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Abstract

We show that bounded monopoly profits are essential for the uniqueness of
the Bertrand paradox (zero profit) outcome. Otherwise, a folk theorem obtains
for one-shot homogeneous product Bertrand games: any positive (but finite)
payoff vector can be achieved in a symmetric mixed-strategy Nash equilibrium.
JEL Numbers: D43, C72

1 Introduction

Every first-year graduate student in economics is taught that when two identical price
setting firms produce homogeneous products at constant marginal cost, marginal
cost pricing is the unique Nash equilibrium. This result, commonly referred to as
the Bertrand paradox, dates back to the nineteenth century. Its originator, Joseph
Bertrand (1883), first described the logic underlying the paradox as follows:

“... one of the proprietors will reduce his price to attract buyers to him,
and [the] other will in turn reduce his price even more to attract buyers
back to him. They will stop undercutting each other in this way, when
either proprietor, even if the other abandoned the struggle, has nothing
more to gain from reducing his price...[Otherwise], whatever the common
price adopted, if one of the owners, alone, reduced his price, he [would],
ignoring any minor exceptions, attract all of the buyers, and thus double
his revenue if his rivals let him do so.” [Translated by Chevaillier in
Magnan (1992, p. 649)].

While Bertrand’s own reasoning led him erroneously to conclude that there did
not exist an equilibrium to this formulation,1 it is now generally accepted that in the

1Bertrand wrote, “There is no solution under this assumption, in that there is no limit to the
downward movement [in prices].”
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absence of capacity constraints, homogeneous product Bertrand competition leads to
marginal cost pricing and (in the absence of fixed costs) zero profits. More formally,
Harrington (1989) has shown that the Bertrand paradox (zero profit) outcome is the
only equilibrium outcome when firms produce at constant marginal cost and market
demand is bounded, continuous, downward sloping, and has a finite choke-price.
In modeling oligopoly markets, it is often convenient to assume that the market

demand function is differentiable at each positive price. Examples include the case
of unit market demand or, more generally, the case where the elasticity of market
demand is constant at all prices. Since these two specifications may be inconsistent
with a finite choke-price, it is an open question whether the uniqueness of the Bertrand
paradox outcome obtains in these settings. We show that in the absence of a finite
choke-price, positive profit equilibria can arise in homogeneous product Bertrand
games. In fact, when the absence of a choke-price gives rise to unbounded monopoly
profits, a folk theorem obtains for one-shot homogeneous product Bertrand games.
That is, any positive (but finite) payoff vector can be achieved in a symmetric Nash
equilibrium.

2 The Folk Theorem

Consider a market in which a set N = {1, 2, ...n} of n > 1 identical, risk-neutral firms
compete to supply some homogeneous product. Let π(p) denote the profit function
a monopolist charging a price p ∈ P ⊆ [0,∞) would earn in this market, where P is
a connected set. We assume that there is a minimum price that a monopolist must
charge in order to break even in the market; that is, there exists a price p∗ ∈ P
such that for all p ∈ P, p < p∗ implies π(p) ≤ π(p∗) = 0. Let pM ≡ arg sup {π (p)}
denote the (possibly infinite) monopoly price, and suppose that π (p) is continuous

and strictly increasing on
h
0, pM

´
. Since the game is symmetric, it is natural to restrict

attention to the case in which all firms have an identical strategy space, P. Thus, Pn

denotes the strategy space of the Bertrand game. Each firm simultaneously chooses
a price, pi ∈ P, with the firm charging the lowest price winning the monopoly profits
corresponding to that price. In the event of a tie for low price, we assume that each
firm has an equal chance of serving the entire market. Thus, if (p1, p2, ..., pn) ∈ Pn

are the prices chosen by the n firms, the profits of firm i are given by:

πi (p1, p2, ..., pn) =


π(pi) if pi < pj <∞ ∀j 6= i
1
m
π(pi) if i ties m− 1 other firms for low price

0 otherwise

If we let Π = (π1, π2, ...πn) denote the vector of these payoff functions, then a homo-
geneous product Bertrand game is given by Γ hN,Pn,Πi .
We now state our main result.
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Theorem 1 (A One-Shot Folk Theorem) Let Γ be a homogeneous product Bertrand
game in which limp→pM π(p) → ∞. Then any k ∈ [0,∞) may be achieved as the ex-
pected per firm profits in a symmetric mixed-strategy Nash equilibrium of Γ.

Proof. Since π (p) is a strictly increasing, continuous function on [p∗, pM), it follows
that for all k ∈ [0,∞), π−1(k) exists and is strictly increasing in k. It follows that

F (p) =


0 if p ≤ π−1 (k)

1−
³

k
π(p)

´ 1
n−1 if pM > p > π−1 (k)

1 otherwise

is a well-defined, atomless probability distribution on [π−1 (k) , pM). Suppose that all
n firms select prices at random from F. Since F is atomless, firm i sets the lowest
price if and only if the other n − 1 firms set a price above pi. Hence the expected
profits enjoyed by firm i if it sets a price of p when other firms randomize according
to F is

Eπi = [1− F (p)]n−1 π(p).

For p ∈ [π−1 (k) , pM) this is constant and equal to k by construction. It does not pay
for firm i to price below π−1 (k), since the firm would win the entire market for certain
but earn profits strictly less than k. Thus, F constitutes a symmetric mixed-strategy
Bertrand-Nash equilibrium in which each firm earns expected profits of k.

The equilibrium mixed-strategies balance two opposing forces. By lowering its
price, a firm increases the chance of winning the entire market, but reduces the level
of profits conditional upon winning. Setting a higher price reduces the chance of win-
ning the entire market, but leads to greater profits conditional upon winning. When
monopoly profits are unbounded, one can construct mixed-strategies that allocate
sufficient density at each price p ∈ [π−1(k), pM) to ensure that the rival’s expected
payoff equals k at that price. By pricing below π−1(k), a firm could guarantee it-
self the entire market, but profits would then be below k. The equilibrium mixed
strategy employed by each firm eliminates the rival’s temptation to lower its price
(in an attempt to capture the entire market) by ensuring that its rival has a positive
likelihood of earning even greater profits in the event it captures the entire market
at a higher price.
The following two examples illustrate the use of this folk theorem.

Example 1 (Hotelling) Two risk-neutral firms produce identical products at zero
cost. Market demand is unity for any finite price, and the firm that charges the lowest
price gets the entire market. In the event of a tie, each firm has an equal chance of
servicing the entire market. Thus, the expected profits of firm i if it charges any price
pi ∈ [0,∞) when the rival charges pj ∈ [0,∞) is given by
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πi(pi, pj) =


pi if pi < pj <∞
1
2
pi if pi = pj <∞
0 otherwise

These payoff functions arise in the Hotelling model when the firms are located at the
same point in product space.2

By the usual reasoning p1 = p2 = 0 is the unique pure strategy Nash equilibrium.
However, since π (p) = p is unbounded, Theorem 1 implies that for every k ∈ (0,∞)
there also exists a symmetric mixed-strategy Nash equilibrium that is atomless on
[k,∞) in which each firm earns expected profits of k and prices according to the
distribution function

F (p) =

(
0 if p ≤ k

1− k
p
if p > k

over the support [k,∞). Thus, in addition to the well-known zero-profit pure strat-
egy equilibrium, the Hotelling game also has a continuum of positive profit Nash
equilibrium payoffs.
In this example, market demand is perfectly inelastic and marginal cost is zero.

One can show that the corresponding Cournot (quantity setting) game also has a
continuum of Nash equilibrium payoffs that range from the competitive (zero profit)
to the monopoly (infinite profit) level.3 One might conjecture that the positive profit
equilibria will vanish if market demand is downward sloping and the corresponding
Cournot equilibrium is unique. The following example shows that this conjecture is
false.

Example 2 (Isoelastic Demand)4 Two risk-neutral firms produce identical prod-
ucts at constant marginal cost, c ≥ 0. There are no capacity constraints, and the
market demand curve is given by D(p) = p−α , where α ∈ (1

2
, 1). It is straightforward

to verify that for α ∈ (1
2
, 1), the unique symmetric Cournot equilibrium profits are

2To see this, set a = b = 1
2 in the profit function given on page 286 of Gabszewicz and Thisse

(1992).
3To see this, suppose the Cournot market clears as follows: if q1+q2 = 1, the Walrasian auctioneer

chooses an arbitrary p∗ ∈ [0,∞) as the Cournot price (since any price clears the market). If q1+q2 6=
1, then the auctioneer sets the Cournot price at p∗ = 0 (since a market-clearing price does not exist).
Given this Walrasian mechanism, if each Cournot firm produced an output of qi =

1
2 then neither

firm would have a unilateral incentive to change output. But with perfectly inelastic aggregate
demand, this means that any corresponding Cournot equilibrium price, p∗ ∈ [0,∞) supports this
equilibrium, and therefore there exist a continuum of Cournot equilibrium profits that lie in the
interval [0,∞).

4This example of positive profit outcomes arising under constant returns to scale has been inde-
pendently identified by Kaplan and Wettstein (1997).
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π∗i = π∗, where

π∗ ≡
µ

c

4α− 2
¶Ã

cα

2α− 1
!−α

> 0. (1)

Under Bertrand competition the profits of firm i are given by

πi(p1, p2) =


(pi − c)p−αi if pi < pj <∞
1
2
(pi − c)p−αi if pi = pj <∞

0 otherwise

By the usual reasoning, the unique pure-strategy Bertrand-Nash equilibrium is p∗1 =
p∗2 = c, and by equation (1) the corresponding Bertrand equilibrium profits are strictly
less than profits under Cournot competition. However, since π (p) = (p − c)p−α is
unbounded, Theorem 1 implies that for every k ∈ (0,∞) there also exists a symmetric
mixed-strategy Nash equilibrium that is atomless on [π−1(k),∞) in which each firm
earns expected profits of k > 0.
By choosing k > π∗, the Bertrand duopolists can actually earn profits that exceed

the Cournot equilibrium profits! Thus, the uniqueness of the Cournot equilibrium
does not imply the Bertrand paradox, nor does it imply that Bertrand firms are
doomed to earn lower profits than their Cournot counterparts. The positive profit
Bertrand equilibria arise in this example because, when α < 1, monopoly profits are
unbounded. Notice that when α > 1, Theorem 1 does not apply even though there
still does not exist a finite choke price.

3 Discussion

The existence of a continuum of positive Nash equilibrium payoffs is reminiscent of
folk theorems for infinitely repeated games (see Fudenberg and Maskin, 1986). It
turns out that the resemblance between the two results is not simply superficial,
and it is useful to compare the forces at work in our folk theorem and examples
with those underlying folk theorems for infinitely repeated games. Recall that if
a one-shot game has a unique Nash equilibrium, then that equilibrium remains the
unique equilibrium even if the game is repeated a finite (but known) number of times.
The presence of a known, terminal period leads to the backwards unraveling of any
alternative strategies. The folk theorems for repeated games illustrate the power of
infinity in economic models: If the game is infinitely repeated, there is no point at
which to begin the backward unraveling, and thus a host of other equilibria can be
maintained via trigger strategies, provided the discount factor, δ, is sufficiently close
to one. Infinitely repeated games entail an infinity of resources changing hands over
time, although at each date transactions are finite: firms that conform earn profits,
say, of π > 0 each day forever. Notice, however, that continuation payoffs can be
made arbitrarily large, since

P∞
t=0 δtπ tends to infinity as δ tends to 1. The fact
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that potential continuation payoffs are unbounded allows one to construct incentives
(through trigger strategies) that balance a firm’s temptation to deviate against the
payoffs from conforming to the proposed set of strategies.
Similarly, in our folk theorem the continuum of positive profit mixed-strategy

equilibrium profits arise because potential (monopoly) profits are unbounded. This
undermines the price undercutting argument in much the same way that an infinite
horizon undermines the backward unraveling argument in repeated games. Just as
there is no date at which continuation payoffs are bounded in applications of the
folk-theorem for infinitely repeated games, in the two examples there is no price that
bounds payoffs conditional upon winning the entire market. This destroys the price
undercutting argument, and leaves open a continuum of positive-profit mixed strategy
equilibria in which realized profits are finite with probability one, but wherein each
firm earns positive expected profits of k > 0.
We conclude by pointing out that our Theorem 1 can also be applied in settings

where consumers have a finite choke price, provided firms are uncertain what this
price is.

Example 3 (Uncertain Choke-Price) There are n > 1 risk-neutral firms that
produce at zero cost. Market demand is given by D(p) = p−α if p ≤ r, and zero
otherwise. Here, r > 0 represents the choke-price: if the market price exceeds r,
demand falls to zero. Firms do not know for certain what r is, but perceive that
it is drawn from a Pareto distribution with density g(r) = β/rβ+1 on [1,∞) and
corresponding distribution function, G.
A firm that sets the lowest price earns the corresponding monopoly profits only

if the winning price is below r. Hence, conditional on setting the lowest price, firm
i’s expected (monopoly) profits are π(pi) ≡ [1 − G(pi)]D(pi)pi = p

(1−α−β)
i . Firm i’s

payoff function in this Bertrand game is therefore

πi(p1, p2, ..., pn) =


p
(1−α−β)
i if pi < pj∀i 6= j
1
m
p
(1−α−β)
i if i ties m− 1 other firms for low price

0 otherwise

It is routine to verify that this game satisfies the conditions of Theorem 1 when
α + β < 1. Thus for every n > 1 and k ∈ (0,∞), there exists a symmetric mixed-
strategy Nash equilibrium that is atomless on [k1/(1−α−β),∞) in which each firm’s
expected profits are k. In fact, the following probability distribution comprises such
an equilibrium:

F (P ) =


0 if p ≤ k1/(1−α−β)

1−
h
k
p

i−(α+β−1)
n−1 if p > k1/(1−α−β)
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With an uncertain choke-price, for any finite p ∈ [0,∞), there is still a positive
(but possibly slight) probability that consumers are willing to pay even more for the
product. Provided the resulting profits are sufficiently high (as will be the case if
α+ β < 1), then positive profit Bertrand equilibria exist.
This result is similar to folk theorems for finitely repeated games with random

terminal periods. That literature shows that if, for any finite stage T ∈ {1, 2, ...}
reached by the firms, there is a sufficiently high probability that the game will continue
for another period, then a folk theorem obtains. Thus, the folk theorem can survive in
repeated games that terminate in finite time with probability one. Example 3 shows
that positive profit equilibria can survive in Bertrand games where the maximum
amount consumers will pay is finite with probability one. When one assumes a
potentially unbounded stream of resources, as is implicit in the literature on infinitely
repeated games, neither trigger strategies nor the repetition of the game is necessary
to generate a folk theorem for homogeneous product Bertrand games.
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