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Abstract

We model two agents who wish to determine if their types match, but who

also desire to reveal as little information as possible to non-matching types. For

example, firms considering a merger must determine the merger’s profitability,

but would prefer to keep their information private if the deal fails. In the model,

agents with different traits reveal information to a potential partner to determine

if they share the same type, but face a penalty depending on the accuracy of their

partner’s posterior beliefs. With limited signaling, there is universally-preferred

dynamic communication protocol in which traits are sequentially revealed de-

pending on sensitivity of the trait. Interestingly, the rarity of an agent’s traits

plays no role due to the balance of opposing effects: although revealing a rare

trait reveals more information immediately, it also screens more partners from

later learning information about other traits. When more complex signaling is

allowed, agents prefer an equilibrium in which they signal membership of a small

but diverse group, which screens many partners while revealing little information

about the agent’s individual traits.
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1 Introduction

In many strategic situations, agents want to identify partners with whom they can

profitably interact, but they are also concerned about revealing sensitive information

to other parties. For example, an entrepreneur needs to reveal information about her

business plan, technology, and market data to venture capitalists (VCs) in order to

solicit financing, but is concerned that a VC could pass the information to another

company in the VC’s portfolio. Firms may need to reveal information to determine

if a potential merger or joint venture is profitable, but the firms are also concerned

with the economic losses that could result from revealing information to potential

trading partners. A political dissident might want to discover if a new acquaintance

shares the same political beliefs, but she does not want to reveal subversive views if

that acquaintance is a member of the ruling party. Finally, in social situations, a

person with unusual preferences might like to find out if an acquaintance shares those

preferences, but worries about revealing her type to someone with different tastes.

In this paper, we present a model of dynamic communication between agents who

share the goal of identifying partners with matching traits in order to engage in prof-

itable interactions (which we call matches), but who face a penalty for revealing infor-

mation about their traits. While agents must end up revealing all information about

themselves to find a match, they can avoid revealing all of their information to all of

their potential partners by dynamically screening out non-matching partners over time

using equilibrium communication structures that we call conversations. Our main re-

sult proves that, given limited signaling, all agent types have the same most-preferred

conversational structure, and we provide a characterization of how information is re-

vealed over the course of an optimal conversation.

In the model, a sender (she) and a receiver (he) have private information about

their own type, a set of binary traits. For expositional purposes, we focus on the

strategic concerns of the sender. In each stage of our game, the sender issues a verifiable

message about some of her traits to the receiver. After each message, the receiver

updates his beliefs about the sender’s type based on the traits verifiably revealed in

the message (direct information) and the choice of which traits to verifiably reveal

(indirect information). If the receiver realizes that he does not share the sender’s type,

he ends the conversation as mismatching is costly. The players receive a positive match

value if they share all of the same trait realizations and match.

Crucially, the sender receives an information penalty at the end of the game. The
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information penalty for a particular trait is the product of (1) the trait’s exogenous

information value or sensitivity and (2) the receiver’s knowledge about the sender

as represented by the receiver’s posterior belief of the likelihood of the sender’s true

trait realization. For example, if the sender actually has a realization of 0 for the

fifth trait and the receiver believes with high (low) probability that the sender has

a realization of 0 for the fifth trait, then the sender suffers a relatively high (low)

information penalty. Therefore, revealing a rare realization of a high information value

trait increases a player’s information penalty more than revealing a common realization

of a low information value trait.

We start by focusing on equilibria in which all sender-types reveal groups of traits

in a common order. First, we show that all orderings can be sustained in equilibrium

as long as the match value is large enough. We then show that all sender-types prefer

conversations that are efficient (do not include non-informative stages), complete (fully

reveal all traits by the end of the conversation), sequential (reveal traits one-by-one),

and ordered by information value (the traits are revealed in order of increasing infor-

mation value). The first three properties arise from the sender’s desire to eliminate

the possibility of matching with a different type of receiver while revealing as little

information about her own type in the process.

The fourth property implies that the rarity of a trait does not affect the order in

which traits ought to be revealed. The result arises from two opposing incentives. First,

revealing a rare trait results in a large immediate increase in the sender’s information

penalty because it leads to a large change in the beliefs of every receiver-type in the

conversation. Second, the release of a rare trait is also a powerful tool for screening

out non-matching receivers, who will learn no additional information about the sender

in later stages. Given rational expectations, the change in the receiver’s beliefs from

learning a sender’s specific trait must equal to the percentage of the population who

does not have that trait (and are then screened from the remainder of the conversation

when that trait is revealed). As the sender’s information penalty is bilinear in the

receiver’s beliefs in our baseline specification, these opposing effects balance.

We then discuss the effect of allowing different sender-types to use different conver-

sation structures, which opens the possibility of the sender signaling information about

her type through the choice of which traits to reveal at each stage of the conversation.

We explore sender preferences over a restricted set of equilibrium conversation struc-

tures that allow some forms of signaling to better understand whether the uniform
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sender preference for a particular grammar is robust to the presence of some signaling

possibilities. Given this restriction, senders continue to have a universal preference for

the common-order equilibrium discussed above. Intuitively, senders prefer slow revela-

tion of information, and the use of different orderings unnecessarily signals additional

information at each stage.

The uniform sender-preference for a common-order equilibrium breaks down when

we allow any sender-type to use any conversation structure. Specifically, we provide

an example in which senders – through their choice of conversation structure – signal

that they belong to a small but diverse group of sender-types, which screens out

many non-matching receivers without revealing much information about the sender’s

individual traits. While the equilibrium is complex, the example suggests that very

thoughtful coordination can allow senders to do better than the baseline common-

ordering equilibrium.

In the Appendix, we provide an additional result and examine the consequences of

five modifications to our model. The result shows that as the number of traits grow,

many common-grammar equilibria approach the same payoff because conversations

mostly end before many traits are revealed. The first extension allows for a profitable

match when agents have identical realizations of some, but not all, traits, and we show

that all sender-types continue to prefer the equilibrium where traits are revealed in

order of increasing information value. In our second extension, we partially characterize

the solution to our model when senders incur significant costs to send messages. As

messaging costs increase, senders prefer to reveal multiple traits in a single message,

with message sizes growing (almost) exponentially as the conversation proceeds. In

the third extension, we study how altering the information penalty function affects

the balance between the screening and privacy incentives, and we show that extreme

imbalances between the privacy and screening incentives can result in different sender-

types preferring to reveal traits in different orders. In the fourth extension we allow

the sender’s messages to be cheap-talk. This opens up possibilities for new kinds of

deviations, and we discuss when and how these deviations may alter the equilibria

discussed in the paper. The final extension of our model concerns the case where

the agents can swap the roles of sender and receiver exogenously. We prove that

the sender-optimal equilibrium derived for the benchmark model remains the unique

sender-optimal equilibrium when we allow the sender to break equilibria that are bad

for the sender in a way we make precise in the discussion.

4



There is, of course, a large literature on the effects of asymmetric information.

The friction in this model is distinct from more standard issues caused by asymmetric

information. For example, in moral hazard and adverse selection models, agents are

vertically differentiated and unable to directly reveal their types, which leads to frictions

because “low” types try to mimic “high” types. In cheap talk games, frictions arise

because senders cannot verifiably reveal information and the sender and receiver differ

in their preferences over outcomes. In our model, agents are horizontally differentiated,

agree on optimal outcomes, and are able to verifiably reveal information. The economic

friction arises in our model because agents simply prefer to reveal less information about

their own type to other agents.

There is a related literature on the structure of dynamic communication in differ-

ent situations, such as firms desiring to retain ideas for private use (Stein [37] and

Ganglmair and Tarantino [12]), an agent who desires to gather information of value to

another agent (Hörner and Skrzypacz [20]), an agent who can communicate private in-

formation to another agent through a series of messages (Aumann and Hart [2] and [1]),

and two agents that can exchange information relevant to the others’ decision problem

(Rosenberg, Solan, and Vieille [33]). Other work formalizes notions of communication

complexity and studies the economic consequences (Green and Laffont [17]; Melamud,

Mookherjee, and Reichelstein [26]; McAfee [29]; Blumrosen, Nisan, and Segal [6]; Fadel

and Segal [11]; Kos [22] and [23]; Blumrosen and Feldman [5]; Mookherjee and Tsuma-

gari [31]). Our model is distinguished from these works by our inclusion of a privacy

preference directly in the agents’ utility function and our focus on the preferences of

all sender-types on both the kind and volume of information conveyed in each period.1

The closest paper to our work is Dziuda and Gradwohl [10], who contempora-

neously developed a model of the exchange of informative messages that focuses on

screening between vertically differentiated types - one productive (“viable”) type and

many unproductive (“unviable”) partner types.2 The model fixes the order in which

1The paper also has links to the computer science literature on differential privacy, which focuses
on the amount of information revealed by an algorithm (see the survey by Dwork [9]), including
incorporating bounds on differential privacy into mechanism design problems (e.g., Gradwohl [16],
Nissim, Orlandi, and Smorodinsky [32], Chen et al. [7], Xiao [40]). Unlike this literature, we assume
that the sender has preferences over the receiver’s knowledge of her type. This aspect of our work has
some similarities to the literature on psychological games (Geanakoplos et al. [13]).

2The main results provide conditions under which the joint surplus of viable types is maximized by
one of two potential equilibrium communication protocols. In the first, players engage in a dynamic
communication protocol with the amount of information revealed in each stage determined by the
distribution of unviable types and the cost of revealing additional pieces of information. In the
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information is revealed, which allows more general results on the equilibrium set than

we can provide. However, the fixed order obviously prevents them from studying the

order in which information is revealed, which is our primary interest. In their model,

the information of viable agents has an “intrinsic value” (an increase of the utility of

all types of receiver immediately upon receipt) and an “extrinsic value” (an increase

in the expected utility of matching as communication proceeds successfully). Our

model shares the idea of extrinsic value, but there is no clean analog to intrinsic value

since agents are horizontally differentiated and therefore all agents are viable given a

matching receiver.

We start by outlining the theoretical model in Section 2. In Section 3 we analyze

the sender-types’ preferences over the set of equilibria wherein all agents reveal traits

in the same order, and in Section 4 we argue that our results extend to a class of

equilibria that allow different sender-types to reveal traits in different orders, and then

show an example with more complex signaling. Finally, we conclude in Section 5. All

proofs are contained in Appendix A.

2 Model

There are two players, a sender and receiver, indexed by i ∈ {S,R}.3 The payoff-

relevant characteristics of the players are defined by N binary traits, so agent types are

drawn from the set Ω = {0, 1}N . Our focus on binary traits is solely for expositional

purposes - it is easy to extend our results to the case where each trait can assume any

of a finite number of values. A generic agent type is denoted ω ∈ Ω with the jth trait

denoted ωj ∈ {0, 1}. The probability that trait j has a realized value of 1 is ρj and

the realization of each trait is stochastically independent. For example, the probability

that ω = [1 0 1] is realized is denoted Pr(ω) = ρ1 · (1 − ρ2) · ρ3. We assume as a

convention that ρj ∈ [1
2
, 1), so ωj = 1 is the common trait realization and ωj = 0 the

rare trait realization. Therefore, high values of ρj increase the rarity of ωj = 0 as well

as the homogeneity of the population with respect to that trait. We denote player i’s

type as ωi ∈ Ω. Initially neither player has any information regarding the type of the

second, one player reveals all of his information in the first stage. This second equilibrium can be
jointly optimal (even though the first player may receive a low payoff) if the marginal cost of revealing
information falls relative to the marginal benefit of screening out more unviable types as the message
size grows.

3In Section B.6 we extend the model to the case where the agents take turns playing the role of
sender and receiver or have these roles switch in an exogenous, random fashion.
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other party, but the values ρj are common knowledge.

The sender reveals messages about her traits over multiple stages, indexed by t ∈
{1, 2, ..., T} with T � N . In each stage, the sender reveals a message of the form

m ∈ {∅, 0, 1}N , where (for example) m = (∅,∅, 1,∅, 0) is a decision to reveal ω3 = 1

and ω5 = 0 to the receiver. As shorthand, we denote a message by its revealed traits,

such as {ω3 = 1, ω5 = 0}. We assume that these messages are verifiable and cannot

contain false information.4,5 We call this dynamic exchange a conversation.

In many of the real-life environments, the sender could choose to not show up to a

conversation in the first place. To explicitly model this decision, we allow the sender

to issue a Not Attend message in the first stage, which ends the game. Sending any

other message is labeled as Attending and equilibrium with all sender-types attending

is called a full-participation equilibrium.

In each stage the receiver chooses to Continue the conversation, End the conver-

sation, or Match with the sender after receiving the sender’s message. If the receiver

decides to continue the conversation, the game proceeds to the next stage. If the re-

ceiver chooses to end the conversation, the game ends and both agents get a match

payoff of 0. Finally, if the receiver chooses Match, the game ends, the sender’s type is

revealed to the receiver, and both agents receive a match payoff of M > 0 if the sender

and receiver share the same type and −L < 0 otherwise.

The sender’s strategy σ is a mapping from a history ht−1 to a set of traits that

will be revealed in stage t of the game for all possible t and histories ht−1, where

h0 denotes the beginning of the game. To more concisely represent a sender-type’s

messages in equilibrium given a strategy σ, define m̃1 as σ(h0) and recursively define

m̃t as σ(m̃1, m̃2, ...m̃t−1) given that the game has continued. Define a sender-type’s

grammar g in an equilibrium as the sequence of sets of traits revealed in each stage.

For example if type ω = [1 1 0 1] issues messages m̃1 = {ω1 = 0, ω4 = 1}, m̃2 = {},
and m̃3 = {ω2 = 1, ω3 = 0}, then g = ({1, 4}, {}, {2, 3}) is the grammar for that

type. Intuitively, a grammar captures the sequence of traits revealed by the sender in

equilibrium, but does not describe the realizations of those traits. Therefore, senders

of different types can follow the same grammar but send different messages because

they have different trait realizations. We will largely not discuss the receiver’s strategy,

which is a mapping from past histories to the three possible receiver actions.

4We consider the case of cheap talk messages in appendix B.5.
5Some papers refer to this information as hard information. The salient feature is that the infor-

mation cannot be falsified, not that it can be confirmed by a third party enforcer (e.g., a court).
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We use perfect Bayesian equilibria (PBE) as our solution concept. In every PBE,

each history h is associated with the beliefs of the receiver regarding the sender’s traits,

which are determined by Bayes Rule where possible. We define µ(ωSj = 1|h) as the

equilibrium belief held by the receiver at history h that the sender’s realization of

trait j is equal to 1. Finally, we define µ(ωSj = ωS∗j |h) as the probability that the

receiver places on the sender’s true realization of trait j, where we use the notation

ωS∗j to emphasize that ωS∗j is the true realization known to the sender. For example,

if ωS = [1 0] and µ(ωS1 = 1) = .2 and µ(ωS2 = 1) = .2, then µ(ωS1 = ωS∗1 ) = .2 and

µ(ωS2 = ωS∗2 ) = .8. µ(ωSj = ωS∗j |h) describes the amount of knowledge the receiver has

about the sender’s jth trait.

The novel component of our model is that senders have direct preferences over the

information that they reveal.6 Specifically, we assume that a sender of type ω suffers

an information penalty of the following form if the game ends at history h:

Information penalty at h: −
∑N

j=1 µ(ωSj = ωS∗j |h) · vj (2.1)

where vj ≥ 0 is an exogenous information value assigned to trait j. For expositional

purposes, we adopt the trait labeling convention that vj+1 ≥ vj.
7 Information penalties

enter utility additively with match payoffs (M,−L, or 0). Note that we assume that

the information penalty applies even in the event that the agents match. This allows

our formulas to be more transparent and better demonstrates the intuitions underlying

our result.8

In our setup, the information penalty of the sender increases as the receiver places

more probability on the sender’s true trait realizations. We interpret:

µ(ωSj = ωS∗j |h)− µ(ωSj = ωS∗j |h0)

as the amount of information revealed (i.e., privacy lost) through the conversation at

history h about the sender’s trait j, with this value multiplied by vj representing the

6In a previous version of the paper, the receiver was modeled as having a preference for privacy
like the sender. In addition, the agents switched communication roles in each period. See Appendix
B.6 for more details.

7For the bulk of the paper, we assume µ(◦|h) enters utility linearly, but we explore the effect of
nonlinear functions of µ(◦|h) in Section B.4.

8One alternative is that the sender only suffers the information penalty if her type is different than
the receiver’s type - our results are completely unchanged under this assumption. A second alternative
is that the sender only suffers the information penalty if the receiver does not choose Match, but this
would not change our results. We discuss these issues in detail in appendix D.
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utility representation of the preference to avoid this privacy loss. In the event that a

match does not occur, the sender would clearly prefer the receiver place probability 1 on

the sender having different trait realizations than she does (although this is impossible

in equilibrium).

The information penalty can be interpreted as an agent’s preferences over the beliefs

of others, which is plausible in many social settings such as professional networking or

dating. In other circumstances, the information penalty is a reduced-form method for

capturing the effect of the information on future outcomes. The latter interpretation is

more appropriate in the context of bargaining over mergers or other contracts between

firms that require the firms to release information about competitive strategy or trade

secrets, which can be used by the other agent to reap an advantage in future market

competition.9,10

Finally, consider two informationally-equivalent grammars, such as ({1, 4}, {2, 3})
versus ({1, 4}, {}, {2, 3}). These yield the same payoff, but if we had included any cost

of communication or time discounting, the first grammar would be strictly preferred

to the second. In lieu of adding the notational complexity of such a modification to

our model, we assume that both players have a lexicographic preference over grammars

that breaks ties between grammars in favor of the grammar that involves fewer stages

of communication.

3 Common Grammars

In this section, we consider equilibria in which all sender-types use a common grammar,

which removes any signaling of traits through grammar choice. The usage of a common

grammar across types could be the result of a social norm, and the simplicity resulting

from a lack of signaling may make common-grammar equilibria focal. We first show

that, given a high enough match payoff M , any grammar can be sustained in equi-

librium. We then discuss sender-types’ preferences over these equilibria, culminating

with the result that the most-preferred equilibrium is the same for all sender-types.

9We do not include the potential advantage from learning about the other agent’s type in the
player’s utility function. Although more complicated, our results would remain qualitatively similar.

10We provide a formal microfoundation of the information penalty function in Appendix E
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3.1 The Large Set of Equilibria

We start with the result that, for any grammar, there is an equilibrium in which all

senders attend the conversation and use that grammar as long as the match payoff is

large enough. For this to occur, the match payoff must be large enough so that each

sender-type receives a higher payoff from participating in the conversation than devi-

ating and not attending (given the information penalty associated with the receiver’s

beliefs after observing this deviation). To create the largest penalty from deviation, off-

the-path receiver beliefs are assigned such that the receivers infer that the sender- and

receiver-types do not match, so the receiver chooses to end the conversation following

a sender’s deviation.11

Proposition 1. For any grammar g, there exists M > 0 such that there is a full

participation equilibrium in which all sender-types use grammar g.

If M is not large enough to sustain a common-grammar equilibrium, there can exist

equilibria in which some players choose to not attend the conversation. As a simple

example, consider the case in which there are two traits (N = 2) with ρ1 = 0.75,

ρ2 = 0.5, v1 = 1 and v2 = 2. Given these parameters, an equilibrium with full

attendance using the common grammar ({1}, {2}) does exist if M ≥ 8 and the receiver

beliefs following any deviation are µ(ωS1 = 1|hNA) = 0 and µ(ωS2 = 1|hNA) = 0.5.

However, if M < 8, then there is no equilibrium with a common grammar in

which all players attend the conversation. There is, however, an equilibrium in which

sender-types [0 1] and [0 0] choose to Not Attend, the receiver correctly infers the

sender-type’s first trait after observing Not Attend, and sender-types [1 1] and [1 0]

participate in the conversation using grammar ({1}, {2}). In this equilibrium, sender-

types with a rare first-trait realization choose to Not Attend the conversation and forgo

11As noted, our proof constructs PBE wherein the receiver’s beliefs following a deviation by the
sender depend on the receiver’s type, which violates the consistency condition imposed on beliefs in a
sequential equilibrium (SE). However, our focus on PBE strengthens our main results, Propositions
2 and 3, which find the best equilibrium out of a subset of PBE, only a subset of which can be SE.
In addition, one can support the common grammar equilibrium that these propositions identify as
optimal using beliefs that satisfy the SE consistency requirement for sufficiently large M . To see this,
suppose that all agents believed that deviating senders have a realization of 0 for all of the traits that
had not previously been revealed verifiably, which are beliefs that satisfy the consistency requirement.
A sender that did not share these trait realizations would refuse to deviate from the common grammar
equilibrium (for large enough M) since she would lose the opportunity to match profitably. A sender
with those trait realizations would refuse to deviate as she would be revealing information to more
receiver types than in the common grammar equilibrium, resulting in a higher information penalty
than is received in the common grammar equilibrium.

10



any matching payoff in order to avoid revealing information about their type. Note

that any equilibrium of this type requires multiple sender-types to choose Not Attend

because otherwise the receiver could infer the full type of the sender.

In the next section, we turn to sender preferences over common-grammar equilibria.

Consequently, we continue the analysis under a maintained assumption which guaran-

tees the existence of at least one common-grammar equilibrium: M ≥
∑N

j=1
ρi∏n

k=j
(1−ρk)

vi

(M ≥ 8 in the previous example). However, we imagine that non-participation equi-

libria might be common in real-life, with rare types avoiding information-revealing

conversations and never finding matches because (1) the likelihood of finding a match

is low for rare types and (2) the differential information costs of revelation are higher

for rare types.

3.2 Universally-Preferred Equilibrium

While there are many equilibria given a high enough match value, we now show that

all sender-types prefer a unique common-grammar equilibrium. As an initial step,

we define a series of suboptimal grammars, and the natural “improvement steps” one

might use to find a more optimal grammar.

Definition 1. 1) Grammar g is inefficient if any stage contains a null message or a

trait revealed in a previous stage. The efficient version of grammar g is a grammar g′

that is identical to grammar g except where stages containing null messages or repeated

traits are removed.

2) Grammar g is incomplete if it does not reveal all traits. The complete version

of incomplete grammar g is a grammar g′ that is identical to grammar g except that a

final stage is appended in which all unrevealed traits in grammar g are revealed.

3) Grammar g is non-sequential if multiple traits are revealed in one stage. The

sequential version of non-sequential grammar g is a grammar g′ in which each stage

that reveals multiple traits is replaced by individual stages that each reveal a single trait.

4) Grammar g is misordered if the grammar is sequential and traits are not

revealed in order of increasing information value. The ordered version of grammar g

is a grammar g′ that reveals traits in order of increasing information value.

Given this, we present one of our main results, which implies that our improvement

steps are universally preferred by all sender-types.
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Proposition 2. Suppose M is sufficiently large that a common grammar entailing

participation by the sender exists. Among all common-grammar equilibria, all sender-

types prefer the equilibrium using:

1) the efficient version of grammar g to the inefficient grammar g.

2) the complete version of grammar g to an incomplete grammar g.

3) the sequential version of grammar g to a non-sequential grammar g.

4) the ordered version of grammar g to the misordered grammar g.

The first three results of Proposition 2 are straightforward. Claim (1) follows im-

mediately from our assumption that senders have a lexicographic preference for shorter

conversations ceteris paribus. Claim (2) notes a preference for conversations in which

the types are fully revealed before a match occurs. In an equilibrium employing an

incomplete grammar, receiver-types choose Match without knowing the sender’s full

type because the receiver (correctly) believes that the sender will send no more mes-

sages. Meanwhile, the sender sends no more messages because she (correctly) believes

that the receiver will not choose Match if she reveals any more messages. However, the

sender would prefer to issue a final message revealing all of her traits because it avoids

the negative payoff from mismatching (−L < 0).12,13 Claim (3) implies that senders

prefer equilibria wherein messages do not reveal multiple traits at once. If the sender

reveals multiple traits and the receiver does not match on one of these, the sender has

revealed more information than required and unnecessarily increased the size of her

information penalty. Claims (1) - (3) suggest that senders prefer the conversation in

which, in each stage, the sender reveals the smallest amount of information that will

screen out at least some receivers until her full type is revealed.

Claim (4) is more surprising. A natural (and incorrect) conjecture is that players

prefer to reveal traits in an order that minimizes the immediate increase in their in-

formation penalty, implying that the preferred trait revelation order is dependent on

12In any equilibria with matching that occurs when multiple traits are unrevealed, the information
penalty also pushes a sender to prefer an additional stage that reveals more traits, because this reduces
the number of mismatched receiver-types who choose to match and consequently observe all of the
sender’s traits. However, when there is only trait left to reveal, the remaining receiver-types will
learn all traits of the sender regardless. Therefore, the mismatch penalty is necessary to break the
indifference of the sender between complete sequential revelation and an equilibrium where all traits
but one are revealed and then the receiver always chooses to match.

13There are certainly situations in which the sender might prefer an incomplete grammar. For
example, imagine a third-party eavesdropper who can listen to the conversation, but cannot observe
the process once a match is initiated. Given privacy preferences over the eavesdropper’s beliefs, the
sender prefers to gradually reveal traits publicly until a critical stage (prior to the revelation of all
traits) where she prefers a match to be initiated to cutoff revelation to the eavesdropper.
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both the information value of a trait and the rarity of an agent’s particular trait real-

ization. For example, suppose ρ1 = 0.6 and ρ2 = 0.9, with v1 only slightly smaller than

v2. Our (false) conjecture would suggest that sender-type [1 1] would prefer grammar

({2}, {1}) to ({1}, {2}) because it reveals less information, shifting the mismatched

receiver-types’ prior from 0.9 to 1 on the second trait (rather than from 0.6 to 1 on

the first). Of course, if this conjecture were correct, sender-type [0 0] would have the

opposite preference, and more generally, senders of different types would not agree on

the optimal grammar.

However, this logic ignores a dynamic benefit: revealing a rare trait realization ends

the conversation earlier for more receiver-types, which reduces the information senders

reveal in later stages to non-matching partners. For example, consider the full benefit

of the two grammars for sender type [1 1] relative to the situation in which all receivers

observe her full type. By revealing the second trait first, she stops .1 of the population

(who have a different second trait) from learning her first trait, which would have

moved their prior for that trait by .4. Alternatively, initially revealing the first trait

stops .4 of the population from learning the second trait, which would have moved the

prior by .1. Therefore, the population-times-movement-in-prior savings are the same

for both grammars. The effects balance because the sender’s information penalty is

linear in the receiver’s beliefs and, given that the receiver has rational expectations,

the movement in beliefs from learning that the sender holds a trait must be equal

to the percentage of the population that does not hold that trait. However, because

v2 > v1, the information penalty puts more weight on the latter case, leading the

sender to prefer the grammar ({1}, {2}). The proof of Proposition 2 uses this logic

to demonstrate that all sender-types prefer the ordering in which traits with higher

information values are revealed later.

Given Proposition 2, the structure of the grammar universally preferred by all

sender-types is obvious.

Corollary 1. Among all common-grammar equilibria, all sender-types prefer the one

with the efficient, complete, and sequential-ordered grammar g = ({1}, {2}, ..., {N})

Now that we have derived the optimal grammar, we present Example 1 to show how

a conversation unfolds over time, using a format designed to make all of the possible

paths-of-play explicit (although only describing the potential histories of play for a

single type).
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4 Type-Specific Grammars: Indirect Information

In the previous section we focused on equilibria in which all types of senders use the

same grammar. If senders instead use different grammars, then receivers will infer

information (in equilibrium) about traits that are not explicitly revealed based on the

chosen grammar. For example, consider an equilibrium in which there are two traits

and sender-types [1,0] and [0,1] use grammar ({1}, {2}) while sender-types [1,1] and

[0,0] use grammar ({2}, {1}). Although the sender only reveals one trait in the first

stage, the receiver infers the sender’s full type in equilibrium after this one message:

for example, the receiver can infer that the sender’s type is [0,1] after observing the

message m1 = {ω1 = 0}, as only that type sends that message in equilibrium. As a

second example, consider a different two-trait equilibrium in which sender-types [1,1],

[1,0] and [0,1] use grammar ({1}, {2}), while sender-type [0,0] uses grammar ({2}, {1}).
In this case, the receiver infers both traits of sender-types [0,1] and [0,0] after the first

message, but only learns the first trait of sender-types [1,1] and [1,0].

Considering equilibria where sender-types use different grammars significantly com-

plicates the analysis, so we proceed in two steps. First, we introduce a refinement that

eliminates some types of indirect information revelation and show that senders continue

to prefer the previously-discussed optimal common-grammar equilibrium. Second, we

allow for arbitrary signaling and provide an example of a non-common-grammar equi-

librium that is universally preferred by senders.

4.1 No Type Prefers to Signal About Traits Only

In our first step, we allow sender-types to use different grammars, but restrict the

combination of these grammars by only allowing equilibria that satisfy a refinement

that we call block inference.

Definition 2. At any history h along the path of play of an equilibrium satisfying

block inference, we can define K(h), U(h) ⊂ {1, .., N} that denote the sets of known

and unknown traits at history h. We require that K(h)∪U(h) = {1, .., N} and K(h)∩
U(h) = ∅. For all j ∈ K(h) we have µR(ωSj = 1|h) ∈ {0, 1}. The receiver believes all

traits within U(h) are distributed independently and µR(ωSj = 1|h) = ρj.

Loosely speaking, block inference requires that all indirect information revealed

through the use of different grammars be achievable in some equilibrium in which all

15



information is directly revealed.14 For example, in the second example of this section,

there is a payoff-equivalent equilibrium in which all senders directly reveal all traits.

This equilibrium has the form:

Sender-type First Message Second Message

[1,1] {ω1 = 1} {ω2 = 1}
[1,0] {ω1 = 1} {ω2 = 0}
[0,1] {ω1 = 0, ω2 = 1} N/A

[0,0] {ω1 = 0, ω2 = 0} N/A

Note that no signaling occurs, and the receiver has the same beliefs about the various

sender-types at the close of each period as in the second example.

We pursue the analysis of block inference primarily to illustrate that Proposition

2 does not hinge on restricting ourselves to equilibria wherein agents use the same

grammar. Given the relatively simple pattern of posterior beliefs along the equilibrium

path, this type of equilibrium might be focal among signaling equilibria.

While restrictive, block inference admits a richer variety of signaling phenomena

than prior work, allowing for a wide range of indirect inference in equilibrium.15 In

Appendix C, we show that block inference allows for the majority of traits to be re-

vealed by signaling. An example of an equilibrium that does not satisfy block inference

requires more than two traits. Consider a three-trait equilibrium in which types [1,0,0],

[1,1,0], and [1,1,1] are the only types that transmit m1 = {ω1 = 1}. Given this message,

the receiver knows that if the sender’s second trait is a ”0,” then the third trait is also

a ”0.” This type of correlational information cannot be transmitted in an equilibrium

with only direct revelation of traits.

Proposition 3 shows that senders continue to prefer the common-grammar equilib-

rium highlighted in Corollary 1 over any equilibria with a non-common grammar that

satisfies block inference. The logic follows that of part (3) of Proposition 2: all sender-

types prefer not to signal traits indirectly through the choice of grammar in the same

14More formally, under strategy σ a set of traits σ(h) is revealed at history h. In a block inference
equilibrium, an additional set of traits mSignal(h) is signaled to the receiver. Consider the alternative
strategy σ̃(h) = σ(h)∪mSignal(h). It is obvious that no additional information is revealed under σ̃(h)
relative to σ(h) - the information is just revealed verifiably under σ̃. The subtle difference between
σ̃ and σ is that σ allows more deviations, an issue related to the cheap-talk message model discussed
in Section B.5.

15Past papers restrict the inferences that can be made by, for example, exogenously requiring agents
to reveal information in a prespecified order (e.g., Stein [37], Dziuda and Gradwohl [10]).

16



way that they prefer not to reveal multiple traits directly in one stage. This implies

that senders prefer to use a common grammar that eliminates signaling — specifically,

the senders all prefer the common-grammar noted in Corollary 1:

Proposition 3. Among all equilibria satisfying block inference, all sender-types prefer

the one with common grammar g = ({1}, {2}, ..., {N}).

4.2 Signalling about Type Without Revealing Traits

Expanding the set of equilibria beyond those satisfying block inference complicates

the analysis to the point that it is difficult to make general statements about sender

preferences. Instead, we show by example that senders can now universally prefer an

equilibrium with a non-common grammar. In this equilibrium – outlined in Example

2 – the first message reveals a large amount of information about the type of the

sender, but leads to a low information penalty for the sender because there is little

information revealed about the sender’s individual traits. For example, the message

{ω2 = 1} reveals that the sender is either type [0 1 0 0] or [1 1 1 1], narrowing down

the potential sender-types from 16 types to 2 types. However, the receiver does not

update his beliefs about the probabilities of traits one, three, or four.

Example 2 (Non-Block Inference Equilibrium):

Assume that N = 4 and that ρ1 = ρ2 = ρ3 = ρ4 = .5
Consider the following potential equilibrium behavior:
Types [0 0 1 0], [0 1 0 1],[1 0 1 1],[1 1 0 0]: g = ({1}, {2, 3, 4})
Types [0 0 0 1], [1 0 1 0],[0 1 0 0],[1 1 1 1]: g = ({2}, {1, 3, 4})
Types [1 1 1 0], [0 0 1 1],[0 0 0 0],[1 1 0 1]: g = ({3}, {1, 2, 4})
Types [0 1 1 0], [1 0 0 0],[0 1 1 1],[1 0 0 1]: g = ({4}, {1, 2, 3})

Then after the first stage:
If m1 = {ω1 = 0},then µ(ωS1 = 1|m1) = 0, µ(ωSj = 1|m1) = .5 for j ∈ {2, 3, 4}
(as [0 0 1 0] and [0 1 0 1] are the players that send that message in equilibrium.)

If m1 = {ω1 = 1},then µ(ωS1 = 1|m1) = 1, µ(ωSj = 1|m1) = .5 for j ∈ {2, 3, 4}
(as [1 0 1 1] and [1 1 0 0] are the players that send that message in equilibrium.)

In general:
If m1 = {ωj = k},then µ(ωSj = k|m1) = 1, µ(ωSl = 1|m1) = .5 for l 6= j

The example is a Pareto optimal equilibrium for the given parameters because it

leads to a small information penalty for the sender (revealing one trait realization) in

the first round and screens out the majority of receivers (in this case, 7
8

of receivers).
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We conjecture that Pareto optimal equilibria for other parameters share the same basic

features: senders group in a way such that the receiver learns a great deal about the

sender’s type, but not much about the sender’s specific trait realizations.

This example also demonstrates the costs and benefits of our particular parame-

terization of the penalty function, in which privacy is solely a function of marginal

beliefs about individual traits (and not about correlation between traits). The benefit

of modeling type-as-traits is the ability to analyze the structure of conversation when

different pieces of information have different privacy values to the sender. The cost

is the circumvention of situations in which correlation information may be addition-

ally important for the sender’s privacy. For example, in Example 3 the first message

sent does not provide any information about the marginal likelihood of any other of

the sender’s traits. However, the message does imply that the unrevealed traits are

perfectly correlated, which could be seen as a loss of privacy for the sender. Unfor-

tunately, other parameterizations of the penalty function which take correlation into

account appear either unwieldy or lack the ability to differentiate information by value

and rarity.

5 Conclusion

Our paper analyzes situations in which agents must exchange information to discover

whether they can productively match, but the agents have a preference for privacy

and would like to reveal as little information about their type as possible. Such a

concern for privacy in the context of information exchange is pervasive in business,

political, and social settings. Our goal is to provide a realistic model of information

exchange in these settings in order to discover how the preference for privacy structures

communication in terms of both the quantity and the kind of information disclosed as

the conversation progresses.

Focusing on the set of equilibria in which all senders-types use a common trait rev-

elation sequence, we find that there is a universally-prefered conversation structure in

which individual traits are revealed sequentially, and more sensitive data are disclosed

once the agents have become more confident that a profitable match is possible. The

universal preference across types with different rarity of traits is driven by the dynamic

nature of the conversation - early disclosures of rare trait realizations are more likely

to incur an immediate information penalty, but also screen out many non-matching
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receiver-types, which reduces the expected information penalties for traits revealed in

later stages. We then show that this preference continues when senders can indirectly

signal information about traits by using different grammars. We close our analysis

with a brief description of an equilibrium that illustrates some of the possibilities re-

alized when more complex signaling is allowed. In this equilibrium, the sender signals

membership in a small but diverse group through her initial message, which causes

many receiver-types to leave the conversation without learning much about many of

the sender’s individual traits.

While our principal goal is to study how preferences for privacy influence the struc-

ture and timing of information exchange, future work could incorporates this type of

analysis into more general models that endogenize the match value. Privacy is often a

concern in mechanism-design settings where the agents may interact later. For exam-

ple, spectrum auctions usually involve a small number of national companies as bidders

that are engaged in competitive interactions that can span decades. Other potential

settings include bargaining over merger decisions in models of market competition,

policy debates in political economy settings, and principal-agent problems that require

information exchange between the actors.
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A Proofs

It will be convenient to denote the probability of a given sender’s realization on trait
j as ρ∗j , so that for type ω = [1 0 1], ρ∗1 = ρ1, ρ

∗
2 = (1− ρ2), and ρ∗3 = ρ3, and therefore

Pr(ω) =
∏N

j=1 ρ
∗
j . We use this notation throughout the proof appendix.

Proposition 1. For any grammar g there exists M > 0 such that there is a perfect
Bayesian equilibrium in which all sender-types use grammar g.

Proof. Along the equilibrium path, assume that the sender-types follow the complete
grammar defined by the strategy for their type. If the sender follows a grammar
assigned to some sender-type, then the receiver’s beliefs are generated by Bayes’s rule.

If the sender ever deviates to a grammar used by no other type of sender, then at
every successor history the receiver’s beliefs place probability 1 on the sender having a
particular type that does not match the receiver’s. Therefore, the receiver will choose
End after such a deviation. Given these events off-the-path, the sender finds it optimal
to play as required on the path for large enough M since to do otherwise would foreclose
the possibility of a profitable match.

Proposition 2. Suppose M is sufficiently large that a common grammar entailing
participation by the sender exists. Among all common-grammar equilibria, all sender-
types prefer the equilibrium using:

1) the efficient version of grammar g to the inefficient grammar g
2) the complete version of grammar g to an incomplete grammar g
3) the sequential version of grammar g to a non-sequential grammar g
4) the ordered version of grammar g to the misordered grammar g

Proof. As a preliminary step, note that since the choice to Attend is part of the
grammar, equilibria with a common grammar entail either every sender-type or no
sender-type chooses Attend. Because we assume that M is sufficiently large that the
sender-types choose Attend, we consider only the former case.

To start our proof of claim 1, note that aside from the cost of delaying the close
of a conversation, the efficient and inefficient grammars yield the same payoffs. Since
we lexicographically drop ties of this form in favor of the shorter grammar, the shorter
efficient grammar is strictly preferred to the longer inefficient grammar. This yields
claim 1.

To prove claim 2, consider an incomplete grammar g and its complete version g′.
The only difference in the outcomes of these two grammars occurs at history h at which
(a) there are unrevealed sender traits and (b) no further messages are sent. Since we
are assuming full participation by both sender- and receiver-types, the only possible
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outcome following history h under grammar g is Match,16 so all of the sender’s traits
are revealed to the receiver. This is also the case under g′, so the information penalties
are identical under each grammar. However, g′ screens out all non-matching receiver-
types, which means the sender need never incur the loss L that results from a mismatch
between the sender and receiver types. Therefore g′ is preferred by all sender-types to
g, which yields claim 2.

To prove claim 3, consider a non-sequential grammar g and its sequential version g′.
For the purposes of our argument, assume that the only difference between g and g′ is
that a single message m in g reveals two or more traits. We will prove that dividing
this messages into two messages, one revealing a single trait and the second revealing
the remainder of the content of m, is preferred by all sender-types. A straightforward
(and omitted) induction argument then gives us claim 3.

Throughout this proof we use g1 ⊕ g2 to denote the concatenation of g2 to the end
of g1. We can write g = g1⊕m⊕ g2 for appropriately chosen g1 and g2, where g1 or g2
might be empty if m is the first or last message respectively. Suppose m reveals trait i
as well as a set of other traits with indices in set S. Let m1 be a message that reveals
trait i, while m2 is a message that reveals the traits with indices in S. Consider the
grammar g′ = g1 ⊕m1 ⊕m2 ⊕ g2. Let T denote the indices of traits revealed in g1.

The payoff to grammars g and g′ differ only in the event that the sender and receiver
differ on a trait revealed in m. The payoff to following grammar g′ in this event can
be written

−(1− ρ∗i )∗
(∑

t∈T vt + vi +
∑

t/∈T ∪{j} ρ
∗
t ∗ vt

)
(A.1)

− ρ∗i (1−
∏
s∈S

ρ∗s)
(∑

t∈T vt + vi +
∑

s∈S ρ
∗
svs +

∑
t/∈T ∪S ρ

∗
t ∗ vt

)
Grammar g has an expected payoff following g conditional on differing on either trait
j or k is equal to

−(1− ρ∗i
∏
s∈S

ρ∗s)
(∑

t∈T vt + vi +
∑

s∈S vs +
∑

t/∈T ∪S ρ
∗
t ∗ vt

)
(A.2)

Subtracting Equation A.2 from A.1 yields

(1− ρ∗i )
∏
s∈S

(1− ρ∗s) vs > 0

The sender thus has a strict preference for grammar g′ to grammar g, proving our
claim.

To prove claim 4, consider a misordered grammar g. Let message mj in grammar
g reveals trait β(j). Suppose for some j ∈ {1, .., N − 1} we have vβ(j) > vβ(j+1). We

16If a receiver-type instead chose End, then that receiver-type could never match. Because of the
lexicographic preference for shorter conversations, this receiver-type would instead choose Not Attend,
which would violate our assumption of full participation.
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show that senders prefer the grammar g′ = (m1, ..,mj−1,mj+1,mj,mj+2, .,mN). A
straightforward (and omitted) induction argument suffices to then prove our claim.

Note that the only difference between g and g′ is that under g trait β(j) is revealed
before β(j + 1), whereas under g′ trait β(j + 1) is revealed before trait β(j). The
sender’s payoff only differs between the grammars on the event where the sender and
receiver have different realizations of either trait β(j) or β(j + 1) and match on all
previously revealed traits. Conditional on the sender and receiver having different
values of trait β(j) or β(j + 1) and the same values for traits β(1) through β(j − 1),
the sender has an expected utility under grammar g equal to

−
(
1− ρ∗β(j)

)
∗
(∑j

k=1 vβ(k) +
∑N

k=j+1 ρ
∗
β(k)vβ(k)

)
(A.3)

−
(
1− ρ∗β(j+1)

)
ρ∗β(j) ∗

(∑j+1
k=1 vβ(k) +

∑N
k=j+2 ρ

∗
β(k)vβ(k)

)
Conditional on the sender and receiver having different values of trait β(j) or β(j + 1)
and the same values for traits β(1) through β(j−1), the sender has an expected utility
under grammar g′ equal to

−
(
1− ρ∗β(j)

)
ρ∗β(j+1) ∗

(∑j+1
k=1 vβ(k) +

∑N
k=j+2 ρ

∗
β(k)vβ(k)

)
(A.4)

−
(
1− ρ∗β(j+1)

)
∗
(∑j−1

k=1 vβ(k) + vβ(j+1) + ρ∗β(j)vβ(j) +
∑N

k=j+2 ρ
∗
β(k)vβ(k)

)
Subtracting Equation A.3 from Equation A.4 yields(

1− ρ∗β(j)
) (

1− ρ∗β(j+1)

) (
vβ(j) − vβ(j+1)

)
> 0

where the inequality follows from our assumption that vβ(j) > vβ(j+1), which implies
that the sender strictly prefers g′ to g.

Proposition 3. All sender-types prefer the equilibrium in which all sender-types use
grammar g = ({1}, {2}, ..., {N}) to any other equilibrium satisfying block inference.

Proof. Our argument consists of two steps. First, we prove that sender-types prefer
that receivers have what we term “straightforward beliefs” that do not infer anything
from a message other than what is revealed explicitly (i.e., there is no signaling). Once
this has been shown, Corollary 1 provides our result immediately.

With this argument structure in mind, we need the following definition:

Definition 3. The receiver’s beliefs satisfy straightforward inference if the be-
liefs following any history of play are conditioned only on the verifiable information
contained in the messages received.

Given any history h of an equilibrium that satisfies block inference, it must be the
case that the sender’s utility would be higher if the receiver’s beliefs satisfy straightfor-
ward inference rather than the equilibrium beliefs. To see this, note first that for traits
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have been explicitly revealed in a message in equilibrium, the information penalty is
the same. For all other traits one of the following is true in equilibrium: (1) the
receiver has not updated his prior beliefs or (2) the receiver places probability 1 on the
true realization of the sender’s trait. In the first case, the payoff for the sender is the
same under equilibrium and straightforward inferences. In the second case, the payoff
for the sender is higher under straightforward inferences than equilibrium inferences.

Having made the improvement step (for any equilibrium) from equilibrium inferences
to straightforward inferences, Corollary 1 implies that we can maximally improve pay-
offs by having all sender-types use the grammar that reveals information in order of
increasing information value. Given that all agents use the same grammar, straight-
forward inferences now are the equilibrium inferences made by the receiver, meaning
that we have found the best possible PBE for all sender-types.
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***APPENDIX: For Online Publication Only***

B Extensions

This section notes an additional result and five extensions to the model, which we now
summarize here.

The additional result shows that, although all sender-types all prefer the same com-
mon grammar, many different grammars converge on the same payoff as the number
of traits rises.

Our first extension considers situations in which successful matches require matching
on some (but not necessarily all) traits. We show that the senders still prefer to release
traits in order of increasing information value.

Our second extension provides a partial characterization of our model when sending
messages is costly. When the cost of sending messages is small, the results above
continue to hold. That is, agents prefer to reveal one trait at a time because the
screening benefit outweighs the cost. Higher messaging costs provide an incentive
for the sender to reveal multiple traits in a single message, and this incentive pushes
against the dynamic screening incentives analyzed in our main model. We argue that
the sender balances the cost of multiple messages and the dynamic screening concerns
by revealing messages with a message size that grows almost exponentially as the
conversation proceeds.

Throughout the main paper, we assume that the information penalty for trait j is
the product of the information value and the other player’s beliefs. Our third extension
allows for non-linear transformations of beliefs in this calculation using an increasing
function π(·). We show that if π is moderately nonlinear in the other player’s beliefs,
our results continue to hold. When π is more nonlinear, a sender-type’s preferred
grammar will depend on a particular combination of the information value of the traits
and the trait realizations’ rarity. This result implies that sender types may disagree on
the optimal grammar, but that all sender-types will prefer to reveal traits in increasing
information value if the traits have sufficiently different information values.

Our fourth extension considers situations where the sender’s messages are cheap-talk.
In our baseline model, senders can economize on the information penalty by choosing
Not Attend. If the messages are cheap-talk, then the sender could also reduce her
information penalty by mimicking another type. However, this behavior exposes the
sender to the risk that a receiver of the mimicked type will be “tricked” into choosing
Match, which causes the sender to suffer a welfare loss of −L. We can eliminate
these deviations (and therefore allow the sender’s messages to be cheap-talk) if L is
sufficiently large.

Our final extension considers two-sided conversations where the roles of sender and
receiver swap exogenously between the agents. We assume the receiver is also a bona
fide strategic agent who suffers an information penalty from revealing his type. To
extend our assumption of verifiable messages to a model where the receiver is a strategic
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agent, we assume that the receiver’s messages must verifiably reveal whether his traits
match the values revealed by the sender’s message.17 In this setting, all of the types
of each player agree on the best equilibria, but the players can have different opinions
over the best equilibria depending on their role at each stage.18

B.1 Many Equilibria Efficient in the Limit

While sender-types have preferences over finite conversations, many common-grammar
equilibria approach the same payoffs as the number of traits is large. The basic intuition
is that as N →∞, the conversation will end with high probability before most of the
traits have been revealed. Regardless of which grammar is employed, the expected
percentage change in the information penalty is small.

Proposition 4. Consider a sequence of traits with associated parameters (ρj, vj) and
a grammar in which at most K traits are revealed in each stage. Assume that vj is
bounded from above by v and ρj < ρ < 1.19 Then

1

N

∑N
j=1

{
E
[
µR
(
ωSj = 0|h

)
|ωSj = 0

]
− (1− ρj)

}
vj = O

(
K

N

)
1

N

∑N
j=1

{
E
[
µR
(
ωSj = 1|h

)
|ωSj = 1

]
− ρj

}
vj = O

(
K

N

)
Proof. Suppose h represents the history at which the game ends, and trait ωj is revealed
at stage t. Let St denote the indices of the traits revealed before ωj. Then we can
write

E
[
µR
(
ωSj = 0|h

)
|ωSj = 0

]
=
∏
s∈St

ρ∗s +

(
1−

∏
s∈St

ρ∗s

)
(1− ρ∗j)

which implies that

E
[
µR
(
ωSj = 0|h

)
|ωSj = 0

]
− (1− ρj) = ρ∗j

∏
s∈St

ρ∗s

17 It turns out to not be particularly important that the receiver reveals whether or not he matches
the individual traits revealed by the sender (as opposed to the receiver revealing whether or not some
trait revealed by the sender is incompatible with the receiver’s type).

18For example, suppose there are three traits and the agents exchange the role of sender and receiver
in each stage. The preferred equilibrium of the agent who is the receiver in stage 1 is to have the
sender reveal her entire type in the first stage. The preferred equilibrium of the agent who is the
sender in the first stage is for the first sender to reveal the lowest information value trait and then
have the other player reveal the remaining two traits in the second stage.

19We can allow vj to grow, but the crucial point is that vj cannot grow too quickly. If vj grows
exponentially, then convergence may fail entirely.
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Using this result we find that

1

N

∑N
j=1

{
E
[
µR
(
ωSj = 0|h

)
|ωSj = 0

]
− (1− ρj)

}
vj =

1

N

∑N
j=1 ρ

∗
jvj

∏
s∈St

ρ∗s

≤ K

N
ρv
∑N

j=1 ρ
j

<
K

N

ρv

1− ρ
= O

(
K

N

)

Our bound is tight. Consider a case where (ρj, vj) =
(
1
2
, 1
)

and one-trait is revealed
in each stage. In a multi-stage conversation a few traits must be revealed with high
probability, but it is rare that later traits will be revealed. The O

(
1
N

)
bound (which

is tight in this case) reflects the speed with which the average discounts the welfare
cost of fully revealing those early traits. Loosely, this result suggests that, while the
common-order grammar discussed in Proposition 2 is strictly preferred by all senders,
the relative penalty from using a sub-optimal grammar that gradually reveals traits
drops as the number of traits increases.

B.2 Matching With “Close” Types

In the model above we assumed that the sender and receiver must have the same
type for a match to be profitable, whereas in most economic interactions agents find
matching profitable if they have similar, but not identical, types. In this subsection
we examine equilibria wherein senders and receivers find it profitable to match if and
only if they discover that they share K ≤ N trait realizations. We show that sender
optimal equilibria that satisfies block inference continue to have the same structure as
described in Section 4.20

Our candidate sender optimal equilibrium is one in which traits are revealed by all
sender-types at all histories in order of increasing information value. Since choosing
Match is incentive compatible as soon as the sender and receiver are known to share K
trait realizations, we focus on equilibria in which the receiver chooses Match as soon as
K common trait realizations are observed. We denote the resulting pair of equilibrium
strategy for the sender and beliefs for the receiver as (σ∗, µ∗R). We now argue that
(σ∗, µ∗R) is the most preferred equilibrium by all sender-types.

Given a history h, let Nh be the number of traits revealed by reaching h, and Kh be
the number of revealed traits where the sender and receiver have matching values.21

We refer to any history h where N − Nh = K −Kh as a last chance history. At any

20Some components of our game, such as the definition of a history, need to be elaborated in obvious
ways to account for the fact that the agents can fail to match on some traits and still choose to match
in equilibrium. We ignore these technical issues.

21The sender and receiver mismatch for the remaining Nh −Kh traits.
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history where Kh ≥ K, the receiver chooses Match, which implies that both the sender
and receiver pay the full information penalty. This implies that the sender is indifferent
to the set of traits that were revealed or the order in which the traits were revealed
along that history. At any last chance history, the remaining traits must match or
the receiver will choose to end the conversation with the action End. In any subgame
that reaches a last chance history, the sender and receiver are in effect playing the
multi-stage conversation game analyzed in the main text.

These two observations imply that when assessing whether (σ∗, µ∗R) is the most pre-
ferred equilibrium by all sender-types, we can restrict attention to improvements along
paths of play that terminate at last chance histories. As argued in Section 4, at any last
chance history the sender weakly prefers to reveal hidden traits in order of increasing
information value. Since σ∗ reveals traits in order of increasing information value at
every history, this argument implies that (σ∗, µ∗R) is the most preferred equilibrium by
all sender-types.

(σ∗, µ∗R) is one of several payoff equivalent equilibria of our game. Consider some
history h, and let Bh denote a set of traits that is revealed before any last chance
successor history.22 The sender-types are indifferent to the number of messages or
order of messages used to reveal the traits in Bh as long as they are revealed before
any other traits. For example, consider the beginning of the game, h0. If K = N − 1
then in our equilibrium Bh0 contains the two lowest value traits. Since Bh0 are surely
revealed in the most preferred equilibrium by all sender-types, the sender-types are
indifferent with regard to the order in which these traits are revealed. The information
value of these traits is a “sunk cost” that is paid by the sender. With this notion of
the low value traits as a sunk cost, it is intuitive that the sender types would seek to
minimize these costs by revealing the low information value traits first.

B.3 Costly Messages

In our model, there is no cost to sending or receiving a message. Because of this, the
sender has an incentive to drag out the conversation by revealing a single trait in each
message. There are often real costs, however, to transmitting and processing messages.
This suggests that senders may have an incentive to reveal more than one trait in each
message to economize on the communication costs. In this section we focus on how
these costs influence the structure of the most preferred equilibrium.23

First, note that when we consider costly messages, there is a question of how the
traits are packed into messages and the order in which these messages are released.
We call the first problem the packing problem. If we consider equilibria where all of
the sender types use the same grammar, then a simple modification of the proof of

22This definition is subtle - whether a successor history to h, denoted h′, is a last chance history
depends on whether the sender and receiver match on the traits revealed between h and h′.

23For very small message costs, the sender’s incentive to dynamically screen out non-matching
receivers obviously dominates the incentive to save on messaging costs by revealing multiple traits in
a single message

30



Proposition 2 would imply that the messages are revealed in order from lowest to
highest total information value, where the total information value is the sum of the
information values of the individual traits revealed within a given message. In effect,
we can consider each of these aggregated messages as a nonbinary trait.

To simplify our discussion of the packing problem when costs get larger, we focus
on a completely symmetric model where vj = 1 and ρj = 1

2
. The symmetry implies

that we can ignore the signaling concerns that dominated our analysis of the more
general model, and focus on the effect of costs on how much information is conveyed
by each message. We describe solutions to the packing problem with J messages as
P = (p1, ..., pJ) where ps ≥ 1 describes an integer number of traits to reveal in stage s.

The packing problem involves complicated combinatorics, which means it is not
amenable to closed-form analysis. However, there are a few incentives of interest that
we can highlight even given the limited tractability of the problem. Two tensions are at
play in our analysis. First, the sender wants to reveal as little information as possible
in early messages to avoid information penalties in the event that the receiver does not
share the trait realizations revealed in the first message. Second, in order to effectively
screen out a large fraction of the non-matching receivers, the sender is required to
reveal multiple traits in the first message.

Suppose that K traits are to be revealed within two messages. What is the optimal
way of dividing the K traits between the two messages? Suppose we reveal a ∈
{1, .., K − 1} traits in the first message with a chosen to solve

min
a

(
1− 1

2a

)(
a+

K − a
2

)
+

1

2a
K

which seeks to minimize the expected information penalty due to a mismatch on one
of these K traits. Simplifying this we find the equivalent problem

min
a

a+
K − a

2a

If we treat a as a continuous variable, then from the concavity of the problem we know
that the optimal choice of a satisfies the following first order condition

2a = 1 + (K − a) ln 2

In our two message case, the balance of the two tensions implies that a∗ grows at a rate
slightly slower than log2K. Therefore, as K grows a large number (but an arbitrarily
small fraction) of the traits are revealed in the first message.

Our analysis can be easily extended to settings where more than 2 messages are
employed. The more general conclusion we reach is that early messages reveal fewer
traits than later messages, and (holding fixed the total number of traits) when the
number of messages used decreases (i.e., message costs rise) the ratio of the number of
traits revealed in early messages relative to later messages grows roughly exponentially.

31



B.4 Alternative Information Penalty Functions π

In the baseline model, the sender’s information penalty for each trait is equal to the
receiver’s posterior on the sender’s true realization for that trait multiplied by the
information value vj of that trait, which assumes that the information penalty function
π is linear. In this section we consider nonlinear specifications of π.

When π is linear, all sender-types prefer that traits be ordered in conversation from
low information value to high information value (Proposition 2). This result is indepen-
dent of the rarity of the sender-type’s trait realizations due to the trade-off between the
privacy and screening incentives: revealing an unlikely trait realization reveals more
information, but has a higher chance of removing a non-matching partner from the
conversation. When π is not linear, these opposing forces are still present, but no
longer perfectly cancel. As a result, senders with different types may have different
preferences over common-grammar equilibria.

Let ρ∗j(ω) be the ex-ante probability that type ω′s value of trait j is realized, which
can be written ρ∗j(ω) = ρj if ωj = 1 and ρ∗j(ω) = 1− ρj otherwise.

Proposition 5. Given straightforward inferences, type ω prefers to reveal trait j before
trait k if and only if

vj
1− π

(
ρ∗j(ω)

)
1− ρ∗j(ω)

≤ vk
1− π (ρ∗k(ω))

1− ρ∗k(ω)
(B.1)

Proof. Suppose some type of sender ωS has the most preferred grammar g ∈ G∗ of the
form g = {m1,m2, ...,mN} where message mj reveals trait β(j). Suppose for some j ∈
{1, .., N−1} we have vβ(j) > vβ(j+1) contradicting our claim for senders of type ωS. We
show that senders of type ωS prefer the grammar g′ = (m1, ..,mj−1,mj+1,mj,mj+2, .,mN)
to g which contradicts our assumption that g was the ideal grammar of type ωS and
establishes our claim.

Note that the only difference between g and g′ is that under g trait β(j) is revealed
before β(j+ 1), whereas under g′ trait β(j+ 1) is revealed before trait β(j). Note that
the sender’s payoff only differs between the grammars in the event where the sender
and receiver have different realizations of either trait β(j) or β(j + 1).

Conditional on the sender and receiver having different values of trait β(j) or β(j+1)
and the same realizations of traits β(1) through β(j − 1), the sender has an expected
utility under grammar g equal to

−
(
1− ρ∗β(j)

)
∗
(∑j

k=1 vβ(k) +
∑N

k=j+1 π
(
ρ∗β(k)

)
vβ(k)

)
(B.2)

−
(
1− ρ∗β(j+1)

)
ρ∗β(j) ∗

(∑j+1
k=1 vβ(k) +

∑N
k=j+2 π

(
ρ∗β(k)

)
vβ(k)

)
Conditional on the sender and receiver having different values of trait β(j) or β(j+1),
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the sender has an expected utility under grammar g′ equal to

−
(
1− ρ∗β(j)

)
ρ∗β(j+1) ∗

(∑j+1
k=1 vβ(k) +

∑N
k=j+2 π

(
ρ∗β(k)

)
vβ(k)

)
− (B.3)(

1− ρ∗β(j+1)

)
∗
(∑j−1

k=1 vβ(k) + vβ(j+1) + π
(
ρ∗β(j)

)
vβ(j) +

∑N
k=j+2 π

(
ρ∗β(k)

)
vβ(k)

)
Subtracting Equation B.2 from Equation B.3 yields a positive quantity if and only

if

vβ(j+1)

vβ(j)
≤

(
1− ρ∗β(j+1)

)(
1− π

(
ρ∗β(j)

))
(

1− ρ∗β(j)
)(

1− π
(
ρ∗β(j+1)

))
which is equivalent to Equation B.1 for traits β(j) and β(j + 1).

The non-linearity of π combined with the fact that different types of senders have
different values of ρ∗j(ω) drives the senders to have different ideal grammars. The
information values, vj, are common across types and push different sender types to
have the same most preferred grammar. The following corollary captures this tension
by illustrating that the nonlinearity of π(ρ) is not an issue when traits have sufficiently
different information values. It is only when the information values are of a comparable
level that the relative rarity of a trait realization drives disagreement between the
sender-types.

Corollary 2. All agents prefer to reveal trait j before trait k if both of the following
hold

vj
1− π

(
ρj
)

1− ρj
≤ min

{
vk

1− π (ρk)

1− ρk
, vk

1− π (1− ρk)
ρk

}
(B.4)

vj
1− π

(
1− ρj

)
ρj

≤ min

{
vk

1− π (ρk)

1− ρk
, vj

1− π (1− ρk)
ρk

}
Proof. Equation B.4 follows by requiring Equation B.1 to hold for all possible realiza-
tions of traits j and k.

Equation B.1 implies that a sender of type ω has preferences over the order of trait
revelation that depend jointly on the probability of each ωj, ρ

∗
j(ω), and the value of

the trait revealed, vj. In the case where the traits have equal information values, we
can describe sender preferences over different grammars in terms of the convexity of π
and the probability of the trait realizations.

Corollary 3. Assume vj = vk for all j and k and that π is differentiable. If π is
strictly concave, type ω prefers the equilibrium in which all agents reveal traits from
highest ρ∗j(ω) to lowest ρ∗j(ω). If π is strictly convex, type ω prefers the equilibrium in
which all agents reveal traits from lowest ρ∗j(ω) to highest ρ∗j(ω).
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Proof. For a single agent, Equation B.1 can be written

1− π
(
ρ∗j
)

1− ρ∗j
≤ 1− π (ρ∗k)

1− ρ∗k

Since π is differentiable we can write

d

dρ

[
1− π (ρ)

1− ρ

]
=
−π′(ρ)

1− ρ
+

1− π(ρ)

(1− ρ)2

Note that this term is negative (positive) for all ρ if π is concave (convex). Therefore
when π is concave (convex) agents prefer to release traits in decreasing (increasing)
order of ρ.

To understand the intuition for this corollary, consider the case in which π is strictly
concave. Concavity raises the relative cost of revealing the rare trait realization (0)
versus the more common realization (1) of a trait. For example if ρ1 = .8, revealing
ω1 = 0 leads to four times the information penalty of revealing ω1 = 1 when π is linear
(1 − .2 vs. 1 − .8). If π is strictly concave, revealing ω1 = 0 must lead to more than
four times the penalty of revealing ω1 = 1 (π(1) − π(.2) vs. π(1) − π(.8)). This is
demonstrated in the following example where all senders are assumed to use the same
grammar in equilibrium.

Example 4 (Preferences over grammars given non-linear π):

Assume N = 2, ρ1 = .8, ρ2 = .6, and v1 = v2. Focus on sender-type [1 1].

Grammar 2: g = [{1}, {2}] (t=1 : Reveal trait 1, t=2 : Reveal trait 2)
Expected info penalty: = −.48(π(1) + π(1))− .32(π(1) + π(1))

−.12(π(1) + π(.6))− .08(π(1) + π(.6))
= −1.40π(1)− .20π(1)− .20π(.6)

Grammar 3: g = [{2}, {1}] (t=1 : Reveal trait 2, t=2 : Reveal trait 1)
Expected info penalty: = −.48(π(1) + π(1))− .32(π(1) + π(1))

−.12(π(1) + π(1))− .08(π(.8) + π(1))
= −1.40π(1)− .40π(.8)

Payoffs are equal if π is linear.
Payoff from Grammar 2 is greater if π is concave.
Payoff from Grammar 3 is greater if π is convex.

Once types have different preferences over grammars, it becomes more difficult to

select between the multiplicity of equilibria.24 We leave further analysis of this difficult

24Principally, this difficulty is due to the lack of a clear criteria for choosing between the equilibria.
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problem for future work.

B.5 Cheap-talk Messages

In the main model we assumed that the sender’s messages are verifiable. If all types

of sender have a positive payoff from participating in the conversation, then there

exists an equilibrium where the senders will continue to use truthful messages in order

to preserve the possibility of profitably matching. However, cheap-talk messages can

eliminate truthful equilibria, and in particular equilibria with efficient matching, when

payoffs from participation are low.

If some sender-type ωS obtains a negative payoff from participating, she may still be

willing to participate given the receiver’s beliefs about senders that choose Not Attend.

The optimal deviation from truthfulness for this sender may be to mimic the behavior

of the sender with the opposite trait realizations. The receiver, believing the messages

to be truthful, will believe that the sender is actually of the mimicked type, which

reduces the sender’s information penalty to 0. The only incentive to not follow this

deviation is the possibility that a receiver is of this mimicked type and chooses Match,

which means the sender gets a total payoff of −L. However, if L is sufficiently small,

it can be worth deviating in this way and risking suffering the −L payoff.

B.6 Two-Sided Conversations

We have focused on the case where the roles of sender and receiver are fixed over time.

Many forms of information exchange in the real-world involve the sequential revelation

of information - in other words, the roles of sender and receiver are exchanged as

the conversation progresses. In this section we consider a model where the roles are

exchanged in each stage in an exogenous fashion (although it can be stochastic). We

break our discussion into two parts. First, we argue that the sender and the receiver

have differing preferences over the optimal equilibrium, but that we can still use the

logic of Proposition 3 to refine our equilibrium set. Second, we discuss the implications

of weakening our assumption of verifiable messages in a two-sided conversation, which

we find has more complex consequences for two-sided conversations than for one-sided

conversations (Section B.5).

Standard signaling equilibrium refinements are of little use in our model.
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B.6.1 Modeling Two-Sided Conversations

In this setting, we assume that both players suffer an information penalty and that both

the sender’s and the receiver’s message are verifiable. However, since the receiver suffers

an information penalty in this model, we need to be concrete about what information

the receiver conveys. Given that the sender has revealed potentially multiple traits,

there are two natural possibilities. One modeling choice is to assume the receiver

must verifiably reveal whether or not the receiver has learned from the message that

a profitable match is impossible. The other modeling choice is to assume the receiver

must verifiably reveal the realization of each trait revealed by the sender.

First let us consider a model wherein the receiver must verifiably reveal whether or

not the receiver has learned from the message that a profitable match is impossible.25

For example, suppose that the sender issues a message {ω3 = 1, ω5 = 0}, and the

receiver has a type ωR3 = 0. The receiver must verifiably reveal that the sender and

receiver types do not match, but does not need to reveal whether it is the case that ωR3 =

0, ωR5 = 1, or both. Informally speaking, the sender has revealed more information

than the receiver in this stage.

In this setting, the players can have different opinions over the best equilibria de-

pending on their role in each stage. For example, suppose there are three traits and the

agents exchange the role of sender and receiver in each stage. The preferred equilibria

of the agent who is the receiver is to have the sender reveal her entire type in the

first stage, which would give the sender the lowest payoff possible and the receiver the

highest payoff possible. The preferred equilibria of the agent who is the sender in the

first stage is for the first sender to reveal the lowest information value trait and then

have the other player reveal the remaining two traits in the second stage.

This issue remains even under the second modeling choice, wherein the receiver must

verifiably reveal all of the traits revealed by the sender. In other words, if the sender

issues a message {ω3 = 1, ω5 = 0}, the receiver must verifiably reveal traits 3 and 5.

Since the sender and receiver reveal the same verifiable information in each stage, one

might have assumed that it was impossible for the sender and receiver to have different

information sets in the event End is chosen by the receiver. This intuition neglects the

fact that the sender can reveal information through signaling. For example, suppose

the sender reveals message {ω3 = 1, ω5 = 0}, which signals ω1 = 1 and ω2 = 1. The

receiver is forced to reveal traits 3 or 5, but he is not forced to reveal traits 1 and 2.

25For now let us leave aside the issue of how this verification occurs.
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If the receiver chooses End, the sender will never learn the receiver’s value of traits 1

and 2. In this model agents prefer equilibria wherein:

• As the sender, all types of the agent reveal the same trait, which minimizes the

verifiable information revealed and signals nothing.

• As the receiver, the sender signals as much information as possible.

Given this to what extent can we use Proposition 3 as a refinement device in our

two-sided communication setting? First, let us consider only equilibria that satisfy

block inference. The assumption of block inference on the equilibrium path insures

that at all non-terminal histories of the conversation the agents have the same beliefs

about the other agent’s trait realizations. In addition, we will focus on equilibria that

satisfy straightforward inference off of the equilibrium path. Straightforward inference

off of the equilibrium path enhances the sender’s “bargaining power” over the desired

equilibrium by minimizing the inferences made by the receiver following a sender’s

deviation from an equilibrium strategy, which (to put it loosely) increases the incentive

for the sender to break an equilibrium that she finds undesirable.

We now provide an argument for the fact that the strategies described by Proposition

3 form the unique equilibrium that satisfies block inference on the equilibrium path

and straightforward inference off of the equilibrium path.

Proposition 6. The unique equilibrium strategy that satisfies block inference on the

equilibrium path and straightforward inference off of the equilibrium path requires that

at each history the sender reveal the trait with the lowest information value among all

previously unrevealed traits.

Proof. As a terminological note, we refer to a trait as revealed when it has been ver-

ifiably revealed in a message or is known via signaling. In addition, when we refer to

a sender revealing the lowest information value trait at a given history, we implicitly

mean the lowest information value trait amongst all traits that remain unrevealed at

that history. We now build an induction argument for our claim. To establish the

base case of our inductive argument, consider a history where a single unrevealed trait

remains. At any such history the sender must necessarily reveal this final trait, which

is exactly the action prescribed by the strategy defined above.

Now we prove the induction step. Assume that for any history where K or fewer

traits are unrevealed, the strategy described in the proposition is the unique equilibrium
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strategy for play following that history. Now consider a history with K+1 unrevealed

traits, and suppose (by way of contradiction) that there is an equilibrium strategy that

dictates that the sender issue a message other than the one that reveals the single,

lowest information value trait.

Two subtle points need to be made. First, note that since we have assumed straight-

forward beliefs off of the path, the sender can make a deviation without the receiver

forming disadvantageous beliefs about the sender’s type. Using extreme beliefs about

the sender’s type was the exact “trick” used in Proposition 1 to enforce a large set of

equilibria. Second, since equilibrium play in all future stages requires the revelation of

the lowest information value trait, the sender in the current period of the two-period

game gets the same utility as the sender in the one-sided communication game.26

With these two insights in mind, it is merely a matter of altering the notation in the

algebra of the proofs of Propositions 2 and 3 to show that if a purported equilibrium

strategy dictates that the sender issue a message other than the one revealing the lowest

information value trait, the sender can profitably deviate to that message in the current

stage. This contradiction implies that at any history with K + 1 unrevealed traits in

equilibrium, the sender must follow the strategy described in the proposition.

Our argument suggests that the basic patterns of conversation we have identified

will occur regardless of how the identity of the sender and receiver evolve over time.

Crucially, conversations will proceed with minimal amounts of information revealed

in each stage, and the information that is revealed in each stage will have the lowest

information value possible. Given our equilibrium refinement, agents are indifferent

between playing the role of the sender and the receiver - the information revealed

about their types is effectively the same. We leave elaborations of the model that draw

further differentiation between these roles or endogenizes the role of sender to future

work.

B.6.2 Cheap-talk Messages in Two-Sided Conversations

Section B.5 shows that the potential problems caused by assuming messages are non-

verifiable in the one-sided communication game are limited. Primarily this is because

the receiver, who is assumed to be nearly mechanical in the one-sided model, has the

26The receiver in the current stage of the two-sided communication game may get a different payoff
than the sender in the one-sided communication game, but only if the sender in the current stage
sends a message other than the one that reveals the lowest information value trait.
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majority of the interesting deviations when the verifiability assumption is weakened.

We define a truthful equilibrium to be one where the sender offers messages that contain

information about her type that are truthful, while the receiver issues only messages

that truthfully confirm that his type matches the information conveyed by the sender.

Throughout this section we focus only on the equilibrium identified in Proposition 6.

If messages are cheap talk in the two-sided model, there will not be an equilibrium

with two or more stages of conversation where the agents communicate truthfully

following all histories unless the agents can offer transfers that act as a credible signal

of truthful behavior. To see this, suppose that there were a truthful equilibrium with

two or more stages of nonverifiable messages in which information is conveyed and

no transfers are employed. In any such equilibrium, there is a positive probability of

a history being realized wherein the sender issues a message such that the receiver

knows that the sender and receiver types do not match. In a truthful equilibrium, the

receiver must then issue a message revealing that the types do not match, and both

the sender and receiver suffer information penalties. However, the receiver can limit

his information penalty by lying about his type and “tricking” the sender into thinking

a match remains possible.

For an example of when truthful behavior is suboptimal for the receiver when there

is no verifiability, suppose that N = 2, v1 = 1, v2 = 2, ρ1 = ρ2 = 1
2
, and a truthful

equilibrium exists. Consider receiver-type [0 1] and an initial sender message {ω1 = 1}.
Given this message, the receiver knows that his type does not match the sender’s. If

the receiver confirms that he does not match the sender’s first trait, he earns a payoff

of −1 ∗ v1 − 1
2
∗ v2 = −2. However, if the receiver deviates (and lies) by confirming

the sender’s message and then leaves after the next message (by claiming to not match

the receiver’s second trait), the receiver expects at the time of deviation to earn a

payoff of 0 ∗ v1 − 1
2
(0 ∗ v2)− 1

2
(1 ∗ v2) = −1.27 Since the deviation is profitable for the

receiver, truthfulness cannot be an equilibrium. The following proposition implies that

this issue holds more generally in the context of the sender-optimal grammar.

Proposition 7. For N ≥ 2, there is no truthful equilibrium.

Proof. Suppose there is a truthful equilibrium when N ≥ 2, and consider any history h

where the sender has revealed a trait that does not match the receiver’s type at stage

j < N . If the receiver truthfully reveals that his type does not match the sender’s by

27The expectation includes the probability 1
2 event that the sender lies in the second period by

claiming ωR
2 = 0 and the probability 1

2 that the sender truthfully reveals ωR
2 = 1 to end the game.
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choosing End he obtains a payoff equal to

−
j∑

k=1

vk −
N∑

k=j+1

ρ∗kvk (B.5)

where ρ∗k = µS(ωRk = ωR∗k ). Consider what occurs if the receiver instead chooses

Continue, in effect claiming that he matches trait j of the sender. The receiver follows

this deviation by (falsely) verifying the messages of the sender so long as his type does

not match the traits revealed by the sender. In the event the sender reveals a trait

that does match the receiver’s, the receiver chooses End and in effect claims the traits

do not match and ends the conversation. In the event that the conversation ends with

such a message at stage j̃ the receiver’s information penalty is

−
j−1∑
k=1

vk −
N∑

k=j̃+1

ρ∗kvk

which is an improvement over Equation B.5.

The remaining event is where the receiver deviated from truthfulness and his de-

viation required him to either choose Match and suffer loss −L and reveal all of his

traits, or reveal (truthfully) that the trait N of the sender and receiver do not match

by choosing End. When the receiver reveals that he does not have the same realization

of trait N as the sender by choosing End, the receiver gets a payoff of

−
N−1∑
k=1

vk − vN

Since the probability of this event is less than ρ∗N , the payoff from deviating as described

is greater than the payoff from issuing truthful messages.

To prove this proposition, we describe a general deviation from truthfulness that is

welfare improving for any type of receiver. Consider any history prior to the final stage

of the conversation where the sender reveals a trait that does not match the receiver’s

type. Instead of leaving the conversation, the receiver (non-truthfully) confirms the

sender’s message. The receiver then confirms every message from the sender that does

not match his own type until a message revealing a trait that does match the receiver’s

type is issued. The receiver then causes the sender to believe the two agents have dif-
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ferent realizations of the final trait revealed by taking action End. In the event that no

such matching trait is revealed by the sender before the final stage of the conversation,

the receiver chooses End at the last stage, in effect truthfully disconfirming the final

trait revealed by the sender. Given a proposed truthful, full-participation equilibrium,

the expected utility of every receiver-type is strictly improved by following such a de-

viation since each lie told reduces the receiver’s information penalty. In the event that

the receiver exits without ever truthfully revealing information about his type, then

the information penalty of the receiver is strictly lower than if he had failed to deviate.

In the event that the receiver must truthfully reveal his N th trait in the final stage of

the conversation, the receiver does receive an information penalty for revealing his N th

trait. The expected information penalty of the receiver is reduced, however, when such

a deviation is followed.

The use of costly messages can mitigate the nonverifiability problem and allow for

truthful information exchange. By making a payment that is only cost-effective if there

is still a chance of receiving the match payoff M , the receiver can credibly demonstrate

that the agents match on the previously revealed traits. We assume this cost is paid

(by receivers) at the beginning of the relevant stage (e.g., cost c2 is paid by the receiver

during stage 2 before the sender has sent the message for that stage). Note that the

payments need not increase monotonically as the conversation progresses since the

information value and the expected information penalty need not increase together.

Proposition 8. Suppose in stage t ∈ {1, .., N−1} the receiver incurs a cost, denoted ct,

where ct ≥ vt + (2ρt+1−1)vt+1. If M and L are sufficiently large, a truthful equilibrium

exists.

Proof. Note that for any set of per-stage payments, if M is sufficiently large both sender

and receiver find it optimal to be truthful at any history where the receiver knows a

profitable match is possible. The sender’s truthfulness is a non-issue since any lie on

the part of the sender leads to a failure to match with a desired partner. For sufficiently

large M , the loss of the opportunity to match caused by a lie outweighs the possible

benefit of any lie (even one that would set information penalties to 0). Following

similar logic, for sufficiently large M , truthful messages are incentive compatible for

the receiver along any path where the receiver believes that his type may match the

type of the sender.

Once the sender conveys a message that reveals to the receiver that a Match is not

optimal, the receiver has an incentive to lie to distort the sender’s beliefs about the
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receiver’s type and reduce the receiver’s information penalty. Notice that at stage N

truthfulness is incentive compatible - if the sender and receiver types are revealed to

not match at this stage, it is optimal for the receiver to reveal the failure to match

rather than face a penalty of −L > 0 for matching with a sender of another type as

well as suffering the information penalties.

Consider a receiver who first realizes his type does not match the sender’s when trait

N − 1 is revealed in stage N − 1. Let the probability of the receiver’s realization of

trait N be ρ∗N . In this event, a truthful reply (revealing that the sender and receiver

do not match on trait N − 1) and a lie (claiming a match) have respective payoffs

Truth : − vN−1 − ρ∗NvN
Lie : 0− (1− ρ∗N)vN − cN

To make truth-telling optimal, we must have

cN ≥ vN−1 + (2ρ∗N − 1)vN

Noting that ρ∗N ∈ {ρN , 1− ρN}, we have that

cN ≥ vN−1 + (2ρN − 1)vN

is required.

Turning to stage N −2, assume the receiver lies in stage N −2. We now discuss the

dynamic concerns of the receiver in stage N − 1, at which point the receiver may have

to choose between telling the truth at stage N−1 and ending the conversation, or lying

a second time and allowing the conversation to proceed to stage N . Our inequality

on cN implies that the latter form of lie is suboptimal, so (if the receiver lies) he will

choose End the conversation in stage N−1 even if this necessitates truthfully revealing

trait N − 1.28 Comparing the payoff from truthfully ending the conversation at stage

N − 2 to lying and ending the conversation at stage N − 1 we find

Truth : − vN−2 − ρ∗N−1vN−1 − ρ∗NvN
Lie : 0− (1− ρ∗N−1)vN−1 − ρ∗NvN − cN−1

28Note that this also implies that if the receiver can end the conversation with a lie at stage N − 1,
he will clearly choose to do so.
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To make truth-telling optimal for all types of receivers, we must have

cN−1 ≥ vN−2 + (2ρN−1 − 1)vN−1

Similar logic holds when considering any prior round, which generates the sequence

of costs ci described in the proposition.

The intuition behind this proposition is composed of two parts. First, senders will

never find it optimal to send nontruthful messages if the receiver assumes the messages

are true and the sender places a sufficiently high value on matching. A lie by the

sender would foreclose the opportunity to match for the relatively small benefit of

improving the payoff in the event of a failure to match. Similarly, if the receiver

believes that a profitable match is possible, he will respond truthfully to maintain the

possibility of a match. As discussed above, the incentive problems arise when the

sender conveys a message to the receiver that reveals to the receiver that a profitable

match is not possible. Our choice of costs for the receiver renders all non-truthful

deviations suboptimal.

Interestingly, the receiver with the most common type has the strongest incentive to

deviate and lie if the sender reveals a non-matching trait. Relative to truthful behavior,

all receivers gain vj at stage j if they lie and convince the sender the receiver’s trait

matches the sender’s message when in fact it does not. Ideally the receiver would cause

the conversation to end by lying a second time and claiming a mismatch with the traits

revealed by the sender in a later stage. Receivers with common trait realizations are

more likely to reap this second benefit in a future stage, which makes lying in the

current stage more tempting.

In lieu of a cost, the receiver could provide a transfer to the sender. Note that

this transfer cannot be paid up front and must either be provided dynamically as the

conversation progresses or as a (previously contracted) final payment at the close of a

conversation where no match occurs. When a firm is being acquired, the seller often

requires that the buyer pay a sequence of fees as the due-diligence process progresses

and pay a break-up fee in the event of failed merger negotiations.
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C Signaling Under Block Inference

By focusing on equilibria that satisfy block inference, we have not eliminated the

potential use of signaling by sender-types through the use of type-specific grammars.

Unfortunately we cannot provide analytic bounds on the number of traits that can be

signaled except in special cases. The following proposition characterizes the limits of

signaling when at some history all sender-types verifiably reveal a subset of traits from

a set V of previously unrevealed traits. Given this restriction, the sender can signal up

to roughly 50% more traits than are verifiably revealed.

To state the following proposition, note that floor(x) refers to the largest integer

smaller than x.

Proposition 9. Consider history h consistent with an equilibrium that satisfies block

inference. Suppose there exists a set V ⊆ U(h) where |V | = k > 0 and all senders at

history h verifiably reveal traits from V using messages of length less than or equal to

k. Then at a successor history h′ we can have |K(h′)| ≥ |K(h)| + floor(log2(3
k − 1)).

Proof. Consider an arbitrary history h of an equilibrium that satisfies block inference.

At any successor history h′ it must be the case that K(h) ⊂ K(h′). Let n = |K(h′)|−
|K(h)| denote the number of traits disclosed by the messages sent at history h. For n

traits to be disclosed, we must distinguish between 2n types of senders that are present

at history h. The set of messages that verifiably reveal up to k traits within V is of

size
k∑

m=1

(
k

m

)
2m

where the combinatorial term accounts for the different sets of m traits from V that

can be verifiably revealed, and 2m refers to the possible realizations of these traits.

This summation is equal to

3k − 1

In order to fully reveal n traits, we must have

3k − 1 ≥ 2n

Solving for n we have

n ≥ floor(log2(3
k − 1))
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We can numerically compute the maximum number of traits that can be revealed

using messages of length less than or equal to k at a history h consistent with an

equilibrium that satisfies block inference. The number of length k messages that can

be formed from the possible realization of n traits is

∑k
m=1

(
n

m

)
2m

In any equilibrium that satisfies block inference, we must have that traits verifiably

revealed and those that are signaled must fall within the same set of n traits. In other

words, the messages must be sufficient to reveal all 2n of the possible realizations of

the n traits in K(h′) rK(h). Formally, this means we must have

∑k
m=1

(
n

m

)
2m ≥ 2n

Although there do not exist closed forms for this partial sum, figure 1 demonstrates

the largest number of traits that can be revealed (n) as a function of the message

length (k). After k = 10 the plot asymptotes to roughly n = 4.5k. For example if up

to 4 traits are revealed verifiably, up to 18 additional traits may be revealed through

signaling. Therefore even under block inference the bulk of the information conveyed

by a message can be carried by signaling as opposed to verifiable information.
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Figure 1: Numerical Results
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D When Choosing Match Preserves Privacy

The model developed in the main body presumes that the information penalty suffered

by a receiver who chooses to Attend does not depend on the receiver’s type or whether

the receiver chooses Match or End. There are two obvious alternatives to this. First,

we could assume that the sender only suffers an information penalty if the receiver is

of a different type (regardless of the outcome of the conversation). Second, we could

assume that the information penalty is only suffered by the sender in the event that

the receiver does not choose Match.

Consider the first alternative, where the sender only suffers an information penalty

if the receiver is of a different type. This requires us to add the following term to the

payoff from Attend and Not Attend stated in the main body(∏N
j=1 ρ

∗
j

)(∑N
j=1 vj

)
Note that this term does not depend on the actions of any agent, so our results on the

structure of the optimal conversation do not change.

Now consider the second alternative. Suppose we adjust the match value by adding∑N
j=1 vj to M . In the event a match occurs, the sender is “refunded” the information

penalty he would have suffered in the model from the main text. Given this renormal-

ization, all of the equations in the main text hold as stated, although we would get

slightly different numerical values in our examples.

E Simple Microfoundation of Information Penalty

In order to argue that our particular reduced form information penalty is plausible,

we now sketch out a microfoundation for it. We have in mind a setting where if

the receiver and sender fail to match, the receiver can take actions that have (type-

dependent) effects on the sender and receiver utilities. For example, the sender could

be an entrepreneur whose type reflects information about a valuable new product, and

the receiver is a company interested in either acquiring the entrepreneur’s company

(a Match outcome) or being first to market with the introduction of a competing

product (an End outcome). We think of the product introduction phase as a subgame

following the conversation in the event End is the outcome of the conversation, and

the information penalty function is the sender’s value function from this subgame.
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Since a technology company can beat an entrepreneur to market, we assume the frac-

tion of the market captured by the technology firm is increasing in the substitutability

of the entrepreneur’s and the technology company’s products. Following these lines,

we assume that the entrepreneur’s payoff is decreasing in the substitutability of the

products. This fits settings where the technology company is incorporating the new

product into a broader platform and users face switching costs for using products out-

side of the platform. To overcome platform inertia, the entrepreneur’s product must

be markedly more appealing than alternatives (to at least some consumers).

To reflect the receiver’s desire to maximize substitutability by matching the sender’s

type, we use the following receiver utility function in the subgame

uR(aR) = −
N∑
j=1

E
(
aRj − ωSj

)2
(E.1)

where aR ∈ [0, 1]N is the receiver’s action and the expectation is taken with respect to

the receiver’s beliefs about the sender’s type. Equation E.1 implies that the receiver’s

payoff increases with the closeness of the match between the receiver’s action and the

sender’s type. Given Equation E.1, the optimal choice for the receiver is aR = E
(
ωS
)
.

If the sender’s utility from this subgame is

uS(aR, ωS) =
N∑
j=1

∥∥aRj − ωSj ∥∥ ∗ vj
we obtain the reduced form of Equation 2.1 as the value function for the sender in the

subgame (i.e., uS(aR = E
(
ωS
)
, ωS)).

F Mixed Strategies

Our focus is on determining when there is a tension between a preference for privacy

and efficient matches. One might conjecture that if we are willing to abandon efficient

matching outcomes then we might trade-off reduced information penalties against re-

duced efficiency of the matches. One way to accomplish this is for (some) of the

sender-types to employ the same messages, potentially in mixed strategy equilibria.

Our goal in this section is not to conduct a comprehensive analysis of these possibil-

ities, but to illustrate a few of the trade-offs and discuss the real-world plausibility of
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the resulting equilibria. First, let us consider a simple case where multiple sender-types

reveal the same message in a pure strategy equilibrium. For moderate levels of L, it is

likely that the receiver will choose to not match with any of these types. These equi-

libria seem particularly perverse in that these agents would have achieved the same

outcome if these senders (as a group) made the more intuitive choice of refusing to

converse.

Now consider a sender who mixes over multiple messages, and suppose that some

of these messages are also revealed by other sender-types. Suppose that each of these

messages provokes a choice to Match from a single type of receiver. For simplicity,

assume that message m1 induces a matching receiver type to choose Match, while

message m2 induces a non-matching receiver type to choose Match. Let
∏N

j=1 ρ
∗
j denote

the probability of a matching receiver type, which is relevant if message m1 is sent. Let

P denote the probability that m2 induces a non-matching receiver to choose Match.

If the sender is willing to mix over messages m1 and m2 it must be that the following

indifference condition holds

M ∗
∏N

j=1 ρ
∗
j −

∑N
j=1E

[
µ(ωSj = ωS∗j |m1)

]
vj = −L ∗ P −

∑N
j=1E

[
µ(ωSj = ωS∗j |m2)

]
vj

Obviously if M is large, this condition cannot be satisfied - mixing is only possible

if the expected games from a match are of the same order as the potential gains from

reducing the information penalty. Second, if L is large then the possibility of matching

with an incompatible receiver will render mixing impossible. Third, when the sender

sends m2 he must receive a lower information penalty than when he chooses to send m1.

This suggests that the sender sends m2 only rarely and that the other agents who send

m2 must have very different trait realizations. Finally, and most interestingly, these

equilibria can only exist when the payoff of the sender is negative, which is precisely

when full-participation equilibria may fail to exist.
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