. However, given that frequent testing naturally
suppresses the mean and variance of infection rates, we show that
our results are very robust to uncertainty and misprediction. Fi-
nally, we note that efficiency further increases given natural sam-
pling pools (e.g., workplaces, classrooms, etc.) that induce corre-
lated risk via local transmission. We conclude that frequent pooled
testing using natural groupings is a cost-effective way to provide
consistent testing of a population to suppress infection risk in a pan-
demic.
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The COVID-19 pandemic has generated a health and eco-1

nomic crisis not seen in more than a century. Opening busi-2

nesses and schools is necessary to regain economic activity, but3

the potential public health costs are dramatic. One policy to4

circumvent this stark trade-off is to open the economy, while5

implementing surveillance testing that can quickly identify6

infected individuals – particularly those without symptoms –7

and prevent them from spreading the disease. Unfortunately,8

testing at this scale appears infeasible given the cost and ca-9

pacity constraints. This paper makes a simple but essential10

point about these costs: when using pooling testing, frequent11

testing of correlated samples makes testing dramatically more12

efficient (and therefore less costly) than understood both by13

existing research and policymakers.14

In pooled testing (1), multiple samples are combined, tested15

together using one test, and the entire pool is cleared given16

a negative test result. Pooling is an old concept and a large17

literature has emerged on optimal strategies (1–10) and, more18

recently, others have discussed how it might be used to increase19

COVID-19 test efficiency (11, 12). However, all of these papers20

focus on one-time testing of a set of samples with known and21

independent infection risk, which matches common use cases22

such as screening donated blood for infectious diseases (13–18).23

These environmental assumptions are violated when dealing 24

with a novel pandemic with rapid spread. In this case, people 25

need to be tested multiple times, testing pools are likely formed 26

from populations with correlated infection risk, and risk levels 27

at any time are very uncertain. How do these changes impact 28

testing strategy? 29

We start with the well-known observation that pooled test- 30

ing is more efficient when the infection probability is lower, 31

because the likelihood of a negative pooled test is increased. 32

This observation has been used to conclude that pooled testing 33

is not cost-effective for “high-risk” populations, such as health 34

care workers or for people in areas experiencing an outbreak. 35

While this statement is true for one-off testing, it does not 36

hold when the population is tested repeatedly. As an extreme 37

example, if a person in a high-risk area was just tested and 38

determined to be negative, their probability of infection when 39

tested an hour later is extremely low, simply because there 40

is not much time to be infected between the tests. In other 41

words, the infection probability at the time of testing depends 42

both on the flow rate of infection as well as the timing of 43

testing. 44

We quantify the impact of testing frequency on infection 45

probability and its consequent impact on pooled-testing ef- 46

ficiency. For example, we show that given reasonable levels 47

of independent risk, testing twice as often cuts the infection 48

probability at the time of testing by (about) half, which lowers 49

the expected number of tests at each testing round to about 50

70% of the original number. The savings are akin to a “quan- 51

tity discount” of 30% in the cost of testing. Therefore, rather 52
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than requiring two times the number of tests, doubling the fre-53

quency only increases costs by a factor of 1.4. More generally,54

we demonstrate that testing more frequently requires fewer55

tests than might be naively expected: increasing frequency by56

x times only uses about
√
x as many tests, implying a quantity57

discount of (1− 1√
x

).58

The benefits to frequency are even greater when the disease59

spreads within the testing population. In this case, testing60

more frequently has an additional benefit: by quickly remov-61

ing infected individuals, infection spread is contained, future62

infection probabilities are lowered, and testing efficiency rises63

further. We analytically quantify this additional benefit as64

a function of the exponential-like growth path of the disease.65

We show that in this case – somewhat paradoxically – the66

quantity discount can be so great that more frequent testing67

can actually reduce the total number of tests. For example,68

if the disease dynamics are such that doubling the testing69

frequency reduces the infection probability at the time of test-70

ing by more than fourfold, then doubling the frequency will71

require fewer tests in expectation.72

In our simple model, we assume that infection probabilities73

are known when constructing optimal pool sizes and efficiency74

statistics. However, the prediction of infections in a fast-75

changing pandemic is an extremely difficult inference problem76

(see, for example, (19)). Given this issue, it is appropriate to77

worry that uncertainty and potential misprediction will make78

pool size choices challenging, reduce pooled testing efficiency,79

and render our conclusions void. For example, testing data80

from Massachusetts in the fall of 2020 shows high average81

testing positivity rates (7%) that vary widely across time and82

space (s.d. of 6%) in potentially unpredictable ways.∗ Using83

one-off pooled testing given this population — which has a84

extremely high positivity rate partially due to self-selection of85

people who desire a test — will be very inefficient given the86

high rates and the potential for mis-optimization. However,87

as discussed above, frequent testing of a consistent population88

reduces the mean and variance of infection probabilities at the89

time of testing because there is little time between testing for90

mean- and variance-inducing spread to occur, and the selection91

issue is removed. For example, as noted in (20), the town of92

Wellesley, Massachusetts, employed weekly testing of consistent93

subpopulations in the fall of 2020 and the average positivity94

rates stayed low (0.3%) and didn’t vary considerably (s.d. of95

0.3%). When positivity rates have low mean and variance, we96

show that the efficiency of pooled testing is strongly robust to97

reasonably-miscalibrated estimations and constant pool sizes,98

such that pooled testing remains very attractive. Finally, we99

note that better estimation of the positivity distribution is100

also helped by frequent testing, which naturally produces a101

constant stream of recent test-result data from the relevant102

population.103

We note one final efficiency benefit associated with the most104

natural implementation of frequent testing. When frequently105

testing a consistent subpopulation (such as those living or106

working together), it is likely that the infection spreads within107

the sub-population. This correlation increases the benefits of108

pooled testing even in a static testing environment (a finding109

concurrently noted in (21)). Intuitively, an increased correla-110

tion in a pool with fixed individual risk lowers the likelihood111

of a positive pooled test result, which increases efficiency.112

∗This data is publicly available at: https://www.mass.gov/info-details/covid-19-response-reporting

Throughout the paper, we consider a very stylized environ- 113

ment with a number of simplifications to present transparent 114

results. While removing these constraints further complicates 115

the problem and raises a number of important logistical ques- 116

tions, we do not believe that their inclusion changes our main 117

insights. For example, our simple model assumes that a person 118

who becomes infected will test positive indefinitely, whereas in 119

reality they will potentially recover at some point. This does 120

not impact our results when the time between tests is less 121

than the recovery period, but lowers the relative cost of pooled 122

testing when frequency is low because the prevalence is lower 123

due to recoveries. However, our main qualitative conclusion — 124

testing more frequently leads to fewer tests for each testing 125

period — still holds in this case. 126

Another important simplification is that we model a test 127

with perfect sensitivity.† There are multiple ways in which 128

pooled testing interacts with test sensitivity. First, there is a 129

natural negative impact: combining samples can potentially 130

dilute the viral load below the limit-of-detection of the test. 131

However, this implies that the false negatives will occur when 132

the viral load is very low and the person is less likely to be 133

infectious‡. Second, this dilution concern is counteracted when 134

testing frequently by the large increase in overall sensitivity 135

coming from running a larger number of tests.§ Third, as noted 136

in (22), false negatives may result from poor-quality samples. 137

However, frequency again has benefits: by testing the same 138

population repeatedly, subjects become better experienced 139

with proper sampling protocols and those who provide poor 140

samples can be identified and corrected. 141

Finally, we largely abstract away various practical imple- 142

mentation costs and constraints. First, we assume that every 143

test, whether individual or pooled, has the same cost. However, 144

pooled testing necessitates a more complicated setup in the 145

lab, requiring more space and trained personnel (or a robotic 146

setup) to correctly mix the samples together. While these costs 147

are relatively moderate if spread over a long period of time, a 148

laboratory might be reluctant to change their operations when 149

the duration of the pandemic is very unclear. Second, we as- 150

sume that there is no time delay between testing and receiving 151

the test result. In reality, it takes time to transport samples 152

to the lab and test them, and pooled testing takes more time 153

than individual testing because it potentially requires an ad- 154

ditional re-testing step. Fortunately, the difference in these 155

delays can be minimized when using the common "hold-out" 156

method: only a portion of each individual sample is used to 157

construct the pooled sample, such that remaining portions of 158

the individual samples can be immediately individually tested 159

if the pooled tests positive. However, even if the difference 160

is minimized, any delay still impacts our analysis. In partic- 161

ular, by assuming no delay, increasing the testing frequency 162

minimizes the likelihood of undiscovered new infections in the 163

time between tests, such that the infection probability at the 164

†As noted in (22), test specificity of standard protocols such as PCR appears to be very close to
one. However, if specificity is a concern, the past literature (9, 23) has clear methods to optimize
in the case of imperfect tests.

‡Furthermore, empirically, the sensitivity loss of pooled testing given reasonable pool sizes has
been shown to be negligible in other domains (24, 25) and more recently shown to be similarly
low for SARS-CoV-2 in pool sizes of 32 and 48 (26, 27), although the results of (28) shows lower
specificity (81%) for pools of 50.

§For example, if pooled testing leads the sensitivity to drop from 99% to 90% on a single test, sam-
pling x times as frequently will increase overall sensitivity to 1−(0.10)x if errors are independent.
Even with extreme correlation in the error – suppose the false negative rate for a pool given a pre-
vious false negative for that pool is 50% – pooled testing 4-5 times as frequently will recover the
same false positive rate as individual testing.
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time of testing can be kept arbitrarily low. But, when there165

is a delay in receiving test results, it is not possible to stop166

infection and spread during the delay period even if testing167

is continuous. Therefore, it might be simply impossible to168

lower the infection probability below the ∼5% threshold at169

which the cost benefit of pooled testing is considered clear.170

In this extreme case, we do not recommend pooled testing.171

However, if the risk and spread are so extreme that 5% of a172

group is expected to be newly infected every few days even173

with very frequent testing, an alternative policy relying on174

isolation seems far more likely.175

Although we see this paper as noting a general insight of176

the relationship between pooled testing and testing frequency,177

it is useful to discuss the particular historical context in which178

the paper was written. The first paper draft of the paper was179

completed in June 2020, during the first wave of the COVID-19180

pandemic. At that point, testing supply was low and prices181

were high because laboratories were building up testing capac-182

ity in a relatively strict regulatory environment. By early 2021,183

multiple organizations – such as Mirimus, Ginkgo, and the184

Broad – were offering frequent pooled testing at much cheaper185

prices than individual testing and multiple organizations with186

correlated risk – such as employers, cities, and school districts187

– were employing these tests. For example, in February 2021,188

Massachusetts implemented a policy of providing universal189

weekly pooled testing for all K-12 students and faculty and190

staff.¶ and, nationally, the Rockefeller Foundation called for191

use of frequent pooled testing as an essential aspect of school192

reopening (30).‖ The authors, based on the main insights of193

this paper, supported many of these policy initiatives and194

recommendations. Interestingly, the cost of pooled testing in195

Massachusetts (between $3 and $10 per student per test) is196

almost precisely the predicted amount using pooling in the197

first draft of the paper, providing a useful empirical validation198

of the model.199

The paper proceeds as follows: Section 2 reviews one im-200

portant finding in the pooled testing literature that efficiency201

rises as infection probability falls; Section 3 discusses the re-202

lationship between testing frequency and efficiency; Section203

4 demonstrates how correlated infection leads to larger pool204

sizes and greater efficiency; and Section 5 concludes.205

Pooled Testing: Benefits Rise as Infection Probability206

Falls207

Background on Pooled Testing. To understand the basic ben-208

efits of pooled testing, consider a simple example: 100 people,209

each with an independent likelihood of being positive of 1%210

and a test that (perfectly) determines if a sample is positive.211

The conventional approach of testing each person individu-212

ally requires 100 tests. Suppose instead that the individuals’213

samples are combined into five equally-sized pools of 20, and214

then each of these combined samples is tested using one test.215

If any one of the 20 individuals in a combined sample is pos-216

itive, everyone in that pool is individually tested, requiring217

20 more tests (21 in total). The probability that this occurs218

¶See e.g. https://covidedtesting.com which provides a detailed description of the approach to pooled
testing in schools and the experience in Massachusetts. (29) covers the role the program can play
in Massachusetts and as a model for the U.S.

‖This report notes that, even with vaccination, testing will continue to be a key policy lever. In wealthy
countries, the potential for low vaccination take-up and much slower vaccination approval for chil-
dren suggests that schools and possibly many employers will continue to need surveillance testing.
Furthermore, many low income countries will not achieve large-scale vaccination for multiple years.

Fig. 1. Efficiency of pooled testing rises with infection probability
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Notes: This figure plots the expected number of tests (y-axis)
from pooled testing given a population of n people as the
population infection probability (x-axis) changes. The black
flat line shows the number of tests from individual testing
(equivalent to a pool size of 1), which always requires n tests
regardless of infection probability. The results from using
a pool size of 20 is orange, while the blue line represents
the number of tests given the optimal pool size for a given
probability. Finally, the green text notes that benefit from
pooled testing is the distance between the black individual-
testing line and those from pooled testing. For example, as
noted in the text, using a pool size of 20 for a probability of
1% leads to .23 · n tests rather than n tests, while the optimal
pool size (10) leads to .20 · n tests.

is 1 − (1 − .01)20 ≈ 18%. However, if no one in the pool is 219

positive – which occurs with probability ≈ 82% – no more 220

testing is required. Because the majority of tests require no 221

testing in the second case, the expected number of tests for 222

this simple pooling method is only around 23, a significant 223

improvement over the 100 tests required in the non-pooled 224

method. 225

The approach is well studied, with a large literature focused 226

on improving the efficiency of pooled testing. These include 227

using the optimal pool size (e.g. in this example, the optimal 228

pool size of 10 would lower the expected number of tests to 229

around 20), placing people into multiple pools (31), and al- 230

lowing for multiple stages of pooled testing (2, 8, 23, 32, 33). 231

There are also methods to deal with complications, such as 232

incorporating continuous outcomes (34). Any of these modifi- 233

cations can be incorporated in our pooled testing strategy. 234

For clarity of exposition, we present results for simple 235

two-stage “Dorfman” testing – in which every person in a 236

positive pool is tested individually – to demonstrate that our 237

conclusions are not driven by highly complex poolings and to 238

make our calculations transparent, although we advocate for 239

more sophisticated strategies when feasible. As an example of 240

this transparency, while the optimal pool size and associated 241

efficiency formulas under Dorfman testing are complicated, 242

approximations around infection probability p = 0 are very 243

simple and accurate at the low probabilities needed for pooled 244

testing. Specifically, given a relatively-low infection probability 245
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p, the approximate optimal pool size is:246

g∗ ≈ 1
2 + 1
√
p

[1]247

and a good approximation of the expected number of tests248

given a population of n people is:249

E[tests∗] ≈ 2 ·√p · n. [2]250

In this paper, we create simple statements about the im-251

pact of increasing frequency that are approximately correct252

for low p. Note that this does not imply that our results253

are only appropriate for low-risk populations. The amount254

of infection at the time of testing depends on the testing fre-255

quency. Therefore, for the same population (even a high-risk256

population), p will be high when considering testing every257

month, but much lower when testing every day. By focusing258

on situations in which p is relatively low, we are not focusing259

on low-risk populations, but rather focusing on frequencies in260

which p remains relatively low for the given population. That261

is, for a high-risk population, our approximation formulas will262

be reasonably accurate when comparing the benefits of testing263

once vs. twice a week, but less accurate when comparing the264

benefits of testing once vs. twice a month. In other words,265

our focus on low levels of p is not an assumption about the266

population risk level, but an assumption that we are only267

comparing frequencies in which infection does not spread out268

of control in a given population.269

How good is the approximation? For the magnitude of270

infection probabilities we discuss in the paper, such as 2%, 1%,271

or .1%, the approximation of the optimal pool size is within272

0.3%, 0.1%, 0.01%, of the true optimal, respectively, and the273

approximation of the number of tests is within 3.1%, 2.3%,274

and 0.7% of the true number. However, given that there are275

multiple possible formulas in the literature, it is also useful276

to discuss the origin of our formulas. The formula we use277

for the pool size is from (35), who uses Taylor expansion to278

create an approximation around p = 0 given that pool size279

is continuous. However, he also notes that ceiling(
√

1
p
) is a280

better approximation if pool size is constrained to be an integer.281

Meanwhile, (36) notes that the exact solution is either 1 or 1 +282

floor(
√

1
p

) or 2 + floor(
√

1
p

) depending on p. Similarly, for283

expected tests, the low-order Taylor approximation (also from284

(35)) is 2 · √p · n− p
2 · n. Here, we only use the term 2 · √p · n285

as it creates simpler formulas with little loss of accuracy in286

the approximation.287

Infection Probability and Pooled Testing. As noted by many288

previous authors, for all the different incarnations of pooled289

testing, the benefits of pooled testing rise as the infection290

probability falls in the population. Lower probabilities reduce291

the chance of a positive pooled test, thereby reducing the292

likelihood that the entire pool must be retested individually.293

This is clear in Equation 2 as expected tests 2 ·√p ·n drop with294

infection probabilities. For example, if the probability drops295

from 1% to .1%, the optimal pool size rises and the number of296

tests falls from around 20 to 6.3. There is still a large gain if297

the pool size is fixed: expected tests drop from 23 to around298

6.9 using a fixed pool size of 20. Similarly, if the probability299

rises from 1% to 10%, the expected number of tests using the300

optimal pool size rises to around 59 (or 93 given a fixed pool 301

size of 20). 302

The full relationship is shown in Figure 1, which plots the 303

expected number of tests in a population of n people given 304

different pool sizes and visually highlights the results based on 305

(i) individual testing – which always leads to n tests, (ii) using 306

pools of 20, and (iii) using optimal pooling given two stages. 307

For simplicity, we construct these figures by assuming that n 308

is large to remove rounding issues that arise from breaking n 309

people into pools sizes that are not divisible by n. There are 310

large gains from pooled testing at many infection probabilities, 311

though they are appreciably larger at lower probabilities. We 312

note that this figure replicates many similar figures already in 313

the literature going back to (1). 314

Increasing Test Frequency 315

Interaction Between Frequent Testing and Pooled Testing. 316

Our main insight is the important complementarity between 317

pooled testing and testing frequency. Intuitively, the benefits 318

of pooled testing rise as the infection probability falls, and fre- 319

quent testing keeps this probability low at each testing period. 320

Continuing with our example, suppose that 100 people have a 321

p=1% independent chance of being positive over the course of 322

an arbitrary baseline length of time, such as a month. 323

The baseline length represents the longest length of time 324

between tests that we consider in our analysis. The variable p 325

is then determined by both the fundamental disease charac- 326

teristics and the baseline length. For example, p will be lower 327

for a less-infectious disease and lower if the baseline length 328

is shorter (as there is less time for infection). In our analysis 329

below, we fix the disease and baseline length under considera- 330

tion, and therefore fix p. Note then that time enters our model 331

through the baseline length, via the variable p. For our later 332

approximation formulas to be accurate, the baseline length 333

must be short enough that p remains relatively low (<5%) for 334

the given population. In other words, our approximations are 335

appropriate when comparing different frequencies as long as 336

all of the frequencies under consideration keep the expected p 337

under some control. 338

Returning to our example, suppose that people are instead 339

tested ten times a month. Testing individually at this fre- 340

quency requires ten times the number of tests, for 1000 total 341

tests. It is therefore natural to think that pooled testing also 342

requires ten times the number of tests, for more than 200 total 343

tests. However, this estimation ignores the fact that testing 344

ten times as frequently reduces the probability of infection at 345

the point of each test (conditional on not being positive at 346

the previous test) from 1% to only around .1%. ∗∗ This drop 347

in probability reduces the number of expected tests – given 348

pools of 20 – to 6.9 at each of the ten testing points, such that 349

the total number is only 69. That is, testing people 10 times 350

as frequently only requires slightly more than three times the 351

number of tests. Or, put in a different way, there is a quantity 352

discount of around 65% by increasing frequency. The same 353

conclusion holds for optimal pool sizes: the one-time pool test 354

∗∗Our analysis assumes that background risk is spread uniformly across time. Instead, one might
consider a model in which the risk is changing. In this case, a main question of interest becomes
when to test. That is, when the background risk is constant, it is appropriate to test at equal
intervals because this places an equal amount of infection risk at each test. However, if the risk
is changing, is is appropriate to test at unequal intervals. For example, if the background risk is
exponentially rising, testing should occur more frequently over time, such that the interval between
tests is exponentially decreasing.
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Fig. 2. Efficiency of pooled testing rises with frequency
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Notes: This graph presents the effect of testing frequency (x-
axis) on the expected number of tests (y-axis), given infection
probability for each individual in the population of 1% over
a month. When the frequency is once a month, the points
correspond to those in Figure 1 given probability of 1%: n
for individual testing, .23 · n when using a pool size of 20 and
.20 · n tests when using the optimal pool size. The dotted
orange line represents the (incorrect) extrapolation that if a
pool size of 20 leads to .23 · n tests when frequency is once
a month, it should equal x · .23 · n if frequency is x times a
month. In reality, the expected tests are much lower, due to a
quantity discount or “frequency benefit,” highlighted by the
green text. Finally, the blue line highlights tests given the
optimally-chosen pool size.

would require 20 expected tests, while testing ten times as355

frequently requires 6.3 tests at each testing point, for a total356

of 63. The savings relative to the 1000 tests using individual357

testing are dramatic, with only approximately 6% of the total358

tests required.359

Figure 2 represents this effect more generally for different360

levels of frequency given an infection probability of 1% over361

the course of a month. Note that, at a frequency of once a362

month, the numbers match those in Figure 1, which was based363

on one test given a probability of 1%. Unlike in Figure 1, we364

do not include the results for individual testing in this graph365

as testing individually every day requires 20-30 times more366

tests than pooled testing, which renders the graph unreadable.367

The dotted orange line represents the naive (and incorrect)368

calculation for pooled testing by extrapolating the cost of369

testing multiple times by using the number of tests required370

for one test. That is, as above, one might naively think that371

testing x times using a pool size of 20 in a population of n372

would require x · .23 · n tests given that testing once requires373

.23 · n tests. Pooled testing is in fact much cheaper due to374

the reduction in the probability of infection at the time of375

each testing – the central contribution of this section. We376

therefore denote the savings between the extrapolation line377

and the actual requirements of pooled testing as the “frequency378

benefit.”379

The exact level of savings of the frequency benefit changes380

in a complicated way depending on the infection probability p381

given one test and the frequency x. However, approximations 382

again provide a useful guide: the probability of a person being 383

positive at testing P (x) = 1 − x√1− p is well approximated 384

using the first-order Taylor Series around p = 0 by: ††
385

P (x) ≈ p

x
. [3] 386

Plugging this into our previous approximation, the ex- 387

pected number of tests given the optimal pool size is then well 388

approximated by: 389

E[tests∗|x] ≈ 2 ·√p ·
√
x · n. [4] 390

Again, for our purposes, the most important fact is that 391

these approximations are accurate for low p. For example, 392

given p of 2%, 1%, or .1%, the approximation is within 1%, 393

0.5%, 0.02%, of the true number for all x < 100. The ap- 394

proximation for E[tests∗|x] even given p = 5% is within 1.3%, 395

0.6%, and 0.008% of the true number for x of 5, 10, and 100, 396

respectively. 397

Intuitively, testing at a frequency of x cuts the probability 398

to around p
x
by Equation 3, such that the expected tests at 399

each testing time is around 2 ·
√

p
x
·n, such that testing x times 400

requires 2 ·
√

p
x
· x · n total tests, which simplifies to Equation 401

4. Therefore, the expected cost of pooled testing x times as 402

frequently is around
√
x when using optimal-pool-sized two- 403

stage pooled testing, and asymptotes to this exact amount 404

as p falls to zero. In other words, the quantity discount of 405

increased frequency is close to (1 − 1√
x

). So, for example, 406

pooled testing using optimally-sized pools every week (about 407

4 times a month) costs around
√

4 ≈ 2 times the number of 408

tests from pooled testing every month, implying a quantity 409

discount of 50%. Or, testing every day (around 30 times a 410

month) costs about
√

30 = 5.5 times the number of tests, 411

implying a quantity discount of 82%. 412

Avoiding Exponential Spread Through Frequent Testing. The 413

logic above ignores a major benefit of frequent testing: iden- 414

tifying infected people earlier and removing them from the 415

population.‡‡ Beyond the obvious health benefits, removing 416

people from the testing population earlier stops them from 417

infecting others, which reduces infection probability, and there- 418

fore increases the benefit of pooled testing. In the previous 419

section, we shut down this channel by assuming that every 420

person in the testing population had an independent proba- 421

bility of becoming infected. If the testing population includes 422

people that interact, such as people who work or live in the 423

same space, infections will spread at a higher rate within the 424

testing population once someone is infected from the outside. 425

Precisely modeling spread in a given population is challeng- 426

ing and situation-dependent. Our goal is not to make specific 427

statements about a particular disease in a particular situation, 428

but provide more general and portable statements about the 429

efficiency of frequent pooled testing in many situations. To 430

that end, we consider a very stylized model in which we affix 431

an exponential multiplier function exp(λ
x

) on P (x) to capture 432

†† In general, the first-order Taylor Series approximation of f(x, p) around p = 0 is f(x, 0) +
∂f(x,p)
∂p

|p=0 · (p − 0). In our case, then: 1 − x√1− p ≈ 1 − x√1− 0 +
∂(1− x√1−p)

∂p
|p=0 · (p− 0) = 0 + 1

x
· (1− 0)

1
x

−1 · (p− 0) = p
x
.

‡‡(37) notes a similar effect given a fixed budget of individual tests: it is more efficient to spread
testing out over time because infected people are discovered earlier and removed.
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the exponential-like growth associated with untamed spread433

within the population prior to saturation,§§, ¶¶ such that:434

Pspread(x) ≡ P (x) · exp(λ
x

)

≈ p

x
· exp(λ

x
).

[5]435

Intuitively, given λ ≥ 0, the multiplier exp(λ
x

) causes the436

probability of infection to rise above p
x
, with a stronger impact437

as frequency drops and spread continues unchecked. Given no438

intra-group spread (λ = 0), Pspread(x) reverts to P (x). Just as439

the parameter p was chosen above to represent the probability440

of outside infection during the chosen baseline length of time441

given no testing, λ is calibrated such that p · exp(λ) equals442

the probability of infection over that period when including443

unchecked intra-group spread. Therefore, for example, when444

considering a time period of a month, if outside infection alone445

is expected to lead to a 1% infection rate at the end of the446

month given no testing, but the inclusion of intra-group spread447

causes this rate to rise to 4%, then λ = Ln[4]. Given this448

addition, Equation 4 then changes to:449

E[tests∗spread|x] ≈ 2 ·√p ·
√
x ·

√
exp(λ

x
) · n. [6]450

Recall that, without spread, Equation 4 implied that in-451

creasing frequency from 1 to x > 1 doesn’t cost x times as many452

tests, but rather
√
x times, for a quantity discount of (1− 1√

x
).453

Equation 6 implies that, given spread, this benefit is increased:454

testing x times now lowers to
√
x ·

√
exp(λ · 1−x

x
) as many455

tests for an increased discount of (1 − 1√
x
·
√

exp(λ · 1−x
x

)).456

This discount is rising in x (as before) and is also rising in λ.457

Somewhat counter-intuitively, the quantity discount can be458

so great that testing more frequently requires fewer total tests459

in expectation. For example, it is (approximately) cheaper460

to test twice as frequently if λ ≥ Ln[4], which implies the461

probability of infection at the time of testing is reduced by more462

than 4 times by testing twice as often. Intuitively, if spread463

is very aggressive, the efficiency gains from reduced infection464

probabilities arising from increasing frequency are so great465

that they overwhelm the increasing number of testing times.466

Note, however, that this “free lunch” does not necessarily467

continue if x doubles again from 2 to 4. For example, when468

λ = Ln[4], testing four times as often costs 1.2 as many times469

as testing once or twice.470

These effects are shown in Figure 3 for p = .01 and λ =471

Ln[5]. We plot the expected number of tests (left y-axis)472

and final portion of the population infected (right y-axis) for473

different testing frequencies. The number of infections rises474

in an exponential-like manner as frequency decreases and the475

infection is allowed to spread. The expected number of tests476

§§This formula captures exponential growth in the most simplistic way possible. However, we be-
lieve it is also a good approximation for more complicated models. For example, the simple
model does not apparently capture the fact that people who are infected later in a time pe-
riod will cause less spread that those who are infected earlier. Solving for that more complete
model leads to Pspread(x) = p/γ · (eγ/x − 1) for a different spread parameter γ where
λ = Log((eγ − 1)/γ). However, for reasonable parameters, our simple formula is very good
approximation, particular for a low γ. For γ = Log[2] (every person is expected to infect 1 other
person over the baseline length), our formula is within 0%, 0.31%, 0.18%, and 0.002% of the true
formula for x equal to 0, 5, 10, and 100 respectfully for every p. Even when γ = Log[6], the
percentages are 0%, 2.1%, 1.2%, and 0.1%. Therefore, as in the rest of the paper, we choose the
simpler approximation as it leads to more transparent and intuitive conclusions.

¶¶ If the population is saturated with infections, growth will not continue to be exponential. Therefore,
the baseline testing length under consideration needs to be short enough to not allow the disease
to saturate the population in expectation between tests.

Fig. 3. Increased frequency lowers infections with few additional tests given intra-pool
spread
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Notes: This graph presents the effect of testing frequency
(x-axis) on the expected number of tests (y-axis 1) and final
portion of the population that are infected (y-axis 2) given
the model with intra-population spread outlined in Equation 5
with p = .01 and λ = Ln[5]. As shown in red dot-dashed line
of final infection proportions, increased frequency reduces the
exponential-like spread because infected people are removed
from the population. The number of expected tests required is
shown for pool size 20 in orange and in blue for the optimal pool
size. There is not much increase (and even an early decrease) in
the total number of tests required because frequency increases
leads to increased testing efficiency.

given different frequencies uses the same colors to represent a 477

pool size of 20 (orange) and the optimal size (blue). Comparing 478

Figures 2 and 3 is instructive. In Figure 2, we see a consistent 479

increase in the tests required as the frequency of testing is 480

increased. In Figure 3, though, the tests required are relatively 481

flat and even decrease for early frequency increases. 482

Optimal Testing Frequency. The main benefit of increasing 483

frequency is reducing the exponential rise in infections. As 484

shown in Figure 3, the marginal benefit from reduced infections 485

due to increasing frequency is high at low frequencies and drops 486

as frequency rises, eventually to zero. Interestingly, as shown 487

in Figure 3, the number of tests can actually fall as frequency 488

rises when starting at low frequencies. Therefore, for low 489

frequencies, there is, in fact, no trade-off of raising frequency: 490

it both reduces infections and reduces tests. 491

As testing frequency rises, the number of expected tests 492

will inevitably rise, leading to a trade-off between marginal 493

benefit and cost.∗∗∗ Consequently, at very high frequencies, 494

there is an increased cost without a large benefit. The optimal 495

frequency lies between these extremes, but depends on the 496

value of reducing infections versus the cost of tests, which is 497

an issue beyond the scope of this paper. 498

∗∗∗As an extreme example, if testing is so frequent that the infection probability at each test is effec-
tively zero, then increasing the frequency by 1 will lead to an additional test for each pool without
meaningfully reducing this probability at each testing period. This can be seen in Figure 3 for pool
size of 20 where, at a frequency of around bi-weekly, the number of expected tests rises close to
linearly with a slope of 1

20 = .05 · n.
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Robustness to Uncertainty and Misprediction of Infec-499

tion Rates500

The above analysis is predicated on the assumption that the501

probability of infection at the time of testing is known. How-502

ever, infection rates vary wildly over time and space in a503

pandemic and are extremely challenging to estimate correctly504

(see, for example, (22)). Given this, one concern is that our505

main results and bullish conclusions about the efficiency of506

frequent pooled testing will fall apart given this uncertainty507

and the potential misprediction of infection rates. However,508

as we show in the section, our results are strongly robust to509

this concern.510

An important benefit of frequent testing — as repeatedly511

noted above — is that it suppresses the infection rate at512

the time of testing and therefore reduces uncertainty. Using513

an extreme example, if people are tested every hour, the514

likelihood of observing any new infections at the time of testing515

is necessarily very small and, if any new infections are observed,516

they will likely be very few. That is, by testing frequently, the517

mean and variance of the infection rate at the time of testing518

is kept very small.519

A less-extreme empirical example is mentioned in the in-520

troduction: the town of Wellesley, Massachusetts tested a521

consistent group of school staff and students weekly in the522

Fall of 2020. During this time, the second wave of COVID-19523

was ravaging the United States. Data from Massachusetts as524

a whole in this period shows extremely high average weekly525

testing positivity rates (7%) with large variation across time526

(s.d. of 6%). However, the average weekly positivity rates527

in Wellesley stayed low (0.3%) and didn’t vary considerably528

(s.d. of 0.3%).††† While the Wellesley testing population was529

consistently and frequently tested, the Massachusetts testing530

population likely consisted of many one-off tests from people531

who sought out a test, presumably because they were exposed532

or experienced symptoms. As we have noted throughout the533

paper, it is therefore not correct to observe high self-selected534

positivity rates in the general population and conclude that535

frequent pooled testing on a consistent subpopulation would536

be inefficient.537

Even though frequent testing reduces the mean and vari-538

ance of positivity rates, there is still uncertainty. However, we539

now show that this uncertainty has little impact on our con-540

clusions. In particular, suppose that rather than being known,541

the infection rate is uncertain and drawn from a gamma distri-542

bution with mean µ and standard deviation σ (we chose the543

gamma distribution as it has the ability to reasonably match544

the empirical distribution of positivity rates for both Welles-545

ley and Massachusetts as a whole). In our previous analysis,546

we effectively assumed that the pool designer is aware of the547

exact realization of the infection rate and can optimize pool548

size accordingly. What if, instead, the designer knows the549

distribution but not the specific draw? And, what happens550

if the designer (mistakenly) believes that the distribution is551

actually characterized by µ̂ = α · µ and σ̂ = α · σ? Does this552

uncertainty or misprediction destroy the efficiency from pooled553

testing?554

Interestingly, reasonable uncertainty and misprediction555

†††The use of frequent testing was not randomly assigned to Wellesley. Therefore, one fear is that
Wellesley’s rates are fundamentally low due to specific population characteristics. While only (non-
existent) random assignment can solve this identification problem, we do note that Norfolk County
– the home of Wellesley – had similar infection rates to other counties in December 2020, when
Massachusetts began publishing county-by-county statistics.

have very little impact on efficiency. For example, in the 556

case resembling Wellesley where µ = 0.003 σ = 0.003, the 557

expected number of tests given full knowledge of the infection 558

realization is .093 · n. When the designer knows the distribu- 559

tion but is unaware of the realization, the optimal pool size 560

is 19 and the resultant expected number of tests only rises 561

to .103 · n. That is, the lack of knowledge only costs .01 · n 562

tests in expectation. Finally, given mistaken beliefs where α 563

equals .5, .75, 1.5, and 2, tests only rise to .109 · n, .105 · n, 564

.106 · n, and .109 · n, respectively. That is, mistaken beliefs 565

have little impact on efficiency. This lack of impact is a result 566

of the robustness of efficiency to wrongly-chosen pool sizes. 567

For example, whereas the correct beliefs about the distribution 568

lead to an optimal pool size of 19, mistakenly using pool sizes 569

of 10, 15, 30, and 40 only increases tests to .126 · n, .109 · n, 570

.113 ·n, and .130 ·n, respectively. The main driver of efficiency 571

is not perfect optimization of pool sizes, but rather the mean 572

infection rate, which is suppressed by frequent testing.‡‡‡
573

Finally, we note one additional benefit of frequent testing 574

with respect to uncertainty. When performing a one-off test 575

on a random new population, it is very challenging to create 576

an accurate estimate of the risk distribution. However, per- 577

forming frequent testing on a consistent population naturally 578

generates a byproduct of past positivity realizations for the 579

same population, which can be used to create a more accurate 580

estimate.§§§ For example, a surprisingly high positivity rate 581

one week might shift beliefs about the next week’s distribution 582

upwards, leading to smaller pool sizes or more frequent testing. 583

Correlated Infection Further Increases Efficiency 584

When subpopulations are frequently tested, it is natural to 585

pool individuals with correlated risk, such as people who live 586

or work together. We very briefly note a result (concurrently 587

noted by (21)), that this correlation can even further increase 588

efficiency. 589

To understand the benefit of correlation given pooled test- 590

ing, it is useful to broadly outline the forces that determine 591

the expected number of tests with simple two stage testing 592

with a pool size of g and a large testing population n. In the 593

first stage, a test will be run for every n/g pool, while in the 594

second stage, every n/g pool faces a probability q that at least 595

one sample will be positive, such that all g people in the pool 596

will need to be individually tested. Combining and simplify- 597

ing these factors leads to a simple formula of the expected 598

number of tests given a pool size: n · (1/g + q). As noted 599

above, in the case of infections with independent probability p, 600

q = 1−(1−p)g. However, as infections become more positively 601

correlated, q falls for every pool size g > 1. For example, with 602

two people in a pool whose infections have a correlation r, 603

q can be shown to be 1 − (1 − p)2 − r · p · (1 − p). That is, 604

when r = 0, we recover the original formula 1− (1− p)2, while 605

raising r linearly drops the probability until it is p when r = 1. 606

Intuitively, the pool has a positive result if either person 1 607

or person 2 is infected, which – holding p constant – is less 608

‡‡‡While efficiency losses rise with mean and variance, reasonable robustness to uncertainty holds
more generally. For example, for µ and σ of [0.01,.01],[0.03,0.03], and [0.06,0.06], the efficiency
costs of lacking knowledge about the realization of distribution are .018·n, .026·n, and .032·n,
respectively, and the efficiency loses from a mistaken beliefs of α = .5 are .026 · n, .036 · n,
and .045 · n respectively.

§§§ In a previous version of the paper located at https://www.nber.org/papers/w27457, we discuss how
employing machine learning techniques on known data can create more accurate estimates and
increase testing efficiency.
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likely when infections are correlated and therefore more likely609

to occur simultaneously.610

To understand larger pools, we repeatedly simulate each611

individual drawing a N(0, 1) random variable and assigning612

them to be infected if their draw is above a critical value (i.e.613

2.326 for a 1% infection rate). To simulate correlation, an614

individual’s draw is a convex combination of a shared and615

individual normally-distributed variable, where the weights616

are calibrated such that the pairwise correlation between any617

two people is r. As an example of how q falls with more people618

and consequently reduces the number of tests, suppose that619

p = 1%: when infections are uncorrelated, q is around 9.6%,620

18.2%, 26.0%, and 33.1% given respective pool sizes 10, 20,621

30, and 40, while q respectively drops to around 3.1%, 3.9%,622

4.4%, and 4.8% when every person is pairwise-correlated with623

r = 0.5. Therefore, the respective expected number of tests624

given these pool sizes falls from .196 · n, .232 · n, .294 · n, and625

.356 · n when uncorrelated to .131 · n, .089 · n, .077 · n, and626

.073 ·n when r = 0.5. First, note that the number of expected627

tests is universally lower at every pool size given correlation628

(and the savings are very significant). Second, note that while629

the pool size with the lowest number of expected tests given630

these potential pool sizes is 10 when there is no correlation,631

larger pool sizes are better given correlation. This statement is632

more general: a higher correlation raises the optimal pool size.633

The intuition is that the marginal benefit of higher pool size634

(reducing the 1
g
first-stage tests) is the same with or without635

correlation, but the marginal cost (increasing the probability636

of second-stage testing) is reduced with higher correlation,637

thus leading to a higher optimum. As an example, while the638

optimal pool size given p = 1% is 10 given no correlation, the639

optimal pool sizes given r of 0, 0.2, 0,4, 0.6, 0.8 are 11, 22, 44,640

107, and 385, respectively.641

Conclusions642

This paper shows that pooled testing is particularly efficient643

when frequently performed on pools with correlated risk (e.g.,644

in workplaces or schools). Our key insight is that repeated645

testing reduces the infection probability at the time of each test646

and – since pooled testing is more efficient given lower proba-647

bilities – increases the efficiency of pooled testing. Therefore,648

contrary to a commonly stated rule, pooled testing is appro-649

priate and cost-effective even for high-risk populations, as long650

as the frequency of testing rises in relation to this risk.¶¶¶. In651

fact, we are starting to see frequent pooled testing offered at652

prices of $3-10 per person per test. Consequently, frequent653

pooled testing is increasingly being adopted at scale, such as654

the state of Massachusetts where all K-12 students are offered655

weekly pooled testing. The cost of testing in those programs656

validates these estimates and demonstrates the feasibility of657

these strategies.658
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¶¶¶However, the initial round that begins the frequent testing is an exception: when testing starts in
a high-risk population, infection probabilities at the time of testing are likely to be high because
there have been no actions taken to contain spread. It is therefore potentially cost-effective to use
individual testing for this one initial round before switching to pooled testing for all following rounds.
For these later rounds, infection probability is kept low because frequent testing is allowing for the
constant removal of infected individuals.
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