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Appendix B. Additional Derivations and Proofs of Theoretical Results

The proofs for Propositions 1–6 and Corollaries 1–2 are provided in the main paper in Appendix A.
We provide proofs for the remaining theoretical statements here.

B.1 Additional Proofs for Sections 2–3

Proof of Lemma 1. Following Augenblick and Rabin (2021), it is useful to define period-by-period
movement, uncertainty reduction, and excess movement, respectively, as

mt,t+1(π) ≡ (πt+1 − πt)
2, rt,t+1(π) ≡ πt(1 − πt)− πt+1(1 − πt+1),

Xt,t+1(π) ≡ mt,t+1(π)− rt,t+1(π).

Given the definitions of movement, initial uncertainty, and excess movement in the text, note that

m(π) = ∑ T−1
t=0 mt,t+1(π), u0(π) = ∑ T−1

t=0 rt,t+1(π), X(π) = ∑ T−1
t=0 xt,t+1(π),

where the second equality relies on the fact that πT ∈ {0, 1} and therefore πT(1 − πT) = 0 for any
belief stream π. We have that

E[Xt,t+1|Ht] = E[mt,t+1 − rt,t+1|Ht] = E[(πt+1 − πt)
2 − ((πt(1 − πt)− (πt+1(1 − πt+1))|Ht]

= E[(2πt − 1)(πt − πt+1)|Ht] = (2πt(Ht)− 1)(πt(Ht)− E[πt+1|Ht])

= (2πt(Ht)− 1) · 0 = 0,

where the last line uses Assumption 1. Summing and applying the law of iterated expectations (LIE),

E[X] =
T−1

∑
t=0

E[Xt,t+1] =
T−1

∑
t=0

E[E[Xt,t+1|Ht]] = 0.

Proof of Equation (13). This follows from a discrete-state application of Breeden and Litzenberger
(1978), or see Brown and Ross (1991) for a general version. To review why the stated equation
holds, the risk-neutral pricing equation for options can be written

qm
t,K =

1

R f
t,T

E∗
t [max{Vm

T − K, 0}] = 1

R f
t,T

[
∑

j : Kj⩾K
(Kj − K)P∗

t (V
m
T = Kj)︸ ︷︷ ︸

P∗
t (Rm

T =θj)

]
.

This implies that for two adjacent return states θj−1 and θj,

qm
t,Kj

− qm
t,Kj−1

=
1

R f
t,T

[
∑
j′⩾j

(Kj′ − Kj)P∗
t (V

m
T = Kj′)− ∑

j′⩾j−1
(Kj′ − Kj−1)P∗

t (V
m
T = Kj′)

]

1



=
1

R f
t,T

[
∑
j′⩾j

(Kj−1 − Kj)P∗
t (V

m
T = Kj′)

]
=

1

R f
t,T

(Kj−1 − Kj)
[
1 − P∗

t (V
m
T < Kj)

]
.

Rearranging,

R f
t,T

qm
t,Kj

− qm
t,Kj−1

Kj − Kj−1
= P∗

t (V
m
T < Kj)− 1.

Repeating this for θj and θj+1, we obtain R f
t,T

qm
t,Kj+1

−qm
t,Kj

Kj+1−Kj
= P∗

t (V
m
T < Kj+1) − 1. Subtracting the

preceding equation from this equation and using P∗
t (Rm

T = θj) = P∗
t (V

m
T = Kj) yields (13).

B.2 Proofs for Section 4

Proof of Statements 3–6 in Section 4.1. As in footnote 16 in the main text, statements 1–2 are im-
mediate given the definition of CTI. We take the remaining statements in order:

3. The Gabaix (2012) economy features a representative agent with CRRA consumption utility,
and log consumption and log dividends follow ct+1 = ct + gc + εc

t+1 + log(Bt+1)Dt+1 and
dt+1 = dt + gd + εd

t+1 + log(Ft+1)Dt+1, respectively, where Dt+1 = 1{disastert+1}; disasters in
t+ 1 occur with probability pt; Bt+1 and Ft+1 are possibly correlated variables with support [0, 1];
and (εc

t+1, εd
t+1)

′ is i.i.d. bivariate normal (or a discretized approximation thereof) with mean zero
and is independent of all disaster-related variables. Resilience is Ht = ptEt[B

−γ
t+1Ft+1 − 1 |Dt+1],

and write Ht = H∗ + Ĥt. The dynamics of pt are governed by Ĥt+1 = 1+H∗
1+Ht

e−ϕHĤt + εHt+1, where
εHt+1 is mean-zero and independent of all other shocks. Gabaix (2012, Theorem 1) shows that

Vm
t = Dt

1−e−βm

(
1 + e−βm−h∗ Ĥt

1−e−βm−ϕH

)
, where h∗ ≡ log(1+H∗) and βm ≡ − log β+ γgc − gd − h∗. Thus

for any θ and H0, there exists some value dθ and function f (dθ , ĤT), which is strictly increasing
in dθ and strictly decreasing in ĤT, such that, by Bayes’ rule,

P0

((
T

∑
t=1

Dt

)
> 0

∣∣∣∣∣ Rm
T ⩾ θ

)
=

P0

(
Rm

T ⩾ θ | ∑T
t=1 Dt > 0

)
P0

(
∑T

t=1 Dt > 0
)

P0(Rm
T ⩾ θ)

=
P0

(
DT ⩾ f (dθ , ĤT)

∣∣∣ ∑T
t=1 Dt > 0

)
P0

(
∑T

t=1 Dt > 0
)

P0

(
DT ⩾ f (dθ , ĤT)

) .

Note now that (i) the innovation to Ĥt+1 is independent of Dt+1; (ii) Ft+1 (the exponential
of the disaster shock to Dt) has support [0, 1]; and (iii) Pt(εd

t+1 ⩾ ϵ) = o(e−ϵ2
) as ϵ → ∞.1

Thus P0(DT ⩾ f (dθ , ĤT) | ∑T
t=1 Dt > 0) = o(P0(DT ⩾ f (dθ , ĤT))) as dθ → ∞, from which

1To see why point (iii) holds, denote σd ≡ Var(εd
t ), and then note that

∫ ∞
ϵ exp(−x2/(2σ2

d ))/
√

2πσ2
d dx <∫ ∞

ϵ (x/ϵ) exp(−x2/(2σ2
d ))/

√
2πσ2

d dx = σd exp(−ϵ2/(2σ2
d ))/(

√
2πϵ). A similar calculation can be used to derive

a lower bound for the upper tail of the normal CDF. Then applying the previous upper-bound calculation to
P0(DT ⩾ f (dθ , ĤT) | ∑T

t=1 Dt > 0) and the lower-bound calculation to P0(DT ⩾ f (dθ , ĤT)), it follows that
P0(DT ⩾ f (dθ , ĤT) | ∑T

t=1 Dt > 0)/P0(DT ⩾ f (dθ , ĤT)) = o(1), as stated, since the distribution of the value in
the denominator is shifted to the right relative to the distribution of the value in the numerator given (i)–(ii).
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the statement in footnote 18 follows. Denote the value δ in that statement by δ = δ0. It also
follows immediately that for any t > 0 (with t < T), for any δt > 0, there exists an θ such that
Pt(∑T

τ=1 Dt > 0 | Rm
T ⩾ θ) < δt asymptotically P0-a.s. as δ0 → 0. Given some δt > 0, consider

θj, θj+1 large enough that Pt(∑T
τ=1 Dt > 0 | Rm

T ∈ {θj, θj+1}) < δt. We then have from (14) that

ϕt,j =

Et[Mt,T | Rm
T = θj, ∑T

τ=1 Dτ = 0]Pt(∑T
τ=1 Dτ = 0 | Rm

T = θj)

+ Et[Mt,T | Rm
T = θj, ∑T

τ=1 Dτ > 0]Pt(∑T
τ=1 Dτ > 0 | Rm

T = θj)

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 Dτ = 0]Pt(∑T
τ=1 Dτ = 0 | Rm

T = θj+1)

+ Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 Dτ > 0]Pt(∑T
τ=1 Dτ > 0 | Rm

T = θj+1)

=
Et[Mt,T | Rm

T = θj, ∑T
τ=1 Dτ = 0](1 −O(δt)) +O(δt)

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 Dτ = 0](1 −O(δt)) +O(δt)

=
Et[Mt,T | Rm

T = θj, ∑T
τ=1 Dτ = 0]

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 Dτ = 0]
+O(δt).

The fraction in the last expression is constant given that Mt,T = βT−te−γgc(T−t) conditional on

∑T
t=1 Dt = 0, using eq. (2) of Gabaix (2012). Thus denoting ϕj ≡

E0[Mt,T | Rm
T =θj,∑T

t=1 Dτ=0]
E0[Mt,T | Rm

T =θj+1,∑T
t=1 Dτ=0]

, we

have ϕt,j = ϕj +O(δt). Since we can take δt → 0 asymptotically P0-a.s. as δ0 → 0, we have
ϕt,j = ϕj + op(1) for any sequence of values δ = δ0 → 0, as stated.

4. The Epstein–Zin (1989) preference recursion is Ut =
[
(1 − β)C1−ψ−1

t + β(Et[U
1−γ
t+1 ])

1−ψ−1
1−γ

] 1
1−ψ−1 ,

and it can be shown (e.g., Campbell, 2018, eq. (6.42)) that the SDF evolves in this case according
to Mt,t+1 = β(Ct+1/Ct)−ϑ/ψ(1/Rm

t,t+1)
1−ϑ, where ϑ ≡ (1 − γ)/(1 − ψ−1). In case (i) of the

statement, γ = 1 and Mt,t+1 = β/Rm
t,t+1, so MT depends only on the index return. Thus the

numerator and denominator in equation (14) are constant, and CTI holds immediately. For
case (ii), write ∆ct+1 = µc + ρ∆ct + σηt+1, with ηt+1

i.i.d.∼ N (0, 1). Given ψ = 1, it follows from
Hansen, Heaton, and Li (2008, eq. (3)) that the log SDF follows mt,t+1 = −∆ct+1 +

1−γ
1−βρ σηt+1

(up to a constant, as we ignore throughout). Further, the consumption-wealth ratio Ct/Vm
t

is a constant given ψ = 1, so rm
t,t+1 = ∆ct+1. Using this in the log SDF and summing from t

to T, mt,T = −rm
t,T + 1−γ

1−βρ σ ∑T
τ=t+1 ητ. The first term is known conditional on Rm

t . In addition,
recursive substitution and summation for rm

t,t+1 gives that rm
t,T = σ

1−ρ ∑T
τ=t+1(1 − ρT−τ+1)ητ.

Thus for the second term in mt,T, conditioning on Rm
T = θj is equivalent to conditioning on

∑T
τ=t+1(1 − ρT−τ+1)ητ = const + log θj ≡ k j. Denoting wt ≡ (1 − ρT−t+1), it can then be

shown (e.g., Vrins, 2018, eq. (2)–(3)) that (∑T
τ=t+1 ητ | ∑T

τ=t+1 wτητ = k j) ∼ N (µt,j, ςt), where

µt,j = k j
∑T

τ=t+1 wτ

∑T
τ=t+1 w2

τ
and where ςt does not depend on k j. Therefore,

log ϕt,j = log Et

[
T

∑
τ=t+1

ητ | Rm
T = θj

]
− log Et

[
T

∑
τ=t+1

ητ | Rm
T = θj+1

]
= log θj − log θj+1,

so CTI holds. Case (iii) follows immediately from eq. (17) of Kocherlakota (1990), which shows
that MT ∝ (Rm

T )
−γ in the i.i.d. case.
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5. The Campbell and Cochrane (1999) economy features a representative agent with utility
E0{∑∞

t=0 βt[(Ct − Ht)1−γ − 1]/(1 − γ)}, where Ht is the level of (exogenous) habit and other
terms are standard. The surplus-consumption ratio is Sc

t ≡ (Ct − Ht)/Ht. Log dynamics are
sc

t+1 = (1 − ϕ)sc + ϕsc
t + λ(sc

t)εt+1, ct+1 = g + ct + εt+1, and dt+1 = g + dt + ηt+1, where

εt+1
i.i.d.∼ N (0, σ2

ε ), ηt+1
i.i.d.∼ N (0, σ2

η), Corr(εt+1, ηt+1) = ρ, and the sensitivity function is λ(sc
t) =[

1
Sc

√
1 − 2(sc

t − sc)− 1
]
1{sc

t ⩽ sc
max}, with Sc

= esc
= σε

√
γ

1−ϕ and sc
max = sc + (1 − Sc

)2/2.

The SDF evolves according to Mt,t+1 = β
(

Ct+1
Ct

)−γ ( Sc
t+1
Sc

t

)−γ
, so

Et[Mt,T | Rm
T = θj]

Et[Mt,T | Rm
T = θj+1]

=
Et

[
exp

(
∑T−t−1

τ=0 −γ
(
1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = θj

]
Et

[
exp

(
∑T−t−1

τ=0 −γ
(
1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = θj+1

] .

For a counterexample to constant ϕt, set T = 2 and ρ = 1 (so ∆ct = ∆dt, as in the sim-
plest case considered by Campbell and Cochrane). A sufficient condition for non-constant
ϕt is Cov0(ϕ1, E1[M1,2 | Rm

2 = θj+1]) ̸= 0, as this gives E0[ϕ1] ̸= ϕ0. As of t = 0, both
ε1 and ε2 are relevant for Rm

2 and M0,2: ε1 determines sc
1 and thus λ(sc

1). As of t = 1,
the only source of uncertainty for both Rm

2 and M1,2 is ε2: sc
2 and d2 determine Rm

2 , and
conditional on time-1 variables, these depend only on ε2. Write ε1

j for the realization of
ε2 needed to generate Rm

2 = θj given ε1 — i.e., ε1
j ≡ {ε2 : Rm

2 = θj | ε1} — and simi-
larly write ε1

j+1 for θj+1. Then we have E1[M1,2 | Rm
2 = θj′ ] = exp(−γ(1 + λ(sc

1))ε
1
j′) for

j′ = j, j + 1, so ϕ1 = exp(−γ(1 + λ(sc
1))(ε

1
j − ε1

j+1)). Thus Cov0(ϕ1, E1[M1,2 | Rm
2 = θj+1]) =

Cov0(exp(−γ(1 + λ(sc
1))(ε

1
j − ε1

j+1)), exp(−γ(1 + λ(sc
1))ε

1
j+1)). Given Gaussian ε1, this value

is generically non-zero.

6. Take the two-agent CRRA case considered in Section 5 of Basak (2000), with notation adopted
directly. Basak’s Proposition 7 shows that when extraneous risk matters, state prices (and
thus the SDF) depend on both the stochastic weighting process η(t) and the aggregate en-
dowment ε(t). These two processes are driven respectively by independent shocks, dWz(t)
(extraneous risk) and dWε(t) (fundamental risk). Asset returns thus do not pin down the SDF
realization, generating a generically path-dependent SDF and thus time-varying ϕt (see also the
discussion in Atmaz and Basak, 2018, footnote 17).

Proof of Proposition 7. Given that ϕt can change, we explicitly allow it to depend on the signal
history. RN beliefs are thus now denoted by π∗

t (Ht) =
ϕt(Ht)πt(Ht)

(ϕt(Ht)−1)πt(Ht)+1 , where we use the simpler
notation from Section 2 for clarity throughout. Uncertainty about θ is again resolved by period T,
and we again consider X∗ from 0 to T. Since πT ∈ {0, 1} implies π∗

T = πT, time variation in ϕt has
no effect on X∗ for t > T − 1.

Toward a contradiction, assume that there exists some DGP(s) in which ϕt changes such that
Et[ϕt+1] ⩽ ϕt and expected RN movement is higher than the bounds in Proposition 2 for some T.
Consider a DGP from this set with the highest expected RN movement. We now consider the last
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meaningful movement of ϕ in this DGP. Specifically, given that ϕt is assumed to change at some
point, but ϕt is constant when t ⩾ T, there must exist some history Ht in which πt ∈ (0, 1), ϕt

can change between t and t + 1 (i.e., there exists a signal st+1 for which ϕt+1(Ht ∪ st+1) ̸= ϕt(Ht),
where st+1 includes the signal sϕt+1) but for which ϕt is constant after t + 1. Following any Ht, by
assumption, ϕt+1(Ht ∪ st+1) can take two values: ϕH

t+1 > ϕt following signal sH
t+1 with probability

qH > 0, and ϕL
t+1 < ϕt following signal sL

t+1 with probability qL = 1− qH > 0. We start by assuming
that ϕt evolves as a martingale:

∑
i∈{L,H}

qi · ϕi
t+1 = ϕt. (B.1)

Given the maintained assumption that πt does not evolve in the same period as ϕt and therefore
is constant immediately following history Ht, π∗

t (Ht ∪ st+1) can take at most two values: π∗i
t+1 =

ϕi
t+1·πt

(ϕi
t+1−1)πt+1

for i ∈ {L, H}. Now consider expected RN movement following Ht. From period t to

t + 1, given signal si
t+1, RN beliefs move from π∗

t to π∗i
t+1, leading to per-period RN movement

E[m∗
t,t+1|Ht ∪ si

t+1] = (π∗
t − π∗i

t+1)
2 =

(
ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt+1

(ϕi
t+1 − 1)πt+1 + 1

)2

=

(
ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2

.

Given that the postulated ϕt process is constant after t + 1, at that point our main bounds hold with
π∗

0 replaced with π∗i
t+1 and ϕ replaced with ϕi

t+1. Thus given signal si
t+1,

E[m∗
t+1,T|Ht ∪ si

t+1] = E[X∗
t+1,T|Ht ∪ si

t+1] + E[r∗t+1,T|Ht ∪ si
t+1]

⩽ (πi∗
t+1 − πt+1) · πi∗

t+1 + (1 − πi∗
t+1) · πi∗

t+1 = (1 − πt+1) · πi∗
t+1

= (1 − πt+1) ·
ϕi

t+1 · πt+1

(ϕi
t+1 − 1)πt+1 + 1

= (1 − πt) ·
ϕi

t+1 · πt

(ϕi
t+1 − 1)πt + 1

,

where the second line plugs in our bound for excess RN movement and uncertainty reduction
given that uncertainty is zero at period T, and the third line states everything in terms of ϕt and πt

and uses the assumption that πt = πt+1. Therefore, expected RN movement from period t onward
following history Ht is bounded above by:

E[m∗
t,T|Ht] = E[m∗

t,t+1|Ht] + E[m∗
t+1,T|Ht]

⩽ ∑
i∈{L,H}

qi ·
(
(

ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2 + (1 − πt) ·
ϕi

t+1 · πt

(ϕi
t+1 − 1)πt + 1

)
.

We now show that this DGP will have higher RN movement if ϕt is constant from Ht onward.
To see this, consider the “worst-case” DGP in Proposition 4 in which ϕ remains constant at ϕt.

5



In this case, RN movement is (arbitrarily close to) EmaxDGP[m
∗
t,T|Ht] = (1 − πt) · ϕt·πt

(ϕt−1)πt+1 . We
now subtract the expected RN movement given changing ϕ (E[m∗

t,T|Ht]) from the worst-case RN
movement (EmaxDGP[m

∗
t,T|Ht]) and show it is positive given the assumption that ϕt evolves as a

martingale. The difference is positive if and only if

(1 − πt) ·
ϕt · πt

(ϕt − 1)πt + 1
− ∑

i∈{L,H}
qi ·
(( ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2
+ (1 − πt) ·

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)
> 0.

Using (B.1) in this inequality gives that EmaxDGP[m
∗
t,T|Ht]− E[m∗

t,T|Ht] > 0 if and only if

π3
t (1 − πt)

2(ϕH
t+1 − ϕt)(ϕt − ϕL

t+1)
(
(ϕH

t+1 − ϕt) + (ϕL
t+1 − 1) + (πt)(2 + πt(ϕt − 1))(ϕH

t+1 − 1)(ϕL
t+1 − 1)

)
(1 + πt(ϕt − 1))2(1 + πt(ϕH

t+1 − 1))2(1 + πt(ϕL
t+1 − 1))2

> 0.

It is straightforward to see that the expression on the left side of this inequality is positive: every
parentheses contains a positive value as ϕH

t+1 > ϕt > ϕL
t+1 ⩾ 1 and πt ∈ (0, 1). Therefore, we

conclude that expected RN movement can be increased if ϕt remains constant following Ht rather
than changing. But this gives us a contradiction, as it violates the assumption that the DGP with ϕt

moving following Ht has the highest possible movement. Therefore, we conclude that there does
not exist a DGP satisfying in which ϕ evolves as a martingale that produces more expected RN
movement than the bound in Proposition 2.

We now extend this observation to DGPs in which movement in ϕ is a supermartingale rather
than a martingale. We do so by showing that if there exists a DGP where ϕ evolves as super-
martingale and leads to expected movement that is higher than our bound, there there must exist a
martingale that leads to higher expected movement. Given the previous martingale result, this is
impossible. Formally, assume that there exists a DGPsuper in which ϕ evolves as a supermartingale
such that the expected movement of this DGP is higher than our bound for a given T. Consider the
supermartingale DGP with the maximum expected movement, and consider a period t (history
Ht) with the last meaningful movement in ϕ in which ϕ is a strict supermartingale. If this period
does not exist, the process is a martingale, and the previous results hold. Note that, following
this movement, there cannot be further change in ϕ. If there were and ϕ were a martingale, the
previous result shows that no change in ϕ would produce more expected movement, contradicting
the assumption that this DGP produces the highest expected movement in the class. If instead
there was movement and the change in ϕ was a strict supermartingale, it would contradict the
assumption that the previous movement was the last meaningful movement of that type.

Now, we show that it is possible to adjust DGPsuper following history Ht to increase expected
movement following Ht by adjusting the change in ϕ from period t to period t+ 1 to be a martingale
rather than a supermartingale. To do so, we first show that any upward movement from ϕt to
ϕt+1 > ϕt always leads to more total movement following Ht than any downward movement from
ϕt to ϕt+1 < ϕt. Consider total expected movement from Ht onward given a change from ϕt to ϕt+1:

E[m∗
t,T|Ht, ϕt, ϕt+1] = (

ϕt · πt

(ϕt − 1)πt + 1
− ϕt+1 · πt

(ϕt+1 − 1)πt + 1
)2 + (1 − πt) ·

ϕt+1 · πt

(ϕt+1 − 1)πt + 1
.
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Our claim is that this is higher if ϕt+1 > ϕt than if ϕt+1 < ϕt. To see this, compare the above with
movement if ϕt+1 = ϕt. In this case, E[m∗

t,T|Ht, ϕt = ϕt+1] = (1 − πt) · ϕt·πt
(ϕt−1)πt+1 . Subtracting from

above and writing π = πt for simplicity yields:

E[m∗
t,T|Ht, ϕt, ϕt+1]− E[m∗

t,T|Ht, ϕt = ϕt+1]

=
(π − 1)2 · π · (1 + π · (2 + π · (ϕt − 1)) · (ϕt+1 − 1)) · (ϕt − ϕt+1)

(1 + π(ϕ − 1))2 · (1 + π(ϕt+1 − 1))2 .

As with the inequality in the martingale case, every component in this expression is weakly
positive (as 0 < π < 1 because the ϕ movement is meaningful and ϕ ⩾ 1), except for (ϕt − ϕt+1).
Therefore, this equation is positive if ϕt+1 < ϕt and negative if ϕt+1 > ϕt. But then it must be
that E[m∗

t,T|Ht, ϕt, ϕt+1] is greater if ϕt+1 > ϕt than if ϕt+1 < ϕt. In this case, we can adjust the
evolution of ϕ following history Ht — which was assumed to be a supermartingale — to be a
martingale by taking a probability from downward change in ϕ and shifting it to an upward change
in ϕ. Specifically, if ϕt is a strict supermartingale at Ht, there must be at least some probability
on a realization of ϕt+1 < ϕ. Consider the lowest possible realization of ϕL

t+1 with associated
probability qL. There are two possibilities. First, there is some value ϕH

t+1 > ϕ such shifting the
probability qL from ϕL

t+1 to ϕH
t+1 makes ϕ a martingale. Second, there is some qH < qL such that

shifting qH from ϕL
t+1 to ϕH

t+1 makes ϕ a martingale. In either case, we are shifting probability from
ϕL

t+1 < ϕt to ϕH
t+1 > ϕt. But, as just proven above, it must be that E[m∗

t,T|Ht, ϕt, ϕt+1] is greater
if ϕt+1 > ϕt than if ϕt+1 < ϕt. But then the total movement of the change from ϕ at Ht must
increase. This implies that there exists a martingale process for ϕ at Ht that has higher expected
movement than the strict supermartingale process for ϕ at Ht. This contradicts the assumption
that the strict supermartingale process has the highest movement in the class of supermartingale
processes (which includes martingales), completing the proof.

Proof of Proposition 8. In what follows, we often use Ei[·] to make explicit that we are taking
expectations over DGPs indexed by i, and we continue to use the notational simplifications used in
the statement of the proposition. For (i), fixing π∗

0,i = π∗
0 across i and applying Proposition 1,

Ei[E[X∗
i ]] = Ei[(π

∗
0 − π0,i) · △i] = π∗

0 · Ei[△i]− Ei[π0,i] · Ei[△i]

= (π∗
0 − Ei[π0,i]) · Ei[△i] = Ei[π

∗
0 − π0,i] · Ei[△i]

= Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· Ei[△i] (B.2)

where the last equality in the first line follows from the assumption that Cov(π0,i,△i) = 0.

Now consider ζ1(ϕi, π∗
0) ≡ π∗

0 −
π∗

0
ϕi+(1−ϕi)π

∗
0
. This function is concave in ϕi:

∂2ζ1
∂ϕ2

i
=

−2π∗
0 (1−π∗

0 )
2

(π∗
0+ϕ(1−π∗

0 ))
3 ,

which is weakly negative given π∗
0 ∈ [0, 1] and ϕ ⩾ 1. Thus by Jensen’s inequality, the expectation

of ζ1 over ϕi is less than ζ1 evaluated at ϕ ≡ Ei[ϕi], so Ei

[
π∗

0 −
π∗

0
ϕi+(1−ϕi)π

∗
0

]
⩽ π∗

0 − π∗
0

ϕ+(1−ϕ)π∗
0
.

7



Returning to (B.2), suppose that Ei[△i] > 0. In this case,

Ei[E[X∗
i ]] = Ei[π

∗
0 −

π∗
0

ϕi + (1 − ϕi)π∗
0
] · Ei[△i]] ⩽ (π∗

0 −
π∗

0
ϕ + (1 − ϕ)π∗

0
) · Ei[△i].

Now assume that Ei[△i] ⩽ 0. Then, as π∗
0 −

π∗
0

ϕi+(1−ϕi)π
∗
0
= π∗

0 − π0 ⩾ 0 given ϕi ⩾ 1,

Ei[E[X∗
i ]] = Ei[π

∗
0 −

π∗
0

ϕi + (1 − ϕi)π∗
0
] · Ei[△i] ⩽ 0.

Taken together, Ei[E[X∗
i ]] ⩽ max{0, (π∗

0 −
π∗

0
ϕ+(1−ϕ)π∗

0
) · Ei[△i]}.

For part (ii), first consider the situation in which π∗
0,i is constant and equal to π∗

0 . As above,

Ei[E[X∗
i ]] ⩽ Ei[(π

∗
0 − π0,i) · π∗

0 ] = Ei[π
∗
0 − π0,i] · π∗

0 = Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· π∗

0 .

As above, given the concavity of ζ2 ≡ π∗
0 −

π∗
0

ϕi+(1−ϕi)π
∗
0

with respect to ϕi and the fact that π∗
0 ⩾ 0,

Ei[E[X∗
i ]] ⩽ Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· π∗

0 ⩽

(
π∗

0 −
π∗

0
ϕ + (1 − ϕ)π∗

0

)
π∗

0 ,

as stated in the second inequality. Now allowing π∗
0,i to vary, write the bound for E[X∗] in

Proposition 2 as ζ2′(ϕi, π∗
0,i) ≡

(
π∗

0 −
π∗

0
ϕi+(1−ϕi)π

∗
0

)
π∗

0,i. Again since ∂2ζ2′/∂ϕ2
i ⩽ 0, for any arbitrary

realization of π∗
0,i = ϱ, we have from the application of Jensen’s inequality above (now dropping

the dependence of E on i) that E[ζ2′(ϕi, π∗
0,i) |π∗

0,i] ⩽ ζ2′
(

E[ϕi |π∗
0,i = ϱ], ϱ

)
. Using Proposition 2

and applying LIE to this inequality,

E[X∗
i ] ⩽ E[ζ2′(ϕi, π∗

0,i)] ⩽ E
[
ζ2′
(
E[ϕi |π∗

0,i], π∗
0,i
)]

⩽ E
[
ζ2′(ϕ, π∗

0,i)
]

, (B.3)

where ϕ is as in the proposition statement and where the last inequality uses ∂ζ2′/∂ϕi ⩾ 0. Substi-
tuting the definition of ζ2′ into this inequality yields equation (16).

For part (iii), as (π∗
0,i −

π∗
0,i

ϕ+(1−ϕ)π∗
0,i
) ⩽ π∗

0,i for any ϕ ⩾ 1, E[X∗
i ] ⩽ E[(π∗

0,i − 0)π∗
0,i] = E[(π∗

0,i)
2],

as stated. (Equivalently, one can use (B.3) and note again that ∂ζ2′/∂ϕ ⩾ 0, so that the bound is
most slack as ϕ → ∞, giving the same bound.)

For part (iv), Corollary 2 gives that if E[X∗|θ = 0] ⩽ E[X∗|θ = 1], then E[X∗] ⩽ 0. Therefore, if
E[X∗

i |θ = 0] ⩽ E[X∗
i |θ = 1] for all i, then E[X∗

i ] ⩽ 0 over all streams, completing the proof.

B.3 Proofs for Section 5

Proof of Proposition 9. For part (i), first define the likelihood of a prior π0 as

L(π0) ≡
π0

1 − π0
, (B.4)
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and the likelihood of a signal st as

L(st) ≡
DGP(st|θ = 1)
DGP(st|θ = 0)

,

where the dependence of the latter on Ht−1 is left implicit for simplicity. The likelihood for any
belief πt is defined as well following (B.4). The above likelihoods are well-defined for interior
priors (as we assume given finite L in the proposition) and for DGP(st|θ = 0, Ht−1) > 0 (we
return to the situation in which DGP(st|θ = 0, Ht−1) = 0 shortly). From Bayes’ rule, beliefs satisfy
L(πt) = L(π0) · L(s1) · L(s2) · · · L(st). Now note from (5) that L(π∗

0) ≡ π∗
0

1−π∗
0
= ϕ π0

1−π0
, from

which it follows that under Bayesian updating,

L(π∗
t ) = L(π∗

0) · L(s1) · L(s2) · · · L(st) = ϕL(π0) · L(s1) · L(s2) · · · L(st).

For a fictitious agent with a rational prior, one could replace L(π0) with L(P0(θ = 1)). In our
case, given the incorrect prior (but correct Bayesian updating), we have π∗

t
1−π∗

t
= ϕ̌ P0(θ=1)

1−P0(θ=1) , where
ϕ̌ ≡ ϕL, with L defined as in the proposition. We can therefore write

L(π∗
t ) = ϕ̌L(P0(θ = 1)) · L(s1) · L(s2) · · · L(st).

As the likelihood ratios for the RN beliefs in this case are equal to those of a fictitious agent with
a correct prior π̌0 = P0(θ = 1) and ϕ̌ in place of ϕ, we conclude that the RN beliefs are as well.
Finally, for the case in which DGP(st|θ = 0, Ht−1) = 0 and this signal st is observed, the person
will update to πt = 1, matching the belief of a rational agent again. We have thus shown part (i).

We can thus treat the agent with the incorrect prior as if she were rational (satisfying Assump-
tion 2) but with ϕ̌ in place of ϕ. Further, ϕ̌ satisfies Assumption 4, since L is constant and ϕ is
constant by that assumption as well. For part (ii) of the proposition, if ϕ̌ ⩾ 1, then Assumption 3
holds as well, so all three assumptions are satisfied, and the stated results carry through.

For part (iii), assuming 0 < ϕ̌ < 1 (so Assumption 3 no longer holds for the fictitious rational
agent), note first that the proof of Proposition 1 never employs Assumption 3 and therefore still
holds straightforwardly, as we can write E[X∗] = (π∗

0 − π̌0)△ without use of this assumption. For
Proposition 2, the result as stated for a rational agent requires that π∗

0 > π̌0, which is not true for
ϕ̌ < 1. But an alternative bound can be shown for this case, by obtaining a lower bound for △
similar to the upper bound in Lemma A.2. Starting from (A.7) but solving now for E[m∗|θ = 1],
E[m∗|θ = 1] = (1 − π∗

0)−
1−π∗

0
π∗

0
· E[m∗|θ = 0]. Using this in (A.6),

△ = E[m∗|θ = 0]−
(
(1 − π∗

0)−
1 − π∗

0
π∗

0
· E[m∗|θ = 0]

)
=

1
π∗

0
· E[m∗|θ = 0]− (1 − π∗

0).

Then, given that 1
π∗

0
⩾ 0 and E[m∗|θ = 0] ⩾ 0, △ must be bounded below by −(1 − π∗

0). Returning
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to the formula from Proposition 2, if ϕ̌ < 1, then π∗
0 − π̌0 ⩽ 0, which gives

E[X∗] = (π∗
0 − π̌0)(△) ⩽ (π̌0 − π∗

0)(1 − π∗
0). (B.5)

Further, as π̌0 ⩽ 1, E[X∗] ⩽ (π̌0 − π∗
0)(1 − π∗

0) ⩽ (1 − π∗
0)(1 − π∗

0) = (1 − π∗
0)

2, as stated. And
taking (ii) and (iii) together, we have that E[X∗] ⩽ max(π∗

0
2, (1 − π∗

0)
2).

Proof of Corollary 3. Case (iii) from the previous proof applies, with ϕ in place of ϕ̌ and π0 in
place of π̌0 (since the agent now has RE but ϕ < 1). Thus (B.5) applies with these substitutions.
The second expression for the bound given in the corollary then substitutes for π0 (using (8)) and
simplifies. Equivalently, by swapping the labels of states 0 and 1, the swapped RN beliefs become
1 − π∗

t in place of π∗
t and the swapped SDF ratio becomes 1

ϕ in place of ϕ. As ϕ < 1, 1
ϕ > 1.

Therefore, all of our results hold, with π∗
t replaced by 1 − π∗

t and ϕ replaced by ϕ−1 > 1.

Proof of Proposition 10. Under the stated assumptions for ϵt, observed RN movement satisfies

E[m̂∗
t,t+1] = E[(π̂∗

t+1 − π̂∗
t )

2] = E
[(
(π∗

t+1 − π∗
t )

2 + (ϵt+1 − ϵt)
)2
]

= E[m∗
t,t+1] + 2E[π∗

t+1ϵt+1 − π∗
t ϵt+1 − π∗

t+1ϵt + π∗
t ϵt] + E[(ϵt+1 − ϵt)

2]

= E[m∗
t,t+1] + E[ϵ2

t + ϵ2
t+1].

For the observed counterpart of uncertainty resolution r∗t,t+1 ≡ (u∗t − u∗t+1),

E[̂r∗t,t+1] = E[(π∗
t + ϵt)(1 − π∗

t − ϵt)− (π∗
t+1 + ϵt+1)(1 − π∗

t+1 − ϵt+1)] = E[r∗t,t+1] + E[ϵ2
t+1 − ϵ2

t ].

Combining these two, with Var(ϵt) ≡ E[(ϵt − E[ϵt])2] = E[ϵ2
t ] and X∗

t,t+1 ≡ m∗
t,t+1 − r∗t,t+1,

E[X̂∗
t,t+1] = E[X∗

t,t+1] + 2Var(ϵt).

Appendix C. Additional Technical Material

C.1 Simulations for the Relationship of RN Prior and DGP with △

As noted in Section 2.3, we run numerical simulations of a large number of DGPs and priors in
order to understand the precise impact of the RN prior and DGP on △ (and therefore E[X∗]). We
consider the universe of history-independent binary-signal DGPs with a prior π∗

0 where st ∈ {l, h}
and P[st = h|θ = 1] and (assumed lower) P[st = h|θ = 0] are constant over t. These signal
distributions imply likelihood ratios for the signals of Lh ≡ P[st=h|θ=1]

P[st=h|θ=0] > 1 and Ll ≡ P[st=l|θ=0]
P[st=l|θ=1] > 1.

We use a fine grid to discretize π∗
0 , Lh, and Ll , then conduct 1000 simulations with T = 100 and

calculate △ in all cases. We find:

1. When π∗
0 is low, △ > 0 is very unlikely: the percentage of DGPs with positive △ given a

π∗
0 < .25 is 2%. For π∗

0 < .5, it is 11%.

10



Figure C.1: Contour Plot: Simulations for △ by DGP and π∗
0

Note: See text in Appendix C.1 for description of simulations and discussion of results.

2. When π∗
0 is low, the only DGPs in which △ > 0 are very asymmetric and extreme. For

example, when π∗
0 = .25, △ > 0 only occurs if P[st = h|θ = 1] > .95 and Ll > 2 · Lh.

3. The converse is true when π∗
0 is high: △ < 0 is rare and only occurs given a very asymmetric

and extreme DGP.

4. For symmetric DGPs (Lh = Ll), △ ⪋ 0 when π∗
0 ⪋ .5.

5. Holding the DGP constant, △ rises with π∗
0 .

6. Holding all else constant, as Lh rises and the size of upward updates rises, △ falls. As Ll rises
and the size of upward-updates rises, △ rises.

We present these results visually in Figure C.1. We reduce the dimensionality of the setting
by focusing on the likelihood ratio Lh

Ll
rather than Lh and Ll individually. (While the impact of both

Lh and Ll on △ appears monotonic, the impact of Lh
Ll

is only monotonic on average, leading to a
slightly messier graph.) The figure shows a contour plot with the RN prior on the x-axis, with the
y-axis stacking all of the DGP combinations in order of the likelihood ratio, and the contour colors
showing the approximate value of △ (darker colors corresponding to higher values) for each prior
and DGP (with the dotted line highlighting the points at which △ = 0). For example, drawing a
vertical line at a prior of π∗

0 = 0.25 suggests that a large portion of DGPs produce a △ < 0, and the
only DGPs that produce △ > 0 have extreme likelihood ratios.
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C.2 Risk-Neutral Beliefs and Time-Varying Discount Rates

This section provides further context on the relationship between RN beliefs and discount rates,
as discussed in Section 4.1 in the main paper. We again work in the setting in Section 2 here for
simplicity of exposition. The price of the terminal consumption claim is given in equilibrium in
by Pt(CT) = Et

[
βT−t

t
U′(CT)
U′(Ct)

CT

]
, where βt is now the agent’s (possibly time-varying) time discount

factor. Defining the gross return RC
t,T ≡ CT

Pt(CT)
, rearranging this equation for Pt(CT) yields

Et[RC
t,T] =

1 − Covt

(
βT−t

t
U′(CT)
U′(CT)

, CT

)
Et

[
βT−t

t
U′(CT)
U′(Ct)

] =

U′(Ct)

βT−t
t

− Covt(U′(CT), CT)

Et[U′(CT)]
,

as usual. We can write Et[U′(CT)] = πtU′(Clow) + (1 − πt)U′(Chigh) in our two-state setting, and
Covt(U′(CT), CT) can be similarly rewritten as a function of πt, CT, and U′(CT). In this setting,
discount-rate variation can arise from four sources:

1. Changes in the time discount factor βt.

2. Changes in contemporaneous marginal utility U′(Ct).

3. Changes in the relative probability πt.

4. Changes in state-contingent terminal consumption Ci or marginal utility U′(Ci).

Our framework allows for any discount-rate variation arising from the first three sources, but
restricts the last one: under CTI, it must be the case that any changes to (expected) U′(Ci) are
proportional across states. (More generally, as in Section 4.1, permanent changes to the SDF are
admissible, which by itself greatly generalizes this setting relative to one with constant discount
rates.) With constant discount rates, meanwhile, none of the four changes are admissible, or any
such changes must offset perfectly.

C.3 Simulations with Time-Varying ϕt

This section provides further detail for the simulations discussed in Section 4.3 and shown in
Figure 4. First consider the baseline situation in which π∗

0 = 0.5 and ϕt = 3 for all t. There is thus
only uncertainty about θ, and E[m∗] varies depending on the signal DGP. To trace the distribution of
E[m∗] across DGPs, we attempt to cover the space of binary DGPs in which the signal strengths are
constant over time. We start by looping over P[st = h|θ = 1] from {1,.99,.98,...,.01}. Then we loop
over P[st = l|θ = 0] from {.01,.02,.03,....99} while constraining P[st = h|θ = 1] > P[st = l|θ = 0]
such that the h signal leads to an upward movement. This process leads to 5052 DGPs. For each of
these DGPs, we simulate 100 random streams of T = 200 periods, after which the state is perfectly
observed. This number of periods allows beliefs to get very close to certainty prior to the resolving
signal. We calculate m∗ for each stream, from which we calculate the average m∗ statistic as an
estimate of E[m∗] for each DGP. The distribution of E[m∗] values across all such simulated DGPs is
shown in the dark line in Figure 4.
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Next, we allow additional uncertainty about the conditional realizations of the SDF MT, so
that ϕt also evolves over time. For each state (j and j + 1), we allow MT to take two possible
values with equal probability, where we choose the values such that ϕ0 = 3. Here, we start to run
into calculation timing constraints such that we limit the possible signal strengths. In particular,
we allow signal strengths for the high signal of .55,.75,.95 and for the low signal of .05,.25,.45 for
both states. Therefore we simulate nine DGPs for learning about MT in state j and nine DGPs
for learning about j + 1, leading to 81 combined DGPs to learn about MT. We combine each such
DGP with each of the DGPs for θ discussed above, and we again simulate 100 random draws of
movement of 200 periods. Each line in Figure 4 represents a different E[m∗] distribution given
variation in the signal strengths for θ, with the different lines showing different signal strengths for
learning about the conditional values of MT (and thus ϕ). In the “Low ϕ Uncertainty” case, MT in
state j can take the values 2.5 or 3.5 with equal probability and in state j + 1 can take the values
0.833 or 1.167 with equal probability. Consequently, ϕ0 = 3, and ϕT can vary from 2.14 to 4.2 (with
a coefficient of variation of 12%). In the “Medium ϕ Uncertainty” case, MT in state j can be 2 or
4 and in state j + 1 can be 0.667 or 1.333, so that ϕT can vary from 1.5 to 6 (with a coefficient of
variation of 54%). Finally, in the “High ϕ Uncertainty” case, MT in state j can be 1.5 or 4.5 and in
state j + 1 can be 0.5 or 1.5, so that ϕT can vary from 1 to 9 (with a coefficient of variation of 100%).

C.4 Solution Method and Simulations for Habit Formation Model

See the proof of statement 5 in Appendix B.2 for a description of the model, and the calibrated
parameters are identical to those used by Campbell and Cochrane (1999, Table 1), converted to
daily values, for the version of their model with imperfectly correlated consumption and dividends.
We consider 90-day option-expiration horizons (i.e., Ti − 0i = 90), and after solving the model for
the price-dividend ratio, we then solve for the joint distribution for returns (from t to Ti) and the
SDF at every point in a gridded state space as of t = Ti − 1, then t = Ti − 2, and so on, as below.

The initial market index value is normalized to Vm
0i

= 1, and the joint CDF for the SDF
realization and the return as a function of the current surplus-consumption state is then solved
by iterating backwards from Ti: after solving the model for the price-dividend ratio as a function
of the surplus-consumption value, we then calculate the Ti − 1 CDF for any possible surplus-
consumption value by integrating over the distributions of shocks to consumption (and thus
surplus consumption) and dividends at Ti; we then project this CDF onto an interpolating cubic
spline over the three dimensions (Sc

Ti−1, MTi , log(Rm,e
Ti

)); we then calculate the Ti − 2 CDF by
integrating over the distribution of shocks at Ti − 1 and the projection solutions for the conditional
distribution functions for (Ti − 1) → Ti obtained in the previous step; and so on. These CDFs are
then used for the model simulations.

We conduct 25,000 simulations, where each simulation runs from 0i to Ti, and for which the
initial surplus-consumption state is drawn from its unconditional distribution. For each period
in each simulation, we evaluate risk-neutral beliefs over return states at every point in the space
Θ and use these to calculate the set of conditional risk-neutral beliefs {π̃∗

t,i,j}j. Further, we store

13



Figure C.2: Estimates of SDF Slope in Habit Formation Model Simulations
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Note: See text in Appendix C.4 for description of simulations.

the associated set of expected SDF slopes {ϕt,i,j}j. We can thus calculate the true average values of
these objects of interest, ϕ0i ,j ≡ Ê[ϕ0i ,i,j], where Ê[·] denotes the expectation over all simulations i
and we have fixed the state pair j. And using the risk-neutral beliefs series, we can naively apply
our conservative bound in Proposition 8 to obtain lower-bound estimates for those SDF slopes
and compare those estimates to the true simulated values. Relative risk aversion for this model’s
representative agent does not match the definition used in Proposition 6, as this agent’s utility
does not depend only on terminal wealth (see Campbell and Cochrane, 1999, Section IV.B), so we
accordingly present estimates for the SDF slope rather than for relative risk aversion.

Figure C.2 presents these simulation results. The blue circles show the true simulated average
values of the SDF slopes ϕ0i ,j, while the red triangles show the naive lower-bound estimates of
these values using our theoretical bound on the simulated RN beliefs data. It is clear in both cases
that these SDF-slope values are far below those obtained from our empirical estimates, so the
model does not replicate the observed variation in RN beliefs even with the violation of CTI. We
can understand the validity of the theoretical bound for the interior states by way of Proposition 7,
which shows that the bounds hold approximately for violations of CTI for which the ϕt,i,j process
is close to a martingale. In our simulations, the values |Ê[ϕt+1,i,j − ϕt,i,j]| for different state pairs j
range from 0.00002 to at most 0.00011, which is not large enough to invalidate the bounds.
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C.5 Data Cleaning and Measurement of Risk-Neutral Distribution

Before detailing measurement of the risk-neutral distribution, we note that we must collect ad-
ditional data in order to follow the procedure below. In particular, in order to obtain the ex post
return state for each option expiration date Ti (and thereby assign probability 1 to that state on
date Ti, so that our streams are resolving), we need S&P 500 index prices used as option settlement
values. Our first step in this exercise is therefore to obtain end-of-day index prices (which we
take as well from OptionMetrics). But the settlement value for many S&P 500 options in fact
reflects the opening (rather than closing) price on the expiration date; for example, the payoff
for the traditional monthly S&P 500 option contract expiring on the third Friday of each month
depends on the opening S&P index value on that third Friday morning, while the payoff for the
more recently introduced end-of-month option contract depends on the closing S&P index value
on the last business day of the month.2 To obtain the ex-post return state for A.M.-settled options,
we hand-collect the option settlement values for these expiration dates from the Chicago Board
Options Exchange (CBOE) website, which posts these values.

In addition, in order to measure the risk-neutral distribution and to measure realized excess
index returns, we need risk-free zero-coupon yields R f

t,Ti
for t = 0i, . . . , Ti − 1. To obtain these,

we follow van Binsbergen, Diamond, and Grotteria (2022) and obtain the relevant yield directly
from the cross-section of option prices by applying the put-call parity relationship. We apply
their “Estimator 2,” which obtains R f

t,Ti
= β−1/T from Theil–Sen (robust median) estimation of

qm,put
t,i,K − qm,call

t,i,K = α + βK + εt,i,K. This provides a very close fit to the option cross-sections (see van
Binsbergen, Diamond, and Grotteria, 2022, for details) and thus produces a risk-free rate consistent
with observed option prices, as is necessary to correctly back out the risk-neutral distribution.

Finally, for both the OptionMetrics end-of-day and CBOE intraday data, we apply standard
filters (e.g., Christoffersen, Heston, and Jacobs, 2013; Constantinides, Jackwerth, and Savov, 2013;
Martin, 2017) to the raw option-price data before estimating risk-neutral distributions. We drop
any options with bid or ask price of zero (or less than zero), with uncomputable Black–Scholes
implied volatility or with implied volatility of greater than 100 percent, with more than one year to
maturity, or (for call options) with mid prices greater than the price of the underlying; we drop
any option cross-section (i.e., the full set of prices for the pair (t, Ti)) with no trading volume on
date t, with fewer than three listed prices across different strikes, or for which there are fewer
than three strikes for which both call and put prices are available (as is necessary to calculate the
forward price and risk-free rate); and after transforming the data to a risk-neutral distribution as
below, we keep only conditional RN belief observations π̃∗

t,i,j for which the non-conditional beliefs
satisfy π∗

t (Rm
Ti
= θj) + π∗

t (Rm
Ti
= θj+1) ⩾ 5%. Our bounds can be calculated using data of arbitrary

frequency, so we calculate X∗
i,j using changes in RN beliefs over whatever set of trading days are

left in the sample after this filtering procedure.

As introduced in Section 6.1, we measure the risk-neutral return distribution by applying the

2See http://www.cboe.com/SPX for further detail. For our dataset, the majority (roughly 2/3) of option expiration
dates correspond to A.M.-settled options.
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following steps to the remaining option prices (for which we use mid prices), following Malz (2014):

1. Transform the collections of call- and put-price cross-sections (for example, for call options on
date t for expiration date Ti, this set is {qm

t,i,K}K∈K) into Black–Scholes implied volatilities.

2. Discard the implied volatility values for in-the-money calls and puts, so that the remaining steps
use data from only out-of-the-money put and call prices (as, e.g., in Martin, 2017). Moneyness is
measured relative to the at-the-money-forward price, measured (again following Martin, 2017)
as the strike K at which qm,put

t,i,K = qm,call
t,i,K .

3. Fit a cubic spline to interpolate a smooth function between the points in the resulting implied-
volatility schedule for each trading date–expiration date pair. The spline is clamped: its boundary
conditions are that the slope of the spline at the minimum and maximum values of the knot
points K is equal to 0; further, to extrapolate outside of the range of observed knot points, set the
implied volatilities for unobserved strikes equal to the implied volatility for the closest observed
strike (i.e., maintain a slope of 0 for the implied-volatility schedule outside the observed range).

4. Evaluate this spline at 1,901 strike prices, for S&P index values ranging from 200 to 4,000 (so
that the evaluation strike prices are K = 200, 202, . . . , 4000), to obtain a set of implied-volatility
values across this fine grid of possible strike prices for each (t, Ti) pair.3

5. Invert the resulting smoothed 1,901-point implied-volatility schedule for each (t, Ti) pair to
transform these values back into call prices, and denote this fitted call-price schedule as
{q̂m

t,i,K}K∈{200,202,...,4000}.

6. Calculate the risk-neutral CDF for the date-Ti index value at strike price K using P∗
t (V

m
Ti

< K) =

1 + R f
t,Ti

(q̂m
t,i,K − q̂m

t,i,K−2)/2. (See the proof of equation (13) in Appendix B.1 for a derivation of
this result; the index-value distance between the two adjacent strikes is equal to 2 given that we
evaluate the spline at intervals of two index points.)

7. Defining Vm
i,j,max and Vm

i,j,min to be the date-Ti index values corresponding to the upper and lower
bounds, respectively, of the bin defining return state θj,4 we then calculate the risk-neutral
probability for state θj will be realized at date Ti, referred to with slight notational abuse as
P∗

t (θj), as
P∗

t (θj) = P∗
t (V

m
Ti

< Vm
i,j,max)− P∗

t (V
m
Ti

< Vm
i,j,min),

where the CDF values are taken from step 6 using linear interpolation between whichever two
strike values K ∈ {200, 202, . . . , 4000} are nearest to Vm

i,j,max and Vm
i,j,min, respectively.

Steps 1 and 2 represent the only point of distinction between our procedure and that of Malz,
who assumes access to a single implied-volatility schedule without considering put or call prices
directly; our procedure is accordingly essentially identical to his. Note that we transform the option

3This set of ∼1,900 strike prices is on average about 20 times larger than the set of strikes for which there are prices
in the data, as there is a mean of roughly 90 observed values in a typical set {qm

t,i,K}K∈K .
4That is, formally, Vm

i,j,min = R f
0i ,Ti

Vm
T0

exp(θj − 0.05) and Vm
i,j,max = R f

0i ,Ti
Vm

0i
exp(θj). For example, for excess return

state θ2, we have Vm
i,j,min = R f

0i ,Ti
Vm

0i
exp(−0.2) and Vm

i,j,max = R f
0i ,Ti

Vm
T0

exp(−0.15).
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prices into Black–Scholes implied volatilities simply for purposes of fitting the cubic spline and
then transform these implied volatilities back into call prices before calculating risk-neutral beliefs,
so this procedure does not require the Black–Scholes model to be correct.5 The clamped cubic spline
proposed by Malz (2014), and used in step 3 above, is chosen to ensure that the call-price schedule
obtained in step 5 is decreasing and convex with respect to the strike price outside the range
of observable strike prices, as required under the restriction of no arbitrage. Violations of these
restrictions inside the range of observable strikes, as observed infrequently in the data, generate
negative implied risk-neutral probabilities; in any case that this occurs, we set the associated
risk-neutral probability to 0.

As noted in step 3, the clamped spline is an interpolating spline, as it is restricted to pass through
all the observed data points so that the fitted-value set {q̂m

t,i,K} contains the original values {qm
t,i,K}.

Some alternative methods for measuring risk-neutral beliefs use smoothing splines that are not
constrained to exhibit such interpolating behavior. To check the robustness of our results to the
choice of measurement technique, we have accordingly used one such alternative method proposed
by Bliss and Panigirtzoglou (2004). Empirical results obtained using risk-neutral beliefs calculated
in this alternative manner are unchanged as compared to the benchmark results in Section 6.4.

We have also conducted robustness tests with respect to the fineness of the grid on which we
evaluate the spline in step 4 and calculate the risk-neutral CDF in step 6, with results from these
exercises also indistinguishable from the benchmark results.

C.6 Noise Estimation and Matching to X∗ Observations

As introduced in Section 6.2, we first estimate Var(ϵt) = Var(ϵt,i,j) separately for each combination
of trading day t, expiration date Ti, and return state pair j in our intraday sample.6 Our ReMeDI
estimator for this noise variance follows the replication code provided by Li and Linton (2022):
V̂ar(ϵt) = 1

Nϵ,n
∑

Nϵ,n−kn
i=2kn

(π̂∗
ti
− π̂∗

ti−2kn
)(π̂∗

ti
− π̂∗

ti+kn
). We select kn for each return state using the

algorithm in Section F.1 of the Online Appendix of Li and Linton (2022).

We must then match the noise estimates (which are obtained only for a subsample of days) to the
observed excess movement observations in our original daily data. To do so, we take advantage of
the fact that the best predictors of V̂ar(ϵt,i,j) are (i) state pair j (we see more noise for tail states) and
(ii) the observed RN belief of either θj or θj+1 being realized, Σ∗

t,i,j ≡ π∗
t (Rm

Ti
= θj) + π∗

t (Rm
Ti
= θj+1)

(conditional beliefs are noisier when the underlying sum Σ∗
t,i,j is lower, as Σ∗

t,i,j enters into the
denominator of π̃∗

t,i,j). We thus partition Σ∗
t,i,j into 5-percentage-point bins ([0, 0.05), [0.05, 0.1], . . .),

and then calculate the average noise σ̂ϵ,j,Σ ≡ V̂ar(ϵt,i,j) for each combination of state pair j and bin
for Σ∗

t,i,j. We then match σ̂ϵ,j,Σ to each observed one-day excess movement observation X̂∗
t,t+1,i,j in

our original end-of-day data, based on that observation’s state j and total probability Σ∗
t,i,j.

5We conduct this transformation following Malz (2014), as well as much of the related literature, which argues that
these smoothing procedures tend to perform slightly better in implied-volatility space than in the option-price space
given the convexity of option-price schedules; see Malz (1997) for a discussion.

6For this exercise, to increase our available observations, we do not condition on the ex post state being θj or θj+1.
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C.7 Details of Bootstrap Confidence Intervals

Our block-bootstrap resampling procedure is described in Section 6.4, and we provide further
details on how we construct one-sided confidence intervals for Table 3 here. Fixing a given ϕ,
denote the point estimate for emain

i (ϕ) by ê(ϕ). The null that emain
i (ϕ) = 0 is rejected at the 5%

level if 2ê(ϕ)− e∗(0.95)(ϕ) > 0, where e∗(0.95)(ϕ) is the 95th percentile of the bootstrap distribution

of emain
i (ϕ) statistics (i.e., it is rejected if it is outside of the one-sided 95% basic bootstrap CI for

emain
i (ϕ)). We conduct this procedure for all possible ϕ values, and we obtain ϕ̂LB = minϕ s.t.

2ê(ϕ)− e∗(0.95)(ϕ) ⩽ 0.

A more straightforward procedure for conducting inference on ϕ would be to construct the
basic bootstrap CI directly for ϕ (i.e., ϕ̂LB = 2ϕ̂ − ϕ∗

(0.95)). The challenge preventing us from doing
so is that in nearly all cases, the 95th percentile of the bootstrap distribution for ϕ̂ is ∞, given how
large our point estimates are (and how much excess movement we observe in our data). This
motivates our use of a test-inversion confidence interval using the residuals for different possible
values of ϕ, which solves this problem. These CIs achieve asymptotic coverage of at least the
nominal level under weak conditions (discussed further below), given the duality between testing
and CI construction; see, e.g., Carpenter (1999). We find that our procedure performs quite well,
with unbiased and symmetric bootstrap distributions around the full-sample point estimate.

We note that our bootstrap procedure fully preserves the groupings of return-state pairs (in-
dexed by j = 1, . . . , J − 1) for each set of observations indexed by i (corresponding to the option
expiration date) within each block, as we split the observations into blocks only by time and not by
return states. We do so in order to obtain valid inference for the aggregate value ϕ, which uses ob-
servations for state pairs (θ2, θ3), . . . , (θJ−2, θJ−1), in the face of arbitrary dependence for the obser-
vations across those state pairs and a fixed number of return states J (whereas we assume N → ∞,
and further the number of blocks B → ∞ according to a sequence such that (TN + 1)/B → ∞). In
this way our procedure is in fact a panel (or cluster) block bootstrap; see, for example, Palm, Smeekes,
and Urbain (2011). Lahiri (2003, Theorem 3.2) provides a weak condition on the strong mixing coef-
ficient of the relevant stochastic process — in our case, {(X∗

i,j, π̃∗
0,i,j, {V̂ar(ϵt,i,j)})t,j}i — under which

the blocks are asymptotically independent and the bootstrap distribution estimator is consistent for
the true distribution under the asymptotics above, so that our test-inversion confidence intervals
have asymptotic coverage probability of at least 95% for the population parameters of interest in
the presence of nearly arbitrary (stationary) autocorrelation and heteroskedasticity.7 This coverage
rate may in fact be greater than 95% given that we are estimating lower bounds for the parameters
of interest rather than the parameters themselves, and this motivates our use of one-sided rather
than two-sided confidence intervals, as in Section 6.4.

7There are additional conditions required for the result of Lahiri (2003, Theorem 3.2) to hold, but they will hold
trivially in our context under the RE null given the boundedness of the relevant belief statistics. Our block bootstrap is
a non-overlapping block bootstrap (NBB); others (e.g., Künsch, 1989) have proposed a moving block bootstrap (MBB)
using overlapping blocks, among other alternatives. While the MBB has efficiency gains relative to the NBB, these are
“likely to be very small in applications” (Horowitz, 2001, p. 3190), so we use the NBB for computational convenience.
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C.8 Variable Construction for RN Excess Movement Regressions

As discussed in Section 6.5, we consider reduced-form evidence on the macroeconomic and financial
correlates of RN excess movement, with results presented in Table 4. The dependent variable in
all cases is the monthly average of noise-adjusted RN excess movement X∗

t,t+1,i,j, with the average
calculated across all available expiration dates and interior state pairs for all trading days t in
a month. For the dependent variables, from top to bottom in the table, option bid-ask spread
is the volume-weighted average bid-ask spread for all S&P 500 options with less than a year to
maturity and positive bid prices in the given month. Option volume is total monthly dollar trading
volume in that same sample, detrended using an estimated exponential trend given the steady
growth in option volume over the sample. RN belief stream length is the average full-stream
length Ti over all contracts i active in that month. VIX2 is calculated using the average VIX in the
given month. The variance risk premium is VIX2 minus realized variance, and we use the data
provided by Lochstoer and Muir (2022) for this VRP. (We thank these and subsequent authors for
making the relevant data available.) The risk-aversion proxy raBEX

t , as discussed in footnote 37 in
the text, is obtained from Nancy Xu’s website (https://www.nancyxu.net/risk-aversion-index),
and we take the sum of squared daily changes in raBEX

t in a given month (winsorized at the 5th

and 95th percentiles) to measure the volatility of this risk-aversion proxy. We obtain the monthly
repurchase-adjusted log price-dividend ratio pdt from Nagel and Xu (2022), and we calculate the
absolute value of its deviation from its sample mean pd. The 12-month S&P 500 change is calculated
as the log change in the S&P price from month t − 12 to t, using data from Robert Shiller’s website
(http://www.econ.yale.edu/~shiller/data.htm). All variables (both dependent and dependent)
are normalized to have zero mean and standard deviation of 1, and all regressions include a
constant.
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