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Abstract

The paper introduces a method to conduct a forward-looking antitrust review of horizontal

mergers. The method utilizes a dynamic oligopoly model in which mergers, entry/exit, and

product repositioning are endogenous. The model provides long-run industry trajectories

with and without the merger under review, enabling the regulator to obtain dynamically

robust welfare comparisons. The paper demonstrates the framework’s application to regulate

the U.S. radio broadcasting industry. In particular, it investigates the long-run efficacy of two

commonly used merger heuristics: radio station ownership caps (see Telecom Act (1996)) and

static merger simulations. The paper finds that raising the ownership cap results in higher

total welfare and demonstrates varying long-run effectiveness of merger simulations.
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1 Introduction

The antitrust law is set to protect the market economy by promoting competition. An essential

part of the law are horizontal merger enforcement rules. The landmark legislation, the Clayton

Act of 1936, prohibits mergers and acquisitions whose effects “may be substantially to lessen

competition.” Applying this rule involves resolving a trade-off between market power and cost

efficiencies resulting from consolidation (see Williamson (1968)). A potential horizontal merger

is evaluated against the law before it can be executed. This evaluation has several implications.

First, no mergers can be finally implemented that violate the rules. Thus, in the short run, changes

in the rules directly impact the market structure by altering the set of executed mergers. Second,

firms have incentives to alter their conduct in response to changes to the merger rules. Because

regulatory challenges to the mergers are costly, firms are likely to propose mergers strategically,

balancing the profit and the likelihood of clearing regulatory hurdles. Firms are also likely to

reposition their product portfolio to amplify the future benefits from ownership consolidation.

Thus, in the longer run, changes in the rules are likely to indirectly impact the market structure

via an altered set of proposed mergers and subsequent changes in product characteristics. In this

paper, I propose a framework to obtain a forward-looking assessment of mergers enforcement rules

that incorporates changes in firms’ conduct by endogenizing mergers and product characteristics.1

The framework is applied to evaluate the efficiency of merger enforcement in the U.S. radio industry

after enacting the 1996 Telecom Act. The modeling approach is general and applicable to most

industries with multiproduct firms.

The 1996 Telecom Act was a major change in merger enforcement rules in the radio industry.

The Act abolished a national ownership cap of 45 radio stations and nearly doubled market-level

ownership caps. This change was followed by thousands of mergers and resulted in a rapid own-

ership consolidation. As a result, between 1996 and 2003, the number of radio station owners

dropped by 25%. In 2003, the largest player in the market, Clear Channel, owned more than 1250

radio stations nationwide, increasing from only 45 stations in 1996. The vast number of mergers

is not the only aftermath of the Act. Between 1996 and 2006, nearly 10% of radio stations per

1Lyons (2002) notes that the endogeneity of mergers affects the choice between enforcement rules. Lyons shows

that if the mergers are endogenous, the regulator may want to commit to a consumer surplus approval criterion

instead of a total surplus criterion, even if the goal is to maximize the total surplus.
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year significantly altered the type of their programming, further reshaping the competitive land-

scape for listeners and advertisers (see Leeper (1999)). The Act aimed to enable the realization

of cost efficiencies created by a joint operation of multiple radio stations. However, the legisla-

tion generated controversy concerning the increase in radio owners’ market power over listeners

and advertisers (see Drushel (1998)). The coexistence of cost synergies and market power raises

questions about the efficiency of the 1996 deregulation and complicates an assessment of whether

further deregulation would be socially beneficial. Moreover, the stations acquired in the previous

year are twice as likely to change their programming compared to stations that did not change

their owner. This gap in repositioning frequency suggests a direct relationship between ownership

consolidation and repositioning, implying that mergers and repositioning should be studied jointly.

This relationship has been documented by Berry and Waldfogel (2001), and Sweeting (2009), who

find that post-1996 radio mergers increased product variety.

Jeziorski (2014a) examines the impact of post-1996 mergers and repositioning on consumer

surplus within the static lens. He shows that the changes in market structure following the Act

increased listener surplus and decreased advertiser surplus. Jeziorski (2014b) supplements these

results with estimates of fixed cost synergies from mergers to show that the post-1996 consolida-

tion raises total surplus. The estimates are obtained by endogenizing mergers and repositioning

and obtaining the level of fixed cost synergies that rationalize the firms’ actions observed in the

data. Despite its usefulness for the estimation of fixed cost synergies, the model postulated by

Jeziorski (2014b) is not computable. As a result, the mergers and repositioning are assumed to

be exogenous when evaluating counterfactual merger enforcement policies. This paper relaxes this

assumption and develops a computable model that allows mergers and repositioning to be endoge-

nous to changes in the regulatory regime. The paper asks two questions. First, it aims at a fuller

understanding of the implication of the 1996 Act by comparing the factual industry path under

the Act with the hypothetical path that would occur without the Act. Second, it aims to evaluate

merger policies that are not observed in the data. Again, the policy prescription compares the

counterfactual industry path for a given novel policy with the factual path. However, since the hy-

pothetical path under the novel policy is unobserved, the static merger simulations are not directly

applicable. A computable model in which market structure is endogenous becomes necessary.

This paper confirms the earlier results that post 1996 deregulation increases total surplus.
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In particular, in the long run, under the factual industry path with the 1996 Act, the producer

surplus is greater by 10.1%, listener surplus is greater by 0.07%, and advertiser surplus is lower

by 1.7%. The impact on advertiser welfare is significantly smaller than Jeziorski (2014a), which

reports a 21% drop. This gap is caused by the difference in assumptions between the two papers.

Approximately half of the gap can be explained by a more granular treatment of programming

formats in Jeziorski (2014a). The remaining half of the gap is caused by a more complete treatment

of dynamics in this paper. For example, the paper demonstrates that in 72% of markets, the

mergers are followed by product competitors’ repositioning into higher-margin product space.

This post-merger repositioning intensifies the competition mitigating the impact of the merger.

Further, it is demonstrated that some of the extra product variety observed after 1996 would have

occurred in the hypothetical world without the Act. Thus, the static analysis overestimates the

Act’s impact on consumer welfare via a variety provision.

Next, the paper evaluates the efficiency of counterfactual regulatory regimes. It explores raising

the local ownership cap from between three to five FM stations (depending on the market size),

as specified by the Act, to a uniform cap of seven FM stations. This change would lead to an

additional 4% increase in producer surplus, 0.01% increase in listener surplus, and 1% decrease in

advertisers surplus. This impact of this further deregulation is in the same direction but smaller

than the impact of the Telecom Act.

The policy changes based on increasing local ownership caps increase total surplus; however,

the increase is predominantly from greater profits to radio station owners. Thus, a regulatory

agency could consider complementing the increase in the ownership caps with measures that di-

rectly focus on consumer surplus. I consider two policies that directly target consumer surplus

and rely on merger simulations, following Nevo (2000). In the first policy, the agency raises the

ownership cap to seven FM stations and rejects all mergers resulting in a lower static listener

surplus. This policy leads to a 2.24% increase in producer surplus, a 0.08% increase in listener

surplus, and a 0.66% decrease in advertiser surplus. I note that using a combination of owner-

ship caps and merger simulations results in a larger listener surplus than using ownership caps

alone. In the second policy, the regulator raises the ownership cap to seven FM stations and

rejects the mergers resulting in a lower advertiser surplus. Such policy presents only a short-term

solution to the decrease in advertiser surplus. Specifically, in the first 5 years, the policy leads to
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a 0.1% increase in advertiser surplus. However, in 20 years, this policy results in a 0.79% decrease

in advertiser surplus. The result is nearly the same as using the policy without any advertiser

surplus provisions. This counterintuitive result occurs because the policy based on static merger

simulations presumes that the product characteristics are perpetually constant. As a result, the

companies, being forward-looking, strategically propose acceptable mergers to the regulator today

and reposition the products after the merger is approved. As a result, the companies can extract

advertiser surplus, circumventing the simulation-based antitrust criteria in the long run.

The closest empirical work to this paper is Benkard et al. (2010), which studies the long-run

effects of mergers in the airline industry using a dynamic model of entry and exit with exogenous

mergers. They find that the mergers between major airlines lead to increased entry by low-cost

carriers. Similarly, Collard-Wexler (2014) examines the duration of the merger effects in the ready-

mix concrete industry and finds that a merger from duopoly to monopoly generates between 9 and

10 years of monopoly. Finally, in another paper, Mazzeo et al. (2012) argues that post-merger

product repositioning may significantly alter the welfare assessment of mergers if competitors

are likely to reposition into the profitable niches. This concern is also contained in Section 9 of

Horizontal Merger Guidelines (2010).

The model is an extension of Arcidiacono et al. (2016), which studies endogenous product

characteristics. The extension consists of adding endogenous mergers.2 The approach to modeling

endogenous mergers is a natural continuous-time generalization of Rubinstein (1982) bargaining

model. The pivotal feature of reframing the bargaining process in continuous time is that the

probability that more than one company would attempt a merger (or repositioning) at the same

instant is negligible. Such simplification lowers the conceptual and computational burden of pre-

dicting which mergers and repositioning events occur in the equilibrium. Consequently, it enables

a modeling compromise that maintains the necessary economic complexity required to conduct

a robust dynamic merger review while alleviating the curse of dimensionality caused by many

possible merger configurations.

2In the case of the radio industry, product repositioning occurs by horizontal changes in the type of programming,

ex., changing from a “talk” format to a “rock” format, as in Sweeting (2013). However, for markets where vertical

characteristics, such as product quality, are more critical, the endogenous mergers can be instead coupled with R&D

models similar to Kryukov (2008), or Doraszelski and Judd (2012).
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Gowrisankaran (1999) was one of the first papers that applied a dynamic oligopoly model

with endogenous mergers modeling to obtain merger counterfactuals. Using a series of computa-

tional experiments, he demonstrates that static models of merger enforcement, which presume that

mergers are exogenous, may lead to different conclusions than dynamic models with endogenous

mergers. An article by Igami and Uetake (2020), developed concurrently with this paper, conducts

an empirical evaluation of mergers in the Hard Drive industry. Both Gowrisankaran (1999) and

Igami and Uetake (2020) employ a discrete-time approach. Discrete-time requires rules on move

sequencing to break the curse of dimensionality caused by the multitude of possible merger con-

figurations. The viability of such an approach depends on the applicability of the sequencing rules

to describe the reality of a particular industry. For example, Gowrisankaran (1999) presumes that

mergers occur from the largest to the smallest. This sequencing rule is a viable alternative for mar-

kets where large players have notable institutional advantages of executing mergers more rapidly.

Igami and Uetake (2020) apply a different approach and permit only one merger per period while

assuming that the right to merge is awarded randomly. Such a sequencing rule assumes that the

probability of obtaining the ability to merge is always decreasing in the number of active players.

This assumption is a somewhat less natural choice to model radio broadcasting and other markets

that experienced a structural shift from dispersed to concentrated ownership. In radio, we observe

a rapid industry consolidation in the first few years after the Act, when the number of players is

large, and muted merger activity in later stages, as the number of players decreases. This result, if

anything, suggests an opposite relationship between the number of active players and the ability

to propose mergers. The continuous-time approach offers a mathematically elegant solution to the

curse of dimensionality without imposing complicated sequencing rules and without tying move

frequency to the number of active players.

This paper is related to a numerical study by Mermelstein et al. (2020), which analyzes a

two-player endogenous merger game with R&D investment. Similarly to Gowrisankaran (1999),

they use a discrete-time dynamic oligopoly model, but they opt for a co-operative Nash bargain-

ing instead of an alternative-offer non-cooperative bargaining game. A vanilla Nash bargaining

framework accommodates only two bargaining counterparts. Thus, an alternating-offer game is

perhaps a more natural choice for the radio industry, with many active radio station owners who

can become potential acquirers.
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The empirical results in this paper build on a vast game theoretical literature on mergers

pioneered by Farrell and Shapiro (1990). The most closely related studies examine mergers within

a dynamic framework. For example, Nocke and Whinston (2010) show that myopic merger rules are

dynamically optimal when applied in a simplified environment with homogeneous products.Cabral

(2003) examines the impact of free entry on the outcomes of the merger between two firms in

a spatially differentiated oligopoly. The model utilized in this paper has features in common

with the theoretical model by Armstrong and Vickers (2010), who examine a static principal and

agent problem. The agent proposes projects to a principal, but the principal does not observe

the complete characteristics of unproposed projects and commits to the acceptance policy ex-ante.

Nocke and Whinston (2013) extend these results to merger review, allowing for bargaining among

firms and multiple agents. The treatment of the regulator in this paper is similar to Motta and

Vasconcelos (2005). Another related paper Marino and Zábojńık (2006) studies the post-merger

entry, which is similar to product repositioning introduced in this paper.

The proposed model is compatible with a vast theoretical and numerical literature on endoge-

nous mergers and product repositioning. For example, as in Kamien and Zang (1990), Rodrigues

(2001), and Gowrisankaran and Holmes (2004), the model assumes that both sellers and buyers

are fully forward-looking. This work is also related to the literature on merger waves (see Harford

(2005) and Qiu and Zhou (2007)) allowing mergers to be strategic complements. Another related

study is Mazzeo et al. (2012), who numerically demonstrate that post-merger repositioning can

significantly alter the welfare assessment of the merger.

2 Data and industry background

Between 1996 and 2006, the radio broadcasting industry in the United States underwent major

structural changes. Before 1996 the industry was heavily regulated. In particular, Federal Com-

munication Commission limited the joint ownership of radio stations through the imposition of

national and local ownership caps. The 1996 Telecom Act significantly relaxed these restrictions.

This legislative change spurred a massive wave of ownership consolidation and product reposi-

tioning in which about a half of the 12,000 active radio stations changed ownership and a similar

fraction of radio stations changed the type of broadcast content. These changes significantly af-
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fected both the demand and supply side of the radio industry by creating market power over

advertisers and listeners and fixed and marginal cost efficiencies. Because of these developments,

radio has become a viable case study for evaluating the consequences of antitrust policy changes.

The American radio broadcasting industry is composed of more than 300 relatively separated

geographical markets. The broadcast spectrum in each market is partitioned into a set of discrete

frequencies, each hosting a single radio station.3 The number of frequencies does not change

significantly over time; thus, most entry is executed by acquiring one of the assigned frequencies

(between 1996 and 2006 FCC granted less than 60 new licenses nationwide, which constitutes

approximately 0.5% of active radio stations). Due to geographical fragmentation, the competition

between radio stations is localized. For example, according to the Radio Advertising Bureau,

national advertising contributed only 15% of overall advertising revenue in 2009. As a result of

this convenient fact, restricting attention to the competition for local listeners and advertisers

captures first-order revenue sources in this industry. In particular, to model the demand side, the

300 local markets might be regarded as distinct, although the existence of some cross-market fixed

cost synergies is possible.

Before the 1996 Telecom Act, the industry was limited by national and local ownership caps.

The national cap prevented any company from owning over 45 stations which effectively prevented

the formation of large cross-market chains. The local cap was determined by the number of

allocated frequencies, as described in Table 1. The 1996 Telecom Act abolished the national cap,

nearly doubled the local cap. Over the following decade, the industry moved from fragmented

local ownership (about 1.64 stations per owner in 1996) to a market in which fewer than 10

parent radio companies dominating two-thirds of both revenues and listeners nationwide (as of

2010). Furthermore, according to the 2010 data by BIA/Kelsey, the two largest companies, Clear

Channel and Viacom, account for about 42% of listeners and 45% of advertising revenues. In

particular, Clear Channel grew from 40 stations to over 1,200, executing about 15% of all 1996-

2006 industry acquisitions. Thus, it is reasonable to expect that one can capture the first-order

magnitude of market power and cost synergies by examining a handful of prominent owners.

3Radio is convenient to study mergers since its geographically separated markets result in little multimarket

contact. There is some overlap between radio markets, but those were excluded using the procedure developed by

Sweeting (2013).
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The consolidation of ownership mentioned above triggered an extensive product repositioning.

Such repositioning is relatively easy to identify because each radio station is uniquely categorized

into a distinct programming format. Each format describes the overall type of programming and is

directly related to the demographics of the potential listenership base. Thus, local radio markets

can be categorized as differentiated product oligopolies in which the degree of differentiation is

endogenous and is measured by the variety of supplied formats (see Berry and Waldfogel (2001)).

The formats are announced on a biannual basis by Arbitron, a consulting company, and are

frequently utilized as marketing tools for targeted advertising. Notably, the formats frequently

change, with approximately 10% of all stations switching formats annually. These changes can

be regarded as a generalized version of entry and exit into and out of particular industry niches;

therefore, they affect the amount of market power and cost synergies. Thus, format changes are

likely to impact the antitrust policy evaluation significantly and should be incorporated into the

analysis. This point is demonstrated numerically in the online appendix. The data used to

estimate a dynamic model covers the period from 1996-to 2006 and consists of (i) a complete

set of radio station acquisition transactions with monthly time stamps and (ii) formats of every

radio station in the United States with half-year time stamps. Additionally, the study uses a pre-

estimated static mapping, πk(Jt), between market structure and station revenues. The mapping

is estimated for a subset of 88 non-overlapping markets, using a panel data set on listenership

shares, advertising quantities, advertising prices, and revenues. To avoid modeling cross-market

interactions, I drop the overlapping markets following the method of Sweeting (2013); that is, I

drop markets “were more than 6% of listening was to stations based in other markets”. I also drop

markets that do not have data on advertising prices. The online appendix contains the details

on the price/quantity data used for static estimation. The remainder of this section concerns the

data used to estimate the dynamic model.

During the estimation, I introduce several data simplifications that reflect the main features of

the radio industry described in Section 2. Primarily, I divide the set of players into three groups:

dominant owners, local owners, and fringe. Dominant owners include companies such as Clear

Channel, ABC, and Viacom, which own a complicated network of stations nationwide. I allow

these companies to own multiple stations in local markets and acquire new stations. I also allow

dominant owners to reposition stations within their portfolios. The second group of companies
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consists of local owners. These companies are not allowed to own multiple stations; however, they

are allowed to reposition. Both dominant and local owners are forward-looking about repositioning

and bargaining about the acquisition prices. The remainder of the companies composes the fringe.

Companies in the fringe group are myopic and cannot reposition or be acquired, but they do

participate in the static competition for advertisers and listeners.

I label three active companies with the largest national revenue share in 2006 (the last year

of the data set) as dominant owners in each local market.4 Consequently, each local market may

have a different set of potentially active dominant owners; however, this set almost always contains

Clear Channel, accompanied by ABC, Viacom, Citadel, or Cumulus (see Table 2). According to the

data, during and immediately after 1996, when the ownership was still fragmented, the dominant

owners were initially inactive in many local markets and then entered through acquisitions.

In addition to tracking dominant owners, I label 22 of the remaining radio stations with the

highest local listenership share as local owners in each local market. All other radio stations, which

are small and usually have less than 0.5% listenership, are labeled as fringe stations. An exception

to the above rule consists the markets with more than 15 active stations, where I label all AM

stations as fringe because in such markets, FM stations generate a dominant part of total revenues.

AM stations become important in rural markets with less than 15 active stations, so I allow both

AM and FM stations to be outside of the fringe.

Modeling dominant owners, local owners, and the fringe is a minimum necessary compromise

chosen to capture first-order dynamics of the radio industry. For example, putting all local owners

on the fringe would be a strong assumption. First, as shown in examples 1 and 2 in the online

appendix, the regulator must track the product repositioning of smaller players in response to the

merger. Also, as shown in example 3 in the online appendix, the acquirees should be modeled

forward-looking. However, at the same time, the smallest stations rarely change formats and are

seldom acquired by larger owners, as indicated in the data. Thus, while increasing the complexity

of the estimation, modeling the forward-looking decisions of every small owner has little benefit.

4Labeling a subset of firms as national using future growth introduces an implicit assumption that all players

have correct expectations about which firms will become large. This distinction is quite evident in the radio industry

because firms such as Clear Channel, ABC, or Viacom were expected to execute many merger transactions after

the deregulation. In other industries, such distinction may be less clear.
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Nevertheless, dropping the smallest owners altogether is unrealistic because they collectively affect

markups in the pricing game. Therefore, a realistic compromise is fully tracking only large and

medium owners and partially tracking the smallest firms.

One artifact of not allowing smaller players to make merger bids is the prohibition of spin-offs.

I observe spin-offs in the data, but they are primarily a consequence of lumpy cross-market mergers

that violate local ownership caps. Consequently, the owners must spin-off certain stations to stay

within the regulatory rules; according to the anecdotal evidence, the candidates for spin-offs are

determined in advance and are unlikely to be fully integrated into the new owner’s portfolio in

the first place. Thus, counting spun-off stations in the new owner’s portfolio would most likely

overestimate the merged entity’s market power. I use this convenient fact and ignore the acquisition

of stations spun off subsequently.

The data contains information about more than 100 possible formats. I aggregate these formats

into three meta formats: (i) “Adult Music,” containing such formats as Adult Contemporary,

Jazz, Rock, and Country, (ii) “Hits Music,” containing such formats as Contemporary Hit Radio,

Urban, and Alternative, and (iii) “Non-music,” containing such formats as Talk, News, Ethnic

and Religious formats. This choice is dictated by the consideration of the substitution patterns

described by Jeziorski (2014a). The “Adult Music” format caters to a more mature population

of listeners, while the “Hits Music” attracts a younger crowd. The aggregation trades off static

realism for dynamic realism. Namely, I sacrifice accuracy in capturing within-period behavior

by dropping second-order format designations. However, such aggregation allows me to describe

cross-period behavior in greater detail. At the same time, I note that the inaccuracy in describing

within-period behavior can translate into inaccurate cross-period predictions. Keeping this caveat

in mind, I proceed to present the model of the radio industry and come back to this issue when

discussing the results.

3 Model

Consider a market over an infinite continuous time horizon. The market consists of a maximum

of K active radio owners and N possible broadcast frequencies. Each frequency has an assigned

owner and can host one radio station. This technical restriction effectively caps the number of
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active stations to N . I assume the radio station can be fully characterized by a programming

format from a finite type space F = {1, . . . , F}.

The market is modeled as a dynamic game between radio station owners. The portfolio of the

radio-station owner k is characterized by a vector ωt
k = (ωt

k1, . . . , ω
t
kF ), where ωt

kf is the number

of radio stations of format f owned by a player k. The state of player k is given by the vector

J t
k = (ωt

k, z
t
k), where ztk are the remaining payoff-relevant variables. For convenience, I denote the

total number of stations owned by player k as nt
k. The instantaneous variable profits and fixed

cost for firm k are given by πk(J t) and Fk(J t), respectively.

The static profit function π is obtained by solving an advertising pricing game that follows

Jeziorski (2014a). The game is fully described in the online appendix, and I include its main

features here for completeness. The radio station owners choose advertising quantities for each

station to maximize the joint profit from selling advertising in the advertising game. The advertis-

ing quantities and programming formats J t result in endogenous listenership shares. The listeners

are strategic when choosing the radio stations to listen to and have preferences over formats of

programming, as well as the amount of advertising. Listenership shares and advertising quantities

are supported by advertising prices that clear the advertising spot market. The advertising game

is assumed to be in Nash equilibrium, in which radio station owners choose advertising quantities

simultaneously.

The model is composed of two parts: (i) a model of endogenous mergers in which acquisition

prices are determined by non-cooperative bargaining game, and (ii) a model of product reposi-

tioning, which is a continuous time version of Sweeting (2013). Both of these models are versions

of dynamic discrete choice (see Miller (1984), Pakes (1986), Rust (1987), and Wolpin (1984)).

Mergers and product repositioning can happen concurrently, with mergers leading to subsequent

repositioning and vice versa. This feature makes this model distinct from alternative static models

and from two-period models in which a repositioning stage follows the merger stage. To simplify

the exposition, I discuss mergers and repositioning separately.

3.1 Mergers

The merger model can be summarized as a multi-agent version of a Rubinstein (1982) model with

a random right to move. Each company is associated with a Poisson process that determines
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the arrival of the right to acquire a competitor. These Poisson processes are independent and

share a common arrival rate λA. Once the company obtains the right to acquire, it chooses an

acquisition target that maximizes its discounted stream of profits. Before making this choice an

acquirer observes a vector of stochastic merger costs denoted by ζA,t(·), where ζA,t(k′) is the cost

of acquiring competitor k′. I consider a flexible form of merger costs:

ζA,t
k (J t, k′) = µA

k (J t, k′) + σA
k (J t, k′)ϵA,t

k (k′). (3.1)

The term µA
k (J t, k′) is a persistent part of the cost, which is a deterministic function of the industry

state and is commonly known. On the other hand, the term ϵA,t
k (k′) is an idiosyncratic stochastic

shock to the cost and is private information of the acquirer.

The acquirer makes a single take-it-or-leave-it merger proposal that maximizes the continuation

value or offers no merger. The potential acquiree instantaneously accepts or rejects the offer taking

into account his opportunity cost. However, once the offer is rejected, it cannot be reconsidered

unless a similar offer is extended in a future period.5 If the merger offer is accepted, it is reviewed

by an antitrust authority. During the review, the regulator blocks the merger of k and k′ with a

commonly known probability G(J t, k, k′).6 If the merger fails the review, it is not implemented,

and neither party incurs merger costs. If the merger passes the review, the merger offer is imple-

mented; that is, the following 3 things co-occur: (i) the acquirer incurs merger cost ζA(k′), (ii)

the merger bid P are transferred to the acquiree, and (iii) the companies merge their portfolios of

products. The industry continues with a new market structure.

A significant advantage of a continuous-time bargaining model is that it resolves the issue of

merger conflicts arising in discrete-time models. Consider the possibility of conflicting merger

attempts ak, ak′ (e.g., when two companies bid to acquire the same firm), and let CONk,k′ be

the probability that of the deal k execution. Over a short period of time ∆, the probability of

5This assumption is challenging to relax because withholding offers would require a model in which multiple offers

can be made at the same time. This assumption should not be pivotal if the frequency of making offers/counteroffers

is assumed to be sufficiently high.
6I focus on the commitment of the regulator to the policies, that is, the regulator cannot renege on the announced

policy at any point. I also focus on Markov policies of the regulator, which is without any loss to efficiency if the

firms play a Markov Perfect Equilibrium.
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execution of an attempt ak is equal to:

λA∆(1 − λA)∆ + CONk,k′λ
A∆λA∆ + O(∆2) = λA∆ + O(∆2)

Doraszelski and Judd (2012) show that only the linear terms of the arrival rates matter for optimal-

ity; therefore, in the equilibrium, the conflicting events would not play any role. By contrast, when

using discrete-time, one usually has to model conflicting mergers explicitly. Because such events

are rarely observed in the data, identifying this model component would be difficult. In practice,

it would force the modeler to assume such events away, for example, by putting a structure on

a sequence of moves (see Gowrisankaran (1999), Gowrisankaran and Holmes (2004) and Jeziorski

(2014b)).

The model of mergers allows for entry through the acquisition of other active firms. Potential

entrants are firms that hold empty portfolios of stations; that is, ωt
k =

−→
0 . 7 Modeling of entry and

exit through acquisitions endogenizes entry cost and scrap value, which are usually assumed to be

primitives (see Ericson and Pakes (1995)). Specifically, in my model, acquisition involves paying

an endogenous acquisition price, which acts as an endogenous sunk entry cost for the acquirer

and an endogenous scrap value for the acquiree. Due to this endogenous sunk cost and the fact

that large players operate in multiple markets simultaneously, potential entrants frequently delay

entry into a particular local market, waiting for favorable market conditions. Consequently, the

assumption that potential entrants are short-lived needs to be modified. Instead, I assume the

potential entrants to be long-lived, which allows for postponing entry and re-entry. Similar to

entry, exit is modeled as selling off all owned stations.

Bargaining with take-it-or-leave-it offers determines the split of bargaining power depending

on the outside option of the acquiree. This outside option is determined by many dynamic factors,

which include: (i) the value of waiting until the market becomes more concentrated, (ii) the value

of making a counteroffer in the future, and (iii) the value of repositioning. The value of the outside

option inherently affects bargaining power. The larger the acquiree’s outside option, the more

significant part of the merger surplus they receive. For the industries with few large companies

and many relatively homogenous smaller companies (radio industry included), the model is likely

7One way to allow the possibility of a more traditional entry is to endow the type space F with an inactive state.

This extension is possible but is not implemented because traditional entry is insignificant in the radio industry.
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to allocate most of the surplus to the large acquirers. However, in the industries where the number

of firms is small, and the frequency of offers is large, the model can allocate a significant amount

of the bargaining power to the acquirees. In this sense, a cooperative alternative, such as the Nash

Bargaining Solution, should be regarded as a reduced form of this model (see (Collard-Wexler

et al., 2019)).

The above model of mergers is versatile and can incorporate alternative methods of soliciting

merger offers. One alternative is a model in which nature chooses an acquisition target. After

being selected, the target is auctioned off and acquired by the highest bidder. Such an auction

process is relatively straightforward to incorporate within the current framework; however, it may

be inappropriate to analyze the radio industry. There are many potential acquisition targets in

the radio industry, and acquisition bidding wars are rare. Consequently, if the move (auction)

frequency λA is large enough, a large proportion of auctions will have only one bidder. In such a

case, the auction would be equivalent to making a take-it-or-leave-it offer.

Another possible extension of the model is allowing the move arrival rate λA to be different

(and possibly larger) when making a counteroffer. Such extension is theoretically possible but has

insignificant consequences if the overall frequency of moves is large.

3.2 Repositioning actions

Repositioning is modeled as a dynamic discrete choice with random arrival of a right to reposition.

In addition to a Poisson process gathering merger actions, each company is endowed with a Poisson

process with an arrival rate λR, which determines the timing of possible repositioning actions. Upon

the arrival of the right to reposition, the company observes a vector of repositioning costs

ζR,t
k (J t, r) = µR

k (J t, r) + σR
k (J t, r)ϵR,t

k (r), (3.2)

where r = (f, f ′) and represents repositioning a product from type f to type f ′. Similarly to

merger costs, µR
k is a deterministic function of the state and is common knowledge, while ϵR,t

k is

a private, idiosyncratic shock. After observing the cost, the company takes a single repositioning

action r or no repositioning action. The repositioning is instantaneous, and the new state of the

industry becomes common knowledge. One cannot delay a repositioning action.
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3.3 Timing

As mentioned before, the merger and repositioning actions are interrelated and are executed con-

currently. The joint model of merger and repositioning includes the following sequence of events:

(1) All players observe the state variables J t.

(2) Players collect the payoff πk(J t) − Fk(J t) until a merger/repositioning opportunity arises.

(3a) If a merger opportunity arrives for player k, then:

(i) Player k observes a vector of costs ζAk of merging with any of the active competitors.

(ii) Player k chooses whether to make a merger bid. If he chooses to make the bid, he puts

forward a single take-it-or-leave-it acquisition offer to the chosen acquisition target.

(iii) The acquisition target accepts or rejects the bid.

(iv) In case of acceptance, the merger review is conducted, and the new market structure is

determined. The flow returns to (1).

(3b) If a repositioning opportunity arises for player k, he observes payoff shocks ζRk for the reposi-

tioning of any owned station to a different format. Next, he immediately decides to reposition

a single station or not to reposition at all. Relevant switching costs are paid, the state space

is updated, and the flow goes back to the stage (1).

3.4 Strategies and equilibrium

This section contains a formal definition of the strategies and defines an equilibrium. A strategy

consists of four components: a merger strategy, a pricing strategy, a strategy to accept or reject the

merger bid, and a repositioning strategy. A merger strategy has the following form: ak(J t, ζA,t) ∈

{0, . . . , K}. This formula specifies which merger bid (if any) is proposed, conditional on the arrival

of a merger opportunity. The set of feasible acquisitions ΓA
k (J t) is the set of active competitors

and action 0, which represents no merger bid. Upon deciding to make a merger bid k′, the buyer

makes a take-it-or-leave-it offer to seller k′, given by the pricing strategy Pk(J t, ζA,t, k′) ∈ R+.

Temporarily suppose all merger bids are accepted so that the accept/reject function is constant

for all players and can be omitted (I relax the assumption later in this study). The repositioning
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strategy rk(J t, ζR,t) ∈ (F ×F )∪{0} prescribes which station would be repositioned. The feasible

repositioning actions ΓR
k (J ) allow for remaining idle or for repositioning any currently owned

station to any possible format.

Let gk = (ak,Pk, rk) be a strategy of player k. For every initial state J 0, a strategy profile

(gk,g−k) and regulator’s enforcement rule G prescribe a continuous time jump Markov process on

states J t, actions (atk, P
t
k, r

t
k), decisions of the regulator Gt

k ∈ {0, 1}, and private shocks (ζA,t, ζR,t).

The jumps in the process occur if a move opportunity arrives for any of the players, and a non-

empty action is implemented.

Let τ
A,(l)
k , τ

R,(m)
k be stopping times that represent arrivals of the l-th merger and the m-th

repositioning opportunity for player k, respectively. With some abuse of notation, denote by ζ
A,(l)
k

and ζ
R,(m)
k cost shocks revealed at τ

A,(l)
k and τ

R,(m)
k . Similarly, denote the prescribed actions by a

(l)
k ,

P
(l)
k , G

(l)
k , and r

(m)
k . Because the moves are implemented immediately, the resulting Markov process

on J t would have right-continuous paths. However, note the actions are prescribed by the strategies

evaluated at the left-side limit of the state space process; for example, a
(l)
k = ak(J τ

A,(l)
k −, ζ

A,(l)
k ).

The following equation gives the value function for company k (I temporarily ignore the events by

which company k is acquired):

Vk(J 0;gk,g−k,G) = Eg

{∫ ∞

0

e−ρt
[
πk(J t) − Fk(J t)

]
dt+

∞∑
l=1

e−ρτ
A,(l)
k

[
ζ
A,(l)
k

(
a
(l)
k

)
−G

(l)
k P

(l)
k

]
+

∞∑
m=1

e−ρτ
R,(m)
k ζ

R,(m)
k

(
r
(m)
k

)}
.

(3.3)

The equilibrium of the game is defined as follows.

Definition 3.1 (Markov Perfect Equilibrium). A strategy profile g∗ is a Markov perfect equilibrium

(for a given enforcement rule G) if the strategies maximize a stream of discounted profits at any

state,

g∗
k(J , ζk) ∈ arg maxgk

Vk(J ;gk,g
∗
−k,G); ∀k,J , ζk. (3.4)

The above equation states that each player best responds to the opponents’ strategies and a

pre-announced enforcement rule. It includes a requirement that an acquiree must be compensated

for an option value for rejecting the merger bid and continuing as a separate company until a new

merger bid arrives, which dynamically endogenizes the bargaining position of a seller.

17



In this study, I examine only equilibria in which the acquisition price is equal to the acquiree’s

value function, that is,

P∗
k(J , ζAk , k

′) = Vk′(J ;g∗,G); ∀k′ > 0, k,J , ζAk .

Under this condition acquisition events do not affect the acquiree’s value function and can be

ignored in the acquiree’s Bellman equation. This restriction is without much loss of generality

for two reasons: (i) acquirees do not have private information when receiving a merger bid, and

(ii) acquirees receive only one merger offer at a time, almost surely. In such a case, knowing

there are no other outstanding offers, the acquirer would propose the acquisition price equal to

the reservation value of the acquiree (value function) or would not make an offer if this reservation

value is too large.

The discussion of the existence of an equilibrium and computational strategy is contained in

the Appendix B. In summary, similarly to dynamic discrete choice in discrete time, one can express

the merger and repositioning strategies in terms of instantaneous conditional choice probabilities,

denoted by CCPA(J ), and CCPR(J ). These probabilities gather merger and repositioning actions

conditional on the arrival of the right to move. After this reformulation, one can directly apply

the existence result and computational tools from Doraszelski and Judd (2012).

Section 2 introduces three types of firms: national firms, local firms, and fringe firms. These

firm types can be accommodated as restrictions on model parameters. In particular, setting large

enough acquisition costs for local firms would preclude them from acquiring other firms. Similarly,

fringe firms cannot acquire and reposition, which one can accommodate by assuming large enough

acquisition and repositioning costs.

Dividing owners into the groups mentioned above has some significant consequences. The

upside is that it captures the essential features of the radio market and reduces the complexity of

the estimation. In particular, it enables estimating acquisition price (value function of the acquiree)

without tracking the possibility that the acquiree can make merger offers himself. Consequently,

this procedure enables me to use a simple two-step estimator to recover the parameters of the

dynamic model. I note that dividing players into groups is not a limitation of the model per

se and can be relaxed if the application requires it. Relaxation is also possible when computing

counterfactuals and when using a nested-fixed-point estimator; but, given my data, these extensions
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would require further assumptions and have not been implemented.8

4 Estimation

The road map of the estimation is as follows. First, I pre-estimate the static profit function using

the data on radio station market shares, formats, ownership, and advertising quantities and prices.

The procedure closely follows Jeziorski (2014a) and delivers a static profit function π(cot) for any

state of the industry. The profit function is obtained by solving a Nash equilibrium of the static

advertising game. Second, I use the static profit function to estimate the dynamic model.

The estimator used to estimate the dynamic model belongs to the class of two-step methods pi-

oneered by Hotz and Miller (1993). These methods enable the estimation of large dynamic systems

without re-solving for equilibrium at each parameter value. Hotz and Miller (1993) developed their

estimator for discrete-time single-agent problems, and many studies have extended their method

to discrete-time dynamic games (see Pakes et al. (2007), Bajari et al. (2007), Aguirregabiria and

Mira (2007) and Arcidiacono and Miller (2011)). The present paper develops a new two-step In-

stantaneous Pseudo Maximum Likelihood (IPML) estimator that maximizes an objective function

based on the instantaneous choice probabilities described by equations (B.2) and (B.3) in the Ap-

pendix B. An IPML is a modification of the 0-iteration Pseudo Maximum Likelihood introduced in

Aguirregabiria and Mira (2007) for discrete-time games. The estimation procedure builds on the

previous work by Arcidiacono et al. (2016), but does not rely on the existence of the terminal state

with a normalized terminal value, and relaxes the functional form of payoff shock distribution.

Suppose one has the data on H players’ actions and states of the game an instant prior to

taking these actions {(gh,Jh) : h = 1, . . . , H}, where gh is either a merger or repositioning action.

If the full solution to the game is available, then the game can be estimated using a full information

maximum log-likelihood (FMLE). Because state transitions conditional on actions are determinis-

tic, an FMLE is obtained by plugging a computed value function V (·; θ) into the equations (B.2)

and (B.3); that is,

LH(θ) =
H∑

h=1

log CCP(gh|Jh;V (·; θ), θ).

8I did not use a nested-fixed-point algorithm for two reasons: (i) it requires strong assumptions on equilibrium

selection, and (ii) it would require further and unrealistic simplifications to the model.
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However, there are two reasons why V (·; θ) is difficult to obtain: (i) the state space of the game is

large, so it is infeasible to recompute the value function for many candidate values of θ; and, (ii)

the game is likely to have multiple equilibria, so obtaining V (·; θ) for every possible equilibrium

may be necessary. The IPML estimator is designed to solve these issues. It replaces the value

function V (·; θ) with its uniformly consistent estimator V̂ (·; θ), and maximizes the instantaneous

pseudo likelihood

QH(θ) =
H∑

h=1

log CCP(gh|Jh; V̂ (·; θ), θ). (4.1)

I follow the usual way of obtaining a uniformly consistent estimator of the value function; that

is, I first pre-estimate CCPs and subsequently simulate the value function using equation (3.3).

The details are presented in the four remaining parts of this section. The first part describes the

pre-estimation of a one-shot profit function; the second contains the description of the state space

of the model; the third explains the estimation of acquisition and repositioning strategies; and the

fourth describes the simulated pseudo-likelihood estimation of structural parameters.

In the remainder of the paper, I presume that the static profits π(J ) are known. The estimation

procedure to obtain π(J ) is very similar to the one employed by Jeziorski (2014b). The details of

this procedure are contained in the Online Appendix.

4.1 description of the state space

After the simplifications, the state variables are the market’s identity (because the profit functions

vary from market to market), station portfolios of 3 dominant owners, and station portfolio of

fringe owners. I solve the game market by market because the markets are assumed to have no

interactions. Table 3 shows the number of states of the game with post-1996 ownership caps and

in the game with a uniform ownership cap of 7 stations. The largest market in the game with post-

1996 ownership caps has 21 million states, and the smallest has about 700,000 states. The number

of states increases by order of magnitude when the ownership caps increase to 7. In particular,

the largest market has nearly 100 million states.

I find that solving the game market by market does not provide direct savings in terms of

computation time because evaluating the Bellman equation is relatively cheap and the number

of these evaluations grows linearly in the overall number of states for all markets. However,
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separating markets is still crucial for the feasibility of the exercise because it enables significant

memory savings. In particular, memorizing a value function for one market at a time, lowers

the requirements from approximately 800GB to approximately 17GB of Random Access Memory

(RAM).

Overall computation time is determined by the total number of states in all markets, which

amounts to 4.5 billion. Consequently, despite heavy optimizations, such as using compiled C-code,

precomputing profits for all states, and using look-up tables for state transitions, the counterfactual

with a cap of 7 requires more than 6,000 Central-Processing-Unit-Hours (CPU-hours) to compute.

The algorithm is “embarrassingly parallelizable”; that is, it delivers linear efficiency gain with the

number of applied CPU-hours. Consequently, the counterfactual with a cap of 7 requires about a

week to compute on a 48 CPUs server.9 Increasing the number of product types (formats) in my

application is infeasible with today’s computers; however, it is likely possible in the near future.

Also, analyzing more product types for other industries with less active firms than radio should

be possible.

Both stages of dynamic estimation involve the imposition of current FCC ownership caps

while assuming that there is no other and meaningful antitrust scrutiny. Such assumption largely

reflects the reality of the radio industry but can be easily relaxed if needed. Having more antitrust

restrictions makes the analysis easier by lowering the set of possible industry configurations (for

example, larger ownership caps have higher computational complexity that smaller ownership

caps).

4.2 Estimation of acquisition and repositioning strategies

The data I use to estimate the dynamic model is summarized in two sets. The first set describes

merger decisions

XA = {amhi ⊂ K ×K : 1 ≤ i ≤ 6, h ∈ H,m ∈ M},
9The server setup used in this paper consists of 48 CPUs sharing the same RAM. Sharing the RAM is crucial

because when running on non-shared RAM setups (such as clusters or cloud) the algorithm is not embarrassingly

parallelizable. In particular, one needs to accommodate an extra overhead from communicating the new value

function to the nodes in each iteration. For this reason, comparable performance (in the year 2014) would require

hundreds of cloud nodes instead of 48 units.
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amhi is an observed set of mergers, m is a local market, h is a half-year period, and i is the month

in which the mergers took place. Several instances of multiple mergers exist in the same half-year

and multiple mergers in the same month. I can observe the sequence of mergers across months;

however, I do not observe the sequence of mergers within the month. Therefore, for the periods

with multiple mergers within the same month, the state space when taking action is only partially

observed.

The second set describes repositioning decisions:

XR = {bmh ⊂ J × F × F : h ∈ H,m ∈ M},

where bmhd is the observed set of repositioning events during half-year h. The formats are observed

once every half a year, while mergers are observed monthly. Therefore, multiple mergers and

repositioning actions during the same semi-yearly period create complications. For example, if

the station was acquired and repositioned in the same half-year, I do not see which player took a

repositioning action. Furthermore, I do not know how many active players were present during a

repositioning action.

Equilibrium CCPs, given by equations B.2 and B.3, depend on the state through unknown value

functions requiring semi-parametric estimation. In particular, the acquisition CCPs are given by

ĈCP
A

(k′|k,J , θA) =
exp

{
ΥA(k, k′,J )

}∑
k′′ exp {ΥA(k, k′′,J )}

, (4.2)

where ΥA(k, k′J ) are unknown functions of the state J . The unknown functions ΥA and ΥR are

approximated through the use of polynomial sieves (see Ai and Chen (2003)) described below.

I denote the fraction of the total number of active non-fringe stations in format f and owned

by player k as ηf,k. Formally,

ηtf,k =
ωt
fk

J
.

Additionally, I denote a set of dominant owners as KN and a set of local owners as KL. These

sets must meet an adding-up constraint given by K = #
(
KN ∪KL

)
,where # denotes the number

of elements in the set. The above notation helps express statistics from the state that determine

acquisitions and repositioning. For example, a fraction of stations that are locally owned and have

format f is given by
∑
k∈KL

ηk,f .
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After introducing the above notation, I define the approximations of ΥA and ΥR by polynomials

of η. I postulate that the coefficients of these polynomials satisfy a particular set of restrictions

imposed by the availability of the data, namely: (i) symmetric equilibrium and (ii) no mergers

across the dominant owners. With additional data, I could potentially relax the first restriction by

estimating ΥA and ΥR separately for each player. Similarly, if I observed many mergers of dominant

owners, I could potentially estimate ΥA separately for those types of actions. But unfortunately,

in practice, even though the merger data is rich, relaxing either of these restrictions is infeasible.

Imposing the above restrictions, I approximate the above indices with polynomials

ΥA(k, k′,J ) ≈ P(θAf(k′), η),

where P is a polynomial of the statistics η, and θAf(k′) are coefficients specific to the format f(k′) of

the only radio station owned by a local owner k′. Similarly, I approximate reposition action with

ΥR(k, f, f ′,J ) ≈ P(θRf,f ′ , η).

Note that dominant and local owners have different primitives for the model (possibly different

fixed cost structures and local companies cannot acquire other firms); thus, equilibrium strategies

must be allowed to differ across these two types of players. For this reason, I utilize a different

polynomial ΥR to approximate the repositioning strategies of dominant and local firms. Despite

the use of two different ΥR, the coefficients of all polynomials are interrelated and require joint

estimation because, as mentioned before, the state is only partially observed.

If the industry states were perfectly observable, the sieves estimator would choose the θA and

θR that maximize the data’s pseudo-likelihood. However, as explained earlier, the data is imper-

fect, preventing me from computing the full information likelihood function. Instead, one could

use a simulated likelihood or a generalized method of moments estimators. Unfortunately, both

methods are impractical for my application. The former would require too many simulations to

obtain a reasonably precise likelihood; the latter would lead to a substantial loss of efficiency. An-

other option is to perform an analytical integration of unobservables using Chapman-Kolmogorov

equations describing state transitions, as suggested by Arcidiacono et al. (2016). However, this

method cannot be applied directly because the full intensity matrix (a continuous-time equivalent

of a transition matrix) for my largest markets can contain up to 4 million by 4 million entries. Al-

though this matrix is relatively sparse, it would not be sufficiently sparse to store in the computer
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memory or recompute “on the fly.” So instead, I developed a method of integrating the likelihood

based on partial Chapman-Kolmogorov equations. These partial equations take advantage of the

fact that only a tiny subset of feasible latent industry states is relevant for the estimation. How-

ever, this simplification relies on two facts: (i) I observe all merger events; thus, no latent mergers

have to be integrated out, (ii) two repositioning events by the same station are improbable and

are assumed away.10 The details of this method are presented in the Appendix C.

I do not observe events in which players take no action; therefore, in the first stage, I can only

identify the product of the move arrival rate λ and CCPs. However, as long as the actual move

arrival rate is not excessively small, I can estimate the first stage by choosing a reference value

of λ set to 1. Then, relevant CCPs for the desired value of an arrival rate could be obtained by

dividing the estimates by λ.

4.3 Estimation of structural parameters

This subsection details the remaining parts of the estimation; namely, the parametrization of the

model and the simulation of the value function.

Fixed cost. The fixed cost of player k to operate a station j in format f is parametrized as

follows:

Fm
kj (J t|θF ) = F̄m

f × F S(ωt
kf , zk|θF ) × FE(nt

k, zk|θE). (4.3)

The cost is composed of three terms: (i) term F̄m
f is a fixed cost of owning a single station of

format f in market m, without owning additional stations in this or any other market; (ii) the

function F S represents a fixed cost discount caused by synergies of operating multiple stations

in the same format and the same local market; and (iii) the function FE represents a fixed cost

discount caused by within- and cross-market economies of scale.11 Note that for local owners, FE

and F S are equal to 1.

10I verify this assumption using a subset of the data for which I observe formats quarterly. Notably, none of the

stations in this subsample changed format twice or more times in the same half-year.
11I include cross-market economies of scale, but I do not model the joint decision to acquire multiple stations

across markets. The implications of this assumption depend on the form of cross-market synergies. In my particular

case, I use a simple specification in which large owners are assumed to have a cost discount that does not increase in

the number of stations owned in other markets. Without loss of generality, one can disaggregate joint decisions to

acquire multiple stations into market-by-market acquisition choices. The disaggregation may matter if the multiple
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The market-level fixed cost of owning one station F̄m
f is assumed to be proportional to average

variable profits (before fixed cost) in the market, calculated separately for each format. I compute

this average by simulating an industry path for each observed data point and averaging it over

time. The simulation is done using the first-stage estimates.

I postulate that for dominant owners:

F S(ωt
kf , zk = N |θF ) =

(
ωt
kf

)θF
ωt
kf

.

Parameter θF captures the synergy and is expected to lie between 0 and 1. I allow for economies

of scale by setting FE as follows12

FE(nt
k, zk = N |θE) = θFN

(nt
k)

θE

nt
k

,

where θFN is a discount for being a dominant owner and θE is a parameter that captures local

economies of scale.

Acquisition cost. The acquisition cost has a persistent part µA
k (J t, k′|θA) and an idiosyncratic

part with volatility σA
k (J t, k′|θA). The persistent part is parametrized as follows:

µA,m
k (J t, k′|θA) = θA,m + θAπ πk(J t).

The acquisition cost may depend on the company’s size because integrating into a bigger company

can be more costly, which is captured by the dependence of µA
k on the variable profits as a proxy

for size. I postulate a similar relationship for the idiosyncratic volatility:

σA,m
k (J t, k′|θA) = θA,m

σ + θAσ,ππk(J t).

Because acquisition cost is likely to be heterogeneous across markets, I allow the intercepts θA,m

and θA,m
σ to vary across four market categories. The first category consists of markets where a single

station has average variable profits greater than $150,000. The second category has half-yearly

variable profits in the range of $150,000-$60,000. The third is the $60,000-$20,000 range. Finally,

stations are acquired from the same owner and if there are economies of scale while bargaining.
12I also try other specifications, such as fixed effects for discounts when nt

k is greater than 3 or 4, and arrive at

similar results.
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the fourth is less than $20,000.13 Additionally, θA,m may vary across formats because of layoff

costs as well as other integration costs (human and physical resources reallocation) may vary with

the type of programming. I try this specification and find that the differences are economically

minor (less than 5%) and statistically (1%-size test) insignificant.

Repositioning cost. Similarly to the acquisition cost, the repositioning cost has a persistent

part µR
k (J t, k′|θR) and an idiosyncratic part with volatility σR

k (J t, k′|θR). It is reasonable to expect

that dominant owners face different repositioning costs than local owners. For example, voice-

tracking technology can temporarily allow the dominant owners to bring announcers from other

markets to streamline format switching. However, local owners may have better access to labor

markets and a more flexible workforce. Differences may additionally vary by format. One example

is the Hits Music format, which requires a large tower and costly marketing to gain sufficient

listenership. For this reason, switching to the Hits format is likely to require more significant

capital investments and access to specialized production factors. Thus I expect dominant owners

to have a lower cost when switching into this format. To accommodate that expectation, I postulate

the following parametrizations:

µR,m
k (J t, f, f ′|θR) = θR,m

[
1(zk = L)θRL,f ′,f + 1(zk = N)θRN,f ′,f

]
+ θRπ πk(J t)

and

σR,m
k (J t, f, f ′|θA) = θRσ,m + θRσ,ππk(J t).

The intercepts of repositioning costs can depend on the source and target format and vary by

company type. In addition, I allow for the mean shifts and heteroscedasticity by size, which are

captured by parameters θRπ and θRσ,π, respectively. To control for differences in switching costs

across markets, I allow for market-category multiplicative fixed effects in the mean θR,m, and the

variance θRσ,m. I find that allowing for such flexibility in the specification is critical in fitting the

model to the data.

13The variable profits are small for two reasons. First, they are an average across a relatively small number of

large stations and a more significant number of fringe stations. Second, the variable profits are net of variable costs.

Overall evidence on radio station profitability is scarce; According to Federal Communications Commission (2003),

Figure VI, the net profit margin of the radio industry was negative in 33% of quarters from 1995 to 2003. Moreover,

the radio industry underperforms relative to S&P-500 companies. Small average profits are also consistent with

Jeziorski (2014b).
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The above specification is used to simulate the value function

Vk(J t|θ) =

∫ ∞

s=t

e−ρsπk(J s)ds−
∫ ∞

s=t

e−ρsFk(J s|θ)ds +
∞∑
l=1

e−ρτ
A,(l)
k P (a

(l)
k ,J τ

A,(l)
k |θ)+

∞∑
l=1

e−ρτ
A,(l)
k WA

a
(l)
k

(CCPA
k ,J τ

A,(l)
k |θ) +

∞∑
m=1

e−ρτ
R,(m)
k WR

r
(m)
k

(CCPR
k ,J τ

R,(m)
k |θ).

(4.4)

The acquisition prices P
(l)
k (value functions of the local firms) are simulated using a nested routine,

which is triggered upon the arrival of a merger action at time τ
A,(l)
k and simulates the continuation

value of the local owner conditional on rejecting the merger bid. This value includes future mergers

between rivals, as well as the potential repositioning of the firm and its rivals. By backward

induction on the number of active rivals, it is possible to show that the option value of the local

firm must be equal to the value of rejecting all subsequent merger bids. The nested-simulation

routine arrives at this value with the following formula:

Vk(J t|θ) =

∫ ∞

s=t

e−ρsπk(J s)ds−
∫ ∞

s=t

e−ρsFk(J s|θ)ds +
∞∑

m=1

e−ρτ
R,(m)
k WR

r
(m)
k

(CCPR
k ,J τ

R,(m)
k |θ).

The closed-form solution for the conditional expected value of shocks W is unknown for the

number of alternatives larger than 1 (not including empty actions), which is a consequence of

the fact that idiosyncratic shocks are not distributed as type-1 extreme value random variables.

Instead, I simulate the idiosyncratic part of W on the grid of CCPs and fit the 4th-degree com-

plete Chebyshev polynomial. Likewise, I fit a separate polynomial for each number of feasible

alternatives. Such interpolation provides a good approximation along the equilibrium path, with

a maximum error of about 1% and lower.

Having the estimators of the value function V̂ at hand, I maximize an expected version of the

pseudo-likelihood (equation (4.1)), obtained using the procedure described in Appendix C. Note

that the value function must be simulated for every potentially feasible latent state and any state

attainable by a single action from any feasible latent state. For example, in the case of Los Angeles,

there are 46 feasible latent states, which generate 1, 208 potentially accessible states. Overall,

88 markets contain 106, 304 accessible states. Each simulation comprises 1, 000 draws, so the

procedure involves obtaining 106, 304, 000 industry paths, which are assumed to evolve for 40 years

and are kept constant thereafter. Because the number of industry paths is large, the simulation

procedure must be efficient. Two features facilitate this efficiency: (i) Using my functional-form
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specification, one can simulate the industry path once and compute the value function for a different

candidate values of structural parameters θ by using a set of sufficient statistics (details in Appendix

D). In such a case, the computation of the pseudo-likelihood takes about as much as computing

first-stage likelihood. (ii) Continuous-time enables updating the industry state only at the arrival

of the executed move, which saves computing power when simulating relatively infrequent actions

such as mergers and product repositioning. In an extreme case, when the draw of the waiting time

for the first executed move exceeds 40 years, the state is never updated, and the draw of the value

function collapses to perpetual static profits.

4.4 Identification

Several components of the model must be identified: (i) the repositioning cost θR, (ii) merger cost

θA, (iii) cost efficiencies from mergers (θF , θE), (iv) level of the fixed cost F̄m
j , and (v) arrival rate

λ. The identification strategy relies on the fact that a pre-estimated static model can predict the

revenues of radio owners in each industry state. As in Sweeting (2013) and Jeziorski (2014b), the

repositioning cost is identified as the residual from endogenizing format repositioning. In other

words, pre-estimated revenue predictions and the estimated repositioning cost must rationalize the

repositioning actions observed in the data. Similarly, I identify the merger cost and cost efficiencies

from consolidation; I use the convenient fact that entry is possible only through acquisition and

choose the merger cost that rationalizes the observed timing of such entry decisions. Similarly,

the estimates of the cost efficiencies have to rationalize subsequent acquisitions. The fixed cost is

bounded from above, stemming from the fact that, by revealed preference, entry is profitable in

all markets. The cost is also bounded from below by the cost discount level required to justify the

mergers.

Identifying rate λ separately from other structural parameters is difficult without observing all

move opportunities. However, such identification may still be possible with an exclusion restriction

that shifts the continuation value but does not affect current payoffs. One candidate for such

exclusion is ownership caps. If an owner is below the cap, the cap does not affect current profits

from a merger; however, it shifts future profits through the ability to execute mergers. I tried this

approach and found it infeasible because the variation in the ownership caps in my data is not

sufficient. The difficulty of identifying λ is not specific to continuous-time and is present but not
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prominently exposed in discrete-time games. Specifically, an arrival rate in a continuous-time game

is analogous to a period length in a discrete-time game. Identifying this period length is similar

to identifying a discount factor, which is known to be difficult (see Rust (1994)). For this reason,

the length of the period is usually not estimated but fixed, for example, to one action per year.

I make a similar simplification and set the arrival rate to once per month; however, I estimated

the model with an arrival rate of once per year and obtained similar qualitative and quantitative

results.

5 Results

This section reports and discusses the estimates of the model’s structural parameters. The static

part and first stage estimates are discussed in the Online Appendix. I also discuss the goodness

of fit metrics for the first stage estimation.

5.1 First stage goodness of fit

To evaluate goodness of fit of the first-stage estimation I use a pseudo R2 measures proposed by

McFadden (1973). In particular, I compute R2 = 1− log(likelihood of a full model)

log(likelihood of a benchmark model)
. This

statistic delivers a test for the significance of the first-stage estimation equation, when a benchmark

model has constant merger and repositioning propensities, and the full model has the logistic

structure (see equation (4.2)). Alternatively, the statistic can be interpreted as a “mean square

error” of the “variance” explained by the model, analogous to a Multiple Correlation Coefficient

(R2) in the linear regression. The model used as the first stage in this study can be regarded

as a generalization of the static logit model; it comprises discrete choice problems arriving with

exponential arrival times. Thus, McFadden’s R2 should be informative about the goodness of fit.

Since the merger and repositioning strategies are estimated jointly, I compute a joint R2 measure

using a model with two constants (one for merger strategy and one for repositioning strategy) as

a benchmark. The statistics are presented in Table 9. I obtain R2 = 0.1, which indicates that the

model can explain about 10% of variation in merger and repositioning activity in the data. The

unit of observation is a merger month; thus, it is expected to have a reasonable amount of the

residual variance because it is difficult to predict the exact month the merger takes place. Further
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information can be obtained by looking at the model’s fit over time. For example, I observe a

sharp decrease in the merger activity after 2000, and it is crucial to verify if the first stage model

can reasonably predict this qualitative change. For this purpose, I report the R2 statistic for each

year in the data. The R2 statistic is always above 0.07 and stays above 0.1 for the pivotal years of

2000 and 2001.

The original McFadden’s R2 is designed to compare nested models; however, it can be extended

to compare non-nested models. Such analysis aims to investigate if relaxing certain assumptions of

the model would lead to a better fit. A particularly relevant non-nested model is a non-stationary

model that allows for time-varying merger and repositioning propensity. Using this model as

a benchmark demonstrates how much explanatory power is gained when allowing the primary

model to be non-stationary. The second row of Table 9 presents the results of using a model

with year dummies for merger and repositioning propensities (20 parameters)14 instead of using a

model with constants as a benchmark. The results suggest that allowing for non-stationarity does

not add a significant explanatory power. In particular, The main (stationary) model has more

explanatory power than the alternative non-stationary model. Moreover, since the R2 computed

using the model with the constant probabilities is quite similar to the one computed using the

non-stationary model, I conclude that allowing a simple time trend does not capture a significant

amount of variation in data.

Another way to judge the model’s fit is to compare the consumer surplus observed in the data

to that predicted by first-stage estimates. The largest difference is observed at the end of the data,

2006. The simulated advertiser surplus in that year is within 2% of the observed listener surplus.

The simulated listener surplus is within 0.4% of observed surplus.

5.2 Structural parameters

In this subsection, I present estimates of the structural parameters, including fixed cost and per-

sistent and variable components of the acquisition and repositioning costs.

According to equation (4.3), the fixed cost of operating a portfolio of stations is composed

of three parts: a market-level fixed-cost multiplier F̄m
f , a multiplier representing cost synergies of

14This alternative formulation allows both the arrival of moves λ and move execution probabilities to be non-

stationary.
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owning multiple stations in the same format F S(J t
kf |θF ), and a multiplier represents the economies

of scale for owning multiple stations of any format FE(nt
k|θE).

Table 4 presents the fixed cost estimates of owning a single station averaged across formats. The

level of the fixed cost varies across markets and is roughly proportional to the population. Table

6 contains the estimates of the within-market economies of scale resulting from owning multiple

stations. I find that operating two stations together is 14% cheaper than operating them separately,

regardless of their formats. The last column contains the estimate of the cost advantage of being

a national owner, a status that captures cross-market cost synergies. I find that national owners

have a 4% lower fixed cost than local owners, but the result is insignificant. I also document further

cost synergies of operating stations in the same format. According to Table 5, the operation of

stations in the same format is additionally 14% cheaper on top of the economies of scale indicated

in Table 6.

Table 7 presents the estimates of the merger cost. I find that the mean acquisition cost varies

by market type and company size. Moreover, I find that this acquisition cost has relatively high

volatility, which is homoscedastic. Firms obtain a new draw from the idiosyncratic component

every month, and mergers are tail events. Thus, the combination of large mean and high volatility

usually leads to low costs for realized mergers.

I allow the repositioning costs to depend on the market category, source-target formats, and

the ownership structure of the firm. I operationalize the estimation by using multiplicative fixed

effect for the market category, source-target format, and being a national owner. Estimates of

repositioning for Category 1 are reported in Table 8, and the remaining categories are contained

in the Online Appendix. I find that the repositioning cost varies considerably across market

categories. In particular, I find higher switching costs in more profitable markets. Similar to the

merger actions, switching is a tail event, and the estimates reveal high average switching costs

with fairly high volatility over time. Additionally, the costs are statistically different depending

on the source and target formats, suggesting that switching is cheaper between some formats than

between others. These differences in switching costs are driven by the format switching patterns in

the raw data. For example, Hits stations are quite profitable, but I do not observe much switching

into this format, which can be rationalized by high switching costs. One can explain the other

switching-cost estimates similarly.
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Similarly to the first-stage analysis, we can compare the consumer surplus that is observed in

the data to that predicted by second-stage equilibrium CCPs. This should inform us how well the

functional form of the cost structure can replicate the patterns in the data. Ten years forward,

the simulated advertiser surplus is within 2.6% of the observed listener surplus. The simulated

advertiser surplus is within 0.6% of observed surplus.

6 Counterfactuals

Using the estimates of the model’s structural parameters, I perform several counterfactuals, which

study alternative merger enforcement policies.15. To minimize the impact of the estimation error,

I compare the simulations of counterfactual policies to a simulation of the current policy (not the

actual outcomes).

6.1 Impact of the 1996 Telecom Act

The first set of experiments investigates the impact of the 1996 Telecom Act on producer, listener,

and advertiser surplus. Table 10 presents counterfactuals that evaluate the impact of the looser

post-1996 local ownership caps. In particular, I recompute the equilibrium merger and reposition-

ing strategies for the pre-1996 ownership caps and compute the relevant surpluses for 5, 10, and

20 years into the future. I use static measures of producer and consumer surplus for the following

reasons: (i) the results are easily comparable with static analysis, and (ii) the static measures

do not contain payoff shocks ζ, whose variance is difficult to identify separately from the move

arrival rate λ. I find that radio station owners benefit from the deregulation because the producer

surplus is 10% lower under the old caps. Approximately 6% of this decrease results from loss of

market power and 4% results from lost cost efficiencies. Moreover, deregulation leads to lower

15The model of mergers is likely to have multiple equilibria. I use a selection rule that involves starting the

best response dynamics algorithm from the current equilibrium in the data. While I cannot exclude the existence

of other stable equilibria, I tried many other starting points, including a value function equal to zero, and could

not obtain any other equilibrium. Keeping this caveat in mind, all results in the counterfactual section should be

interpreted as “there exists an equilibrium such that...”, and should not be interpreted as “in all equilibria it holds

that...”.
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advertising supply and higher per-listener prices. Consequently, reverting to the old caps lowers

listener surplus by 0.07% and increases advertiser surplus by 1.7%.

The above exercise addresses the changes in the local cap without imposing a national cap (the

post-1996 conditions). An additional exercise aims to partially address changes in the national

cap by nullifying the cross-market cost benefits. In general, a lack of national synergies leads

to fewer mergers, which lowers the negative impact of the deregulation on advertiser surplus.

However, mergers are also less efficient because cross-market synergies are not internalized. As a

consequence, the realized mergers generate smaller gains in producer surplus. The overall effect is

presented in the bottom three rows of Table 10.

It is helpful to compare the findings of dynamic analysis with those obtained using static

analysis. In particular, Jeziorski (2014a) finds that for the decade between 1996 and 2006, own-

ership consolidation decreased advertiser welfare by 21%, whereas the present study determines

that decrease stands at 1.7%. Approximately half of the gap can be explained by a more gran-

ular treatment of programming formats in Jeziorski (2014a). I investigate two factors that are

mismeasured or omitted in static analysis and contribute to the remainder of the difference: (i)

post-merger product repositioning, which could correct the negative effect of the mergers; and (ii)

equilibrium provision of variety with and without the Telecom Act.

When assessing market power after acquiring a station in a particular format, it is particularly

relevant to investigate competitors’ incentives to reposition into that format. Namely, because the

acquisition generates higher rents for all stations of the focal format (as demonstrated numerically

in the Online Appendix), it invites repositioning by competitors. Such repositioning creates more

competition and mitigates the effect of the merger. 16

I measure the repositioning using net entry rate defined as the difference between the entry and

exit rate of competitors in and out of the focal format. I demonstrate the impact of mergers on

entry by comparing the net entry rates before and after acquiring a station of the focal format. I

compare the net entry rates using two methodologies: (i) using raw data summarized by first-stage

estimates (in the spirit of Benkard et al. (2010)), and (ii) using conditional choice probabilities

obtained numerically from a model. These two methodologies of assessing post-merger entry are

complementary. The model keeps the other market forces constant beyond the merger in question,

16This process is equivalent to the post-merger entry mentioned in Horizontal Merger Guidelines.
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similar to running a field experiment. It is desirable when studying mergers because actual field

experiments are tough to execute in such a context. However, the quasi-experimental properties

come with the cost of relatively strong modeling assumptions.

I compute before and after net entry rates using the first-stage CCPs averaged across mergers

observed in the data. 72% percent of markets have, on average, more net entry of stations into

a format after the acquisition of a station in that format by a national owner. The average post-

merger Poisson net entry rate equals 0.07 per month, which translates to about one year average

waiting time for the repositioning of competitors.

I also compute net entry rates using the CCPs computed from the model. I compare average

pre- and post-merger net entry on Figure 1 and I find that mergers lead to higher entry rates

in all 88 markets. The average Poisson net entry rate predicted by the model amounts to 0.02

per month, translating to about a four-year average waiting time for a post-merger repositioning

of competitors. Both results, the one obtained from the raw data and the one estimated model,

are mutually consistent and suggest a significant increase in entry after the merger. The dynamic

model accounts for such entry, whereas the static model does not.

Next, I examine the effects of the Telecom Act on the provision of variety. The reduced form

evidence for the variety provision was provided by Berry and Waldfogel (2001), who found that

mergers in radio markets generally lead to more variety. Jeziorski (2014a) further quantifies this

effect and shows that the provision of more variety directly affects market power by increasing

the surplus of the listeners and lowering the surplus of advertisers. These two papers compute

the change in variety using temporal variation in formats before and after the Telecom Act. I

supplement their analysis by comparing the provision of variety in the same year with and without

the Telecom Act using counterfactual experiments.

I compute a variety index that measures the concentration of formats in the market, defined as∑
f

(∑
k ωkf

N

)2

,

which resembles the Herfindahl index. If the variety index is 1, all the stations have the same for-

mat (no variety). If the variety index is
1

F
, the stations are distributed uniformly across formats

(maximum variety). The variety index amounts to 0.45 in 1996 – the first year of my data. I

replicate the result by Berry and Waldfogel (2001) and Jeziorski (2014a) by computing the change
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of variety index overtime under the post-1996 ownership caps. I find that post-1996 mergers lead

to increased variety generating a variety index of 0.39 and 0.381 in 2001 and 2006, respectively.

I recompute the variety index under the old ownership caps, and I find that the variety index

amounted to 0.391 in 2001 and 0.388 in 2006. Relative to the changes in the variety index over

time (comparing 0.45 in 1996 to 0.39 in 2001), counterfactual analysis reveals a negligible impact

of the Telecom Act on variety 5 years after it was introduced (comparing 0.39 and 0.391) and a

moderate impact ten years after it was introduced (comparing 0.381 to 0.388). Thus, the static

analysis, which uses only temporal variation, overstates the impact of the Telecom Act on vari-

ety. Mismeasurement of the variety provision results in overstating antitrust implications on the

Telecom Act.

6.2 Alternative merger policies

Ownership caps are rarely applied in markets other than radio broadcasting. Alternatively, the

regulator applies policies based on concentration indices or direct welfare measures. In the next

experiment, I increase the ownership caps to seven FM stations, as before, but additionally, I

impose welfare criteria based on static merger simulations.

First, I evaluate the impact of increasing ownership caps to seven FM stations (subsequently

CAP7)17 and present the results in the first three rows of Table 11. In the long run, the relaxation

of the caps leads to about a 4.2% increase in producer surplus. Approximately one-third of this

gain comes from fixed cost efficiencies, and the remaining two-thirds from market power. Market

power is exercised predominantly on advertisers, which lose about 1% of their surplus in the long

run. At the same time, the listeners gain 0.01%. Shorter-run analysis (over the first 5 to 10 years)

demonstrates the tension between exercising market power on listeners versus advertisers. In the

first five years after moving to CAP7, the companies exercise market power on listeners. However,

in 10 to 20 years, the firms will extract surplus from advertisers. The reason for this reversal is that

the short-run welfare figures are driven by ownership consolidation, whereas the long-run welfare

figures are driven by consolidation and post-merger product repositioning. These findings align

with the previous literature on retrospective post-merger repositioning in the radio industry. In

17Some results of the CAP7 counterfactuals rely on the functional form extrapolation of the cost synergies that

are not observed in the data because they violate current ownership caps.

35



particular, post-merger repositioning can increase variety in the industry (see Berry and Waldfogel

(1999), and Sweeting (2009)) benefiting listeners but hurting advertisers by thinning competition

(see Jeziorski (2014a)). However, before this study, the applicability of these results to hypothetical

and out-of-sample policies such as CAP7 had not been established.

Next, I imposed additional antitrust criteria and recomputed the equilibrium of the dynamic

game. Rows 4 to 6 of Table 11 present the results of experiments in which mergers that decrease

static listener surplus are forbidden. On the one hand, the policy successfully selected mergers that

benefit listeners, raising their surplus by 0.03% in the long run, which is three times the gain from

pure CAP7. On the other hand, the listener welfare criterion renders many mergers infeasible,

leading to a minor increase in producer surplus. However, because the executed mergers are

generally more cost-efficient than CAP7, much of the cost synergy is still realized.

Lastly, I evaluate the policy based on advertiser surplus and present the results in rows 7 to 9

of Table 11. Contrary to the listener surplus policy, the advertiser surplus policy is unsuccessful in

preventing mergers that harm advertisers in the long run. On the other hand, the welfare criterion

does well in the short run, leading to an approximate 0.13% gain in advertiser surplus. However,

post-merger repositioning reverts this trend in the long run and leads to a 0.77% loss in advertiser

surplus. The reason for this reversal is that companies circumvent the regulation by proposing

mergers that meet the static advertiser surplus criterion, and optimally repositioning to extract

the advertiser surplus once the merger is approved. Consequently, in the long run, the impact of

the enforcement policy on welfare depends more on how many mergers are approved and less on

the type of accepted mergers. Moreover, contradictory to the static intuition, the static advertiser

surplus criterion delivers a worse outcome for advertisers than the static listener surplus criterion.

This difference demonstrates that myopic merger policy can be dynamically suboptimal and have

somewhat counterintuitive long-run consequences.

7 Conclusions

This paper proposes a model of industry response to different merger enforcement regimes. The

regulator proposes and subsequently follows a merger enforcement policy, and companies respond

to that policy via mergers, entry/exit, and product repositioning. The merger transfer prices
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are endogenous and result from a dynamic bargaining process. This model provides a tool to

conduct an antitrust merger review that accommodates the distortions created by the endogeneity

of mergers, entry/exit, and product repositioning.

I demonstrate the applicability of the procedure by examining the wave of consolidation in

the U.S. radio broadcasting industry from 1996 to 2006. I find substantial fixed and marginal

cost synergies from joint ownership. Namely, operating multiple stations within the local markets

is cheaper than operating them individually. Additionally, significant cost synergies arise from

operating multiple similar stations within a local market. Specifically, the operation of two stations

by the same owner in a given local market is up to 14% cheaper than operating the same stations

by different owners. Moreover, if the two stations operated jointly have the same programming

format, the fixed cost drops by an additional 14%.

After establishing the extent of cost synergies from mergers, I compute a merger retrospective

that evaluates the 1996 Telecom Act. This retrospective compares the industry trajectory without

the Act with the factual trajectory with the Act. I find that the deregulation enhanced the total

surplus by raising producer surplus and generating a negligible impact on listener and advertiser

surplus. The small impact of the Act on advertisers contrasts with the significant drop in advertiser

surplus suggested by the static model and highlights the need to incorporate dynamics into the

merger analysis.

Furthermore, I evaluate the counterfactual policy of using looser caps supplemented by welfare

criteria. In general, increasing ownership caps to seven stations increases the total surplus. I

demonstrate that the mergers in the radio industry are largely self-correcting because they invite a

significant amount of repositioning, which mitigates the market power. However, I also demonstrate

that static welfare criteria do not sufficiently safeguard against significant losses to advertiser

surplus. Specifically, the criterion that rejects mergers lowering static advertiser surplus does not

prevent long-run losses to that surplus. Such losses to the advertisers’ surplus result from the fact

that companies can circumvent the welfare rule by proposing a merger acceptable to the myopic

regulator. Also, the companies alter the product characteristics to extract advertiser surplus

after the merger. More generally, I show that in the industries where dynamic processes such as

entry/exit or product repositioning are prevalent, the companies can extract consumer surplus

despite the welfare criteria employed by the regulator. In such cases, the efficacy of a particular
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merger enforcement rule is predominantly driven by the raw number of the merger this rule allows

and less by the exact types of the merger this rule permits.
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A Tables and Figures

# of active stations Old ownership cap New cap

45+ 4 8

30-44 4 7

15-29 4 6

0-14 3 5

Table 1: Change in local ownership caps introduced by the 1996 Telecom Act.
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Company Number of active markets in 2006 (out of 88)

Clear Channel 79

ABC/Disney 35

Viacom Int’l Inc 23

Citadel Comm Corp 18

Cumulus Media Partners LLC 18

Forstmann Little 18

Davidson Media Group LLC 17

Family Stations Inc 16

Radio One Inc 16

Entercom 15

Cox Radio Inc 12

Multicultural Bcstg 12

CSN International 10

Crawford Broadcasting Company 10

Entravision Communications Corp 10

Univision 10

Table 2: Number of active local markets (out of 88) for the largest radio owners.
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Number of markets having states within Total states

0-1M 1M-5M 5M-10M 10M-20M 20M-50M 50M-90M 90M-100M

Post 1996 5 35 14 12 22 0 0 792,557,073

Cap 7 3 7 8 11 14 18 27 4,577,183,777

Average computation time in CPU-hours Total time

States 0-1M 1M-5M 5M-10M 10M-20M 20M-50M 50M-90M 90M-100M

CPUh 1.4 5.7 10.7 19.3 47.7 88.6 138.5
Post 1996: 1,098

Cap7: 6,342

Table 3: The table shows the number of markets having number states in a particular interval, the total

number of states for all markets, and average equilibrium computation time.
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Name Pop. 2007 Intercept Name Pop. 2007 Intercept

Los Angeles, CA 13155.1 0.2324 (0.02413) Omaha-Council Bluffs, NE-IA 740.3 0.0255 (0.00265)

Chicago, IL 9341.4 0.1138 (0.01182) Knoxville, TN 737.4 0.0153 (0.00158)

Dallas-Ft. Worth, TX 5846.9 0.0924 (0.00959) El Paso, TX 728.2 0.0797 (0.00827)

Houston-Galveston, TX 5278.5 0.0695 (0.00721) Harrisburg-Lebanon-Carlisle, PA 649.4 0.0343 (0.00356)

Atlanta, GA 4709.7 0.0512 (0.00531) Little Rock, AR 618.7 0.0074 (0.00077)

Boston, MA 4531.8 0.0941 (0.00977) Springfield, MA 618.1 0.0098 (0.00102)

Miami-Ft. Lauderdale-Hollywood, FL 4174.2 0.1223 (0.01270) Charleston, SC 597.7 0.0071 (0.00074)

Seattle-Tacoma, WA 3775.5 0.1137 (0.01181) Columbia, SC 576.6 0.0105 (0.00109)

Phoenix, AZ 3638.1 0.0577 (0.00599) Des Moines, IA 576.5 0.0046 (0.00048)

Minneapolis-St. Paul, MN 3155 0.0692 (0.00718) Spokane, WA 569.1 0.0123 (0.00128)

St. Louis, MO 2688.5 0.0214 (0.00222) Wichita, KS 563.9 0.0144 (0.00150)

Tampa-St. Petersburg-Clearwater, FL 2649.1 0.0768 (0.00797) Madison, WI 539.5 0.0237 (0.00247)

Denver-Boulder, CO 2603.5 0.0686 (0.00712) Ft. Wayne, IN 520 0.0077 (0.00080)

Portland, OR 2352.2 0.1153 (0.01197) Boise, ID 509.9 0.0240 (0.00249)

Cleveland, OH 2133.8 0.0504 (0.00523) Lexington-Fayette, KY 509 0.0050 (0.00052)

Charlotte-Gastonia-Rock Hill, NC-SC 2126.7 0.0279 (0.00289) Augusta, GA 498.4 0.0024 (0.00025)

Sacramento, CA 2099.6 0.0415 (0.00431) Chattanooga, TN 494.5 0.0077 (0.00080)

Salt Lake City-Ogden-Provo, UT 1924.1 0.0269 (0.00279) Roanoke-Lynchburg, VA 470.7 0.0038 (0.00039)

San Antonio, TX 1900.4 0.0540 (0.00560) Jackson, MS 468.6 0.0011 (0.00011)

Kansas City, MO-KS 1870.8 0.0432 (0.00448) Reno, NV 452.7 0.0155 (0.00161)

Las Vegas, NV 1752.4 0.0710 (0.00737) Fayetteville, NC 438.9 0.0060 (0.00063)

Milwaukee-Racine, WI 1712.5 0.0217 (0.00225) Shreveport, LA 399.6 0.0018 (0.00019)

Orlando, FL 1686.1 0.0537 (0.00558) Quad Cities, IA-IL 358.8 0.0115 (0.00119)

Columbus, OH 1685 0.0119 (0.00123) Macon, GA 337.1 0.0022 (0.00023)

Indianapolis, IN 1601.6 0.0184 (0.00191) Eugene-Springfield, OR 336.4 0.0137 (0.00142)

Norfolk-Virginia Beach-Newport News, VA 1582.8 0.0173 (0.00179) Portland, ME 276.1 0.0112 (0.00116)

Austin, TX 1466.3 0.0812 (0.00842) South Bend, IN 267 0.0226 (0.00234)

Nashville, TN 1341.7 0.0488 (0.00506) Lubbock, TX 255.3 0.0271 (0.00281)

Greensboro-Winston Salem-High Point, NC 1328.9 0.0185 (0.00193) Binghamton, NY 247.9 0.0041 (0.00043)

New Orleans, LA 1293.7 0.0195 (0.00202) Odessa-Midland, TX 247.8 0.0040 (0.00042)

Memphis, TN 1278 0.0045 (0.00047) Yakima, WA 231.4 0.0099 (0.00103)

Jacksonville, FL 1270.5 0.0112 (0.00116) Duluth-Superior, MN-WI 200.3 0.0123 (0.00127)

Oklahoma City, OK 1268.3 0.0119 (0.00123) Medford-Ashland, OR 196.2 0.0076 (0.00079)

Buffalo-Niagara Falls, NY 1150 0.0401 (0.00417) St. Cloud, MN 191.2 0.0100 (0.00104)

Louisville, KY 1099.6 0.0311 (0.00322) Fargo-Moorhead, ND-MN 183.6 0.0150 (0.00155)

Richmond, VA 1066.4 0.0082 (0.00085) Abilene, TX 159.1 0.0059 (0.00061)

Birmingham, AL 1030 0.0104 (0.00108) Eau Claire, WI 156.5 0.0061 (0.00063)

Tucson, AZ 938.3 0.0317 (0.00329) Monroe, LA 149.2 0.0054 (0.00056)

Honolulu, HI 909.4 0.0311 (0.00323) Parkersburg-Marietta, WV-OH 149.2 0.0049 (0.00051)

Albany-Schenectady-Troy, NY 902 0.0323 (0.00335) Grand Junction, CO 130 0.0091 (0.00094)

Tulsa, OK 870.2 0.0137 (0.00142) Sioux City, IA 123.7 0.0119 (0.00123)

Ft. Myers-Naples-Marco Island, FL 864.1 0.0712 (0.00739) Williamsport, PA 118.3 0.0036 (0.00037)

Grand Rapids, MI 856.4 0.0124 (0.00129) San Angelo, TX 103.8 0.0057 (0.00059)

Albuquerque, NM 784.9 0.0614 (0.00638) Bismarck, ND 99.2 0.0024 (0.00025)

Omaha-Council Bluffs, NE-IA 740.3 0.0255 (0.00265) ()

Standard errors (corrected for the first stage) in parentheses

*** p¡0.01, ** p¡0.05, * p¡0.1

Table 4: Fixed cost of owning one station in each market (half-yearly, millions USD).
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Number of stations owned

in the format in the local market
1 2 3 4 5

Fixed cost discount
1.000

(−)

0.862∗∗∗

(0.034)

0.790∗∗∗

(0.064)

0.743∗∗∗

(0.058)

0.708∗∗∗

(0.049)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, one-tail test

Table 5: Fixed cost: Table contains estimates of discounts to fixed cost resulting from local cost synergies

of owning multiple stations in the same format.

Number of stations owned

local market
1 2 3 4 5 National

Fixed cost discount
1.000

(−)

0.863∗∗

(0.063)

0.791∗∗

(0.120)

0.744∗∗∗

(0.109)

0.709∗∗∗

(0.092)

0.963

(0.178)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, one-tail test

Table 6: Fixed cost: Table contains estimates of within- and cross-market economies of scale. The

number reflects the per-station discount.

Mean Standard deviation

Intercept Variable profits Intercept Variable profits

Category 1 7.203∗∗∗

(1.374)

2.653∗∗∗

(0.653)

2.039∗∗∗

(0.290)

0.086
(0.091)

Category 2 3.917∗∗∗

(0.720)
1.030∗∗∗

(0.151)

Category 3 3.724∗∗∗

(0.793)
0.950∗∗∗

(0.177)

Category 4 2.061∗∗∗

(0.424)
0.510∗∗∗

(0.095)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, two-tail test

Table 7: Estimates of the acquisition cost (in millions USD). The table contains an intercept of the mean

and standard deviation of the acqusition distribution. It includes market-size fixed effects (relative to the

smallest category) and a coefficient on the static variable profits of an acquistion target.

46



Owner Source Mean Std. deviation

format Target format Variable Intercept Variable

Adult Music Hits Music Non-Music profit profit

National

Adult Music - 18.799∗∗∗

(1.863)
18.088∗∗∗

(1.732)

2.084
(1.842)

3.654∗∗∗

(0.330)
0.069
(0.329)

Hits Music 14.723∗∗∗

(1.419)
- 17.757∗∗∗

(1.732)

Non-Music 16.125∗∗∗

(1.568)
21.194∗∗∗

(2.099)
-

Local

Adult Music - 18.828∗∗∗

(1.819)
13.665∗∗∗

(1.306)

Hits Music 10.791∗∗∗

(1.121)
- 10.443∗∗∗

(1.104)

Non-Music 17.160∗∗∗

(1.606)
22.076∗∗∗

(2.115)
-

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, two-tail test

Table 8: Market category 1: Estimates of format-switching costs (in millions USD). The table contains

to-from format fixed effects for local and national owners.

All years 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Pseudo R2

constant probabilities
0.10 0.07 0.11 0.12 0.12 0.11 0.09 0.08 0.09 0.08 0.10

Pseudo R2

year dummies
0.08 0.05 0.11 0.11 0.10 0.07 0.10 0.05 0.09 0.07 0.08

Table 9: Pseudo R2 measures for the first stage estimation, defined as 1 −
log(likelihood of a full model)

log(likelihood of a benchmark model)
. I use two benchmark models: (i) a model with a constant

probability of acqisition and repositioning (2 parameters), (ii) a model with time dummies (20 parame-

ters). The former R2 measure avaluates a general goodness of fit, the latter investigates to which degree

a non-stationary model would fit the data better.
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Counterfactual Total producer Variable Fixed Listener Advertiser

regime surplus profits cost surplus surplus

Pre-1996 local caps 5 years -4.44 (2.30%) -2.62 (1.36%) 1.82 (0.94%) 0.00 (0.00%) -0.89 (0.21%)

Pre-1996 local caps 10 years -9.63 (4.87%) -5.67 (2.87%) 3.97 (2.00%) -0.04 (0.01%) -0.63 (0.15%)

Pre-1996 local caps 20 years -20.95 (10.13%) -12.38 (5.99%) 8.57 (4.15%) -0.21 (0.07%) 7.28 (1.73%)

Pre-1996 local caps

No cross-market ownership
5 years -4.32 (2.24%) -2.62 (1.36%) 1.70 (0.88%) -0.02 (0.01%) -0.75 (0.18%)

Pre-1996 local caps

No cross-market ownership
10 years -9.37 (4.74%) -5.62 (2.84%) 3.75 (1.89%) -0.08 (0.03%) -0.44 (0.10%)

Pre-1996 local caps

No cross-market ownership
20 years -20.41 (9.88%) -12.24 (5.92%) 8.18 (3.96%) -0.27 (0.09%) 7.37 (1.75%)

Table 10: Impact of different enforcement regimes on producer (half-yearly, millions USD), listener (day-

minutes of advertising per listener; listener surplus cannot be easily expressed in dollars because there

are no dollar transfers between listeners and radio station owners), and advertiser surplus (half-yearly,

millions USD), cumulative in the 88 markets. The table reports differences between simulated future states

using the equilibrium merger and repositioning strategies for the counterfactual and observed regimes. A

positive number means that the counterfactual regime yields a higher value.
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Figure 1: Post- and pre-merger net entry rates by market. Markets are sorted by population, from the

smallest (Bismark) to the largest (Los Angeles).
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Counterfactual Total producer Variable Fixed Listener Advertiser

regime surplus profits cost surplus surplus

Cap of 7 5 years 2.21 (1.14%) 1.66 (0.86%) -0.55 (0.28%) -0.03 (0.01%) 0.91 (0.22%)

Cap of 7 10 years 4.44 (2.24%) 3.18 (1.61%) -1.26 (0.64%) -0.00 (0.00%) -1.20 (0.28%)

Cap of 7 20 years 8.59 (4.16%) 5.90 (2.86%) -2.69 (1.30%) 0.03 (0.01%) -3.71 (0.88%)

Cap of 7

Myopic Listener Surplus Criterion
5 years 0.59 (0.30%) 0.55 (0.28%) -0.04 (0.02%) 0.05 (0.02%) 0.42 (0.10%)

Cap of 7

Myopic Listener Surplus Criterion
10 years 1.70 (0.86%) 1.20 (0.61%) -0.50 (0.25%) 0.07 (0.02%) -0.51 (0.12%)

Cap of 7

Myopic Listener Surplus Criterion
20 years 4.65 (2.25%) 2.80 (1.36%) -1.85 (0.89%) 0.08 (0.03%) -2.58 (0.61%)

Cap of 7

Myopic Advertiser Surplus Criterion
5 years 1.72 (0.89%) 1.16 (0.60%) -0.56 (0.29%) -0.07 (0.02%) 0.53 (0.13%)

Cap of 7

Myopic Advertiser Surplus Criterion
10 years 3.58 (1.81%) 2.25 (1.14%) -1.33 (0.67%) -0.10 (0.03%) 0.44 (0.10%)

Cap of 7

Myopic Advertiser Surplus Criterion
20 years 6.76 (3.27%) 4.12 (1.99%) -2.64 (1.28%) -0.05 (0.02%) -3.25 (0.77%)

Table 11: Impact of increasing FM local ownership cap to 7 stations on producer (half-yearly, millions

USD), listener (day-minutes of advertising per listener), and advertiser surplus (half-yearly, millions USD),

cumulative in the 88 markets. The table reports differences between simulated future states using the

equilibrium merger and repositioning strategies for the counterfactual and observed regimes. A positive

number means that the counterfactual regime yields a higher value.
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B Formulation using conditional choice probabilities

To apply the existence result from Doraszelski and Judd (2012), the game needs to be recast as one with continuous actions, which

can be done by noting that choosing actions after observing payoff shocks ζA,t
k or ζB,t

k is mathematically equivalent to choosing the

conditional choice probabilities (CCP) of actions (see Aguirregabiria and Magesan (2013)).

Let CCPA
k (a|J ) be an ex-ante probability of company k acquiring a company k′ conditional on the arrival of a merger opportunity.

Similarly, define CCPR
k (r|J ) to be an ex-ante probability of repositioning from f to f ′. After a minor adjustment to continuous time,

the results contained in the proof of Theorem 1 from Hotz and Miller (1993) apply to this model. Following the notation in that paper,

consider the expectation of ζA,t
k , when the optimal action conditional on arrival of the right to merge at state J t is

WA
a (CCPA

k ,J t) = E[ζA,t
k |J t, atk = a].

A similar expression can be written for the repositioning action:

WR
r (CCPR

k ,J t) = E[ζR,t
k |J t, rtk = r].

The above expressions are equal to 0 if no action occurs. The key fact is that these expectations can be expressed as functions of

CCPs. Hotz and Miller (1993) established this result for single-agent discrete-time models, and their proof can be repeated with minor

adjustments for the continuous-time game studied in this paper. Subsequently, maximizing the value function with discrete choices is

equivalent to solving the following Bellman equation with continuous actions:

ρVk(J ) = max
CCPA

k
,CCPR

k

{
πk(J )− Fk(J )−

(
λA
k (J ) +

K∑
k=1

λR
k (J )

)
Vk(J )−

λA
k (J )

 ∑
a∈ΓA

k
(J )

CCPA
k (a)

(
Vk(J ′(k, a))− Va(J ) +WA

a (CCPA
k ,J )

)+

λR
k (J )

 ∑
r∈ΓR

k
(J )

CCPR
k (r)

(
Vk(J ′(k, r))− Va′ (J ) +WR

r (CCPR
k ,J )

)+

∑
k′ ̸=k

λA
k′ (J )

∑
a∈ΓA

k′ (J )

CCPA
k′ (a)Vk(J ′(k′, a))+

∑
k′ ̸=k

λR
k′ (J )

∑
r∈ΓR

k′ (J )

CCPR
k′ (r)Vk(J ′(k′, r))

}
,

(B.1)

where J ′(k, k′) is the future industry state after k, k′ merger and J ′(k, r) is the future industry state after company k takes a

repositioning action r. Using this formulation, one can directly apply the existence result from Doraszelski and Judd (2012).

Equation B.1 can be used to compute the equilibrium of the game, and the algorithm has relatively low computational requirements.

Suppose the idiosyncratic parts of the payoff shocks, as defined in equations (3.1) and (3.2), have the following structure: ϵA,t
k (a) =

ϵ̃A,t
k (a)− ϵ̃A,t

k (0) and ϵR,t
k (r) = ϵ̃R,t

k (r)− ϵ̃R,t
k (0), where ϵ̃s have IID type-1 extreme value distributions (recall that if no action occurs,

ϵA,t
k (0) = 0 and ϵR,t

k (0) = 0). Then the optimal merger CCPs are given by a closed-form formula,

CCPA
k (a|J ) =

exp
{
σA
k (J , a)−1

[
Vk(J ′(k, a))− Va(J ) + µA

k (J , a)
]}∑

a′∈ΓA
k
(J ) exp

{
σA
k (J , a′)−1

[
Vk(J ′(k, a′))− Va′ (J ) + µA

k (J , a′)
]} , (B.2)

where Va is the value function of the acquiree (equilibrium acquisition price) and µA
k is the persistent part of the acquisition payoff

shock defined in (3.1). Repositioning CCPs are given by the following formula:

CCPR
k (r|J ) =

exp
{
σR
k (J , r)−1

[
Vk(J ′(k, r)) + µR

k (J , r)
]}∑

r′∈ΓR
k
(J ) exp

{
σR
k (J , r′)−1

[
Vk(J ′(k, r′)) + µR

k (J , r′)
]} . (B.3)

The computational algorithm involves iterating on the value function using a Bellman equation (B.1) and equations (B.2) and (B.3).

The procedure can be summarized as follows:
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Initialization: Initialize the value function V (0).

(1) For every state J ,

(i) use V (j) to compute the CCPs of all players at J , given by equations (B.2) and (B.3),

(ii) use the CCPs from (i) to obtain a new value function V (j+1)(J ) by iterating a Bellman equation (B.1).

(2) Stop if ∥V (j) − V (j+1)∥ < tolerance; otherwise, go to stage (1).

Several features of this algorithm facilitate the computation of large games. Primarily, iteration steps (i) are (ii) are relatively cheap

because the integration in the Bellman equation is done on a player-by-player basis instead of jointly (see discussion in Doraszelski

and Judd (2012)). Therefore, its complexity does not grow exponentially but only linearly as the number of active players increases.

Additionally, best response CCPs depend on other players’ strategies only through the value functions. In such a case, one does not

need to remember a complete set of CCPs at every state. Note that storing all CCPs in a reasonable amount of memory might be

infeasible if the action space has large support (large support is frequently needed to match the data). Also, because only one player

changes state at each instant, the state transitions J ′(k, a) and J ′(k, r) are relatively simple. Therefore, state encoding and decoding

routines (which can take up to 60%-70% of the execution time depending on the problem) can be replaced with look-up tables. Lastly,

a closed-form of conditional expectations WA
a (CCPA

k ,J t) and WR
r (CCPR

k ,J t) for more than two feasible actions is unknown. Instead,

these expectations must be simulated (see section 4 for details).

C Time aggregation

The time aggregation is performed in steps. I will demonstrate the steps using a simple example contained at Figure 2. In this example,

Figure 2: Feasible industry paths for a simple example with one repositioning event and two merger

events.

there is one repositioning event and two merger events. The merger events happen during the month 4, and the repositioning event

happens sometime between month 1 and month 6. So first, I construct a set of feasible intermediate states during the half-year h and

denote it by Ωh. This set contains the feasible latent states that do not contradict the observed data and a coffin state. Denote a set
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of feasible states at the end of the month i by Ωhi ⊂ Ωh. States in Ωhi incorporate all mergers that happened before and including

month i, that is, {ahd : d ≤ i}, as well as any possible subset of repositioning events bh that occurred during half-year h. In the simple

example, each end of the month has only two feasible latent states; however, the number of these sets proliferates as the number of

repositioning events increases. The special cases are Ωh0, which contains only the fully observed starting state at the beginning of a

half-year h, and Ωh6, which contains only the fully observed state at the end of half-year h. Furthermore, apart from the states in

Ωhi, the set Ωh contains all transitory states between any states in Ωhi and Ωhi+1. For the simple example, the transitory states are

presented in Figure 3. In particular, it is possible that upper merger happens before lower merger, and vice versa. It is also possible

that repositioning happens at any point before, in between and after both mergers. The computation of the transitory states that

Figure 3: Feasible and transitory states for a simple example with one repositioning event and two

merger events.

determine feasible paths of the industry becomes quite burdensome if many mergers and repositionings happen in a particular half-year.

For example, the computation of feasible paths for seven mergers and three repositioning events within a one-half-year period can take

up to a week and require up to 40GB of memory to store the temporary data (Matlab code on 2GHz AMD Opteron CPU). The exercise

in this study is feasible because the computation was parallelized. The benefit of this process is that the final augmented state space,

Ωh, is thousands of times smaller than the entire state, which dramatically reduces the size of the intensity matrix.

Upon the arrival of the merger and repositioning actions at time t, the equilibrium strategies induce transitions according to

instantaneous conditional choice probabilities of acquisition CCPA(J t) or repositioning CCPR(J t). Together with action arrival rates

λA and λR, these CCPs generate an intensity matrix Qh on the augmented state space Ωh. The overall goal is to use the Markov

process on Ωh to compute the conditional likelihood of the data, that is, L(Ωh6, . . . ,Ωh1|Ωh0). The exact states from Ωhi (except for

the beginning and the end of the half-year) as well as transitory states between the Ωhis are unobserved by the econometrician and

must be integrated out.

Denote the time that passed since the beginning of h by s ∈ [0, 6], and let ιh(s) be a stochastic process of the latent state of the

system conditional on {Ωhi : i < s}. Conditioning prevents the ιh(s) from contradicting the data by eliminating the infeasible paths.

Note that ιh(0) is a degenerate distribution at Ωh0. First, I compute the distribution after the initial month, ιh(1), by numerically

solving a Chapman-Kolmogorov system of differential equations

dιh(s)

ds
= ιh(s)Qh, (C.1)

subject to the initial condition of ιh(0) being degenerate at Ωh0. Knowing ιh(1), I can obtain L(Ωh1|Ωh0) by taking the mass of states

that belong to Ωh1. The next step is obtaining L(Ωh2|Ωh1,Ωh0).18 For this purpose, I compute ιh(2) by solving equation (C.1) with

18Note that L(Ωh2|Ωh1,Ωh0) ̸= L(Ωh2|Ωh1) even though the latent state ωhi is Markovian, because Ωh1 is a set,

and the value of Ωh0 is informative about the distribution of the latent states in Ωh1.
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ιh(1) conditioned on Ωh1 used as an initial condition. The likelihood is the mass of the set Ωh2 obtained according to ιh(2). By repeating

the procedure, we can obtain any of L(Ωhi|Ωhi−1, . . . ,Ωh1,Ωh0), and as a result, I get the joint likelihood L(Ωh6, . . . ,Ωh1|Ωh0) by

using Bayes rule. By repeating the procedure for every h the expected likelihood of the data is obtained.

D Value function simulation details

The value function at J s can be decomposed into four components according to

Vk = V (π) + V (P ) + V (F ) + V (A) + V (R),

where

V
(π)
k =

∫ ∞

s=t
e−ρsπk(J s)ds,

V
(F )
k = −

∫ ∞

s=t
e−ρsFk(J s|θ)ds,

V
(A)
k =

∞∑
l=1

e−ρτ
A,(l)
k WA

a
(l)
k

(CCPA
k ,J τ

A,(l)
k |θ),

V
(R)
K =

∞∑
m=1

e−ρτ
R,(m)
k WR

r
(l)
k

(CCPR
k ,J τ

R,(m)
k |θ),

V
(P )
k =

∞∑
l=1

e−ρτ
A,(l)
k − P (a

(l)
k ,J τ

A,(l)
k |θ).

Each of these components can be expressed as a linear function of parameters θ and sufficient statistics about the simulated industry

paths Ĵ s,r for r = 1, . . . , 1000. I discuss all components below.

The first component V
(π)
k does not depend on dynamic parameters, so the sufficient statistic is simply an average of all draws, and

the second component V
(F )
k is a discounted sum of fixed costs. The sufficient statistic to compute this cost is a matrix

SIMF (f, x, y) =

∫ ∞

s=t
e−ρs1(ωs

kf = x, ns
k = y)ds.

Fixed cost can be obtained using

V
(F )
k =

F∑
f=1

F̄m
f

∑
x,y

SIMF (f, x, y)FS(x|θF )FE(y|θE).

The third component consist of sum of discounted acquisition shocks, and it can be decomposed into

V
(A)
k = θA,m

∞∑
l=1

e−ρτ
A,(l)
k +θAπ

∞∑
l=1

e−ρτ
A,(l)
k πk(J τ

A,(l)
k )+

θA,m
σ

∞∑
l=1

e−ρτ
A,(l)
k E[ϵA(k′)|a(l)k ] + θA,m

σ,π

∞∑
l=1

e−ρτ
A,(l)
k πk(J τ

A,(l)
k )E[ϵA(k′)|a(l)k ].

I need four sufficient statistics to evaluate this part of the value function in such a case. One can similarly decompose the fourth

component and obtain nine sufficient statistics. An extra five statistics come from the fact that I allow six different means of repositioning

costs depending on the source and target format.

The last component is the sum of discounted acquisition spending. To obtain this figure, I make use of the fact that the acquisition

price P (a
(l)
k |J t, θ) is equal to the value function of the acquiree conditional on rejecting every equilibrium merger offer. Thus, obtaining

an acquisition price is the same as simulating a value function for the fringe firm. Such a value function contains three of the above

terms, namely, V
(π)
k , V

(F )
k , and V

(R)
k , which are simulated using the aforementioned sufficient statistics in the nested loop.
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